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A B S T R A C T

Flows of incompressible Navier–Stokes (Newtonian) fluids between adjacent surfaces are encountered in
numerous practical applications, such as seal leakage and bearing lubrication. In seals, the flow is primarily
pressure-driven, whereas, in bearings, the dominating driving force is due to shear. The governing Navier–
Stokes system of equations can be significantly simplified due to the small distance between the surfaces
compared to their size. From the simplified system, it is possible to derive a single lower-dimensional equation,
known as the Reynolds equation, which describes the pressure field. Once the pressure field is computed, it
can be used to determine the velocity field. This computational algorithm is much simpler to implement than
a direct numerical solution of the Navier–Stokes equations and is therefore widely employed by engineers.

The primary objective of this article is to investigate the possibility of deriving a type of Reynolds equation
also for non-Newtonian fluids, using the balance of linear momentum. By considering power-law fluids we
demonstrate that it is not possible for shear-driven flows, whereas it is feasible for pressure-driven flows.
Additionally, we demonstrate that in the full 3𝐷 model, a normal stress boundary condition at the inlet/outlet
implies a Dirichlet condition for the pressure in the Reynolds equation associated with pressure-driven flow.
Furthermore, we establish that a Dirichlet condition for the velocity at the inlet/outlet in the 3𝐷 model results
in a Neumann condition for the pressure in the Reynolds equation.
1. Introduction

The fundamental governing equations of fluid flow are derived
based on the principles of mass, momentum, energy balance and
the second law of thermodynamics. When combined with appropri-
ate boundary conditions and constitutive relations, these equations
form a comprehensive set that describes the behavior of fluids under
various flow conditions. However, this system of equations is highly
complex and often poses numerical challenges, even with the aid of
modern computers and software, in many realistic applications. There-
fore, in engineering applications, it is essential to develop simplified
mathematical models that offer computational efficiency, conceptual
understanding of the flow, and suitability for optimal design, among
other purposes. One area where successful derivation of such simplified
models has been accomplished is when the fluid domain is thin, as
observed in pipe flow, flow in Hele-Shaw cells, flow through porous
media, and flow in channels between adjacent surfaces. In this article
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we consider shear-driven and pressure-driven flow of power-law fluids
between adjacent curved surfaces. By a ‘‘shear-driven’’ flow, we refer
to a flow that is engendered due to a boundary or boundaries of the
flow domain being moved which leads to relative motion between
the boundaries, while by ‘‘pressure-driven’’ flows we refer to flows in
domains where the boundaries are fixed and the flow is caused due to
application of a pressure gradient (see the definition of these flows in
Section 2.4).

In the late 19th century, the British engineer Henry Selby Hele-Shaw
conducted pioneering investigations into fluid flow through narrow
gaps between parallel plates (Hele-Shaw, 1898). He conducted ex-
periments using a transparent cell consisting of two closely spaced
glass plates. One of Hele-Shaw’s notable findings was the visualization
of flow patterns and streamlines around various obstacles, such as
cylinders, spheres, and plates. He observed phenomena such as flow
separation, vortices, and the interaction between the fluid and the
vailable online 21 August 2023
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Nomenclature

𝐃 Symmetric part of the velocity gradient
(s−1)

𝐠 Body force per unit mass (ms−2)
ℎ Distance between the surfaces (m)
𝐿 Characteristic length (m)
𝑈 Characteristic speed (ms−1)
𝑢, 𝑣,𝑤 Velocity components (ms−1)
𝐮 Velocity field 𝐮 = 𝑢𝐢 + 𝑣𝐣 (ms−1)
𝐯 Velocity field 𝐯 = 𝑢𝐢 + 𝑣𝐣 +𝑤𝐤 (ms−1)
𝐯𝑙 Velocity of the lower surface, 𝐯𝑙 = (𝑢𝑙 , 𝑣𝑙 , 0)

(ms−1)
𝐯𝑏 Velocity on 𝛤𝐯, 𝐯𝑏 = (𝑢𝑏, 𝑣𝑏, 𝑤𝑏) (ms−1)
𝐮𝑏 Velocity on 𝛾𝐯, 𝐮𝑏 = (𝑢𝑏, 𝑣𝑏, 0) (ms−1)
𝑝 Mechanical pressure (Pa)
𝑝𝑏 Pressure on 𝛤𝐓 (Pa)
𝐪 Volumetric local flow rate (m2 s−1)
𝑟 Power index (–)
𝑟′ Conjugate power index 1∕𝑟 + 1∕𝑟′ = 1 (–)
𝐓 Cauchy stress tensor (Pa)
𝜂 Apparent viscosity (Pas)
𝜇 Consistency index in the relation 𝜂 =

𝜇 |𝐃|𝑟−2 (Pas𝑟−2)
𝜌 Density (constant) (kgm−3)
𝜃 Temperature (K)
𝛤𝑢 Upper surface boundary of 𝛺 where 𝐯 = 0

(–)
𝛤𝑤 Vertical surface boundaries of 𝛺 where 𝐮 =

𝐮𝑏 (–)
𝛤𝐯 Vertical surface boundary where 𝑥 = 0 and

𝐯 = 𝐯𝑏 (–)
𝛤𝐓 Vertical surface boundary 𝛤𝑤 ⧵ 𝛤𝐯 where

𝑻 𝐧 = −𝑝𝑏𝐧 (–)
𝛾𝐯 Boundary part of 𝜕𝜔 where 𝑥 = 0 and 𝐮 = 𝐮𝑏

(–)
𝛾𝐓 Boundary part 𝜕𝜔 ⧵ 𝛾𝐯 where 𝑝 = 𝑝𝑏 (–)
𝛺 Full 3𝐷 fluid domain (–)
𝜕𝛺 Boundary of the 3𝐷 fluid domain 𝛺 (–)
𝜔 Lower surface boundary of 𝛺 (–)
𝜕𝜔 Boundary of 𝜔 (–)

obstacles. Since Hele-Shaw’s groundbreaking investigations, numerous
research papers have been dedicated to the mathematical modeling of
various types of Hele-Shaw flows. Some examples related to power-
law fluids are discussed in the following references: In Aronsson and
Janfalk (1992), mathematical results regarding the p-harmonic equa-
tion and physical aspects of Hele-Shaw flow of power-law fluids are
both discussed. Specifically, several exact solutions of the p-harmonic
equation are presented, some of which are associated with Hele-Shaw
flow of power-law fluids near a corner. In Mikelić and Tapiéro (1995)
and Fabricius et al. (2022), an asymptotic analysis was performed as
the gap between the surfaces tends to zero, resulting in the derivation
of a type of nonlinear Poiseuille law that relates velocity and pressure
gradient, as well as a Reynolds-type equation for the pressure. In Mike-
lić and Tapiéro (1995), these derivations were based on the balance of
linear momentum, whereas in Fabricius et al. (2022), the inertial terms
were a priori neglected. A notable difference between Fabricius et al.
(2022) and Mikelić and Tapiéro (1995) lies in the boundary conditions
applied. In Fabricius et al. (2022), homogeneous Dirichlet conditions
2

t

were applied to the velocity at the surfaces, with normal stress condi-
tions on the sides (i.e., the inlet and outlet zones). In contrast, Mikelić
and Tapiéro (1995) applied homogeneous Dirichlet conditions for the
velocity along the entire boundary (i.e., no inlet or outlet). The stress
boundary conditions employed in Fabricius et al. (2022) lead to a
Dirichlet condition for the pressure in the corresponding Reynolds
equation, which aligns with the physical situation in most applications.
Additionally, Fabricius et al. (2022) differs from Mikelić and Tapiéro
(1995) in terms of the presence of obstacles within the flow domain.

