INTRODUCTION

Neurological manifestations in COVID-19 are broad and may be caused by a direct effect of the virus on the nervous system or a parainfectious or postinfectious immune-mediated inflammation [1–3]. In most cases with neurological involvement in COVID-19, there is no evidence of cerebrospinal fluid (CSF) infection [4]. There are, however, frequent reports of encephalitis ensuing acute infection, including presumed autoimmune encephalitis, but cases in which autoantibodies in CSF have been screened for and identified are few [5–8]. In addition, cases with myoclonia associated with COVID-19 have been described [9–14]. Here we present the clinical course and treatment of three cases of severe COVID-19 encephalopathy with neurological symptoms including prominent myoclonus and results from indirect immunohistochemistry (IHC) on perfused mouse brain and microscopical findings.

STATEMENT OF ETHICS

Ethical approval was acquired by the Regional Ethical Review Board in Uppsala, Sweden (No. 2012/081 and 2014/148) and the National Ethical Review Authority (No. 2020–01623). Written informed consent was obtained from all patients.

Myoclonus in patients with COVID-19: Findings of autoantibodies against brain structures in cerebrospinal fluid

Isa Lindqvist1,2 | Janet L. Cunningham1,2 | Jan Mulder2 | Amalia Feresiadou3 | Elham Rostami2,4 | Johan Virhammar3 | Eva Kumlien3

1Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
2Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
3Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
4Department of Medical Sciences, Neurosurgery, Uppsala University, Uppsala, Sweden

Correspondence Eva Kumlien, Department of Medical Sciences, Neurology, Uppsala University Hospital, Uppsala 751 85, Sweden. Email: eva.kumlien@neuro.uu.se

Funding information Åke Wibergs Stiftelse; Åhlens Stiftelse; the Mental Health Fund (Fonden för Psykisk Hälsa); the Medical Training and Research Agreement funds of Uppsala University Hospital, Swedish Research Council, Grant/Award Number: 2019–06082

Abstract

Background and purpose: COVID-19 is associated with multiple neurological manifestations. The clinical presentation, trajectory, and treatment response for three cases of myoclonus during COVID-19 infection, with no previous neurological disease, are described.

Methods: Analysis of cerebrospinal fluid from the cases using indirect immunohistochemistry.

Results: Antibodies against rodent brain tissue, and similarities in staining patterns were observed, indicating the presence of antineuronal immunoglobulin G autoantibodies targeting astrocytes in the hippocampus.

Conclusion: Our results demonstrate cerebrospinal fluid antineuronal antibodies indicating an autoimmune involvement in the pathogenesis in COVID-19 associated myoclonus.

KEYWORDS astrocytes, autoantibodies, COVID-19, indirect immunohistochemistry, myoclonus, treatment
consent was obtained from the patients. All animal experiments con-
formed to the European Communities Council Directive (86/609/
EEC) and were in accordance with Swedish laws and regulations, and
approved by the local ethical committee (Stockholm Animal Ethical
Committee N183/14).

MATERIAL

Patients

Data were obtained from three patients admitted to Uppsala
University Hospital and other associated regional hospitals during
December 2020 to January 2021.

Controls

CSF and serum taken from four female and two male volunteers
were used as controls. Controls were extensively screened and are
healthy, with no prior psychiatric or neurological comorbidity. Mean
age was 29 years (SD=2.1).

METHODS

Indirect immunohistochemistry

See Supplementary Methods section in Data S1 for details. In brief,
brains for indirect IHC were collected from 4% paraformaldehyde-
perfused p56 mice and sectioned (16μm). After background blocking
steps, sections were incubated overnight with either CSF (diluted
1:4) or serum (diluted 1:1000) available from cases and controls.
Whereafter, secondary horseradish peroxidase-conjugated anti-
human immunoglobulin (Ig)G, IgA, and IgM were labeled separately
with tyramide signal amplification fluorescent cyanine dyes.

