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Abstract 

 
Welds play a crucial role in the product portfolio of GKN Aerospace. For ease of manufacturing 

and repairability, butt welds are preferred in the aerospace industry. Weld regions undergo local 

distortions during manufacturing due to the external heat-input, and the resulting local 

geometries are complex and stochastic in nature. Under operational loads, the distorted 

geometry affects the local stress field around the weld region, and this has a significant impact 

on the fatigue life.  

 

Traditional design calculations of welds resort to idealization of the local weld geometry. In 

this thesis, the influence of real weld geometry on the computed fatigue life is investigated. 

Linear elastic fracture mechanics principles are utilized to calculate the fatigue life of a weld 

starting from a pre-defined initial crack. The influence of important weld geometric parameters, 

namely, – edge offset and weld toe radii, on the fatigue life is investigated in detail. A statistical 

analysis approach, using transfer functions and Monte Carlo simulation, is devised to study the 

effect of variation in the different weld geometric parameters. Different edge offset measures 

from a real geometry are identified and these measures are investigated as potential candidates 

to obtain conservative life estimates using the idealized geometry. 

 

Investigations in this thesis show that the real geometry has a significant effect on the weld 

fatigue life. In all cases of local weld geometry, the edge offset has the largest influence on life. 

For a real weld geometry, the root toe radius has a significant influence on life. In an idealized 

geometry, for the same normalized edge offset, an increase in the plate thickness leads to a 

decrease in life. A new edge offset measure is proposed that leads to conservative life estimates 

when used in conjunction with the idealized geometry, thus enabling computationally efficient 

design calculations. 
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Sammanfattning 

 
Svetsar spelar en avgörande roll i GKN Aerospace produktportfölj. För att underlätta vid 

tillverkning och reparationer föredras stumsvetsar inom flygindustrin. Svetsområden genomgår 

lokala deformationer under tillverkningen på grund av extern värmepåverkan, och de 

resulterande lokala geometrierna är komplexa och stokastiska till sin natur. Vid termisk och 

mekanisk belastning i drift påverkar den deformerade geometrin det lokala spänningsfältet runt 

svetsområdet vilket har en betydande inverkan på utmattningslivslängden. 

 

Vid traditionell dimensionering av svetsar idealiseras den lokala svetsgeometrin. Denna 

avhandling undersöker inverkan av verklig svetsgeometri på den beräknade 

utmattningslivslängden. Linjärelastisk brottmekanik används för att beräkna 

utmattningslivslängden för en svets med utgångspunkt från en fördefinierad initial spricka. 

Inverkan av viktiga svetsgeometriska parametrar, nämligen - kantförskjutning och svetsradie, 

på utmattningslivslängden undersöks i detalj. En statistisk analysmetod, med hjälp av 

överföringsfunktioner och Monte Carlo simulering, är framtagen för att studera effekten av 

variation i de olika svetsgeometriska parametrarna. Olika kantförskjutningsmått från en verklig 

geometri identifieras och dessa mått undersöks som potentiella kandidater för att erhålla 

konservativa livslängdsuppskattningar med hjälp av den idealiserade geometrin. 

 

Undersökningar i denna avhandling visar att den verkliga geometrin har en signifikant effekt 

på svetsutmattningslivslängden. I alla fall av lokal svetsgeometri har kantförskjutningen den 

största inverkan på livslängden. För en riktig svetsgeometri har svetsradien vid svetsens rotsida 

en betydande inverkan på livet. I en idealiserad geometri, för samma normaliserade 

kantförskjutning, leder en ökning av plåttjockleken till en minskning av livslängden. Ett nytt 

kantförskjutningsmått föreslås som leder till konservativa livslängdsuppskattningar när de 

används i kombination med den idealiserade geometrin, vilket möjliggör beräkningseffektiva 

designberäkningar. 

 

 

 

 

Nyckelord: Verklig svetsgeometri, utmattningslivslängd, kantförskjutning, svetsradie, 

sprickutbredning, överföringsfunktion, Monte Carlo simulering 
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1 Introduction 

In recent years, sustainability has become the primary focus area in the aviation industry. The 

industry is working towards developing technologies that are environmentally friendly and 

meet the new emission standards. In an aircraft, the engine is the most crucial and most 

expensive component. Technological advancements in the engine will be a driving factor in the 

industry’s transition to more sustainable travel [1]. 

 

The aircraft engine is a highly complex component. High-quality welds are an integral part of 

the manufacturing process. The welds enable lighter engines and thus directly contribute to 

reduce emissions. During a flight cycle, the engine undergoes complex load cycles and the 

welds play a critical role in maintaining structural integrity of the engine. During 

manufacturing, the weld regions undergo local deformation because of the external heat input. 

Residual stresses accompany these deformations.  In the aerospace industry, it is a common 

practice to alleviate the residual stress through post-weld heat treatment. However, the 

deformed geometry remains, and, during operation of the engine, affects the local stress field 

around the weld. Therefore, it is important to study the effect of such geometric variations on 

fatigue life. 

 

1.1 Background 

Different methods are used in the literature to evaluate the fatigue life of a component that 

undergoes cyclic loading. Most approaches are based on S-N curves obtained from constant-

amplitude tests [2], where S represents applied stress and N represents corresponding fatigue 

life. In the case of variable-amplitude loading, damage accumulation hypothesis such as 

Palmgren-Miner rule is employed [2]. Other approaches include crack propagation methods, 

which assumes an initial crack is present in the component.  

 

The above methods can also be applied in evaluating the fatigue life of welds [3]. The fatigue 

life of welds are highly affected by factors such as the applied stress range (ΔS), material 

property, the weld geometry, and other microscopic and macroscopic defects. The weld 

geometric parameters include features such as the weld toe radius, undercut and misalignment 

[2].  

 

Several studies have been carried out by different authors investigating the various weld 

geometric parameters and its effect on fatigue life [4] [5]. Through experimental fatigue tests 

and fracture surface analysis of laser-MAG hybrid butt-welded specimens, it was identified that 

Fatigue Crack Initiation (FCI) location was dictated mainly by the undercut depth [4]. With 

Linear Elastic Fracture Mechanics (LEFM), Finite Element Analysis (FEA) and superposition 

approaches, the effect of the weld geometry parameters of butt-welded specimens on Fatigue 

Crack Propagation (FCP) life was investigated [5]. From this study, it was concluded that initial 
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crack growth was controlled by the weld geometry, after which the geometry did not play a 

significant role on FCP life.  

 

The type of welding process can also affect the fatigue life of a joint. Butt-welded specimens 

with three different techniques: Gas Metal Arc Welding (GMAW), Laser Hybrid Welding 

(LHW) and Electron Beam Welding (EBW) were fatigue tested and fracture mechanics method 

was employed to study the fatigue behaviour [6]. It was observed that GMAW resulted in high 

quality weld profile, which meant a smaller initial crack size. In the case of LHW and EBW, 

the differences in the S-N curves cannot be solely explained by the resulting weld profiles, since 

the fatigue life is also influenced by defects such as undercuts and underfills. It is thus important 

to acknowledge the presence of possible defects in the design calculations of welds. 

 

The fatigue life of a welded joint is also sensitive to the stochastic nature of its geometric 

parameters. Reliability of butt-welded joints considering uncertainties in geometric parameters 

such as misalignment, weld toe radius, flank angle and crack like imperfections (secondary 

notch) were assessed [7]. It was concluded that, while the above-mentioned parameters are 

important sources of total uncertainty, it is seen that the weld toe radius and secondary notch 

have a significant effect on the reliability index. Moreover, an increase in the fatigue reliability 

was observed for higher quality of welds.  

 

In order to ensure high reliability, a common practice in the aerospace industry is to employ 

fracture mechanics principles to predict the fatigue life of welds. This approach assumes the 

presence of a small crack in the weld. The fatigue life of the weld is the number of stress cycles 

taken by the crack to grow to a critical size. The critical size is the one that causes a loss of 

function of the component.  A fatigue crack propagation analysis is used to compute the cycles 

to failure. 

 

The approach, as illustrated in Figure 1.1, involves evaluating the stresses in a global model 

without considering the local weld geometric features. The stresses at the weld region are 

linearized and the membrane and bending stresses are evaluated. A local beam or a tube model, 

with the weld geometric features included, is subjected to unit membrane and bending stresses 

and the corresponding stress gradients are extracted. By combining the linearized stresses from 

the global model and the stress gradients from the local model, the crack propagation life is 

evaluated [8].   
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Figure 1.1: Standard process for evaluation of fatigue life in welds 

A comparison between crack propagation experiments and the standard analysis method 

followed within GKN was carried out [9]. The crack propagation tests were conducted on 

IN718 sheet material that were manufactured to reflect the geometry in a GKN weld 

specification. From the obtained results, it was concluded that the fracture mechanics approach 

provides a good accuracy in predicting the fatigue life of welded joints. The life predicted using 

the standard practice is also generally conservative compared to the experimental results. 

However, the local deflections around the weld region and the effect of the weld toe radius on 

the fatigue life was not studied in this report.  

 

1.2 Objective 

The edge offset and the weld toe radius are two important parameters that have the most 

pronounced effect on the fatigue life. Usually, in the design calculations, the edge offset (e) is 

applied between two parallel plates, which is an ideal scenario. The weld toe radius (R) is 

considered 10% of the plate thickness. If the two joining plates are of varying thickness, the 

minimum thickness value is considered [8]. An illustration of this ideal geometry is shown in 

Figure 1.2. 

 
Figure 1.2: Illustration of an idealized weld geometry used in analysis 

However, in reality the local geometry around the weld region differ significantly from the ideal 

scenario. Figure 1.3 shows the picture of a typical TIG weld. One of the first observations is 

that the joined plates are not parallel to each other. Further, in this case, the weld toe radii are 

large, since the weld bead on the top side is nearly flush with the plates. In general, it is observed 

that the local weld geometry vary significantly from the idealized one depicted in Figure 1.2. 

Some of the typical local geometries are discussed further in Section 2.1.3. Since such local 

deformations are common, it is important to understand the effect of these variations on the 

Obtained from [22] 



INTRODUCTION 

4 

fatigue life. Additionally, given the stochastic nature of these geometric parameters it is 

important to study the sensitivity of weld fatigue life on the various geometric parameters that 

define the local weld region. 

 

 
Figure 1.3: A typical TIG weld geometry 

Thus, the objectives of this thesis can be stated as follows. 

 

1. Study the effect of distorted local geometries around the weld region on the fatigue life. 

Compare the results with those from the idealized geometry.  

2. Investigate the sensitivity of calculated fatigue life to different edge offset measures and 

weld toe radii in the context of distorted local geometry. Quantify the results by 

comparing with idealized geometry. 

 

1.3 Overview of work 

To achieve the objectives, in the first phase of the thesis, dimensional measurements of various 

weld geometric parameters are collected from typical GKN products, which is discussed further 

in Chapter 3. A deterministic study is carried out to evaluate the effect of distorted local 

geometries on the fatigue life. The analysis setup conditions for performing stress analysis and 

life evaluation are discussed in Chapter 4. Ansys APDL 2022R1 software is used to perform 

stress analysis. Crack propagation analysis for evaluating fatigue life is carried out in NASGRO 

9.1 [10]. The results from the deterministic study are discussed in Chapter 5. 

 

In order to statistically investigate the effect of different edge offset measures and weld toe radii 

on fatigue life, Monte Carlo simulations are performed using Python and MATLAB. The 

analysis setup conditions for Monte Carlo simulation are discussed in Chapter 6 and the results 

from the study are discussed in Chapter 7. Chapter 8 provides the conclusions from the work. 

 

1.4 Scope and limitations 

All the results presented in this thesis are from numerical analysis alone, and no experimental 

tests were performed. To evaluate the stresses of various local weld geometries, linear and small 

deformation conditions are assumed. LEFM conditions are assumed for crack propagation 

analysis and an initial surface crack is considered for the fatigue life calculations. 

 

The compiled measurement data for various weld geometric parameters is available for 

different types of welding processes: Tungsten Inert Gas (TIG) and Laser Beam Welding 
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(LBW) and for different base materials: Nickel base or Titanium base. However, only the data 

compiled for Nickel base TIG welds is used for analysis. Therefore, the effect of different 

welding processes is not investigated in this thesis work. 
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2 Theoretical Background 

As explained in Chapter 1, this thesis investigates the effect of local geometry on the fatigue 

life of butt welds through a fracture mechanics approach, and uses statistical methods to 

quantify such effects. This chapter provides relevant theoretical background in these areas. 

 

2.1 Weld geometry 

2.1.1 Schematic of a butt weld 

A typical butt weld geometry of two plates joined together is shown in Figure 2.1. A butt weld 

has two regions: the top side and the root side. The top side corresponds to the side on which 

the welding operation is performed and the opposite side is referred to as the root side. 

 

 
Figure 2.1: Illustration of a butt weld with the important geometric parameters 

A description of the important geometric parameters as shown in the figure is listed in Table 

2.1. 