The flows discussed above are typically pressure-driven. In lubri-
cation, the flow is driven by surface motion (shear-driven). More
precisely, in lubrication one considers flow between two adjacent sur-
faces that are in relative motion, as shown in Fig. 1. The first lower-
dimensional model of lubrication flow was presented by Reynolds in
his classical work (Reynolds, 1886). Using dimensional analysis and
scaling, Reynolds motivated the following approximate model of flow
in a narrow gap between two solid surfaces that are in relative motion
when the fluid is modeled as an incompressible Navier–Stokes fluid:

𝜕ℎ
𝜕𝑡

− div
(

ℎ3

12𝜇
∇𝑝

)

= −div
(ℎ
2
𝑉
)

in 𝜔 ⊂ R2, (1a)

𝜕
𝜕𝑧

(

𝜇 𝜕𝑢
𝜕𝑧

)

=
𝜕𝑝
𝜕𝑥
, 𝜕

𝜕𝑧

(

𝜇 𝜕𝑣
𝜕𝑧

)

=
𝜕𝑝
𝜕𝑦
,

𝜕𝑝
𝜕𝑧

= 0 in 𝛺 ⊂ R3, (1b)

here 𝑝 is the pressure, (𝑢, 𝑣,𝑤)𝑇 the velocity of the fluid, ℎ(𝑥, 𝑦) the dis-
ance between the surfaces, 𝑉 is the sum of the velocities of the upper
nd lower surface, and 𝜇 the constant viscosity. The three-dimensional
omain 𝛺 and the two-dimensional domain 𝜔 are illustrated in Fig. 1.
ore rigorous proofs of (1a) and (1b) can be found in Bayada and
hambat (1986) and Fabricius et al. (2013). Reynolds’ pioneering work
onstitutes the backbone of mathematical modeling of lubrication and
erves as the basis for thousands of journal articles devoted to lubrica-
ion. In particular, these fundamental results have been used to develop
odels of lubrication that include the effects of elasto-hydrodynamic

ubrication (EHL) and hydrodynamic cavitation. For EHL, refer to Lugt
nd Morales-Espejel (2011), and for hydrodynamic cavitation, refer
o Almqvist et al. (2014), Elrod and Adams (1975) and Giacopini et al.
2010). However, most of these models suffer from a common issue:
hey assume the validity of Reynolds’ equation (1a) for the pressure
nd (1b) even though the assumptions under which they were derived
re not satisfied. For example, in EHL, it is simply assumed that the
ilm thickness and viscosity depend on the pressure. Such common
isinterpretations and incorrect usage of Reynolds-type equations are
iscussed in Almqvist et al. (2021a,b, 2023). There is no Reynolds-
ype equation for power-law fluids. However, attempts to derive an
ower-dimensional equation for the pressure have been carried out, see
.g. Azeez and Bertola (2021), Dien and Elrod (1983) and Yang et al.
2016). They are all based on some additional ad hoc assumptions, but
he equations are still referred to as Reynolds-type equations.

The main objective of this paper is to address the question whether
t is possible to, from the balance of linear momentum, derive a form
f the Reynolds equation for fluids that are not Navier–Stokes fluids
y just assuming a thin fluid film, as it is for Navier–Stokes fluids.1
n particular, we will consider power-law fluids. We show that the
easibility of doing this depends on whether the flow is primarily driven
y pressure or shear. In order to be able to discuss the difference
etween these two cases we will analyze them in parallel. We em-
loy scaling and dimensional analysis techniques to derive simplified
ystems that accurately represents the balance of mass and linear
omentum, both for pressure-driven and shear-driven flow scenarios.

urthermore, we establish a lower-dimensional model for the pressure
n the case of pressure-driven flow, i.e. a type of nonlinear Reynolds
quation. Moreover, we demonstrate the infeasibility of obtaining an
xplicit Reynolds-type equation for shear-driven flow.

1 A fluid modeled by the Navier–Stokes constitutive relation is often re-
erred to as a Newtonian fluid but this is a mis-attribution, see for example
he discussion in Dugas (1988) and Truesdell (1960).
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Fig. 1. Illustration of the fluid domain: The lower surface 𝜔 is a flat surface in the 𝑥𝑦-plane, 𝛤𝑢 is the upper surface, which may be curved or rough, 𝛤𝑤 is the wall of the fluid
domain, 𝐯𝑙 is the velocity of the lower surface and ℎ(𝑥, 𝑦) is the distance between the surfaces.
2. Equations governing incompressible flow of power-law fluids
between adjacent surfaces

In this section, we will outline the governing equations for the flow
of incompressible power-law fluids. Furthermore, we will provide an
illustrative example of a narrow fluid domain positioned between two
curved surfaces, which will serve as the fluid domain in our analysis.
Moreover, we will introduce two distinct types of boundary conditions:
one that gives rise to pressure-driven flow, and another that leads to
shear-driven flow.

2.1. The fluid model

Recently Rajagopal introduced a novel theory for modeling the
rheological properties of fluids (Rajagopal, 2003, 2006). The main idea
is to assume that there is an implicit constitutive relation between the
stress 𝐓 and the symmetric part of the velocity gradient 𝐃, i.e. that
there is a tensor-valued function 𝐅 such that 𝐅(𝜌, 𝜃,𝐓,𝐃) = 𝟎, where
𝜌 is the density of the fluid and 𝜃 is the temperature. Requiring that
the fluid is isotropic leads to 𝐅 being an isotropic function. Standard
representation results yields that 𝐅 is of the form:

𝐅(𝜌, 𝜃,𝐓,𝐃) = 𝛼0𝐈 + 𝛼1𝐓 + 𝛼2𝐃 + 𝛼3𝐓2 + 𝛼4𝐃2 + 𝛼5 (𝐓𝐃 + 𝐃𝐓)

+𝛼6
(

𝐓2𝐃 + 𝐃2𝐓
)

+ 𝛼7
(

𝐓𝐃2 + 𝐃2𝐓
)

+ 𝛼8
(

𝐓2𝐃2 + 𝐃2𝐓2) = 𝟎, (2)

where the material moduli 𝛼𝑖, 𝑖 = 0,… , 8, may depend on 𝜌, 𝜃 and the
invariants

tr𝐓, tr𝐃, tr𝐓2, tr𝐃2, tr𝐓3, tr𝐃3, tr (𝐓𝐃) , tr
(

𝐓2𝐃
)

, tr
(

𝐃2𝐓
)

, tr
(

𝐃2𝐓2) .

This class of implicit constitutive relations (2) is very rich. In particular,
it includes the classical Navier–Stokes fluids (Newtonian fluids), fluids
with pressure dependent viscosity, Stokesian fluids, stress power-law
fluids, fluids with activation criteria of Bingham or Herschel-Bulkley
type, and shear-rate dependent fluids with discontinuities, see Blechta
et al. (2020) for a classification of such fluids.