Microscopical assessments

The immunostained sections were scanned using the Zeiss imager
Z2 microscope and Metafer slide scanning system. Each Tyramide
Signal Amplification (TSA) channel was visualized with a set of in-
tegration times ensuring complete coverage of intensities. Images
of the reported regions were analyzed by blinded evaluators
using ImageJ. Subregions were manually selected, first based on
4′,6-diamidino-2-phenylindole (DAPI); then signals from suspected
artifacts were removed. The mean, median, 95% confidence in-
terval (CI), and 75% CI of intensity values were measured, and the
background value for each specific TSA channel was subtracted
to eliminate nonspecific binding and illumination (Figure 2). The
staining patterns were then qualitatively examined microscopically
by two observers (J.M. and I.L.) and determined by morphological
similarities to known cell markers and cell subunits [15]. Coexistence
between CSF and the astrocyte marker glial fibrillary acidic protein
(GFAP) was assessed using a confocal Zeiss LSM880 microscope.

RESULTS

Case 1

A male patient in his 70s, presented to the emergency room (ER)
after a 3-day history of fever, confusion, and involuntary jerks af-
fecting his whole body, which was interpreted as generalized my-
oclonus. His medical history was remarkable for coronary artery
grafting. At admission, respiratory symptoms were mild, with O2 satu-
ratio 95%, and there were no signs of systemic inflammation with
C-reactive protein 3.6mg/L and D-dimer 0.9mg/L. His condition
worsened with dyspnea due to the myoclonus and impairment of
consciousness, and he was subsequently intubated and sedated with
propofol; the diagnosis meningitis/encephalitis was suspected. A
nasal swab for COVID-19 qualitative real-time reverse-transcription
polymerase chain reaction test was positive. A lumbar puncture
showed pleocytosis with 11 monocytes (Table 1). Glucose, protein,
and albumin levels were normal. An array for a meningitis/encepha-
litis panel was negative. Antibodies against NMDAR, LGI1, CASPR2,
GABA_b1, GABA_b2, AMPA1, AMPA2, Ri, Yo, Ma2, CV2, Hu, and
amphiphysin were negative using a commercial assay (Euroimmun).
Magnetic resonance imaging (MRI) of the brain showed normal
gray and white matter differentiation and no diffusion abnormali-
ties. Continuous electroencephalogram (EEG) showed nonspecific
slowing without epileptiform activity despite ongoing generalized
myoclonus. Antiseizure medication with levetiracetam had no effect
slowing without epileptiform activity despite ongoing generalized
myoclonus. Antiseizure medication with levetiracetam had no effect
on the myoclonus, and after 6 days, intravenous immunoglobulins
(IVIGs) were started. Neurological symptoms improved, and after
12 days the patient could leave the intensive care unit (ICU). After
rehabilitation, he was discharged home without any remaining neu-
rological symptoms.

Case 2

A male patient in his 50s had fever and cough for 10 days and tested
positive for SARS-CoV-2. His medical history was remarkable for
asthma and radically treated localized cancer. On day 11 from onset
of symptoms he came to the ER with confusion and dyspnea. He suf-
furred from acute respiratory failure with O2 saturation 85% despite
administration of 15L/min O2 on a mask. Blood tests revealed sys-
temic inflammation with C-reactive protein 219mg/L and D-dimer
2.4mg/L. At the ER he had a generalized seizure and was intubated
and sedated with propofol and transferred to the ICU. During the
stay he had multifocal myoclonus predominantly involving facial,
upper extremity, abdomen, and trunk muscles, distinctly increased
by auditory and tactile stimuli, known as an exaggerated startle re-
sponse. Myoclonus only disappeared with deep sedation. Brain MRI,
TABLE 1 Cerebrospinal fluid findings in the three patients.

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (years)</th>
<th>ICU (days)</th>
<th>LP day</th>
<th>CSF WBC (10^4/L)</th>
<th>CSF NfL (ng/L)</th>
<th>CSF τ (ng/L)</th>
<th>CSF GFAP (ng/L)</th>
<th>CSF IL-6 (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73</td>
<td>12</td>
<td>10</td>
<td>11^b</td>
<td>550</td>
<td>537^b</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>36</td>
<td>11</td>
<td>0</td>
<td>1540^b</td>
<td>358</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>23</td>
<td>15</td>
<td>1</td>
<td>2000^b</td>
<td>921^b</td>
<td>860</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Note: Reference ranges: NfL: age 40–60 years, <890 ng/L; age >60 years, <1850 ng/L; τ: age >50 years, <479 ng/L; GFAP: age 20–60 years, <750 ng/L, age >60 years, <1250 ng/L; WBC: <5 × 10^3/L.
Abbreviations: CSF, cerebrospinal fluid; GFAP, glial fibrillary acidic protein; ICU, intensive care unit; IL-6, interleukin-6; LP, lumbar puncture; NfL, Neurofilament light protein; WBC, White blood cells.
^bDays from symptom onset to lumbar puncture.

