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Abstract
We improve our results on boundedness of the Riesz potential in the central Morrey–
Orlicz spaces and the corresponding weak-type version. We also present two new
properties of the central Morrey–Orlicz spaces: nontriviality and inclusion property.
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1 Central Morrey–Orlicz spaces

A function � : [0,∞) → [0,∞] is called a Young function, if it is a nondecreasing
convex function with limu→0+ �(u) = �(0) = 0, and not identically 0 or ∞ in
(0,∞). It may have jump up to ∞ at some point u > 0, but then it should be left
continuous at u.

To each Young function � one can associate another convex function �∗, i.e., the
complementary function to �, which is defined by

�∗(v) = sup
u>0

[uv − �(u)] for v ≥ 0.
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Then �∗ is also a Young function and �∗∗ = �. Note that u ≤ �−1(u)�∗−1
(u) ≤

2u for all u > 0, where �−1 is the right-continuous inverse of � defined by

�−1(v) = inf{u ≥ 0 : �(u) > v} with inf ∅ = ∞.

We say that Young function� satisfies the�2-condition andwewrite shortly� ∈ �2,
if 0 < �(u) < ∞ for u > 0 and there exists a constant D2 > 1 such that

�(2u) ≤ D2�(u) for all u > 0.

For any Young function �, the number λ ∈ R and an open ball Br = {x ∈ R
n : |x | <

r}, r > 0 we can define central Morrey–Orlicz spaces M�,λ(0) as all f ∈ L1
loc(R

n)

such that

‖ f ‖M�,λ(0) = sup
r>0

‖ f ‖�,λ,Br < ∞,

where

‖ f ‖�,λ,Br = inf

{
ε > 0 : 1

|Br |λ
∫
Br

�

( | f (x)|
ε

)
dx ≤ 1

}
.

Similarly, the weak central Morrey–Orlicz spaces WM�,λ(0) are defined as

WM�,λ(0) =
{
f ∈ L1

loc(R
n) : ‖ f ‖WM�,λ(0) = sup

r>0
‖ f ‖�,λ,Br ,∞ < ∞

}
,

where

‖ f ‖�,λ,Br ,∞ = inf

{
ε > 0 : sup

u>0
�
(u

ε

) 1

|Br |λ d( f χBr , u) ≤ 1

}
,

and d( f , u) = |{x ∈ R
n : | f (x)| > u}|.

The properties of these spaces can be found in [4]. If �(u) = u p, 1 ≤ p < ∞ and
λ ∈ R, then M�,λ(0) = Mp,λ(0) and WM�,λ(0) = WMp,λ(0) are classical central
and weak central Morrey spaces. Moreover, for λ = 0 the spaces M�,0(0) = L�(Rn)

and WM�,0(0) = WL�(Rn) are classical Orlicz and weak Orlicz spaces.
In the following lemma and later, B(x0, r0)will denote an open ball with the center

at x0 ∈ R
n and radius r0 > 0, that is, B(x0, r0) = {x ∈ R

n : |x − x0| < r0}.
Lemma 1 Let � be a Young function, �∗ its complementary function, 0 ≤ λ ≤ 1 and
r > 0. Then

(i)
∫
Br

| f (x)g(x)| dx ≤ 2 |Br |λ ‖ f ‖�,λ,Br ‖g‖�∗,λ,Br .

(ii) ‖χB(x0,r0)‖�∗,λ,Br ≤ |Br∩B(x0,r0)|
|Br |λ �−1

( |Br |λ
|Br∩B(x0,r0)|

)
, where Br ∩B(x0, r0) �= ∅

for x0 ∈ R
n and r0 > 0.

In particular, ‖χBr ‖�∗,λ,Br ≤ �−1
(|Br |λ−1

)
|Br |λ−1 .
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(iii) ‖χBt ‖�,λ,Br = 1/�−1
( |Br |λ

|Br∩Bt |
)
and ‖χBt ‖M�,λ(0) = 1

�−1(|Bt |λ−1)
for any

t > 0.

Proof of this lemma can be found in [4, Lemma 1].