An important subset of implicit constitutive relations of the form (2)
is those of the type

𝛼0𝐈 + 𝐓 + 𝛼2𝐃 = 0. (3)

If the fluid can be modeled as incompressible (constant density), then
mass balance reduces to tr𝐃 = 0. By considering the trace of both sides
in (3) we deduce that 𝛼0 = −3−1tr𝐓, i.e. 𝛼0 is the mechanical pressure
𝑝. By considering 𝛼2 which depends on 𝜃, tr𝐓 and tr𝐃2 we deduce the
following constitutive relation
(

−1
3
tr𝐓

)

𝐈 + 𝐓 + 𝛼2(𝜃, tr𝐓, tr𝐃2)𝐃 = 0.

Since tr𝐓 = −3𝑝 and tr𝐃2 = |𝐃|2 this may be written as

𝐓 = −𝑝𝐈 − 𝛼2(𝜃,−3𝑝, |𝐃|2)𝐃.

In this paper we will consider the case when 𝛼2 is on the form

𝛼 (𝜃,−3𝑝, 𝐃 2) = −2𝜇 𝐃 𝑟−2 ,
3

2 | | | |
i.e. constitutive relations of the form

𝐓 = −𝑝𝐈 + 2𝜇 |𝐃|𝑟−2 𝐃, (4)

where the constants 𝜇 and 1 < 𝑟 < ∞ are material constants. Corre-
sponding to 𝑟 we have the conjugate constant 𝑟′, where 1∕𝑟 + 1∕𝑟′ = 1.
Fluids described by a constitutive relation of the form (4) are called
power-law fluids. The constant 𝑟 is usually called the power index, and
𝜇 is called the consistency index. In order to get a shorter notation
we define 𝜂 = 𝜇 |𝐃|𝑟−2 (the apparent viscosity). In this notation the
constitutive relation becomes

𝐓 = −𝑝𝐈 + 2𝜂𝐃. (5)

If 𝑟 = 2, then the constitutive relation (4) is reduced to the Navier–
Stokes constitutive relation and 𝜇 is the viscosity of the fluid.

2.2. Description of a typical thin domain between adjacent surfaces

This paper considers flow between adjacent surfaces. As a model
example we will use the thin fluid domain 𝛺 illustrated in Fig. 1.
Without loss of generality we assume that one of the surfaces, denoted
by 𝜔, is a rectangular flat surface in the 𝑥𝑦-plane. More precisely

𝜔 =
{

(𝑥, 𝑦) ∈ R2 ∶ 0 < 𝑥 < 𝐿1, 0 < 𝑦 < 𝐿2
}

.

The other surface, denoted by 𝛤𝑢, is the graph of a smooth function ℎ,
i.e. 𝛤𝑢 is of the form 𝑧 = ℎ(𝑥, 𝑦), where (𝑥, 𝑦) ∈ 𝜔. We are interested in
thin domains, i.e. ℎ(𝑥, 𝑦)≪ 𝐿, where 𝐿 = min

{

𝐿1, 𝐿2
}

.
The boundary, 𝜕𝛺, of the fluid domain can be divided into three

different parts, namely, the lower surface 𝜔 in the 𝑥𝑦-plane, the upper
surface 𝛤𝑢, where 𝑧 = ℎ(𝑥, 𝑦), and the vertical wall of the domain

𝛤𝑤 =
{

(𝑥, 𝑦, 𝑧) ∈ R3 ∶ (𝑥, 𝑦) ∈ 𝜕𝜔, 0 < 𝑧 < ℎ(𝑥, 𝑦)
}

.

2.3. Balance of mass and linear momentum for power-law fluids

With the constitutive relation (4) for power-law fluids, the gov-
erning equations for balance of mass and linear momentum become:

div 𝐯 = 0, (6a)

𝜌𝐷𝐯
𝐷𝑡

= 𝜌𝐠 − ∇𝑝 + 2 div
(

𝜇 |𝐃(𝐯)|𝑟−2 𝐃(𝐯)
)

, (6b)

respectively, where 𝐯 = (𝑢, 𝑣,𝑤) is the fluid velocity, 𝜌 is the constant
density of the fluid and 𝐠 = (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) represents the body force acting
per unit mass. The mathematical theory concerning the system (6) can
be found in Málek et al. (1996). In the sequel we assume that 𝐠 is a
constant vector. In component form, the balance of linear momentum
for power-law fluids reads:

𝜌𝐷𝑢
𝐷𝑡

= 𝜌𝑔𝑥 −
𝜕𝑝
𝜕𝑥

+ 2 𝜕
𝜕𝑥

(

𝜂 𝜕𝑢
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜂
(

𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

))

+ 𝜕
𝜕𝑧

(

𝜂
( 𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

))

, (7a)
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𝑥

𝑢

H

𝜌𝐷𝑣
𝐷𝑡

= 𝜌𝑔𝑦 −
𝜕𝑝
𝜕𝑦

+ 𝜕
𝜕𝑥

(

𝜂
(

𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

))

+ 2 𝜕
𝜕𝑦

(

𝜂 𝜕𝑣
𝜕𝑦

)

+ 𝜕
𝜕𝑧

(

𝜂
(

𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

))

, (7b)

𝜌𝐷𝑤
𝐷𝑡

= 𝜌𝑔𝑧 −
𝜕𝑝
𝜕𝑧

+ 𝜕
𝜕𝑥

(

𝜂
( 𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

))

+ 𝜕
𝜕𝑦

(

𝜂
(

𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

))

+ 2 𝜕
𝜕𝑧

(

𝜂 𝜕𝑤
𝜕𝑧

)

. (7c)

2.4. Boundary conditions

In order to have a well-posed problem we must add boundary
conditions. There are many possibilities and it is important to choose
the boundary conditions that correctly describe the flow one considers,
see e.g. Boyer and Fabrie (2013) and Temam (2001). In this work we
will consider two different types of boundary conditions, which render
a well-posed problem:

• Pressure-driven flow: Both surfaces are stationary. No-slip con-
ditions are imposed at the upper and lower surfaces, i.e. 𝐯 = 0
on 𝛤𝑢 and 𝜔. The wall of the fluid domain 𝛤𝑤 is divided into two
distinct parts,denoted by 𝛤𝐯 and 𝛤𝑻 . The velocity is given on 𝛤𝐯
and the normal stress is given on 𝛤𝑻 . Indeed,

𝐯 = 𝐯𝑏 on 𝛤𝐯 and 𝑻 𝐧 = −𝑝𝑏𝐧 on 𝛤𝑻 ,

where 𝐯𝑏 = 𝐯𝑏(𝑥, 𝑦) and 𝑝𝑏 = 𝑝𝑏(𝑥, 𝑦) are given functions on 𝜔.
• Shear-driven flow: One of the bounding surfaces is moving. In

our case the lower surface 𝜔 is moving in the 𝑥𝑦-plane with the
velocity 𝐯𝑙 = (𝑢𝑙 , 𝑣𝑙 , 0), while the upper surface 𝛤𝑢 is stationary.
No-slip conditions are imposed at the surfaces, i.e. 𝐯 = 𝐯𝑙 on 𝜔
and 𝐯 = 0 on 𝛤𝑢. The boundary condition on the wall of the fluid
domain, 𝛤𝑤, is the same as in the pressure-driven case described
above.

We assume that 𝛤𝑻 has nonzero measure, which implies that both the
pressure and velocity are unique, see Fabricius (2019).

3. Derivation of lower-dimensional models

In this section we will derive simplified models of thin-film flow
by scaling and dimensional analysis. We will explore two specific
scenarios: one where the flow is pressure-driven and another where it
is shear-driven.