 

Table 2.1: List of important weld geometric parameters 

Parameter Description 

t1 Thickness of plate #1 

t2 Thickness of plate #2 

B Weld bead width on the top side 

Bh Weld bead height on the top side 

C Weld bead width on the root side 

Ch Weld bead height on the root side 

e Edge offset between the two plates 

φ1 – φ4 Internal weld bead angles 

L1 Length of plate #1 

L2 Length of plate #2 

R1 – R4 Weld toe radii 
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Previous studies have shown that the two important parameters that affect the fatigue life are 

the edge offset (e) and the weld toe radius (R). The edge offset (e) is an important parameter, 

since it causes a local secondary bending moment that has a significant effect on the fatigue life 

of the welded joint. The weld toe radii (R) causes regions of stress concentration within the 

weld that has an effect on the life.  

 

2.1.2 Profilograph measurements 

According to standard inspection processes followed in the aerospace industry, all 

manufactured welds undergo visual inspection for any surface defects and weld features [11]. 

One method used for performing inspection on welds involves casting wax and profilograph 

measurements. The process begins with placing a casting wax on the welds in the region of 

interest as shown in Figure 2.2. 

 

 
Figure 2.2: Casting wax placed on a weld in regions of interest 

A profilograph is used on the cast wax to map the surface. This yields a profile of the weld bead 

surface as shown in Figure 2.3. Using such measurements the edge offset and other weld 

geometric parameters of interest can be measured. 

 

 
Figure 2.3: Typical profilograph measurement of a weld where the edge offset is measured 
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2.1.3 Types of local geometries 

During the welding process, heat causes local deformation around the weld. In the as-welded 

state, these deformations are accompanied by residual stress. In the aerospace industry, post-

weld heat treatments are carried out to eliminate the residual stress. However, the local 

geometry around the weld remains deformed and causes stress concentration under operating 

load. Based on the profilograph observations of the welds in a wide range of GKN products, 

four types of local geometries around the weld region have been identified [12].    

 

In the first type of local geometry (Case 1, see Figure 2.4), one of the joining plates has a local 

angular deflection (θ) with respect to the other. However, the extent of the angular distortion is 

not known from the profilograph measurement. In this case, the edge offset (e) is the distance 

measured between two parallel lines that are extrapolated from the weld toe radii of the two 

joining plates.  

 

 
Figure 2.4: Case 1 - angular deflection more than one bead width 

Case 2 is similar to the Case 1, but the length of the angular distortion can be identified from 

the profilograph measurement as illustrated in Figure 2.5. Here the edge offset is the distance 

between two parallel lines extrapolated from the two joining plates. The first line is extrapolated 

from the weld toe radius of the plate without the local deflection. The second line is extrapolated 

from the horizontal part of the plate with the local deflection. 

 

 
Figure 2.5: Case 2 - angular deflection within one bead width 

For analysis purposes, the length of the angular distortion can be quantified as L3 that can be 

expressed as 

 

 𝐿3 = 𝑓 ∗ 𝐵 (1) 

 

where f is a factor and B is the top bead width of the weld geometry. The additional parameters 

that are defined to account for the two local weld geometry cases are summarized in Table 2.2. 
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Table 2.2: List of additional geometric parameters to account for local geometry cases 

Parameter Description 

θ Local angular deflection (Case 1 and Case 2) 

f Length factor of the local deflection (Case 2) 

 

Case 3 is similar to the case 2, however the angular deflection has a geometry as illustrated in 

Figure 2.6.  

 

 
Figure 2.6: Case 3 - angular deflection within one bead width 

In Case 4, both the joining plates have an angular deflection as illustrated in Figure 2.7. 

 

 
Figure 2.7: Case 4 - angular deflection within one bead width on both joining plates 

This thesis will only focus on the idealized geometry as shown in Figure 1.2 along with Case 1 

and Case 2 local geometries. 

 

2.2 Fracture mechanics and fatigue 

2.2.1 Linear elastic fracture mechanics 

Fracture Mechanics provides the fundamental principles that are employed to study fatigue 

crack growth and evaluate the fatigue life of a component in the presence of a crack. In metallic 

materials, yielding takes place at the crack tip under external load. When the plastic zone is 

small compared to other dimensions of the problem, one can make use of Linear Elastic Fracture 

Mechanics (LEFM). In fatigue calculations based on LEFM, it is assumed that parameters 

obtained from linear elasticity assumptions can be used to capture the crack growth behaviour. 

 

A crack can grow in three modes as shown in Figure 2.8 [2]. In Mode I, which corresponds to 

crack opening and is the most common one, the load acts normal to the crack plane. Mode II is 

the in-plane shearing or sliding mode, in which the two crack faces slide over each other. Mode 

III is the tearing or anti-plane shear mode [2]. 
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Figure 2.8: Three modes of crack growth; sketch taken from ref. [2] 

The Stress Intensity Factor (SIF) denoted by K is an important quantity in fracture mechanics 

and is used to quantify the crack driving force. The SIF is given by 

 

 𝐾 =  𝜎 √𝜋𝑎 𝑓 (
𝑎

𝑊
) (2) 

 

where σ is the applied stress, 𝑎 is the crack length and 𝑓 is a function that is dependent on the 

specimen geometry. It is dependent on the crack length and the specimen width 𝑊. The 

dimensions pertaining to a simple edge crack in a strip under uniaxial tension (σ) is shown in 

Figure 2.9. 

 
Figure 2.9: Edge crack in a strip under uniaxial tension σ 

The critical value of K for which the crack grows in an unstable manner under monotonic 

loading is defined as fracture toughness and is denoted as Kc. The fracture toughness of a 

material is highly dependent on the thickness of the specimen, as it determines whether plane 

stress/strain conditions are present at the crack tip.  

 

2.2.2 Fatigue crack propagation 

Consider a specimen with an initial crack size a0. The specimen is subjected to three different 

cyclic stress levels S1, S2, S3 that can be ranked in descending order as S1 > S2 > S3. Figure 2.10 

shows, schematically, crack growth with the applied load cycles for the different cases given 

the same initial crack size. 
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Figure 2.10: Crack growth with applied cycles for different stress levels [2] 

The end of all the curves signifies the point of fracture. It can be seen that the crack growth rate 

increases as the magnitude of the applied load increases. Further, the number of cycles to 

fracture (Nf) and the crack length at fracture (af) decrease with an increase in the magnitude of 

applied load. 

 

The curves shown in Figure 2.10 cannot be directly used in the fatigue design of components. 

Using LEFM concepts the data can be expressed in terms of fatigue crack growth rate (da/dN) 

vs the applied stress intensity factor range (ΔK). Such a typical curve is shown in Figure 2.11. 

The curve can be divided into three main regions. 

 

 
Figure 2.11: Typical da/dN vs ΔK curve [13] 
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Regime A is the near-threshold region and corresponds to the threshold stress intensity factor 

(ΔKo, also denoted as ΔKth) below which the cracks do not propagate. Various factors such as 

the mean stress and microstructure have a strong influence on the crack growth rates in this 

region. Crack growth in this region also displays, increased sensitivity to stress history and 

environmental effects [13].  

 

Regime B corresponds to the region where the linear relationship between da/dN and ΔK holds. 

Crack growth in this region is governed by the Paris law as shown below, 

 

 
𝑑𝑎

𝑑𝑁
= 𝐶 (∆𝐾)𝑚 (3) 

 

where C and m are constants that are determined through data fitting to experimental test results 

and ΔK is the difference between the maximum and the minimum applied stress intensity factors 

i.e., ΔK = Kmax – Kmin. Regime C corresponds to higher crack growth rates and the Kmax values 

generally approach the fracture toughness value (Kc).  

 

A fatigue load cycle alternates between a minimum stress level (σmin) and a maximum stress 

level (σmax). The stress ratio (R) is then defined as 

 

 𝑅 =  
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 (4) 

 

With LEFM assumptions, in view of Equation (2), R = Kmin/Kmax. 

 

The effect of the stress ratio on the fatigue crack growth rate is shown in Figure 2.12. It is 

observed that the effect of the stress ratio is more pronounced in the near-threshold and fracture 

toughness regions (Regions A and C) compared to the linear region (Region B).  

 

 
Figure 2.12: Effect of stress ratio (R) on the fatigue crack growth rate [14] 
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2.2.3 NASGRO equation 

To evaluate the fatigue life of welds, crack propagation analysis is carried out in NASGRO in 

this thesis work. The crack growth equation used in NASGRO is a modified form of the Paris 

law as shown in Equation (3) and is often referred to as the NASGRO equation. Along with the 

Paris law region, the NASGRO equation accounts for both the near-threshold region as well as 

the end of life region in the da/dN vs ΔK curve. The NASGRO equation can be expressed as, 

 

 
𝑑𝑎

𝑑𝑁
= 𝐶 [(

1 − 𝑓

1 − 𝑅
)  ∆𝐾]

𝑛 (1 −  
∆𝐾𝑡ℎ

∆𝐾
)

𝑝

(1 −  
𝐾𝑚𝑎𝑥

𝐾𝑐
)

𝑞 (5) 

 

where N is the number of applied fatigue cycles, a is the crack length, R is the stress ratio, ΔK 

is the stress intensity factor range and C, n, p and q are empirically derived constants. The term 

ΔKth represents the threshold stress intensity factor, f is the crack opening function and Kc is the 

critical stress intensity factor [10]. The crack opening function accounts for plasticity-induced 

crack closure that takes place during fatigue crack growth. More details can be found in the 

NASGRO manual [10]. 

 

2.3 Statistics 

2.3.1 Types of statistical distributions 

Several statistical distribution functions are available in the literature. Here we mention the ones 

used in the current work.  

 

The uniform distribution is applicable when the variable under consideration has known lower 

and upper bounds and can take equally likely values in this range. If X is a continuous random 

variable and can take any value within a given range [a, b], then the probability density function 

for a uniform distribution is expressed as [15] 

 

 𝑓(𝑥) = {
 1/(𝑏 − 𝑎), 𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

 

The exponential distribution is another type of distribution, whose probability density function 

can be expressed as 

 

 𝑓(𝑥) =  𝜆𝑒−𝜆𝑥    𝑓𝑜𝑟    0 ≤ 𝑥 < ∞ (7) 

 

where λ is a distribution parameter, and is defined for positive values of x. The mean and the 

standard deviation is then given by 1/λ.  
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If the region of interest for a parameter is only the positive real numbers, a lognormal 

distribution can be used. The lognormal distribution is used in wide range of applications, such 

as, material strength, fatigue life, loading intensity etc. [15]. A random variable X is said to 

follow lognormal distribution if ln X is normally distributed. The probability density function 

for a lognormal distribution can be expressed as 

 

 𝑓(𝑥) =  
1

𝑥𝜎√2𝜋
 𝑒𝑥𝑝 {

−1

2
(

ln(𝑥) −  𝜇

𝜎
)

2

}     𝑓𝑜𝑟    0 < 𝑥 < ∞ (8) 

 

where μ is the mean value of ln X and σ is the standard deviation of ln X.   

 

2.3.2 Statistical measures 

Given two or more random variables, it is often useful to understand how the variables vary 

with respect to each other. For two random variables X and Y, a common measure of the 

relationship between the two variables is the covariance that can be defined as [16],  

 

 𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 −  𝜇𝑌)] (9) 

 

where E is the expected value of a distribution, μX is the mean value of X and μY is the mean 

value of Y. The covariance can be explained as the expected value of the product of the 

individual deviations of the two random variables from their respective mean values. Another 

measure of the relationship between two variables is the correlation coefficient. This can be 

defined as follows,  

 

 𝜌𝑥𝑦 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎(𝑋) 𝜎(𝑌)
 (10) 

 

where σ(X) and σ(X) are the standard deviations of X and Y respectively. The above definition 

is also known as the Pearson’s correlation coefficient. The correlation coefficient scales the 

covariance by the standard deviation of each variable. Hence, it is a dimensionless quantity and 

can be used to compare relationships between pairs of variables of different units. Moreover, 

ρxy varies between -1 and +1 and the value of ρxy signifies the type of correlation between the 

pair of variables. The two variables have a positive correlation if the value of ρxy is +1. If the 

value of ρxy is -1, the two variables have a negative correlation and if the value of ρxy is 0, then 

the two variables are independent or have no correlation. 

 

2.3.3 Regression models 

In many problems, it is important to study the relationship between multiple variables. The 

relationship between multiple weld geometric parameters and the resulting fatigue life of the 

joint constitute such an example. In general, consider a single dependent or response variable y 
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that is dependent on k independent or regressor variables, for example x1, x2, …, xk as shown 

below  

 

 𝑦 =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑘𝑥𝑘 +  𝜖 (11) 

 

The mathematical relationship between the variables is known as a regression model. 

Specifically, the above equation is a multiple linear regression model since the equation is a 

linear function. The parameters βk are known as regression coefficients and ε is the error. In 

most cases, the true relationship between the variables is not known and instead an approximate 

function is used [17]. Sometimes it is of interest to study the interaction effects between the 

variables and for such a case, Equation (11) can be rewritten for two variables as,  

 

 𝑦 =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 +  𝛽12𝑥1𝑥2 +  𝜖 (12) 

 

If we consider β3 = β12 and x3 = x1 x2, we can still express Equation (12) in the form of the 

Equation (11). The term β12 x1 x2 accounts for the interaction effects [17]. 