Revised EEG, and extensive laboratory workup including CSF were normal (Table 1). Treatment with levetiracetam and valproic acid had no effect, whereas benzodiazepines gave some improvement. He received methylprednisolone pulses for 3 days, and the myoclonus gradually improved. After 36 days, the patient was discharged from the ICU, still having some action myoclonus that completely resolved over time.

Case 3

A man in his 70s with hypertonia and diabetes mellitus fell ill with fever and confusion, and on day 3 he tested positive for SARS-CoV-2. At admission, he was slightly hypoxic (O_2_ saturation 94% with 5 L/min O_2_), disoriented, and had positive and negative myoclonus in the upper extremities. C-reactive protein was 94 mg/L, and D-dimer was 4.9 mg/L. On day 7 from onset of symptoms, his condition deteriorated with declining consciousness and increasing breathing difficulties, and he was intubated. He was sedated and treated with steroids, levetiracetam, and benzodiazepine. On wake-up testing, multifocal myoclonus was noticed in the eyelid and facial and upper extremities muscles. Extensive blood and CSF workup were unremarkable except for findings of anti-Yo and Recoverin antibodies in serum (Table 1). Repeated EEG showed normal except for anti-Yo and Recoverin antibodies in serum (Table 1). Repeated EEG showed focal slowing and parkinsonistic features.

Indirect immunohistochemistry

Indirect IHC was performed on CSF and serum taken in connection with the initial illness and before any immune modulation treatment was given. IHC displayed similar staining patterns in both CSF and serum for all cases. The most distinct staining pattern indicated autoantibodies targeting astrocyte-like structures in the hippocampus. This pattern was not found in any of the controls, who either displayed a nonspecific staining pattern or no staining (Figure 1). The three different Ig subclasses IgG, IgA, and IgM were investigated separately, and the astrocyte-like structure patterns was only seen for IgG. IgM levels did not differ from controls. Elevated ant-brain IgG and IgA autoantibodies were seen in multiple brain regions with staining intensities >2 SDs from healthy controls (Figure 2). CSF staining patterns for IgA, although greater in intensity, did not show specific reactivity against astrocytes or other structures.

Cooating with GFAP, a marker for astrocytes, showed only partial overlap with patient CSF-derived IgG antibodies, indicating binding of CSF to unknown target in astrocytes (see Figure 3).

DISCUSSION

Para- and postinfectious myoclonus in relation to COVID-19 has previously been described [13, 17]. We present three cases with COVID-19 encephalopathy with prominent myoclonus with an onset in relation to severe COVID-19 infection. None of the patients had a history of seizures. By using indirect immunofluorescence on perfused mouse brain tissue, CSF-derived IgG immunoreactivity was measured in several mouse brain regions, indicative of an autoimmune mechanism causing the symptoms.

Myoclonus in critically ill patients can result from a range of etiologies [18]. In our cases, medication toxicity, cerebral hypoxia, metabolic derangements, and cerebral infection were ruled out. Metabolic activity was normal as observed by measuring liver enzymes, creatinine, blood urea nitrogen, estimated glomerular filtration rate, electrolytes, and calcium. Because no epileptiform activity was seen on EEG, the myoclonus was interpreted as originating from subcortical or brain stem structures. Unfortunately, a more detailed analysis of the myoclonia with electromyography was never performed. Only one patient was investigated with Fluorodeoxyglucose-positron emission tomography (FDG-PET) FDG-PET without any significant findings such as altered metabolism, which has been reported in connection with subacute COVID-19.
MYOCLONUS IN PATIENTS WITH COVID-19