3.1. Independent and dependent dimensionless variables

Let us now discuss how to express the governing system of equations
in dimensionless form in an appropriate way. We start by defining new
non-dimensional independent and dependent variables:

̄ = 𝑥∕𝑥∗, �̄� = 𝑦∕𝑦∗, �̄� = 𝑧∕𝑧∗, 𝑡 = 𝑡∕𝑡∗,

̄ = 𝑢∕𝑢∗, �̄� = 𝑣∕𝑣∗, �̄� = 𝑤∕𝑤∗, �̄� = 𝑝∕𝑝∗, �̄� = 𝜂∕𝜂∗,

where the bar denotes that it is a dimensionless variable and the
subscript ∗ denotes that the parameter represents a characteristic scale.

Let us now discuss the characteristic scales associated with the
problem at hand:

• The characteristic length scales in the 𝑥- and 𝑦-direction are
naturally 𝑥∗ = 𝐿1 and 𝑦∗ = 𝐿2, see Fig. 1. However, without
loss of generality, we introduce a common characteristic scale 𝐿,
i.e. 𝑥∗ = 𝑦∗ = 𝐿.

• We consider flow between two adjacent surfaces, i.e. the distance
between them is significantly smaller than the size of the surfaces.
Hence, the characteristic length scale in the 𝑧-direction is 𝑧∗ = 𝜀𝐿,
where 𝜀 ≪ 1. This implies that 𝜀 is a small parameter related to
the thickness of the fluid domain.
4

|

• We assume that the characteristic speed in the 𝑥𝑦-plane is 𝑈 and,
therefore, we choose 𝑢∗ = 𝑣∗ = 𝑈 .

• We choose 𝑡∗ = 𝐿∕𝑈 , i.e. roughly the time it takes for a typical
fluid particle to travel from the inlet to the outlet.

It now remains to determine 𝑤∗, 𝑝∗, 𝑈 and 𝜂∗.

3.2. Scaling of the balance of mass

In terms of the dimensionless variables and the scaling parameters,
the balance of mass (6a) becomes
𝑈
𝐿
𝜕�̄�
𝜕�̄�

+ 𝑈
𝐿
𝜕�̄�
𝜕�̄�

+
𝑤∗
𝜀𝐿

𝜕�̄�
𝜕�̄�

= 0.

To avoid unnecessary restrictions (or unrealistic flow behavior) for
the flow we choose 𝑤∗ = 𝜀𝑈 , see the analysis in Almqvist et al.
(2021b) and the discussion in Dowson (1962). This yields the following
dimensionless equation representing balance of mass
𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

= 0.

Now it remains to determine 𝑝∗, 𝑈 and 𝜂∗.

3.3. Scaling of the constitutive relation

Let us now determine the characteristic apparent viscosity 𝜂∗. The
symmetric part of the velocity gradient is

𝐃 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑢
𝜕𝑥

1
2

(

𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)

1
2

( 𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

)

1
2

(

𝜕𝑣
𝜕𝑥

+ 𝜕𝑢
𝜕𝑦

)

𝜕𝑣
𝜕𝑦

1
2

(

𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

)

1
2

( 𝜕𝑤
𝜕𝑥

+ 𝜕𝑢
𝜕𝑧

) 1
2

(

𝜕𝑤
𝜕𝑦

+ 𝜕𝑣
𝜕𝑧

)

𝜕𝑤
𝜕𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

On scaling, we obtain

𝐃 = 𝐷∗�̄�,

where

𝐷∗ = 𝑈
𝐿𝜀

and

�̄� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜀 𝜕�̄�
𝜕�̄�

𝜀
2

(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

)

1
2

( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

)

𝜀
2

(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

)

𝜀 𝜕�̄�
𝜕�̄�

1
2

(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

)

1
2

(

𝜀2 𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

) 1
2

(

𝜀2 𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

)

𝜀 𝜕�̄�
𝜕�̄�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We note that the dominating elements in �̄� are of order 𝜀0. For
small values of 𝜀, i.e. thin fluid domains, we have the following
approximation:

�̄� ≈ �̄� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1
2
𝜕�̄�
𝜕�̄�

0 0 1
2
𝜕�̄�
𝜕�̄�

1
2
𝜕�̄�
𝜕�̄�

1
2
𝜕�̄�
𝜕�̄�

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The constitutive relation (4) involves |𝐃|, which, when expanded, can
be written as follows

|𝐃| =
[

( 𝜕𝑢
𝜕𝑥

)2
+
(

𝜕𝑣
𝜕𝑦

)2

+
( 𝜕𝑤
𝜕𝑧

)2
+ 𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

+ 𝜕𝑢
𝜕𝑧

𝜕𝑤
𝜕𝑥

+ 𝜕𝑣
𝜕𝑧

𝜕𝑤
𝜕𝑦

+1
2

(

(

𝜕𝑢
𝜕𝑦

)2

+
( 𝜕𝑢
𝜕𝑧

)2
+
( 𝜕𝑣
𝜕𝑥

)2
+
( 𝜕𝑣
𝜕𝑧

)2
+
( 𝜕𝑤
𝜕𝑥

)2
+
(

𝜕𝑤
𝜕𝑦

)2
)]1∕2

.

ence, scaling leads to

𝐃 =𝐷 |�̄�|
| ∗ | |
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a

𝜂

w

𝜂

I

3

t
p

𝜌

𝜌

a
n

c

= 𝑈
𝐿𝜀

[

𝜀2
( 𝜕�̄�
𝜕�̄�

)2
+ 𝜀2

(

𝜕�̄�
𝜕�̄�

)2
+ 𝜀2

( 𝜕�̄�
𝜕�̄�

)2
+ 𝜀2 𝜕�̄�

𝜕�̄�
𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�
𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�
𝜕�̄�
𝜕�̄�

+ 𝜀2

2

(

𝜕�̄�
𝜕�̄�

)2
+ 1

2

( 𝜕�̄�
𝜕�̄�

)2

+ 𝜀2

2

( 𝜕�̄�
𝜕�̄�

)2
+ 1

2

( 𝜕�̄�
𝜕�̄�

)2
+ 𝜀4

2

( 𝜕�̄�
𝜕�̄�

)2
+ 𝜀4

2

(

𝜕�̄�
𝜕�̄�

)2
]1∕2

,

nd we can, therefore, write

= 𝜇 |𝐃|𝑟−2 = 𝜇𝐷𝑟−2
∗

|

|

�̄�|
|

𝑟−2 = 𝜇
( 𝑈
𝐿𝜀

)𝑟−2
|

|

�̄�|
|

𝑟−2 = 𝜂∗�̄�,

here

∗ = 𝜇
( 𝑈
𝐿𝜀

)𝑟−2
and �̄� = |

|

�̄�|
|

𝑟−2 .

For small values of 𝜀 we have

�̄� = |

|

�̄�|
|

𝑟−2 ≈
[

1
2

( 𝜕�̄�
𝜕�̄�

)2
+ 1

2

( 𝜕�̄�
𝜕�̄�

)2](𝑟−2)∕2
= |

|

�̄�|
|

𝑟−2 .

t remains to determine 𝑝∗ and 𝑈 .