 

In general, a second order regression model with interaction effects can be expressed as,  

 

 𝑦 =  𝛽0 +  ∑ 𝛽𝑗𝑥𝑗

𝑘

𝑗=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

 

𝑖 < 𝑗

+ ∑ 𝛽𝑗𝑗𝑥𝑗
2

𝑘

𝑗=1

+  𝜖 (13) 

 

Similar to Equation (12), a second order regression model can also be expressed as a linear 

regression model through clever assignment of variables. This is because all the above 

equations vary linearly with respect to the parameter β.  

 

The choice of the appropriate regression model depends on the how the response variable is 

expected to vary with respect to the regressor variables. For example, consider a scenario as 

illustrated in Figure 2.13. 

 
Figure 2.13: Illustration of a response y with respect to a variable x 
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In Region of Interest 1 (ROI 1 in Figure 2.13), the response shows a quadratic behaviour where 

a second order regression model is an appropriate choice. However, in ROI 2, the response 

shows a linear behaviour and therefore a first order regression model would suffice. In this 

thesis work, the second order regression model will be used which is discussed further in 

Section 6.3. 

 

With the parameters of a regression model identified, it is important to test the veracity of the 

model. The validation of the regression model can be done in several ways. One approach is to 

check the accuracy of the model with additional points within the design space. Quantities such 

as R2 or R2
adj can be used to check the adequacy of the model. The quantity R2 is known as the 

coefficient of determination which is given by,  

 

 𝑅2 =  
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −  

𝑆𝑆𝐸

𝑆𝑆𝑇
 (14) 

 

where SST is the total sum of squares (SST = SSR + SSE), SSR is the sum of squares due to the 

regression model and SSE is the sum of squares due to the residual. For more details, refer [16]. 

The R2 is a measure of how well the regression model fits the response and a higher R2 value 

indicates a better fit. However, the R2 value increases as variables are added to the model 

irrespective of whether the variable is statistically significant or not. Therefore, it is possible to 

have models with large R2 values and yet have poor predictions [17]. Alternatively, the adjusted 

R2 statistic can be defined as, 

 

 𝑅𝑎𝑑𝑗
2 = 1 −  (

𝑛 − 1

𝑛 − 𝑘
) (1 −  𝑅2) (15) 

 

where n is the number of simulations and k is the degrees of freedom or the number of variables 

assumed in the model. The R2
adj will not always increase as variables are added in the model. 

If unnecessary terms are added, the value of R2
adj will often decrease [17]. In general, it can be 

said that the R2
adj should be close to R2 to have a good regression model. 

 

2.3.4 Design of Experiments 

Experimentation is a vital part of the scientific or engineering method to understand the effect 

of the independent variables on a response variable. The approach to planning and conducting 

the experiment is called the strategy of experimentation [17]. It is essential to design an 

experiment carefully, to extract the maximum information from the experiment. Note that in 

the context of Design of Experiments, the term experiment include both physical laboratory-

based tests and reference numerical simulations.  

 

One approach to design an experiment is to vary one factor at a time and evaluate the response 

of the system. However, this approach is inferior while studying multiple factors since it cannot 

model the interaction effects between the different factors. This can be achieved with a class of 
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experimental designs known as factorial designs. In a factorial design, multiple parameters are 

varied at a time, in addition to be varied one at a time. 

 

The 2k factorial design is one such design where k is the number of factors. Figure 2.14, taken 

from [17] illustrates the 23 factorial design for three independent factors A, B and C. Eight 

experiments are required to capture the individual and interaction effects. The experimental 

points are shown as black dots (vertices) in Figure 2.14(a) and in matrix form in Figure 2.14(b). 

As shown in the figure, only the extreme values of the factors are captured with this design; 

therefore, the resulting response surface would be linear in nature. 

 

 
Figure 2.14: 23 factorial design and respective design matrix [17] 

If it is assumed that the response of the system is quadratic in nature, a second order factorial 

design can be used to capture the quadratic behaviour. Several methods are available, such as, 

the 3k factorial design, Box-Behnken design, Central Composite design etc. The Central 

Composite Design (CCD) for two and three factors are illustrated in Figure 2.15.  

 

 
Figure 2.15: Central Composite Design (CCD) for two and three factors [17] 

In addition to 2k factorial runs, 2*k axial or star runs and nc center runs form a central composite 

design. For one center point (nc = 1) and k factors, the number of CCD runs are 2k + 2*k + 1. 

The star points can be chosen by specifying the parameter α, which depends on the Region of 

Interest (ROI). If the ROI is well defined, α can be set to 1 forming a face centered design. If 
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the ROI is not clearly defined, α can be set to be greater than 1. If additional accuracy is required 

within the ROI, α can be set to be less than 1. The case when α = 1 is shown in Figure 2.16. 

 

 
Figure 2.16: CCD for three factors when α = 1 [17] 

If the response of the system needs to be approximated with additional accuracy over the entire 

design space, experiments can be modelled with space filling designs. One such design is the 

Latin Hypercube Design. If n runs are needed for k factors, then a Latin Hypercube design 

yields n x k matrix. Each column represents a variable X = [x1 x2 … xn] T and each row 

represents a sample xi = [xi
 (1) xi

 (2)… xi
 (k)]. The points are chosen such that each of the k factors 

is divided into n equal levels and there is only one point (or sample) at each level [18]. Due to 

this, the design space is filled out more evenly. A Latin Hypercube design for 10-runs and two 

factors is shown in Figure 2.17. Since it is a sampling procedure from a design space, it can 

also be called as Latin Hypercube Sampling (LHS). 

 

 
Figure 2.17: Illustration of a 10-run Latin Hypercube Design for two factors [17] 

Mathematical models such as regression models discussed in the previous section can be trained 

with experimental points from factorial designs or space filling designs. These models are used 

to mimic the system behaviour within the considered design space. Such models are known by 

several names, such as, surrogate model, transfer function etc. The CCD and LHS approaches 

are used in this thesis work to build a surrogate model, which is discussed further in Section 

6.3. 
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2.3.5 Empirical distribution function 

Empirical cumulative distribution functions (eCDF) are used in conjunction with non-

parametric regression models, and are widely employed in survival and reliability analysis [19]. 

If a sample of observations Y1, …, Yn is assumed to follow a distribution function F, the 

empirical distribution function computed at a given real number y is 

 

 𝐹𝑛(𝑦)  =  𝑛−1 ∑ 𝐼(𝑌𝑖 ≤ 𝑦)

𝑛

𝑖=1

 (16) 

where I(Yi ≤ y) is an indicator function assuming the value 1 if  Yi ≤ y and 0 otherwise [19]. The 

step size in an empirical distribution function is 1/n and for large sample sizes, the empirical 

distribution function converges to the underlying cumulative distribution function. The eCDF 

will be used to compare results from various cases of Monte Carlo simulations. The Monte 

Carlo simulation process is discussed in Section 6. 
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3 Weld measurements 

In the first phase of the current work, measurements of various weld geometric parameters are 

collected from typical GKN products. The data is obtained from two sources: geometric non-

conformance reports and weld qualification reports.  

 

The base material, the type of welding process, and the reported edge offset are noted. The 

reported edge offset is later normalized by the nominal thickness of the joining plates.  

 

From the non-conformance reports, for each reported case, the weld is first classified in one of 

the four cases shown in Section 2.1.3. The profilograph measurements are used to obtain the 

geometric parameters θ and f, see Figure 2.4 and Figure 2.5. From the weld qualification data, 

the weld toe radii are measured using NIS-Elements software. Measurements of other weld 

geometric parameters listed in Table 2.1 are also collected.  

 

A summary of the compiled data along with the spread of different parameters is explained in 

Appendix II. The compiled data is used to set bounds for the weld geometric parameters, for 

the various analysis performed in this work. Since the compiled information is GKN proprietary 

data, Appendix II is not attached with the thesis report. 
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4 Analysis Setup – Stress analysis and Life evaluation 

The analysis procedure followed in the thesis to predict the fatigue life of a welded joint consists 

of six steps as illustrated in Figure 4.1. In essence, it involves a stress analysis incorporating the 

local weld geometry followed by a crack propagation analysis using the resulting stress field. 

The stress analysis, as shown in Figure 4.1, is carried out in Ansys APDL 2022R1. A Finite 

Element (FE) analysis of the local weld geometry is performed and the stress gradients are 

extracted. The stress gradients then serve as an input for the next three steps, in which, fatigue 

crack growth calculations are conducted in NASGRO 9.1 to predict the fatigue life. Each step 

is discussed in detail in Sections 4.1 and 4.2. 

 
Figure 4.1: Illustration of steps involved in the fatigue life prediction of a welded joint 

 

4.1 Stress analysis 

4.1.1 Geometry Creation 

As mentioned in Section 2.1.3, three local weld geometry cases: idealized (Figure 1.2), Case 1 

(Figure 2.4) and Case 2 (Figure 2.5) are included within the scope of this thesis work. A 2D 

weld geometry is modelled for the FE analysis. An APDL script, available from previous work, 

can only create the idealized geometry (Figure 1.2). In order to construct the local deformed 

geometries shown in Figure 2.4 and Figure 2.5, two new APDL scripts are written. These APDL 

scripts generate and mesh the weld geometry, perform the FE calculation and extract the stress 

gradients.  

 

The parameters and their values used to define the weld geometries are listed in Table 4.1. The 

length parameters are normalized by the plate thickness. The weld geometry parameters are 

chosen such that it represents a typical TIG weld geometry. The normalized edge offset (e/t), 

angular deflection (θ) and the length factor for the extent of the angular deflection (f) are varied 

within bounds that were obtained from collected non-conformance data as discussed in Section 

3. 
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Table 4.1: List of parameters and values used for the analysis 

Parameter Value Description 

t1 4 [mm] Thickness of plate #1 

t2 4 [mm] Thickness of plate #2 

B 3.275 Normalized bead width on the top side 

Bh 0.15*B [mm] Weld bead height on the top side 

C B Normalized bead width on the root side 

Ch 0.15*C [mm] Weld bead height on the root side 

e/t 0 – 0.41 Normalized edge offset 

φ1 – φ4 45 [⁰] Internal weld bead angles 

L1 30 [mm] Length of plate #1 

L2 30 [mm] Length of plate #2 

R1 – R4 10% of thickness Weld toe radii 

θ 1 – 5 [⁰] Local angular deflection (Case 1 and Case 2) 

f 0.1 – 0.7 Length factor of local deflection (Case 2) 

 

To create the geometry, the top side is constructed first followed by the root side. Illustrations 

of idealized (IG), Case 1 and Case 2 analysis geometries are shown in Figure 4.2.  

 

 
Figure 4.2: Illustration of different weld geometries (a) IG (b) Case 1 (c) Case 2 
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Three keypoints are used to construct the weld bead on the top side, see Figure 4.3. These are 

located at the two weld toe radii and the maximum bead height (Bh). A BSPLINE curve is then 

fitted through the three keypoints. The same process is repeated for the root side, with 

corresponding bead height (Ch). 

 

 
Figure 4.3: Construction of the weld bead 

4.1.2 Mesh and Material properties 

Higher order quadrilateral elements (8-noded, Ansys type PLANE183) are used to mesh the 

geometry. Mesh refinement is carried out at the regions of high stress locations i.e., the weld 

toe radii. An illustration of the mesh is shown in Figure 4.4.  

 

         
Figure 4.4: Illustration of mesh 

The mesh refinement process starts by selecting the nodes associated with the arcs of the weld 

toe radii. Using the ESLN and NSLE commands the elements close to the weld toe radii are 

selected. Using the SMRTSIZE and EREFINE commands, a mesh refinement is done on the 

selected elements. To achieve an adequately fine mesh the above steps are repeated multiple 

times. The script followed for the mesh refinement process is shown in Appendix 10.1. A mesh 

convergence study is carried out and the obtained results are shown in Figure 4.5 and Table 4.2. 
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The loads and boundary conditions used in the convergence study are similar to those used in 

the main work of the thesis; see Section 4.1.3 (Figure 4.6 and Figure 4.7).  

 

 
Figure 4.5: Mesh convergence study 

Under unit membrane load (1 MPa tensile), the maximum observed stress converges for an 

element size of 0.006 mm. Therefore, for further analysis an element size of 0.006 mm is used. 

 

Table 4.2: Results from mesh convergence study 

Element size (mm) Maximum stress in Y direction due to Membrane load (MPa) 

0.2 4.10839 

0.06 4.60733 

0.02 4.67162 

0.006 4.67901 

0.002 4.67958 

 

A study is carried out to evaluate the differences between plane stress and plane strain 

conditions and the obtained results are tabulated in Table 4.3. The analysis is carried out for 

Case 2 geometry with θ set to 5⁰ and f set to 0.7. Two load cases: unit membrane and bending 

loads with boundary conditions as discussed in Section 4.1.3 are analysed. 