FIGURE 1 Indirect immunohistochemistry (IHC) shows immunoglobulin (IgG) reactivity against brain structures in mouse tissue in both serum and cerebrospinal fluid (CSF). IHC staining using both CSF and serum displayed astrocytic-like staining in all cases compared to healthy controls, using anti-IgG as a secondary antibody (green) and counterstaining using 4′,6-diamidino-2-phenylindole (DAPI) (blue). (a) CSF from Case 1 shows astrocytic-like staining of the cell body and processes in the stratum radiatum in the CA1 region of the hippocampus. (b) CSF from Case 2 shows astrocytic-like staining of the cell body and processes in the stratum radiatum in the CA1 region of the hippocampus. (c) CSF from Case 3 shows astrocytic-like processes staining in the white matter between the subiculum and cortex as well as a cytosolic neuronal-like staining in the subiculum. Weak staining in the stratum radiatum in the CA1 region of hippocampus was also observed. (d) No astrocyte-like staining was measured in healthy controls. The yellow arrow shows very weak neuropil staining seen in some controls (arrow). (e) Presentation of the region selected in the images. Serum for Case 1 was not available. (f) Serum from Case 2 shows astrocytic-like processes in the white matter. (g) Serum from Case 3 shows both dendritic neuronal staining from the granular layer into the stratum radiatum in CA1 region of the hippocampus as well as an astrocyte-like cell body and processes in the stratum radiatum layer of CA1 region in the hippocampus. (h) Image demonstrates higher background in serum from healthy controls with antineuronal antibodies as well as neuropil staining; however, no astrocyte-like staining was detected in serum in the controls. White arrows indicate astrocyte-like processors, red arrows astrocyte-like cell body, purple arrows neuronal-like cell body, orange arrows neuronal dendrite, and yellow arrows neuropil.

and cognitive impairment [16]. Treatment with levetiracetam, valproic, and benzodiazepines had insufficient effect. Assuming the symptoms were caused by an immune mechanism, the patients received immunomodulatory treatment. Two patients received methylprednisolone and IVIG with partial response. A distinct response was noted in one patient who received plasmapheresis.

In patients with neurological symptoms associated with severe COVID-19, autoantibodies of neuronal targets have been identified [18] in serum and sometimes in CSF. In one of the patients, an antibody panel was positive for Recoverin and anti-Yo in serum. A malignancy workup did not reveal any random malignancy, suggesting an unspecific autoreactivity of the immune system in relation to SARS-CoV-2 infection [19].

Two patients recovered eventually without any neurological sequelae. One patient had persistent lingering symptoms with cognitive and motor impairment. Notably, this patient had an increased level of a biomarker for axonal damage Neurofilament light (NFL), which is known to be associated with disease severity in COVID-19 neurological manifestations [20] and other forms of autoimmune encephalitis [21, 22].

Previously studied COVID-19–positive patients have displayed a strong IgG autoreactivity in mouse brain tissue and similar patterns of antiastrocytic as well as neuropil staining [17]. The astrocytic staining pattern was only observed further in the patients with myoclonus. They also shared the staining pattern similarity of another case with limited astrocytic-like staining that responded to steroid treatment [23]. In a screening for antineuronal autoantibodies in CSF using a similar method, only one case with astrocytic staining pattern was described among the 121 patients with severe psychiatric states [24]. The frequency of this specific pattern in other postinfectious contexts is not yet known.

All three cases shared CSF immunohistochemical reactivity similarities that in blinded evaluation differentiated them from controls. Double staining with GFAP localized the staining to a subset of astrocytes, but the minimal overlap suggests a different antigen target. A similar astrocyte-like staining pattern was also found after retrospective analysis of a case of malignant catatonia after COVID-19; however, this case showed additional immunoreactivity not seen in the present cases [5]. The staining patterns did not resemble cases with antibodies against Anti-N-methyl-D-aspartate (NMDA) receptors or the pattern seen for our other cases with neurological manifestations (acute necrotizing encephalopathy, acute disseminated encephalomyelitis) associated with COVID-19 [6]. These findings are in line with the growing numbers of targets for brain autoantibodies [25].