.4. Scaling of the balance of linear momentum for power-law fluids

In terms of the dimensionless variables and the scaling parameters,
he components (7a)–(7c) of the balance of linear momentum for
ower-law fluids becomes

𝑈2

𝐿

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

= 𝜌𝑔𝑥 −
𝑝∗
𝐿
𝜕�̄�
𝜕�̄�

+
2𝑈 𝑟−1𝜇
𝜀𝑟−2𝐿𝑟

𝜕
𝜕�̄�

(

�̄� 𝜕�̄�
𝜕�̄�

)

+
𝑈 𝑟−1𝜇
𝜀𝑟−2𝐿𝑟

𝜕
𝜕�̄�

(

�̄�
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+
𝑈 𝑟−1𝜇
𝜀𝑟𝐿𝑟

𝜕
𝜕�̄�

(

�̄�
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (8a)

𝑈2

𝐿

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕𝑥

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

= 𝜌𝑔𝑦 −
𝑝∗
𝐿
𝜕�̄�
𝜕�̄�

+
𝑈 𝑟−1𝜇
𝜀𝑟−2𝐿𝑟

𝜕
𝜕�̄�

(

�̄�
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+
2𝑈 𝑟−1𝜇
𝜀𝑟−2𝐿𝑟

𝜕
𝜕�̄�

(

�̄� 𝜕�̄�
𝜕�̄�

)

+
𝑈 𝑟−1𝜇
𝜀𝑟𝐿𝑟

𝜕
𝜕�̄�

(

�̄�
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (8b)

𝜀𝜌𝑈2

𝐿

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

= 𝜌𝑔𝑧 −
𝑝∗
𝜀𝐿

𝜕�̄�
𝜕�̄�

+
𝑈 𝑟−1𝜇
𝜀𝑟−1𝐿𝑟

𝜕
𝜕�̄�

(

�̄�
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+
𝑈 𝑟−1𝜇
𝜀𝑟−1𝐿𝑟

𝜕
𝜕�̄�

(

�̄�
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+
2𝑈 𝑟−1𝜇
𝜀𝑟−1𝐿𝑟

𝜕
𝜕�̄�

(

�̄� 𝜕�̄�
𝜕�̄�

)

. (8c)

Multiplying (8a) and (8b) by 𝜀𝑟𝐿𝑟∕
(

𝑈 𝑟−1𝜇
)

and (8c) by 𝜀𝑟−1𝐿𝑟∕
(

𝑈 𝑟−1𝜇
)

nd using that �̄� = |

|

�̄�|
|

𝑟−2 yields the following dimensionless compo-
ents of the balance of linear momentum:
𝜌𝑈 3−𝑟𝜀𝑟𝐿𝑟−1

𝜇

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜀𝑟𝜌𝐿𝑟

𝜇𝑈 𝑟−1
𝑔𝑥 −

𝜀𝑟𝐿𝑟−1𝑝∗
𝜇𝑈 𝑟−1

𝜕�̄�
𝜕�̄�

+ 𝜀22 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

+ 𝜀2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (9a)

𝜌𝑈 3−𝑟𝜀𝑟𝐿𝑟−1

𝜇

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜀𝑟𝜌𝐿𝑟

𝜇𝑈 𝑟−1
𝑔𝑦 −

𝜀𝑟𝐿𝑟−1𝑝∗
𝜇𝑈 𝑟−1

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+ 𝜀22 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (9b)

𝜀𝑟𝜌𝑈 3−𝑟𝐿𝑟−1
(

𝜕�̄� + �̄� 𝜕�̄� + �̄� 𝜕�̄� + �̄� 𝜕�̄�
)

=
𝜌𝜀𝑟−1𝐿𝑟

𝑔𝑧 −
𝑝∗𝜀𝑟−2𝐿𝑟−1 𝜕�̄�
5

𝜇 𝜕𝑡 𝜕�̄� 𝜕�̄� 𝜕�̄� 𝜇𝑈 𝑟−1 𝜇𝑈 𝑟−1 𝜕�̄�
+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+ 2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

. (9c)

It remains to determine the characteristic pressure 𝑝∗ and the in-plane
haracteristic speed 𝑈 (recall that 𝑈 = 𝑢∗ = 𝑣∗). As we will see, the

appropriate scaling depends on whether the flow is pressure-driven or
shear-driven.

3.5. A simplified model of pressure-driven flow between two adjacent sur-
faces

Assume that the flow is driven by an external pressure, which
is given on the lateral part of the fluid domain. Let 𝑝𝛥 denote the
difference between the maximal and minimal external pressure. In this
case, we choose the scaling 𝑝∗ = 𝑝𝛥. Balancing the pressure and viscous
forces so that we obtain 1 in front of 𝜕𝑥𝑝 and 𝜕𝑦𝑝 yields the characteristic
in-plane speed

𝑈 = 𝐿
(

𝑝𝛥
𝜇

)1∕(𝑟−1)
𝜀𝑟∕(𝑟−1) = 𝐿

(

𝑝𝛥
𝜇

)1∕(𝑟−1)
𝜀𝑟

′
,

and the components (9a)–(9c) of the balance of linear momentum
become
𝜌𝐿2𝑝(3−𝑟)∕(𝑟−1)𝛥

𝜇2∕(𝑟−1)
𝜀2𝑟∕(𝑟−1)

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜌𝐿
𝑝𝛥
𝑔𝑥 −

𝜕�̄�
𝜕�̄�

+ 𝜀22 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

+ 𝜀2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (10a)

𝜌𝐿2𝑝(3−𝑟)∕(𝑟−1)𝛥

𝜇2∕(𝑟−1)
𝜀2𝑟∕(𝑟−1)

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜌𝐿
𝑝𝛥
𝑔𝑦 −

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+ 𝜀22 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (10b)

𝜌𝐿2𝑝(3−𝑟)∕(𝑟−1)𝛥

𝜇2∕(𝑟−1)
𝜀2𝑟∕(𝑟−1)

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

= 1
𝜀
𝜌𝐿
𝑝𝛥
𝑔𝑧 −

1
𝜀2
𝜕�̄�
𝜕�̄�

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+ 2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

. (10c)

If we only keep the dominating terms in each equation, we obtain the
following simplified system of balance of linear momentum:

0 =
𝜌𝐿
𝑝𝛥
𝑔𝑥 −

𝜕�̄�
𝜕�̄�

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

, (11a)

0 =
𝜌𝐿
𝑝𝛥
𝑔𝑦 −

𝜕�̄�
𝜕�̄�

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

, (11b)

0 =
𝜕�̄�
𝜕�̄�
. (11c)

In dimensional form this becomes

0 = 𝜌𝑔𝑥 −
𝜕𝑝
𝜕𝑥

+ 𝜇 𝜕
𝜕𝑧

(

|𝐝|𝑟−2 𝜕𝑢
𝜕𝑧

)

, (12a)

0 = 𝜌𝑔𝑦 −
𝜕𝑝
𝜕𝑦

+ 𝜇 𝜕
𝜕𝑧

(

|𝐝|𝑟−2 𝜕𝑣
𝜕𝑧

)

, (12b)

0 =
𝜕𝑝
𝜕𝑧
. (12c)

where

|𝐝|𝑟−2 =
[

1
2

( 𝜕𝑢
𝜕𝑧

)2
+ 1

2

( 𝜕𝑣
𝜕𝑧

)2](𝑟−2)∕2
. (13)

In particular, (12c) implies that the pressure does not depend on 𝑧,
i.e., 𝑝 = 𝑝(𝑥, 𝑦).
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Remark. 𝑝∗ is of order 𝜀0 and 𝑈 is of order 𝜀𝑟′ .