 

Table 4.3: Results for plane stress and plane strain conditions - Case 2 geometry [θ = 5⁰; f = 0.7] 

Condition Load 
Maximum observed stress (MPa) 

SX SY SZ S1 S2 S3 

Plane 

stress 

Membrane 1.434 4.679 0 4.827 0.600 0 

Bending 0.574 1.957 0 2.004 0.245 -1.925 

Plane 

strain 

Membrane 1.434 4.679 1.651 4.827 1.651 0.600 

Bending 0.574 1.957 0.685 2.004 0.685 -1.925 
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As expected, the out of plane stresses (SZ) are zero for plane stress condition, while they are 

non-zero for plane strain condition. Moreover, the in-plane stresses (SX and SY) do not change 

between plane stress and plane strain conditions. The maximum principal stress (S1) remains 

unchanged between the two conditions. It is also observed that the stress gradients extracted 

(discussed in Section 4.1.4) do not change for the two conditions. For further analysis, the plane 

stress condition will be used. Linear elastic material properties that correspond to Inconel 718 

(IN718) [20] are used in the analysis as listed in Table 4.4. 

  

Table 4.4: Material properties used in the analysis [20] 

Parameter Value 

Young’s modulus (E) 199.94e3 [MPa] 

Poisson’s ratio (ν) 0.294 

 

4.1.3 Loads and boundary conditions 

The boundary conditions used in the analysis is shown in Figure 4.6. All the nodes on the edge 

of one of the joining plates as highlighted are fully constrained in all degrees of freedom. The 

analysis consists of two load steps and the magnitude of the applied loads is listed in Table 4.5. 

 

Table 4.5: Applied loads for the analysis 

Applied load Magnitude 

σm 1 [MPa] 

σb 1 [MPa] 

 

 
Figure 4.6: Fixed constraint applied to the highlighted edge of the model 

In the first step, a membrane load (σm), as shown in Figure 4.7(a), is applied as a (negative) 

pressure load using the SFL command. In the second step, a bending load (σb), as shown in 

Figure 4.7(b), is applied through a force couple. The magnitude of force to be applied can be 

determined as follows. The stress in a beam under simple bending is,  
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 𝜎𝑏 =  
𝑀 ∗ 𝑧

𝐼
 (17) 

 

where M is the bending moment about the neutral axis, z is the perpendicular distance from the 

neutral axis and I is the second moment of area of the beam cross-section. Given a force couple 

acting at the end of a rectangular beam, the expressions for M, z and I can be written as  

 

 𝑀 = 𝐹 ∗ 𝑡    ;    𝑧 =  
𝑡

2
    ;    𝐼 =  

𝑏𝑡3

12
=  

𝑡3

12
 (18) 

 

where F is the magnitude of the force couple, t is the thickness of the joining plates and b is the 

breadth of the beam cross-section. Substituting Equations (18) in (17) and rearranging, the 

magnitude of the force couple is given as, 

 

 𝐹 =  ±
1

6
 (𝜎𝑏 ∗ 𝑡) (19) 

 

 
Figure 4.7: Illustration of the two load steps (a) Load step 1 – Membrane (b) Load step 2 – Bending 

A study is carried out to evaluate differences between small and large deformation analysis. 

The analysis is performed with Case 1 geometry with θ set to 1⁰. The large deformation effects 

can be toggled in APDL with the NLGEOM command. A membrane load is varied from 1 MPa 

to 100 MPa and the resulting maximum stress in Y direction is evaluated. Figure 4.8 shows two 

curves for analysis results with large deformation effects (NLGEOM = ON) and without large 

deformation effects (NLGEOM = OFF).  

 

It is observed that the maximum stress with large deformation effects begins to deviate from 

small deformation analysis for an applied membrane load of approximately 40 MPa. The stress 

gradients for a membrane load of 1 MPa and 100 MPa, with and without considering large 

deformation effects, is shown in Figure 4.9(a) and Figure 4.9(b) respectively. For a membrane 

load of 100 MPa, a slight increase in the peak stress is observed by including large deformation 
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effects. However, to facilitate scaling of stress gradient with respect to applied load, small 

deformation is assumed for further analysis. 

 

 
Figure 4.8: Effect of large deformation on peak stress 

 
Figure 4.9: Effect of large deformation on stress gradient (a) Membrane load = 1 MPa (b) Membrane load = 100 

MPa 

4.1.4 Stress gradient extraction 

For the crack propagation analysis, it is assumed that an initial crack is present at the weld toe 

radius where the maximum stress occurs, as illustrated in Figure 4.10(a). Assuming mode I 

failure, the stresses normal to the crack plane are required, which corresponds to the global Y-

direction in the FE analysis. Therefore, from the results of the FE analysis, stresses in the global 

Y-direction are evaluated. 

 

In the idealized geometry, the maximum stress due to both the membrane and bending loads 

occurs at the same weld toe radius. However, considering the real geometry it is observed that 

the maximum stress locations due to membrane and bending load can be different as shown in 

Figure 4.10(b). It is assumed that the crack can propagate from either of the two maximum 

stress locations. Therefore, two life calculations are performed at the respective maximum stress 

locations and the minimum life from the pair is considered.  
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Figure 4.10: Illustration of (a) assumed initial crack for crack propagation analysis (b) Difference in maximum 

stress locations due to membrane and bending loads 

The stress gradients from the FE analysis are extracted as follows. The node where the 

maximum stress occurs is identified and a local coordinate system is defined at the location for 

path definition, as shown in Figure 4.11. Four points are used to define the path for stress 

gradient extraction. Two points are defined close to the edges of the plates (1/10 of thickness 

from either side) to capture the steep gradients in the stress gradients. Note that the stresses are 

extracted at 12 equispaced intermediate points between each of the points that define the path, 

namely, points 1, 2, 3 and 4 in Figure 4.11. 

 

The crack propagation analyses are conducted assuming that the crack takes the shortest way 

to the opposite boundary [8]. For this purpose, when necessary, the defined local coordinate 

system is rotated by the respective angular deflection, as shown in Figure 4.11(b). The stresses 

are always extracted in the global Y-direction along the path, since only small angular 

deflections (1⁰ - 5⁰) are investigated. During the numerical extraction process, the length of the 

path can slightly deviate from the plate thickness. In order to maintain consistency the path 

length is limited to the thickness of the plate in the crack propagation analyses. The stress 

gradients due to both membrane and bending loads are extracted along the defined paths.  

 

 
Figure 4.11: Illustration of path definition for stress gradient extraction (a) Max stress at a location such that the 

crack grows along the global X-direction (b) Max stress at a location such that crack growth deviates from the 

global X-direction 
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4.1.5 Forward and reverse bending 

As discussed before, locally on the weld joint two bending stresses appear. The sketches shown 

in Figure 4.12 can be used to illustrate this point. The first one is the global bending moment, 

which is shown as moment M in the figure. The second one, local to the weld joint, is the 

secondary bending moment caused by the membrane load F due to presence of the edge offset 

(e). Depending on the ‘direction’ of the offset, these two moments can combine together or 

oppose each other (see top and bottom sketches in Figure 4.12). These cases are called forward 

and reverse bending, respectively. The two cases are accounted for in the analysis performed in 

this thesis work. Conditions followed for the deterministic analysis is discussed in Section 4.3.1 

and Monte Carlo simulations are discussed Section 6.3. 

 

 
Figure 4.12: Illustration of forward and reverse bending scenarios in IG and Case 2 geometries 

 

4.2 NASGRO Life calculation  

The NASFLA (Fatigue Crack Growth) module within NASGRO 9.1 is used to perform the crack 

growth calculations. A detailed description of the steps followed as shown in Figure 4.1 is 

discussed below. 

 

4.2.1 Crack geometry 

There are several crack geometries available within the NASFLA module. The surface crack 

(SC30) geometry as shown in Figure 4.13, is chosen for the crack propagation analysis. The 

crack geometry can take up-to four univariant stress gradients as input. Therefore, the two 1D 

stress gradients (corresponding to unit membrane and unit bending load) obtained from the FE 

analysis can be provided as an input for the crack growth calculations. 
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Figure 4.13: SC30 crack geometry [10] 

The crack plane dimensions used for the analysis are listed in Table 4.6. According to the 

current NDT practices in the aerospace industry the minimum crack length that can be detected 

with confidence is approximately 1.52 mm, which corresponds to the 2c dimension in Figure 

4.13. With the a/c ratio assumed to be 1, the initial crack depth is considered as 0.76 mm for 

the crack propagation analysis.  

 

Table 4.6: Crack plane dimensions used for crack propagation analysis 

Parameter Value Description 

t 4 [mm] Thickness 

W 15 [mm] Width 

B 7.5 [mm] Crack centreline offset 

a 0.76 [mm] Initial crack size 

a/c 1 Initial a/c ratio 

 

4.2.2 Material properties and failure criteria 

Material properties that correspond to Inconel 718 (IN718) are chosen from the NASGRO 

material database for the crack propagation analysis. The material chosen is - Inconel 718; 

STA(1700F,- -) Plt & Forg; -100F to 400F Air (NASGRO curve ID Q3LB23AB1) and the 

material properties correspond to room temperature data. The Paris law parameters for the 

selected material are listed in Table 4.7. 

 

Table 4.7: Paris law parameters of IN718 for crack propagation analysis 

Parameter Value 

C 2.054e-14 [
𝑚𝑚

(𝑀𝑃𝑎√𝑚𝑚)𝑛] 

n 3.50 
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A failure or crack instability is assumed to occur when the Kmax value exceeds the fracture 

toughness of the material (Kc). While other modes of failure such as net section stress exceeding 

the flow stress of the material is also available within NASGRO, only the fracture toughness is 

considered as a failure criteria for the current thesis work. 

 

4.2.3 Load blocks 

According to the nomenclature followed within NASGRO for the SC30 crack case, S0 and S1 

stresses will be used for the analysis. The S0 stress correspond to membrane load and the S1 

stress correspond to bending load. The loads in NASGRO are defined with three quantities: the 

spatial variation of stresses, time varying stresses and the stress scale factors. The spatial 

variation of stresses, which act at the crack plane correspond to the stress gradients (SG) that 

are obtained from the FE analysis, which are extracted through the thickness, as explained in 

Section 4.1.4. The stress gradients due to unit membrane and unit bending loads along the crack 

path (starting from the crack origin) are shown in Figure 4.14. The distance from the center of 

the initial crack is normalized by the plate thickness. These spatial gradients constitute one input 

to NASGRO.  

 
Figure 4.14: Stress gradients input in NASGRO (a) due to membrane load (S0) (b) due to bending load (S1) 
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For the time varying stresses, a simple fatigue stress cycle (Fat_load) is considered for the 

analysis. The fatigue stress cycles for both the S0 and S1 stresses are considered to oscillate 

between 0 to 100 MPa as shown in Figure 4.15. The fatigue stress scale factors (scl_fac) for 

both S0 and S1 is set to 1. 

 

 
Figure 4.15: Fatigue stress cycles used for the crack propagation analysis 

The total stress that would act on the crack at any given time point during the analysis is then, 

a superposition of both S0 and S1 loads, which can be expressed as,  

 

 𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 =  (𝐹𝑎𝑡_𝑙𝑜𝑎𝑑𝑆0 ∗  𝑆𝐺𝑆0 ∗  𝑠𝑐𝑙_𝑓𝑎𝑐𝑆0) 
(20) 

 + (𝐹𝑎𝑡_𝑙𝑜𝑎𝑑𝑆1 ∗  𝑆𝐺𝑆1 ∗  𝑠𝑐𝑙_𝑓𝑎𝑐𝑆1) 

 

4.3 Automation 

The analysis process shown in Figure 4.1 is automated through a combination of APDL and 

Python scripts. The main purpose of the automation is to carry out multiple analyses by varying 

the three weld geometry parameters (e/t, θ and f), within the bounds listed in Table 4.1. This 

automation is the main enabler for the Monte Carlo analysis carried out in the thesis (discussed 

in Chapter 6 and 7). The process followed to evaluate fatigue life for an individual case has 

been discussed in Sections 4.1 and 4.2. The workflow employed to automate the process is 

explained in the following sections. 

 

4.3.1 Automation – Stress gradient extraction 

Based on the results discussed in Section 5.1, the Case 1 geometry is not considered for the 

automation process. The idealized geometry and Case 2 geometry (referred as the real geometry 

in the automation process) are considered, and Figure 4.16 shows the algorithm followed in 

extracting the stress gradients from the FE analysis. Two APDL scripts execute the steps shown 

in the algorithm.  
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Figure 4.16: Algorithm of steps followed to extract stress gradients 

The process starts with choosing the type of the local geometry. If idealized geometry is chosen, 

the range of normalized edge offset (e/t) to be simulated is specified via a *DO loop. If the real 

geometry is chosen, the ranges of three parameters: normalized edge offset (e/t), angular 

deflection (θ) and the length factor (f) are specified via a *DO loop. The weld geometry and 

mesh is generated with the specified parameters, with the first APDL script. Using the second 

APDL script, the analysis is performed with conditions as described in Section 4.1. For the 

deterministic analysis (results discussed in Chapter 5), both the unit membrane and unit bending 

loads are applied in such a way that the global bending moment and the secondary bending 

moment at the weld region act in the same direction (see Section 4.1.5 for explanation). From 

the results of the FE analysis, the stress gradients along paths defined by maximum stresses due 

to membrane and bending loads are extracted as discussed in Section 4.1.4. 