A finding of potential interest was the relatively rapid symptom onset in relation with COVID-19 debut and the lack of IgM reactivity, whereas other cases with acute onset of symptoms several weeks after infection showed IgM reactivity in our method (data not shown). These findings suggest that the B-cell clones producing the
FIGURE 2 Indirect immunohistochemistry (IHC) shows elevated general staining intensity for anti-brain antibodies in patients compared to controls particularly in cerebrospinal fluid (CSF). Multiplex analysis of antibody subtypes immunoglobulin (Ig)G, IgM, and IgA was performed together with counterstaining with 4'6-diamidino-2-phenylindole (DAPI). Digital analysis was based on a control cohort without a comorbidity as references for normal variation ($n=6$). Shown are the mean signal intensities in seven brain regions corrected for background. Healthy controls are shown in black, and error bars are based on the mean intensities ±2 SDs from the controls. Staining intensities are strongest for Cases 1 and 2 in all investigated brain regions; however, intensity values above 2 SDs from controls are displayed for all cases in CSF for IgG and IgA but not IgM. Serum was available for Case 2 and 3 and staining intensity >2 SDs compared to controls was only seen for Case 3 in IgG. mo, molecular layer; gr, granular layer; po, polymorph layer; pu, purkinje layer; sg, granule cell layer; slm, lacunosum layer; so, oriens layer; sp, pyramidal layer; sr, radiatum layer.
anti-brain antibodies were derived from preexisting memory cells in these cases. There are emerging data that suggest that COVID-19 is associated with a bystander polyclonal autoreactive B-cell activation and elevated levels of pathogenic autoreactive IgGs [26, 27]. Improved recognition of autoantibody contributions to peri- and postinfection phenotypes may open new treatment modalities targeting B cells [28].

Limitations

This study had limitations associated with a descriptive retrospective case series. The healthy individuals who donated CSF were not matched for age, sex, or comorbidities. Unfortunately, there were no samples from patients with other severe systemic infections for comparison, and therefore we could not determine how specific the brain antibodies are for COVID-19 infections. In addition, there was no follow-up of the patients to evaluate a possible normalization of the immunological autoreactivity. This study may, however, generate hypotheses and raise interest in further and larger studies of similar entities.

CONCLUSIONS

Our results demonstrated CSF antineuronal antibodies, which indicates autoimmune involvement in the pathogenesis of COVID-19–associated myoclonus that responded to immunotherapy. The findings illustrate the potential value of tissue tests in adding weight to clinical assessments and decision to treat in cases where indications for neuroinflammation are subtle. A future study of more patients with COVID-19 as well as other systemic severe infections is warranted.

AUTHOR CONTRIBUTIONS

Isa Lindqvist: Methodology, formal analysis, data curation, visualization, writing–original draft, writing–review & editing. Janet L. Cunningham: Writing–review & editing, conceptualization, methodology, formal analysis, writing–original draft, funding acquisition; supervision. Jan Mulder: Formal analysis, methodology, supervision, writing–review & editing. Amalia Feresiadou: Investigation, writing–review & editing. Elham Rostami: Investigation, writing–review & editing, funding acquisition. Johan Virhammar: Conceptualization, investigation, visualization, writing–review & editing, data curation. Eva Kumlien: Conceptualization, data curation, writing–original draft, investigation, writing–review & editing, funding acquisition. All authors reviewed the results and approved the final version of the article.

ACKNOWLEDGEMENTS

The authors thank Uppsala Biobank for collaboration in sample management. The authors acknowledge contributions by Annica J. Rasmusson and Evelina Husén for their valuable assistance in data management, method development, and laboratory work.

FUNDING INFORMATION

This work was funded by grants to J.L.C. from Åke Wibergs Stiftelse, Åhlems Stiftelsen, the Mental Health Fund (Fonden för Psykisk Hälsa), and...
the Medical Training and Research Agreement funds of Uppsala University Hospital, Swedish Research Council (grant no. 2019-06082), as well as the Swedish Society of Medicine SciLifeLab/KAW (Knut & Alice Wallenberg) national COVID-19 research program project. E.R. is a Wallenberg Clinical Fellow. The funding agencies had no influence on study design; the collection, analysis, and interpretation of data; the writing of the report; or in the decision to submit the article for publication.

CONFLICT OF INTEREST STATEMENT
J.L.C. has received lecturing fees from Otsuka Pharma Scandinavia, Janssen-Cilag AB, and H. Lundbeck AB.

DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.

ORCID
Johan Virhammar https://orcid.org/0000-0001-9901-2949
Eva Kumlien https://orcid.org/0000-0002-1952-8791

REFERENCES

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.