3.6. A simplified model of shear-driven between two adjacent surfaces

Assume that the flow is driven by a relative motion between the
surfaces. For example, if the lower surface is moving with velocity
𝐯𝑙 = (𝑢𝑙 , 𝑣𝑙 , 0) and the upper surface is stationary, then a natural choice
f 𝑈 is |

|

𝐯𝑙||. To obtain 1 in front of 𝜕𝑥𝑝 and 𝜕𝑦𝑝 in (9a) and (9b) the
characteristic pressure should be chosen as

𝑝∗ =
𝜇𝑈 𝑟−1

𝐿𝑟−1
𝜀−𝑟,

hich leads to

𝜌𝑈3−𝑟𝜀𝑟𝐿𝑟−1

𝜇

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜀𝑟𝜌𝐿𝑟

𝜇𝑈 𝑟−1
𝑔𝑥 −

𝜕�̄�
𝜕�̄�

+ 𝜀22 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

+ 𝜀2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (14a)

𝜌𝑈3−𝑟𝜀𝑟𝐿𝑟−1

𝜇

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜀𝑟𝜌𝐿𝑟

𝜇𝑈 𝑟−1
𝑔𝑦 −

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜕�̄�
𝜕�̄�

))

+ 𝜀22 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

, (14b)

𝜀𝑟𝜌𝑈3−𝑟𝐿𝑟−1

𝜇

(

𝜕�̄�
𝜕𝑡

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

+ �̄� 𝜕�̄�
𝜕�̄�

)

=
𝜌𝜀𝑟−1𝐿𝑟

𝜇𝑈 𝑟−1
𝑔𝑧 −

1
𝜀2
𝜕�̄�
𝜕�̄�

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
( 𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2
(

𝜕�̄�
𝜕�̄�

+ 𝜀2 𝜕�̄�
𝜕�̄�

))

+ 2 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

. (14c)

eeping only the dominating terms renders the following approxima-
ion of the balance of linear momentum:

= −
𝜕�̄�
𝜕�̄�

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

, (15a)

= −
𝜕�̄�
𝜕�̄�

+ 𝜕
𝜕�̄�

(

|

|

�̄�|
|

𝑟−2 𝜕�̄�
𝜕�̄�

)

, (15b)

=
𝜕�̄�
𝜕�̄�
, (15c)

hich in dimensional form becomes

= −
𝜕𝑝
𝜕𝑥

+ 𝜇 𝜕
𝜕𝑧

(

|𝐝|𝑟−2 𝜕𝑢
𝜕𝑧

)

, (16a)

= −
𝜕𝑝
𝜕𝑦

+ 𝜇 𝜕
𝜕𝑧

(

|𝐝|𝑟−2 𝜕𝑣
𝜕𝑧

)

, (16b)

=
𝜕𝑝
𝜕𝑧
, (16c)

here 𝐝 is the same as in (13) and, as a consequence of (16c), 𝑝 =
(𝑥, 𝑦).

emark. 𝑈 is of order 𝜀0 and 𝑝∗ is of order 𝜀−𝑟.

. A lower-dimensional equation for the pressure

In this section we will investigate if it is possible to derive a form
f the Reynolds equation, for flow of power-law fluids between two
djacent surfaces, i.e. if it is possible to deduce a lower-dimensional
quation for the pressure. We will consider the cases of pressure-driven
low and shear-driven flow separately.
6

4.1. A variant of the Reynolds equation for pressure-driven flow of power-
law fluids

We will now try to derive a lower-dimensional model for the pres-
sure from the simplified system (12), when we have pressure-driven
flow. To this end, we introduce the following notation: 𝐮 = (𝑢, 𝑣),
= (𝑔𝑥, 𝑔𝑦) and 𝐱 = (𝑥, 𝑦), in which (12) become

𝜕
𝜕𝑧

(

|

|

|

|

𝜕𝐮
𝜕𝑧

|

|

|

|

𝑟−2 𝜕𝐮
𝜕𝑧

)

= 𝐟 , (17a)

𝜕𝑝
𝜕𝑧

= 0, (17b)

here

=
(

𝑓1(𝐱)
𝑓2(𝐱)

)

= 2(𝑟−2)∕2
𝜇

(

∇𝐱𝑝(𝐱) − 𝜌𝐠
)

. (18)

Integrating (17a) with respect to 𝑧 yields

|

|

|

|

𝜕𝐮
𝜕𝑧

|

|

|

|

𝑟−2 𝜕𝐮
𝜕𝑧

= 𝐟𝑧 + 𝐚(𝐱), (19)

here 𝐚(𝐱) =
(

𝑎1(𝐱), 𝑎2(𝐱)
)

. By taking absolute value of both sides of
19), we obtain

𝜕𝐮
𝜕𝑧

|

|

|

|

𝑟−1
= |𝐟𝑧 + 𝐚(𝐱)| ,

nd consequently,

𝜕𝐮
𝜕𝑧

|

|

|

|

= |𝐟𝑧 + 𝐚(𝐱)|
1

𝑟 − 1 .

When inserted into (19) together with that (2 − 𝑟)∕(𝑟 − 1) = 𝑟′ − 2 leads
to

𝜕𝐮
𝜕𝑧

=
|

|

|

|

𝜕𝐮
𝜕𝑧

|

|

|

|

2−𝑟
(𝐟𝑧 + 𝐚(𝐱)) = |𝐟𝑧 + 𝐚(𝐱)|𝑟′−2 (𝐟𝑧 + 𝐚(𝐱)) . (20)

et us now compute 𝐚. Integrating across the film yields
ℎ

0

𝜕𝐮
𝜕𝑧

𝑑𝑧 = ∫

ℎ

0
|𝐟𝑧 + 𝐚|𝑟′−2 (𝐟𝑧 + 𝐚) 𝑑𝑧,

nd the no-slip boundary conditions, see Section 2.4, on the surfaces
mplies that

= ∫

ℎ

0
|𝐟𝑧 + 𝐚|𝑟′−2 (𝐟𝑧 + 𝐚) 𝑑𝑧. (21)

he problem is now to find 𝐚. It can be observed that (21) is the Euler
quation associated with the variational problem

min
∈R2

{

∫

ℎ

0

1
𝑟′

|𝐟𝑧 + 𝐚|𝑟′ 𝑑𝑧
}

. (22)

rom the variational problem (22) we see that 𝐚 must point in the
egative direction of the vector 𝐟 , i.e. 𝐚 is of the form

= −𝑡𝐟 , 0 ≤ 𝑡 ≤ ℎ,

hich reduces the Euler equation (21) to finding 𝑡 such that
ℎ

0
|𝑧 − 𝑡|𝑟

′−2 (𝑧 − 𝑡) 𝑑𝑧 = 0. (23)

ndeed,

= ∫

ℎ

0
|𝑧 − 𝑡|𝑟

′−2 (𝑧 − 𝑡) 𝑑𝑧 = 1
𝑟′ ∫

ℎ

0

𝑑
𝑑𝑧

|𝑧 − 𝑡|𝑟
′
𝑑𝑧 = 1

𝑟′
(

|ℎ − 𝑡|𝑟
′
− |𝑡|𝑟

′
)

,

hich yields 𝑡 = ℎ∕2. Hence,

= −ℎ
2
𝐟 .

hen inserted into (20) yields

𝜕𝐮 =
|

|𝐟𝑧 − ℎ 𝐟
|

|

𝑟′−2 (
𝐟𝑧 − ℎ 𝐟

)