 

4.3.2 Automation – Life evaluation 

An algorithm of the steps followed in evaluating the fatigue life with NASGRO is shown in 

Figure 4.17. Two Python scripts are written to perform the steps shown. The first Python script 

creates the NASGRO input files and the second Python script performs the NASGRO runs and 

extracts the fatigue life. 
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Figure 4.17: Algorithm of steps followed for evaluation of fatigue life 

The process starts by calling the stress gradient files (obtained from FE analysis) into Python. 

The stress gradients are then written in NASGRO file format. Within NAGRO, the FLABAT 

file is used to perform batch runs. The only difference among the NASGRO input files 

corresponding to different cases lie in the respective stress gradient files. Therefore, a master 

FLABAT file that follows the structure of the standard input for the analysis is used as a 

template. As shown in Appendix 10.2, the stress gradient file names are inserted in the 

placeholders of the master file to generate individual input files. The NASGRO runs are then 

executed.  

 

For every case, two lives are evaluated. The lives correspond to the two starting positions of 

the assumed initial crack, based on the maximum stress locations for the two load cases. The 

minimum of these two is taken as the life for the local weld geometry case analysed.  
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5 Results – Deterministic analysis 

5.1 Initial Study – Case 1 geometry 

For a Case 1 geometry, the length of the local angular deflection around the weld cannot be 

determined from the profilograph measurement, as shown in Figure 2.4. In the analysis 

geometry, the lengths of the two joining plates are set to L1 and L2, and the local angular 

deflection (θ) measured from the profilograph measurement is applied to the plate with length 

L2, as shown in Figure 5.1. For the analysis both L1 and L2 are set to be equal. Life calculations 

are performed for various lengths of joining plates and the results are discussed in this section. 

 

 
Figure 5.1: Illustration of case 1 analysis geometry 

The lengths of joining plates and θ as listed in Table 5.1, are used for the analysis. Other weld 

geometry parameters are set to values listed in Table 4.1.  

 

Table 5.1: List of parameters used for Case 1 geometry analysis 

Parameter Value Description 

θ 1 [⁰] Local angular deflection 

L1, L2 30, 40, 50 [mm] Length of individual plates (L1 = L2) 

 

Figure 5.2(a) shows that the maximum stress occurs on the root toe radius where the local 

angular deflection is present. Moreover, as the length of the joining plates increase the 

maximum observed stress due to membrane load increases linearly as shown in Figure 5.2(b).  

 

 
Figure 5.2: Results from FE analysis of case 1 geometry [θ = 1⁰] (a) Stress distribution (in MPa) around weld 

region due to membrane load (1 MPa), plate length = 30 mm (b) Maximum stress in Y-direction due to 

membrane load as a function of the length of the plates 
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It is observed that as the length of the joining plates increase, it results in a significant drop of 

the fatigue life, as shown in Figure 5.3. The fatigue life reduces from a maximum observed 

value of 381849 cycles (plate lengths = 30 mm) to 190065 cycles (plate lengths = 50 mm) under 

a given membrane load of 1 MPa.   

 

 
Figure 5.3: Length of joining plates vs observed life for case 1 geometry [θ = 1⁰] 

As the length of the plates increase the perpendicular distance between the point of load 

application and weld centreline increases. This causes an increase in the local bending moment 

at the weld joint, which is illustrated in Figure 5.4, resulting in a reduction of life. 

 
Figure 5.4: Illustration of higher moment resulting in reduction of fatigue life in case 1 geometry 

However, in reality, local angular distortions do not exceed more than one bead width. The case 

1 geometry therefore, does not represent a local geometry, and is out of the scope of current 

work. For further analysis, only the idealized geometry and Case 2 geometry (henceforth 

referred as the real geometry) are considered. The results obtained for the respective cases are 

discussed in the following sections. 
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5.2 Fatigue life results - Idealized Geometry 

In an idealized geometry, the edge offset (e) is considered between two parallel plates, as 

illustrated in Figure 1.2. The normalized edge offset (e/t) is varied within bounds (0 – 0.41) that 

are set according to the data collected from non-conformances as discussed in Section 3. Other 

weld geometry parameters were set to values listed in Table 4.1. 

 

The stress distribution due to membrane load for two cases of normalized edge offset are shown 

in Figure 5.5. For the case of no edge offset, the maximum stress can occur at either of the four 

weld toe radii, as shown in Figure 5.5(a). However, in the presence of an edge offset the 

maximum stress shifts to the lower root toe radius as shown in Figure 5.5(b).  

 

 
Figure 5.5: Stress distributions (in MPa) around weld region due to membrane load (1 MPa) for an idealized 

geometry (a) e/t = 0 (b) e/t = 0.41 

Figure 5.6 shows the effect of normalized edge offset on the resulting fatigue life. It is observed 

that an increase in edge offset results in a significant reduction in the fatigue life. This is 

because, an increase in the edge offset leads to an increase in the local bending moment caused 

at the weld joint, resulting in a drop in the calculated fatigue life. 

 

In order to generate the data shown in Figure 5.6, stress analysis and life calculations are carried 

out through the automation scripts. The small non-monotonic excursions on the curve are 

considered effect of non-identical mesh. 
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Figure 5.6: Normalized edge offset vs fatigue life for idealized geometry [t = 4mm] 

 

5.3 Fatigue life results - Real geometry 

The geometric parameters of a real geometry (see Figure 2.5) are varied within bounds that are 

set according to data collected from non-conformance reports as discussed in Section 3. The 

values of respective parameters that are used for the analysis is listed in Table 5.2. Other weld 

geometry parameters are set to values listed in Table 4.1. 

 

Table 5.2: Bounds for parameters of real geometry used for deterministic analysis 

Parameter Value Description 

e/t 0 – 0.4 Bounds for normalized edge offset 

θ 1 - 5 [⁰] Bounds for local angular deflection 

f 0.1 – 0.7 Bounds for length factor of local deflection 

 

The effect of normalized edge offset on the fatigue life is shown in Figure 5.7. The life curves 

of the real geometry (RG) correspond to a specific case for a local angular deflection (θ) of 2⁰ 

and the length factor (f) is varied within the bounds. The life curves of the real geometry are 

overlaid on the life curve of idealized geometry for comparison.  

Consider two cases of the real geometry, as shown in Figure 5.8. When no edge offset is present, 

as illustrated in Figure 5.8(a), the local distortion of length L3 causes the maximum observed 

stress to occur at root radius location MX1. This leads to a reduction of fatigue life. As L3 

increases, it induces higher stresses resulting in a further reduction of fatigue life. This is evident 

for the cases where the normalized edge offset is zero in Figure 5.7, where, as the value of f 

increases the observed life reduces. 

When an edge offset is introduced in the model, as illustrated in Figure 5.8(b), it leads to an 

increase in stresses at root radius location MX2, and there exists a value of edge offset above 

which, the maximum stress location shifts from root radius location MX1 to MX2. 
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Figure 5.7: Normalized edge offset vs fatigue life for real geometry [t = 4mm; θ = 2⁰] 

 
Figure 5.8: Maximum stress locations in real geometry for (a) No edge offset (b) With edge offset 

Therefore, for a given length of local angular deflection the fatigue life remains almost constant 

until a threshold value of edge offset. For higher values of edge offset, the maximum stress 

location shifts to MX2, which dictates the resulting fatigue life, and both real and idealized 

geometries predict the same life results. This behaviour is clearly seen in Figure 5.7, where after 

a certain threshold value of edge offset, the real and idealized geometry yield same life numbers. 

 

For the particular case when f is 0.6, it is observed that the fatigue life is almost constant at 

approximately 67000 cycles until a normalized edge offset of approximately 0.075. For higher 

values of edge offset, the real geometry yields approximately the same life results as the 

idealized geometry. The fatigue life curves for the other cases are shown in Appendix 10.3. 

 

Figure 5.9 shows the stress distributions around the weld for the case (θ = 2⁰; f = 0.6). When 

the normalized edge offset is 0.025, the maximum stress occurs at location MX1. However, for 

a normalized edge offset increases to 0.1, the maximum stress location shifts to MX2.   
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Figure 5.9: Stress distributions (in MPa) around the weld region in a real geometry [t = 4mm; θ = 2⁰; f = 0.6] due 

to membrane load (1 MPa) for (a) e/t = 0.025 (b) e/t = 0.1 

5.4 Fatigue life results – Different edge offset measures  

A study is carried out to investigate if it is possible to evaluate conservative life estimates using 

the idealized geometry instead of the real geometry with different edge offset measures. 

 

Consider the real geometry as illustrated in Figure 5.10. Two edge offsets measures are 

possible. If the local distortion were ignored, it would yield a remote offset measurement (RO). 

On the other hand, if the local angular deflection were considered in the measurement, one can 

make use of a local offset measurement (LO1). The idealized geometry can yield two life results 

depending on which offset is considered in the fatigue life evaluation. Therefore, three analysis 

approaches can be taken to evaluate the fatigue life with idealized and real geometries. These 

are real geometry (RG), idealized geometry with remote offset (IG – RO) and idealized 

geometry with local offset (IG – LO1). 

 

 
Figure 5.10: Illustration of two possible offset measurements in the real geometry 

Consider a case with normalized RO and LO1 values along with other dimensions pertaining to 

real geometry as listed in Table 5.3. The weld geometries for the three analysis approaches are 

shown in Figure 5.11. The obtained life results for the respective cases are highlighted in Figure 

5.17 and Table 5.3.  
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Table 5.3: Example 1 – Parameters of a real geometry and life results from three analysis approaches 

Geometry Parameters Value  Analysis approach Life (cycles) 

Normalized remote offset (RO) 0.05  RG 663142 

Angular deflection (θ) 2 [⁰]  IG – RO 893535 

Length factor (f) 0.6  IG – LO1 332399 

Normalized local offset (LO1) 0.15    

 

The stress gradients due to membrane load for the three cases are shown in Figure 5.12. It is 

observed that the peak stresses are in the order IG - LO1 > RG > IG – RO. This leads to the life 

results such that, the calculated life numbers are in the order IG - LO1 < RG < IG – RO. 

 

 
Figure 5.11: Different stress analysis geometries for a case with RO = 0.05, θ = 2⁰ and f = 0.6 (a) RG (b) IG [RO 

= 0.05] (c) IG [LO1 = 0.15] 

 
Figure 5.12: Stress gradients due to membrane load for three cases in Table 5.3 

Consider another case with normalized RO and LO1 values as listed in Table 5.4. The weld 

geometries for the three cases are shown in Figure 5.13. The respective life results are 

highlighted in Figure 5.17 and Table 5.4. 
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Table 5.4: Example 2 – Parameters of a real geometry and life results from three analysis approaches 

Geometry Parameters Value  Analysis approach Life (cycles) 

Normalized remote offset (RO) 0.025  RG 667078 

Angular deflection (θ) 2 [⁰]  IG – RO 1225533 

Length factor (f) 0.6  IG – LO1 984727 

Normalized local offset (LO1) 0.043    

 

The stress gradients due to membrane load for the three cases are shown in Figure 5.14. It is 

observed that the peak stresses are in the order RG > IG - LO1 > IG – RO and the corresponding 

calculated life results are in the order RG < IG - LO1 < IG – RO. 

 

 
Figure 5.13: Different stress analysis geometries for a case with RO = 0.025, θ = 2⁰ and f = 0.6 (a) RG (b) IG 

[RO = 0.025] (c) IG [LO1 = 0.043] 

 
Figure 5.14: Stress gradients due to membrane load for three cases in Table 5.4 

Table 5.5 shows another case of normalized RO and LO1. The weld geometries for the three 

cases are shown in Figure 5.15. The respective life results are highlighted in Figure 5.17 and 

Table 5.5.  
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Table 5.5: Example 3 – Parameters of a real geometry and life results from three analysis approaches 

Geometry Parameters Value  Analysis approach Life (cycles) 

Normalized remote offset (RO) 0.08  RG ≈ 619939 

Angular deflection (θ) 2 [⁰]  IG – RO 619939 

Length factor (f) 0.6  IG – LO1 300014 

Normalized local offset (LO1) 0.16    

 

The stress gradients due to membrane load for the three cases are shown in Figure 5.16. It is 

observed that the peak stress is highest for IG - LO1. The stress gradients are approximately 

same for RG and IG – RO. The same behaviour is observed in the obtained life results where, 

IG - LO1 predicts the minimum life. However, the life results for RG and IG – RO is 

approximately the same. 

 

 
Figure 5.15: Different stress analysis geometries for a case with RO = 0.08, θ = 2⁰ and f = 0.6 (a) RG (b) IG [RO 

= 0.08] (c) IG [LO1 = 0.16] 

 
Figure 5.16: Stress gradients due to membrane load for three cases in Table 5.5 
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Figure 5.17: Fatigue life results for various cases of idealized and real geometries 

From this deterministic analysis, we can conclude that results from the life calculations carried 

out using the idealized geometry can be very different from a model that includes the local 

geometry around the weld region. The results from the idealized geometry also depend highly 

on the edge offset considered for the life calculation. Further, there is no single measurement 

of offset (remote or local) that, when used in the idealized analysis geometry, leads to a 

conservative life estimate. 