= |𝐟 |𝑟′−2 𝐟
|

|𝑧 − ℎ |
|

𝑟′−2 (
𝑧 − ℎ) .
𝜕𝑧 |

|
2 |

|
2 |

|
2 |
|

2
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To obtain an expression for 𝐮 we integrate with respect to 𝑧. Indeed,

(𝐱, 𝑧) = |𝐟 |𝑟′−2 𝐟 ∫
𝑧

0

|

|

|

|

𝑠 − ℎ
2
|

|

|

|

𝑟′−2 (
𝑠 − ℎ

2

)

𝑑𝑠

= |𝐟 |𝑟′−2 𝐟 1
𝑟′ ∫

𝑧

0

𝑑
𝑑𝑠

|

|

|

|

𝑠 − ℎ
2
|

|

|

|

𝑟′

𝑑𝑠

= |𝐟 |𝑟′−2 𝐟 1
𝑟′

(

|

|

|

|

𝑧 − ℎ
2
|

|

|

|

𝑟′

−
(ℎ
2

)𝑟′
)

. (24)

he volumetric effective local flow rate 𝐪 is

=
(

𝑞1
𝑞2

)

= ∫

ℎ

0
𝐮 𝑑𝑧.

et us compute 𝑞1:

1 = ∫

ℎ

0
𝑢 𝑑𝑧 = |𝐟 |𝑟′−2 𝑓1

1
𝑟′ ∫

ℎ

0

(

|

|

|

|

𝑧 − ℎ
2
|

|

|

|

𝑟′

−
(ℎ
2

)𝑟′
)

𝑑𝑧

= |𝐟 |𝑟′−2 𝑓1
1
𝑟′

(

∫

ℎ

0

|

|

|

|

𝑧 − ℎ
2
|

|

|

|

𝑟′

𝑑𝑧 − ℎ𝑟′+1

2𝑟′

)

. (25)

he integral on the right-hand side is determined as follows:

∫

ℎ

0

|

|

|

|

𝑧 − ℎ
2
|

|

|

|

𝑟′

𝑑𝑧 = ∫

ℎ∕2

0

(ℎ
2
− 𝑧

)𝑟′

𝑑𝑧 + ∫

ℎ

ℎ∕2

(

𝑧 − ℎ
2

)𝑟′

𝑑𝑧

=
[

− 1
𝑟′ + 1

(ℎ
2
− 𝑧

)𝑟′+1]ℎ∕2

0
+
[

1
𝑟′ + 1

(

𝑧 − ℎ
2

)𝑟′+1]ℎ

ℎ∕2

= ℎ𝑟′+1

2𝑟′ (𝑟′ + 1)
. (26)

nserting (26) into (25) yields

1 = − ℎ𝑟′+1

2𝑟′ (𝑟′ + 1)
|𝐟 |𝑟′−2 𝑓1.

n the same way we obtain

2 = − ℎ𝑟′+1

2𝑟′ (𝑟′ + 1)
|𝐟 |𝑟′−2 𝑓2.

hus we have derived the following local type of Poiseuille law, i.e., a
elation between the volumetric effective local flow rate 𝐪 and ∇𝐱𝑝(𝐱)−
𝐠:

= − ℎ𝑟′+1

2𝑟′ (𝑟′ + 1)
|𝐟 |𝑟′−2 𝐟 = −𝜓 |

|

∇𝐱𝑝(𝐱) − 𝜌𝐠||
𝑟′−2 (∇𝐱𝑝(𝐱) − 𝜌𝐠

)

, (27)

where the flow factor 𝜓 is

𝜓 = 21−𝑟′3∕2ℎ𝑟′+1

(𝑟′ + 1)𝜇𝑟′−1
.

Let us now derive a Reynolds-type equation for the pressure. Inte-
rating (6a), i.e. the balance of mass, across the film gives
ℎ(𝑥,𝑦)

0

𝜕𝑤
𝜕𝑧
𝑑𝑧 = −∫

ℎ(𝑥,𝑦)

0

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦
𝑑𝑧,

nd by using the Leibniz rule, stating that

𝑑
𝑑𝑥 ∫

𝑏(𝑥)

𝑎(𝑥)
𝑓 (𝑥, 𝑡) 𝑑𝑡 = 𝑓 (𝑥, 𝑏(𝑥)) 𝑑𝑏

𝑑𝑥
− 𝑓 (𝑥, 𝑎(𝑥)) 𝑑𝑎

𝑑𝑥
+ ∫

𝑏(𝑥)

𝑎(𝑥)

𝜕𝑓
𝜕𝑥

(𝑥, 𝑡) 𝑑𝑡

e obtain

(𝑥, 𝑦, ℎ) −𝑤(𝑥, 𝑦, 0) = − 𝜕
𝜕𝑥 ∫

ℎ

0
𝑢 𝑑𝑧 − 𝜕

𝜕𝑦 ∫

ℎ

0
𝑣 𝑑𝑧. (28)

ue to the homogeneous Dirichlet boundary conditions for the velocity
t the surfaces, the left-hand side is zero. The integrals on the right-
and side are by definition 𝑞1 and 𝑞2. Hence, the equation (28) may be
ritten as

iv𝐱 𝐪 = 0, (29)

here div𝐱 is the divergence operator with respect to 𝑥 and 𝑦. By
nserting (27) into (29) we obtain a lower-dimensional equation for the
7

t

ressure, namely

iv𝐱
(

𝜓 |

|

∇𝐱𝑝(𝐱) − 𝜌𝐠||
𝑟′−2 (∇𝐱𝑝(𝐱) − 𝜌𝐠

)

)

= 0 in 𝜔. (30)

he equation (30) reduces to the classical Reynolds equation (1a) for
tationary surfaces when 𝑟 = 2 (Navier–Stokes fluids) and 𝐠 = 0.

.2. A variant of the Reynolds equation for shear-driven flow of power-law
luids

Let us next consider the case when the flow is shear-driven. We start
rom the simplified flow model (16), which in vector notation reads:

𝜕
𝜕𝑧

(

|

|

|

|

𝜕𝐮
𝜕𝑧

|

|

|

|

𝑟−2 𝜕𝐮
𝜕𝑧

)

= 𝐟 , (31a)

𝜕𝑝
𝜕𝑧

= 0, (31b)

here

= 𝐟 (𝐱) = 2(𝑟−2)∕2
𝜇

∇𝐱𝑝(𝐱).

n the same way as for the pressure-driven case, see Section 4.1, we
btain
𝜕𝐮
𝜕𝑧

= |𝐟𝑧 + 𝐚(𝐱)|𝑟′−2 (𝐟𝑧 + 𝐚(𝐱)) . (32)

et us try to determine 𝐚 by the same procedure that we used in the
ressure-driven case. Indeed, by integrating across the fluid and using
he no-slip boundary conditions at the surfaces yields

𝐮𝑙 = ∫

ℎ

0
|𝐟𝑧 + 𝐚|𝑟′−2 (𝐟𝑧 + 𝐚) 𝑑𝑧, (33)

here 𝐮𝑙 =
(

𝑢𝑙 , 𝑣𝑙
)

. Equation (33) is the Euler equation associated with
he variational problem

min
∈R2

{

∫

ℎ

0

1
𝑟′

|𝐟𝑧 + 𝐚|𝑟′ + 1
ℎ
𝐮𝑙 ⋅ 𝐚 𝑑𝑧

}

. (34)

Here we note a fundamental difference compared to the pressure-driven
case. Namely, we cannot conclude that 𝐚 must point in the negative
direction of the vector 𝐟 , i.e. 𝐚 is not always of the form 𝐚 = −𝑡𝐟 , 0 ≤
𝑡 ≤ ℎ. This means that we cannot use the homogeneity of the function
(⋅) = |⋅|𝑟 to reduce the Euler equation as it was done in (23), which
eans that we are not able to determine 𝐚 explicitly, except when

′ = 2. In the case 𝑟′ = 2 we obtain

= − 1
ℎ
𝐮𝑙 −

ℎ
2
𝐟 .