 

It is thus clear that a large number of simulations needs to be carried out to obtain a better 

insight about the effect of local geometry on calculated fatigue life. These analyses should 

account for the variation in edge offset as observed in the actual measurements reported in 

Chapter 3. From previous analyses, it is known that the weld root radius plays an important role 

in fatigue life calculation. Chapter 3 also quantified the observed variations in weld root radius 

values. 

 

In order to account for such variations, a statistical analysis is desirable. Accordingly, further 

analysis is carried out using Monte Carlo simulations. The procedure followed and the results 

obtained from the Monte Carlo simulations are discussed in Chapters 6 and 7, respectively.  
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6 Analysis Setup – Monte Carlo Simulations 

The Monte Carlo (MC) simulation, also known as the Monte Carlo method, is a numerical 

method of solving a mathematical problem by simulations of random variables. The method is 

used to simulate a process several times, to study the effect of the randomness in the input 

variables on the desired outcome of the problem [21]. Here, we would like to study the 

sensitivity of the edge offset and weld toe radii on the fatigue life, for two weld geometry cases: 

idealized (Figure 1.2) and real geometry (Figure 2.5). Four variables are considered for the MC 

simulation, which are listed in Table 6.1.  

 

Table 6.1: Variables considered for MC simulation 

Variables in MC simulation Applicable analysis geometry 

Normalized edge offset (norm_e) Idealized and real geometry 

Normalized top toe radius (norm_TR) Idealized and real geometry 

Normalized root toe radius (norm_RR) Idealized and real geometry 

Local angular deflection (θ) Real geometry 

 

The MC simulation is performed in Python. The steps followed to perform a MC simulation 

are illustrated in Figure 6.1. Each step is discussed further in detail in the following sections. 

 

 
Figure 6.1: Illustration of steps involved to perform a Monte Carlo simulation 

6.1 Weld geometry parameters 

From the weld measurements discussed in Chapter 3, the probability distribution that provides 

a good representation of the spread of data, for the four variables listed in Table 6.1 are 

determined. The scipy.stats module within Python is used to evaluate distributions. The data 

considered to identify the distributions comprise of both non-conformance reports and weld 

qualification data for Nickel base TIG welds (see Chapter 3).  

 

From the statistical distributions discussed in Section 2.3.1, the exponential distribution as 

shown in Figure 6.2, visually, captures the spread of data for normalized edge offset. The 

distribution parameters of the fit are listed in Table 6.2. 
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Table 6.2: Parameters of exponential distribution fit for normalized edge offset 

Parameter Value 

Location 0 

Scale 0.075373 

 

 
Figure 6.2: Histogram of normalized edge offset and exponential distribution fit 

For both normalized top toe radius and normalized root toe radius, the lognormal distribution 

provides a good approximation of the spread of data, as shown in Figure 6.3 and Figure 6.4 

respectively. The distribution parameters for the variables are listed in Table 6.3 and Table 6.4 

respectively. 

 

Table 6.3: Parameters of lognormal distribution fit for normalized top toe radius 

Parameter Value 

Shape 1.093874 

Location -0.016442 

Scale 1.731843 

 

 
Figure 6.3: Histogram of normalized top toe radius and lognormal distribution fit 
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Table 6.4: Parameters of lognormal distribution fit for normalized root toe radius 

Parameter Value 

Shape 0.734439 

Location -0.049476 

Scale 0.600797 

 

 
Figure 6.4: Histogram of normalized root toe radius and lognormal distribution fit 

For the local angular deflection (θ), since the dataset available was not large enough, identifying 

the underlying distribution was not feasible. Hence, for conservative estimates, a uniform 

distribution was assumed within the identified bounds as shown in Figure 6.5. 

 

 
Figure 6.5: Uniform distribution for local angular deflection (θ) 

The parameters normalized top bead width, internal top and root flank angles, and their 

respective values used in the simulation are listed in Table 6.5. These values represent a typical 

Nickel base TIG weld. 
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Table 6.5: Values of weld geometry parameters used in MC simulation 

Parameter Value 

Normalized top bead width (B) 3.69 

Internal top flank angle (φ1, φ2) 11 [⁰] 

Internal root flank angle (φ3, φ4) 25 [⁰] 

  

Other weld geometry parameters are set to the same values, as used in the deterministic analysis, 

which is summarized in Table 6.6. To reduce the complexity of the analysis, the length factor 

of local deflection (f) is set to the average value from compiled data, obtained from non-

conformance reports. 

 

Table 6.6: Other weld geometric parameter values used in MC simulation 

Parameter Value 

Root bead width (C) B 

Top bead height (Bh) 0.15*B 

Root bead height (Ch) 0.15*C 

Length of plate #1 (L1) 30 [mm] 

Length of plate #2 (L2) 30 [mm] 

Length factor of local deflection (f) 0.3 

 

A design space is defined with the four variables listed in Table 6.1. The lower (xL) and upper 

(xU) bounds of the four variables are listed in Table 6.7. The lower bounds are set to the 

minimum observed value from the compiled weld measurement data. The upper bounds are 

chosen such that, it does not generate unrealistic geometries for the stress analysis. The 

idealized and real geometries for the respective lower and upper bound values are shown in 

Figure 6.6 and Figure 6.7. 

 

Table 6.7: Lower and Upper bounds of the design space for MC simulation 

Parameter [ xL, xU ] 

norm_e [0, 0.5] 

norm_TR [0.071, 4] 

norm_RR [0.05, 2.5] 

θ [1⁰, 5⁰] 
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Figure 6.6: Idealized geometries at the extremities of the design space (a) lower bounds (b) upper bounds 

 
Figure 6.7: Real geometries at the extremities of the design space (a) lower bounds (b) upper bounds 

 

6.2 Correlation between variables 

From the compiled weld measurements discussed in Section 3, the correlation between three 

variables: normalized edge offset (norm_e), normalized top toe radius (norm_TR) and 

normalized root toe radius (norm_RR) is evaluated using the Pearson’s correlation coefficient, 

discussed in Section 2.3.2. For continuous variables, the relationship is shown in Equation (10) 

and can be rewritten for a discrete set of variables, as shown below, 

 

 𝜌𝑥𝑦 =  
∑[(𝑥𝑖 − �̅�) (𝑦𝑖 −  �̅�)]

√∑(𝑥𝑖 −  �̅�)2 ∗ ∑(𝑦𝑖 −  �̅�)2
 (21) 

 

The correlation plots between pairs of variables are shown in Figure 6.8 and the respective 

coefficients identified using Equation (21), are listed in Table 6.8. 
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Table 6.8: Correlation coefficients of three variable pairs 

Variable pairs Correlation coefficient (ρxy ) 

norm_e vs norm_TR 0.0241 

norm_e vs norm_RR 0.19 

norm_TR vs norm_RR 0.052 

 

 
Figure 6.8: Correlation plots (a) norm_e vs norm_TR (b) norm_e vs norm_RR (c) norm_TR vs norm_RR 

The norm_TR is independent of both norm_e and norm_RR, since the correlation coefficient is 

close to zero for both the cases. Even though the correlation coefficient is 0.19 between norm_e 

and norm_RR, the value is not large enough to imply a positive correlation. Hence, all three 

variables are treated independent of each other. 

 

6.3 Determination of transfer function 

In the Monte Carlo (MC) simulation, repeated sampling of the random variables is performed, 

to predict the distribution of life. Performing full simulations (i.e., extracting stress gradients 

from stress analysis and performing NASGRO runs to evaluate life, discussed in Sections 4.1 

and 4.2) for each case is time consuming. Therefore, the entire process is represented with a 

transfer function or surrogate model to estimate the fatigue life. This significantly reduces the 

time taken to perform large number of MC runs, while estimating the life distribution with 

sufficient accuracy. 
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While performing full simulations in MC simulation to train the transfer function, life from 

both the forward and reverse bending cases are evaluated and the minimum of the two lives are 

considered for each case (see Section 4.1.5 for explanation). In the simulations, instead of 

creating new geometry by changing the ‘direction’ of offset, the global bending moment is 

applied in the reverse direction, which is an equivalent consideration. Note that within each 

case (i.e. forward and reverse bending), crack propagation lives are computed assuming 

different locations for the initial crack (see Section 4.1.4). 

  

The upper bounds of the normalized root radius (norm_RR), shown in Table 6.7, result in large 

root radii, which result in high fatigue lives and in some cases, can result in infinite fatigue 

lives. To overcome this and have finite fatigue lives in the considered design space, the 

magnitude of loads in NASGRO (Section 4.2.3) is increased by increasing the stress scale 

factors of S0 and S1 stresses (scl_facS0 and scl_facS1) to 2, see Equation (20). Thus, for all 

simulations in Chapters 6 and 7, both the membrane and bending stresses oscillate between 0 

and 200 MPa. 

 

Additionally, log10 values of the life results from full simulation is used to train the transfer 

function. It is known that small changes in stress causes large change in fatigue life. The use of 

log10(life) as a dependent variable reduces the non-linearity and hence the error in training the 

transfer function. Consequently in the MC simulation, the transfer function estimates log10(life), 

from which the life is calculated to obtain a distribution of life.  

 

6.3.1 Transfer function for idealized geometry 

The transfer function used for the idealized geometry is a three variable second order regression 

model considering interaction effects, shown in Equation (22),  

 

 𝑙𝑜𝑔10(𝑙𝑖𝑓𝑒) =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 +  𝛽3𝑥3 +  𝛽4𝑥1
2 

(22) 
 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3 + 𝛽7𝑥2

2 +  𝛽8𝑥2𝑥3 +  𝛽9𝑥3
2 

 

where x1 corresponds to norm_e, x2 corresponds to norm_TR and x3 corresponds to norm_RR. 

To train the transfer function to estimate the fatigue life accurately over the entire design space, 

points where full simulation have to be carried out are identified with two Design of 

Experiments (DoE) approaches: the Central Composite Design (CCD) and Latin Hypercube 

Sampling (LHS). Concepts of regression models and DoE are discussed in Sections 2.3.3 and 

2.3.4 respectively. 

 

Since the design space is well defined as shown in Table 6.7, α value is set to 1. With the bounds 

defined, for three variables the CCD yields 15 full simulation points covering extremities of the 

design space, which is shown in Figure 6.9. 
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Figure 6.9: Fifteen full simulation points according to CCD for training IG transfer function 

Additionally, to train the function to predict the fatigue life accurately within the design space, 

75 full simulation points are identified with LHS that fill up the entire design space, as shown 

in Figure 6.10. Full simulations are carried out at the identified 90 points and the log10(life) is 

evaluated. 

 

         
Figure 6.10: Seventy-five full simulation points according to LHS for training IG transfer function 

The transfer function shown in Equation (22) is identified for three plate thicknesses: 2.03 mm, 

4 mm and 6 mm. With full simulation results at the 90 points for three thickness cases, the 

regression model is trained for each case with the respective results. The identified regression 

coefficients are listed in Table 6.9. 

 

Table 6.9: Regression coefficients of transfer functions for IG – Three plate thicknesses 

Plate 

thickness 

(mm) 

Regression coefficients 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 

2.03 4.915 -3.528 0.013 0.229 1.716 -0.029 0.067 -0.002 0.003 -0.067 

4 4.845 -3.799 0.016 0.271 1.914 -0.042 0.080 -0.003 0.004 -0.079 

6 4.770 -3.905 0.016 0.310 1.945 -0.045 0.092 -0.003 0.004 -0.089 

 

The obtained regression coefficients show that the normalized edge offset (β1) has the 

maximum influence and a negative effect on life. The next highest influence is due to the 

normalized root toe radius (β3), which has a positive effect on life. The normalized top toe 

radius (β2) has a negligible influence on the fatigue life. 

 



ANALYSIS SETUP – MONTE CARLO SIMULATIONS 

53 

To validate the transfer functions, the R2 and R2
adj values are evaluated, which is shown in Table 

6.10. The R2 and R2
adj values are large and approximately equal to each other for the three cases, 

confirming good regression models. 

 

Table 6.10: R2 and R2
adj values of IG transfer functions for respective plate thickness values 

Plate thickness (mm) R2 R2
adj 

2.03 0.997 0.997 

4 0.997 0.996 

6 0.996 0.996 

 

An identity line is also used to validate the transfer functions. In addition to the 90 training 

points, 30 points are sampled at random from the distributions of the three variables, to test the 

transfer functions. Full simulations are performed at the test points. The transfer functions are 

used to predict the life at both the training and test points. The full simulation life and the 

predicted life are plotted along with an identity line to check the agreement between the two 

values, in a log-log plot.  

 

The result for plate thickness of 2.03 mm is shown in Figure 6.11. It is seen that transfer function 

predicts the fatigue life with good accuracy, well within a factor of 1.5 of the full simulation 

life. The results for plate thicknesses of 4 mm and 6 mm are shown in Appendix 10.4. 