Since 𝐚 cannot, in general, be determined explicitly, we conclude that
it is not possible to derive a Reynolds-type equation for the pressure in
the shear-driven case.

We have just found out that it is not, in general, feasible to derive a
form of Reynolds’ equation for shear-driven flow of non-Newtonian flu-
ids. Nevertheless, there are numerous papers presenting modified forms
of Reynolds’ equations, obtained by introducing additional assump-
tions. Often, these assumptions are evidently incorrect; however, the
resulting outcome can provide a pragmatic approach for computing
the pressure, which may prove useful for engineering purposes. Let us
briefly discuss a few of these attempts. In Yang et al. (2016), the authors
initiate their analysis by introducing a simplified governing equation
for the flow, where certain elements in the vector 𝐝 are omitted. Sub-
equently, they model the flow by combining the Poiseuille and Couette
lows through a superposition approach, despite the nonlinearity of the
overning equation. Another version of Reynolds equation for power-
aw fluids is derived in Azeez and Bertola (2021) and Dien and Elrod
1983). The starting point of the analysis is a simplified model of the
low. To analyze this model a small parameter is introduced in order
o model the pressure gradient; subsequently a standard perturbation
rocedure is used to obtain the velocity field, which in turn is used
o obtain a type of Reynolds equation for power-law fluids. It is
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claimed that the equation applies better to Couette dominated flow.
A weakness is that there are implicitly two small parameters involved
in the problem, one related to the film thickness and the other which
is introduced by the authors. Therefore it is necessary to start the
analysis from the balance of linear momentum for power-law fluids. For
example as in the case where one small parameter is related to the film
thickness and one is related to the wavelength of the surface roughness,
see e.g. Fabricius et al. (2017). In the above-mentioned works (Azeez
and Bertola, 2021; Dien and Elrod, 1983; Yang et al., 2016) numerical
results are presented. However, they do not provide any comparisons
between their approximate solutions and the corresponding solutions
to the full balance of linear momentum, which is a crucial step in
justifying the use of the simplified models.

4.3. Boundary conditions for the Reynolds-type equation associated with
pressure driven flow

As we saw in Section 4.1 it is possible to derive a lower-dimensional
equation for the pressure, i.e., equation (30) when the flow is pressure
driven. We will now determine the appropriate boundary conditions
that should be imposed on the boundary 𝜕𝜔.

On 𝛤𝐓 we have normal stress boundary condition 𝑻 𝐧 = −𝑝𝑏𝐧. By
using the constitutive relation (4) this can be written as
(

−𝑝𝐈 + 2𝜇 |𝐃|𝑟−2 𝐃
)

𝐧 = −𝑝𝑏𝐧

The dimensionless form reads
(

−�̄�𝐈 + 2𝜇
𝑝𝛥

( 𝑈
𝐿𝜀

)𝑟−1
|

|

�̄�|
|

𝑟−2 �̄�
)

𝐧 = −
𝑝𝑏
𝑝𝛥

𝐧,

where

𝑈 = 𝐿
(

𝑝𝛥
𝜇

)1∕(𝑟−1)
𝜀𝑟∕(𝑟−1),

that is
(

−�̄�𝐈 + 2𝜀 |
|

�̄�|
|

𝑟−2 �̄�
)

𝐧 = −
𝑝𝑏
𝑝𝛥

𝐧.

ecall that the elements in �̄� are of different orders of 𝜀, but the
ominating elements are of order 𝜀0. For small values of 𝜀 we obtain
he approximate dimensionless boundary condition �̄� = 𝑝𝑏∕𝑝𝛥, which in
imensional form is 𝑝 = 𝑝𝑏. In particular, 𝑝 = 𝑝𝑏 on 𝛾𝐓, where 𝛾𝐓 is the
rojection of 𝛤𝐓 onto the 𝑥𝑦-plane.

On 𝛤𝐯 the velocity is given. More precisely (𝑢, 𝑣,𝑤) = (𝑢𝑏, 𝑣𝑏, 𝑤𝑏).
e will now determine what this means for the pressure boundary

ondition on 𝛾𝐯, i.e., on the projection of 𝛤𝐯 onto the 𝑥𝑦-plane. Indeed,
ntegrating the first two components in the boundary condition across
he fluid film yields
ℎ

0
𝑢 𝑑𝑧 = 𝑢𝑏ℎ and ∫

ℎ

0
𝑣 𝑑𝑧 = 𝑣𝑏ℎ

ccording to the analysis in Section 4.1, see (27), we obtain that for
mall values of 𝜀 this is approximately

𝜓 |

|

∇𝐱𝑝(𝐱) − 𝜌𝐠||
𝑟′−2 (∇𝐱𝑝(𝐱) − 𝜌𝐠

)

= ℎ𝐮𝑏,

where 𝐮𝑏 = (𝑢𝑏, 𝑣𝑏). From this we deduce the following boundary
condition of Neumann-type for the pressure:

|

|

∇𝐱𝑝(𝐱) − 𝜌𝐠||
𝑟′−2 (∇𝐱𝑝(𝐱) − 𝜌𝐠

)

⋅ 𝝂 = − ℎ
𝜓
𝐮𝑏 ⋅ 𝝂 on 𝛾𝐯,

here 𝝂 is the outward unit normal vector to the boundary of 𝜔.

. Conclusions

The primary objective of this study was to explore the possibility
f deriving a Reynolds-type equation for non-Newtonian fluids, where
he apparent viscosity depends on the symmetric part of the velocity
radient. To accomplish this, we focused on investigating power-law
luids.
8

We have successfully demonstrated that the balance of linear mo-
entum for power-law fluids can be simplified considerably, for both
ressure-driven and shear-driven flows, by assuming that the distance
etween the surfaces is significantly smaller than the lateral size of
he surfaces. Our analysis further shows that the potential to derive
form of the Reynolds equation from this simplified governing system
f equations depends on the dominant driving force behind the flow,
pecifically whether it is primarily driven by shear or pressure. The
ain conclusion is that it is not possible to derive a Reynolds-type

quation from the simplified system in the case of shear-driven flow
f power-law fluids, as it is in the case with Navier–Stokes fluids.
owever, for pressure-driven flow, we have successfully derived a

ype of Reynolds equation applicable to the flow of power-law fluids
etween closely situated surfaces, which may not be inherently smooth.

We have provided justification for which boundary conditions ought
o be imposed in the Reynolds equation for pressure-driven flow. Of
ourse, these are related to the boundary conditions that are used
n the full 3𝐷 model, i.e., the full balance of linear momentum. We
ave shown that a normal stress boundary condition in the full 3𝐷
odel implies a Dirichlet condition for the pressure in the simplified

ystem of equations. Furthermore, we proved that a Dirichlet condition
or the velocity in the full 3𝐷 model results in a Neumann condition
or the pressure in the simplified system of equations. In particular,
his determines which boundary conditions should be imposed in the
eynolds-type equation for pressure-driven flow of power-law fluids.
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