 

 
Figure 6.11: Full simulation vs Predicted life from transfer function of IG [Thickness = 2.03 mm] 

 

6.3.2 Transfer function for real geometry 

The transfer function used for a real geometry is a four variable second order regression model, 

considering interaction effects, as shown in Equation (23), 

 

 𝑙𝑜𝑔10(𝑙𝑖𝑓𝑒) =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 +  𝛽3𝑥3 +  𝛽4𝑥4 + 𝛽5𝑥1
2 +  𝛽6𝑥1𝑥2 +  𝛽7𝑥1𝑥3 

(23) 
 + 𝛽8𝑥1𝑥4 + 𝛽9𝑥2

2 + 𝛽10𝑥2𝑥3 +  𝛽11𝑥2𝑥4 + 𝛽12𝑥3
2 + 𝛽13𝑥3𝑥4 +  𝛽14𝑥4

2 
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where x1 corresponds to norm_e, x2 corresponds to norm_TR, x3 corresponds to norm_RR and 

x4 corresponds to θ. Similar to idealized geometry, in order to train the transfer function to 

estimate the fatigue life accurately over the entire design space, full simulation points are 

identified using CCD and LHS approaches.  

 

Since the bounds of the design space are well defined as shown in Table 6.7, α value is set to 

1. For four variables, the CCD yields 25 experiments covering the extremities of the entire 

design space, which is shown in Figure 6.12.  

 

         
Figure 6.12: Twenty-five full simulation points according to CCD for training real geometry transfer function 

Additionally, to train the function to predict fatigue life accurately within the design space, 75 

full simulation points are identified with LHS, which covers the entire design space as shown 

in Figure 6.13. Full simulations are carried out at the identified 100 points and the log10(life) is 

evaluated. 

  

  
Figure 6.13: Seventy-five full simulation points according to LHS for training real geometry transfer function 
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The regression model shown in Equation (23) is trained with the full simulation results for a 

plate thickness of 2.03 mm. The identified regression coefficients is listed in Table 6.11. 

 

Table 6.11: Regression coefficients of transfer function for real geometry [Thickness = 2.03 mm] 

Regression coefficients 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 

4.844 -2.761 -0.033 0.279 -0.038 -0.095 -0.020 0.064 0.132 -0.006 -0.003 -0.001 

β12 β13 β14 

-0.075 -0.003 -0.0007 

 

From the identified regression coefficients of the transfer function for a real geometry, it is 

observed that the normalized edge offset (β1) has the maximum influence and a negative effect 

on life. The next highest influence is due to the normalized root toe radius (β3) which has a 

positive effect on life. The normalized top toe radius (β2) and local angular deflection (β4) have 

similar yet, negligible influence on life.  

 

To validate the transfer function, the R2 and R2
adj values are evaluated, which are shown in 

Table 6.12. It is observed that the R2 and R2
adj values are large and approximately equal to each 

other, confirming a good regression model.  

 

Table 6.12: R2 and R2
adj values of the transfer function for real geometry [Thickness = 2.03 mm] 

R2 R2
adj 

0.982 0.979 

 

An identity line is also used to validate the transfer function. In addition to the 100 training 

points, 30 points are sampled at random from the distributions of the four variables, to test the 

transfer function. Full simulations are performed at the test points. The transfer function is used 

to predict the life at both the training and test points. The full simulation life and the predicted 

life are plotted along with an identity line to check the agreement between the two values, in a 

log-log plot. The result for plate thickness of 2.03 mm is shown in Figure 6.14. It is observed 

that the transfer function predicts life values with good accuracy within a factor of 1.5 of the 

full simulation life. 
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Figure 6.14: Full simulation vs Predicted life from transfer function for real geometry [Thickness = 2.03 mm] 

 

6.4 Monte Carlo Simulation 

6.4.1 Number of Monte Carlo runs 

Since the Monte Carlo (MC) simulation is essentially a random sampling procedure, it is 

important to identify the number of MC runs required to achieve a stable result. The coefficient 

of variation (CV) from 20 iterations of the cumulative average fatigue life (CAFL) is evaluated 

for increasing MC runs. The results are shown in Table 6.13. 

 

For 50000 MC runs, the CAFL is predicted with great accuracy as it tends to the mean value 

with the least standard deviation, and the CV is 0.20 %. The respective convergence plot for 

50000 MC runs is shown in Figure 6.15. The plots for other cases is shown in Appendix 10.5. 

Henceforth, 50000 MC runs will be performed for all MC simulations. 

 

Table 6.13: Coefficient of variation for CAFL for various cases of MC runs 

No. of MC 

runs 

Mean of CAFL 

(Cycles) 

Standard 

deviation of 

CAFL (Cycles) 

CV (standard 

deviation / 

mean) 

% CV 
Time to 

complete runs 

100 69799 2536 0.0363 3.63 0.53 sec 

1000 70265 771 0.0109 1.09 2.67 sec 

10000 70122 268 0.0038 0.38 25.43 sec 

20000 70287 257 0.0036 0.36 54.06 sec 

30000 70165 196 0.0027 0.27 1 min 36 sec 

50000 70160 144 0.0020 0.20 2 min 59 sec 
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Figure 6.15: Convergence plot of CAFL for 20 iterations of 50000 MC runs 

 

6.4.2 Script algorithm to perform Monte Carlo simulation 

The algorithm that is followed to perform the Monte Carlo (MC) simulation for idealized 

geometry is shown in Figure 6.16. The process starts by defining the probability distributions 

and bounds for the three variables of the idealized geometry. With the number of MC runs 

defined, a random sample dataset is generated from the probability distributions.  

 

The next step in the MC simulation involves performing checks on the generated sample dataset 

of the variables, to verify the values are within the bounds of design space. The conditions 

defined are as follows: 

 

 If any of the sampled variables exceed the respective lower bounds of the design space, 

or the maximum observed value obtained from weld measurements – The dataset is 

ignored and a new sample dataset is generated. 

 If any of the sampled variables exceed the respective upper bounds of the design space, 

but are less than the maximum observed value obtained from weld measurements – The 

upper bound value is assigned to the variable and the process continues.  

 If the sampled variables are within the bounds of the design space, the generated 

samples are used and the process continues. 

 

Following the checks, the transfer function is used to estimate the fatigue life for the generated 

random sample dataset. The estimated life is stored and the next run continues. The procedure 

loops until the defined number of MC runs are completed. Finally, the Empirical Cumulative 

Distribution Function (discussed in Section 2.3.5) of the distribution of life is determined to 

compare the results from different cases.  

 

The MC simulation procedure is similar for the Case 2 (real) geometry, but additionally the 

fourth variable (local angular deflection - θ) is sampled from a uniform distribution along with 



ANALYSIS SETUP – MONTE CARLO SIMULATIONS 

58 

aforementioned three variables. The respective transfer function for real geometry is used for 

estimation of fatigue life. 

 
Figure 6.16: Algorithm for MC simulation - idealized geometry 
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7 Results – Monte Carlo simulations 

7.1 Effect of thickness on fatigue life 

A study is conducted to investigate the influence of varying thickness of the joining plates on 

the fatigue life. The idealized geometry is considered for the analysis. The initial crack size is 

fixed to dimensions shown in Table 4.6. Monte Carlo (MC) simulations are performed for three 

plate thicknesses, namely: 2.03 mm, 4 mm and 6 mm. The respective transfer functions 

identified in Section 6.3.1 are used for the analysis. The Empirical Cumulative Distribution 

Function (eCDF) is calculated and used for comparison of results. Two types of edge offset are 

investigated: normalized edge offset and absolute edge offset. The obtained results are 

discussed in the following sections. 

 

7.1.1 Normalized edge offset 

For this study, the distribution of normalized edge offset shown in Figure 6.2 is used. Figure 

7.1 shows the fatigue life vs failure probabilities for the three thickness cases. Two parameters 

of interest are the minimum life or 99.9% survival probability and the median life or 50% 

survival probability, which are shown for the respective cases in Table 7.1. 

 

Table 7.1: Minimum life and median life for three thickness cases – Idealized geometry 

Plate thickness 

(mm) 

Minimum life - 99.9% survival probability 

(cycles) 

Median life – 50% survival probability 

(cycles) 

2.03 5679 71999 

4 4217 62138 

6 3252 53993 

 

 
Figure 7.1: Empirical CDF of fatigue life for three thickness cases – Idealized geometry (IG)  

It is observed that as the thickness of the plate increases, the resulting fatigue life reduces. Since 

the normalized edge offset (norm_e) is used in estimating the fatigue life, for the same norm_e 
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value, higher plate thickness results in a higher edge offset, which results in a reduction of 

fatigue life. 

 

7.1.2 Absolute edge offset 

The absolute value of the edge offset is fixed at 0.3 mm and the respective norm_e values are 

varied for the three plate thicknesses is listed in Table 7.2. 

 

Table 7.2: norm_e values for different plate thicknesses [e = 0.3 mm] 

Edge offset Plate thickness (mm) Normalized edge offset (norm_e) 

0.3 mm 

2.03 0.1478 

4 0.075 

6 0.05 

 

The fatigue life vs failure probabilities for the three cases is shown in Figure 7.2. The respective 

minimum and median lives are listed in Table 7.3. It is observed that as the thickness of the 

plate increases, the resulting fatigue life increases. 

 

Table 7.3: Minimum life and median life for three thickness cases – IG [e = 0.3 mm] 

Edge 

offset 

Plate thickness 

(mm) 

Minimum life - 99.9% survival 

probability (cycles) 

Median life – 50% survival 

probability (cycles) 

0.3 mm 

2.03 27842 35625 

4 39072 51794 

6 40276 55364 

  

 
Figure 7.2: Empirical CDF of fatigue life for three thickness cases – Idealized geometry (IG) [e = 0.3 mm] 

To understand the behaviour, consider a case when the norm_TR and norm_RR values are set 

to 0.1. For this case, full simulations (i.e., extracting stress gradients from stress analysis and 

performing NASGRO runs to evaluate life) are carried out for the three thickness values. The 

obtained fatigue lives are listed in Table 7.4. Similar to the MC simulation results, as the 

thickness of the plates increase, an increase of fatigue lives is observed.   
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Table 7.4: Fatigue lives for three thickness cases from full simulation - IG [e = 0.3 mm] 

norm_TR norm_RR norm_e Plate thickness (mm) Fatigue life (cycles) 

0.1 0.1 

0.1478 2.03 26804 

0.075 4 37629 

0.05 6 39271 

 

A surface crack as shown in Figure 4.13 is used in the crack propagation analysis. The surface 

crack has two tips: the a-tip and c-tip, which are illustrated in Figure 7.3.  

 

 
Figure 7.3: a-tip and c-tip in a surface crack 

From the results of crack propagation analysis, the crack size vs cycles is shown in Figure 7.4 

for both the a-tip and c-tip. It is observed that the crack grows faster at the c-tip compared to 

the a-tip.  

 

 
Figure 7.4: Crack size vs Applied cycles of a-tip and c-tip for three thicknesses - IG [e = 0.3 mm] 

From Paris law shown in Equation (3), we know that the crack growth rate (da/dN) is directly 

proportional to the stress intensity factor range (ΔK). The ΔK at the c-tip is plotted against the 

crack size of c-tip, which is shown in Figure 7.5. Here, it is observed that the ΔK value reduces 

for higher thickness values.  
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Figure 7.5: Stress intensity factor range ΔK vs crack size at c-tip for three thicknesses - IG [e = 0.3 mm] 

This results in lower crack growth rates for increasing thickness, which leads to an increase in 

fatigue life for higher plate thicknesses.  

 

7.2 Influence of real geometry on the fatigue life 

Monte Carlo (MC) simulations are carried out for idealized (Figure 1.2) and real (Figure 2.5) 

geometries, for a plate thickness of 2.03 mm. The weld geometry parameters discussed in 

Section 6.1, and the respective transfer functions identified in Sections 6.3.1 and 6.3.2, are used 

in the analysis. The Empirical Cumulative Distribution Function (eCDF) of fatigue life is 

calculated for both the cases, as discussed in Section 6.4, for comparison of results.  

 

Figure 7.6 shows the eCDF of fatigue life vs the respective failure probabilities, for both the 

geometries. The minimum and median lives for the two cases are listed in Table 7.5. It is 

observed that both the geometries yield a similar minimum life. However, the real geometry 

predicts a lower median life compared to the idealized geometry. 

 

Table 7.5: Minimum life and median life for idealized (IG) and real (RG) geometries 

Geometry case 
Minimum life - 99.9% survival probability 

(cycles) 

Median life – 50% survival probability 

(cycles) 

IG 5679 71999 

RG 5739 54019 
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Figure 7.6: Empirical CDF of fatigue life for idealized and real geometries [Thickness = 2.03 mm] 

In Region A (marked in Figure 7.6), both the geometries estimate similar life results. Region A 

corresponds to cases with high edge offset values. Since the edge offset has exceeded the 

threshold value (see Section 5.3 for explanation), the edge offset is a limiting factor on fatigue 

life instead of the local angular deflection (θ). However, for lower survival probabilities it is 

observed that the real geometry produces conservative life estimates compared to the idealized 

geometry, since the local angular deflection becomes a limiting factor on life.  

 

For the idealized geometry, the distribution of life is affected by three variables: normalized 

edge offset (norm_e), normalized top toe radius (norm_TR) and normalized root toe radius 

(norm_RR), see Equation (22). From the results of the MC simulation, the correlation 

coefficients between the fatigue life and input variables are computed. The contribution to 

variance (vi) in fatigue life for each input variable is evaluated using the following equation,  

 

 𝑣𝑖 =  
𝑐𝑖

2

∑ 𝑐𝑖
23

𝑖=1

    𝑓𝑜𝑟    𝑖 = 1, 2, 3 (24) 

 

where ci is the individual correlation coefficients between a input variable and fatigue life. The 

contribution to variance in fatigue life from the three input variables for the idealized geometry 

are shown in Figure 7.7.  

 

 
Figure 7.7: Contribution to variance in fatigue life from three input variables - idealized geometry 
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The norm_e has the maximum influence on life (approximately 91%), and it has a negative 

effect. The second highest influence is due to norm_RR, which has a positive effect on life, 

since an increase in the root radius reduces the stress concentrations in the weld region, which 

leads to an increase in life. The norm_TR has a negligible influence on life, since the weld 

geometry considered for the analysis has a lower internal flank angle on the top side, compared 

to the root side, as shown in Table 6.5.  

 

For the real geometry, the distribution of life is affected by four variables: norm_e, norm_TR, 

norm_RR and the local angular deflection (θ), see Equation (23). Similar to the idealized 

geometry, the contribution of the four input variables, to the variance in fatigue life is evaluated, 

which is shown in Figure 7.8.  

 

 
Figure 7.8: Contribution to variance in fatigue life from four input variables - real geometry 

Comparing the results with the idealized geometry, the norm_e again has the highest influence 

on life and a negative effect. The norm_TR again has a negligible influence on life. The 

influence of norm_RR on life has increased for a real geometry, since based on the weld 

geometry construction, the root radius has a higher influence on the stress concentrations caused 

due to the real geometry. The third highest influence is due to the local angular deflection. It 

has a negative effect on life, as an increase in θ leads to a decrease in life, with the length factor 

of the local distortion (f) fixed for the analysis (see Table 6.6).  

 

From the results of MC simulation for both the idealized and real geometries, the dependence 

of life on the three variables: norm_e, norm_TR and norm_RR is investigated. The dependence 

is illustrated through scatter plots. Figure 7.9(a) and Figure 7.9(b) quantify the dependence on 

the normalized offset values, for idealized and real geometry, respectively. In both cases, the 

scatter band is larger for low normalized offset values. The variation in normalized radii values 

leads to a larger variation in life when the offset value is low. However, for high values of 

normalized offset, the stresses are dominated by the offset itself, and the influence of radii on 

fatigue life is small, leading to a narrow scatter band.  

 

From Figure 7.10(a) and Figure 7.10(b), it is observed that no correlation can be identified 

between the top toe radius and resulting fatigue life. In the case of the root toe radius, from 
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Figure 7.11(a) and Figure 7.11(b), the life has a positive dependence until a norm_RR value of 

approximately 1.5, after which no correlation can be identified.   

 

 
Figure 7.9: Dependence of life on normalized edge offset from results of MC simulation (a) Idealized geometry 

(b) Real geometry 

 
Figure 7.10: Dependence of life on normalized top toe radius from results of MC simulation (a) Idealized 

geometry (b) Real geometry 

 
Figure 7.11: Dependence of life on normalized root toe radius from results of MC simulation (a) Idealized 

geometry (b) Real geometry 

7.3 Influence of different edge offset measures on fatigue life 

From the results of deterministic analysis in Section 5.4, two possible offset measures from the 

real geometry were investigated: RO and LO1. Monte Carlo (MC) are performed for the 

different edge offset measures, to account for the randomness in the measures caused due to the 

real geometry. A third offset measure LO2, in addition to RO and LO1, shown in Figure 7.12, is 

considered in the analysis. A plate thickness of 2.03 mm is considered for the analysis. The 

idealized geometry (IG) transfer function is used to estimate the life for the different measures.  
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Figure 7.12: Three offset measures - RO, LO1 and LO2 

In the MC simulation, the norm_e variable corresponds to the normalized RO measure. To 

evaluate other offset measures, a random sample of θ is generated and as illustrated in Figure 

7.13, values for LO1 and LO2 are calculated using Equations (25) and (26), 

 

 𝐿𝑂2 =  𝑥 = 𝐿3 ∗ tan(𝜃) (25) 

 𝐿𝑂1 =  |𝑥 − 𝑅𝑂| (26) 

 

 
Figure 7.13: Schematic representation of geometry for calculation of LO1 and LO2 

The calculated offset measures are normalized, and checked that they do not exceed the bounds 

of the design space. The Empirical Cumulative Distribution Function (eCDF) of fatigue life is 

identified for the different cases and the obtained results are discussed in the following sections.  

 

7.3.1 Life distribution based on IG-LO1 

The fatigue life vs failure probability is shown Figure 7.15, for both RO and LO1 measures. The 

minimum and median lives for the two measures are tabulated in Table 7.6. 

 

Table 7.6: Minimum life and median life for two offset measures - RO and LO1 

Offset 

measure 

Minimum life - 99.9% survival probability 

(cycles) 

Median life – 50% survival probability 

(cycles) 

RO 5679 71999 

LO1 7453 79045 

 



RESULTS – MONTE CARLO SIMULATIONS 

67 

The LO1 measure predicts a higher minimum life and a higher median life compared to RO 

measure. From Figure 7.15, for survival probabilities until Region B, the life estimated with 

LO1 is higher than that with RO. This is because, within the defined design space and the 

geometry used for the analysis, the LO1 measure is always less than or equal to RO measure. 

This is illustrated in Figure 7.14. Depending on the sampled RO value, LO1 can be below the 

Xref line (see Figure 7.14(a)), or above the Xref line (see Figure 7.14(b)).  

 

 
Figure 7.14: Illustration of LO1 measure relative to RO for two cases when (a) LO1 below Xref (b) LO1 above Xref 

 

 
Figure 7.15: Empirical CDF of fatigue life for two offset measures - RO and LO1 [Thickness = 2.03 mm] 

However, in Region B it is observed that both the offset measures estimate approximately the 

same fatigue lives. Region B corresponds to cases close to zero edge offset (RO). As seen from 

the calculation of LO1 shown in Figure 7.13, certain values of RO and θ can result in LO1 values 

close to zero. Therefore, the idealized geometry transfer function predicts similar life numbers 

for the two offset measures. It can be concluded that the LO1 measure does not produce 

conservative life estimates. 

 

7.3.2 Life distribution based on IG-LO2 

The fatigue life vs failure probability for RO and LO2 measures, computed from the idealized 

geometry, is shown in Figure 7.17. The minimum and median lives for the two measures are 

tabulated in Table 7.7. 

Table 7.7: Minimum life and median life for two offset measures - RO and LO2 

Offset 

measure 

Minimum life - 99.9% survival probability 

(cycles) 

Median life – 50% survival probability 

(cycles) 

RO 5679 71999 

LO2 42204 69761 
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It is observed that the LO2 measure predicts a much higher minimum life compared to RO 

measure, however the predicted median lives are close to each other. From Figure 7.17, in 

Region C the LO2 measure produces higher life estimates compared to RO. Region C 

corresponds to cases that tend to high edge offset (RO) values. Due to this, within the defined 

design space, the LO2 measure is always less than the RO measure, as shown in Figure 7.16(a).  

 

 
Figure 7.16: LO2 measure relative to RO in (a) Region C and (b) Region D 

 
Figure 7.17: Empirical CDF of fatigue life for two offset measures - RO and LO2 [Thickness = 2.03 mm] 

However, in Region D, the LO2 measure predicts lower life estimates compared to RO. In 

Region D, the sampled values tend to low edge offset (RO) values, and the LO2 measure is 

always higher than the RO measure, as shown in Figure 7.16(b).  

 

The fatigue life vs failure probabilities curves of all the cases discussed are shown in Figure 

7.18. It is seen that the fatigue life predicted by LO2 measure approaches the life predicted by 

real geometry close to zero survival probability. Since the edge offset are close to zero in this 

region, the fatigue life is dictated by the local angular deflection (θ). Therefore, both the real 

geometry and LO2 measure produce similar life estimates. 
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Figure 7.18: Empirical CDF of fatigue life for three offset measures and real geometry [Thickness = 2.03 mm] 

It is also seen that none of the three offset measures yield conservative estimates compared to 

real geometry. The aim is to identify an offset measure that yields conservative life results using 

the idealized geometry. The results for one such offset measure is discussed in the following 

section.  

 

7.3.3 Life distribution based on IG-LO4 

To obtain conservative life estimates compared to the real geometry, a fourth offset measure 

LO4 which accounts for offset due to both RO measure and local angular deflection θ can be 

defined as, 

 

 𝐿𝑂4 = 𝑅𝑂 + 𝐿𝑂2 (27) 

 

The life distribution is estimated using the idealized geometry (IG) transfer function. The 

fatigue life vs failure probabilities for LO4 measure, along with results from the other cases, are 

shown in Figure 7.19. The minimum and median lives for LO4 measure and real geometry (RG) 

are tabulated in Table 7.8. 

 

Table 7.8: Minimum life for LO4 measure and real geometry 

Geometry Case 
Minimum life - 99.9% survival probability 

(cycles) 

Median life – 50% survival probability 

(cycles) 

IG - LO4 5078 45446 

RG 5739 54019 
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Figure 7.19: Empirical CDF of fatigue life for LO4 measure along with other cases 

It is observed that the LO4 measure predicts a conservative minimum and median lives 

compared to the real geometry. From Figure 7.19, it is seen that throughout the distribution of 

life, LO4 measure produces conservative life estimates compared to the real geometry. 
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8 Conclusions 

The effect of a distorted local geometry (real geometry) on the fatigue life is investigated. 

Measurements of different weld geometric parameters were compiled from two sources: non-

conformance reports and weld qualification data, for Nickel and Titanium base materials, with 

a focus on Tungsten Inert Gas (TIG) and Laser Beam Welding (LBW) welding processes. A 

deterministic analysis is performed to investigate the influence of a real geometry on the fatigue 

life, and the results are compared with an idealized geometry. 

 

Accounting for the variation in edge offset and weld toe radii from the weld measurements, a 

statistical method is devised to evaluate the sensitivity of life to the different weld geometric 

parameters. This method uses a transfer function or a surrogate model to estimate the fatigue 

life. Through using Monte Carlo simulations, the distribution of life is evaluated for the two 

geometry cases. The influence on life due to different edge offset measures from a real geometry 

is investigated, and a possible offset measure to obtain conservative life estimates with an 

idealized analysis geometry is explored. 

 

The influence of thickness of the joining plates on the fatigue life is investigated, for an 

idealized geometry. Two measures of edge offset were studied: normalized edge offset and 

absolute edge offset.  

 

Based on these investigations the following can be concluded: 

 The real geometry around the weld region has a significant effect on life. 

 Irrespective of the local weld geometry, the edge offset has the maximum influence on 

the variance in distribution of life. The root toe radius has the second highest influence, 

and for a real geometry, the contribution of root toe radius to variance in life increases. 

The top toe radius has a negligible influence on life. 

 From the different edge offset measures investigated, it is observed that a simple local 

offset (LO1) measurement does not always produce conservative life estimates. 

 A suggestion is to use the sum of RO and LO2 measure in the idealized geometry, to 

obtain conservative life estimates compared to the real geometry. 

 Given the same normalized edge offset and same initial crack size, an increase in the 

plate thickness results in higher edge offset, which leads to a decrease in fatigue life. 

 Given the same absolute edge offset and same initial crack size, an increase in thickness 

leads to lower crack growth rates, which results in an increase in the fatigue life. 

 

8.1 Suggestions for future work 

Weld measurements were compiled for different base materials and welding processes. This 

thesis focuses only on Nickel base TIG welds. Therefore, other welding process such as LBW, 

and other base materials, such as Titanium can be investigated.  
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The results presented in this thesis, are considering linear elastic material properties for the 

stress analysis and LEFM assumptions for the crack propagation analysis. The load ratio R is 

zero for all life calculations performed in this thesis. In reality, a material does not exhibit an 

elastic behaviour under loading. Instead, most materials exhibit an elasto-plastic behaviour. 

This can affect the R-ratio that is considered for the crack propagation analysis. The fatigue life 

distribution for the different cases can therefore be different, which can be investigated as a 

future work. 

 

The influence of two main weld geometric parameters: edge offset and weld toe radii was 

investigated in this thesis. Other parameters such as the weld bead width, bead height etc. can 

be studied as part of a future work, to evaluate their influence on the fatigue life.  

 

Finally, possibilities of experimental analysis can be investigated to validate the numerical 

results, since all the results presented in this thesis are from numerical analysis alone.  
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10 Appendix I 

10.1 APDL script for mesh refinement 

 
 

10.2 NASGRO FLABAT file structure 
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10.3 Fatigue life curves – Real geometry 
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10.4 Verification of transfer functions 
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10.5 MC convergence plots of CAFL 
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