2 Riesz potential in the central Morrey–Orlicz spaces

Wewillworkwith the centralMorrey–Orlicz spaces, defined by theOrlicz functions.A
function � : [0,∞) → [0,∞) is called an Orlicz function, if it is a strictly increasing
continuous and convex function with �(0) = 0.

Let f : Rn → R be a Lebesgue measurable function and α ∈ (0, n). The Riesz
potential is defined as

Iα f (x) =
∫
Rn

f (y)

|x − y|n−α
dy, for x ∈ R

n .

The linear operator Iα plays an important role in various branches of analysis, including
potential theory, harmonic analysis, Sobolev spaces, partial differential equations and
can be treated as a special singular integral. That is why it is important to study its
boundedness between different spaces. Many authors investigated boundedness of Iα
in Morrey, Orlicz and Morrey–Orlicz spaces. We present here our main theorem on
the boundedness of the Riesz potential in the central Morrey–Orlicz spaces.

In order to prove our result wewill use estimate from [13] for the Hardy–Littlewood
maximal operator in central Morrey–Orlicz spaces. The Hardy–Littlewood maximal
operator M or centred maximal function M f of a function f defined on Rn is defined
at each x∈ R

n as

M f (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

| f (y)| dy.

For any Orlicz function � and 0 ≤ λ ≤ 1, maximal operator M is bounded on
M�,λ(0), provided �∗ ∈ �2, and then there exists a constant C0 > 1 such that

‖M f ‖M�,λ(0) ≤ C0 ‖ f ‖M�,λ(0), for all f ∈ M�,λ(0)

(see [13, Theorem6(i)]).Moreover, themaximal operatorM is bounded fromM�,λ(0)
to WM�,λ(0), that is, there exists a constant c0 > 1 such that ‖M f ‖WM�,λ(0) ≤
c0 ‖ f ‖M�,λ(0) for all f ∈ M�,λ(0) (see [13, Theorem 6(ii)]).

Furthermore, in the proof of the main result we will use Hedberg’s pointwise esti-
mate from [7, p. 506].
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Lemma 2 (Hedberg) If f : Rn → R is aLebesguemeasurable functionandα ∈ (0, n),
then for all x ∈ R

n and r > 0

∫
|y−x |≤r

| f (y)||x − y|α−ndy ≤ CH rαM f (x),

with CH = 2n
2α−1vn, where vn = |B(0, 1)| = πn/2/	(n/2 + 1).

Proof For the sake of completeness,we include its proof, taking care about the constant
CH in the estimate. For any x ∈ R

n and r > 0

∫
|y−x |≤r

| f (y)|
|x − y|n−α

dy =
∞∑

m=0

∫
r2−m−1<|y−x |≤r2−m

| f (y)|
|x − y|n−α

dy

≤
∞∑

m=0

∫
B(x,r2−m )\B(x,r2−m−1)

| f (y)|
(r2−m−1)n−α

dy

≤ 2n−αrα
∞∑

m=0

2−mα(r2−m)−n
∫
B(x,r2−m )

| f (y)|dy

= 2n−αrα
∞∑

m=0

2−mα vn

|B(x, r2−m)|
∫
B(x,r2−m )

| f (y)|dy

≤ 2n−αrα vn

∞∑
m=0

2−mαM f (x) = 2n vn

2α − 1
rαM f (x).

�
Theorem 1 Let 0 < α < n, �,
 be Orlicz functions and either 0 < λ,μ < 1, λ �= μ

or λ = 0 and 0 ≤ μ < 1. Assume that there exist constants C1,C2 ≥ 1 such that

∫ ∞

u
t

α
n �−1(tλ−1)

dt

t
≤ C1 
−1(uμ−1) for all u > 0 (1)

and

u
α
n �−1

(
rλ

u

)
+
∫ r

u
t

α
n �−1

(
rλ

t

)
dt

t
≤ C2 
−1

(
rμ

u

)
for all r > u > 0. (2)

(i) If �∗ ∈ �2, then Iα is bounded from M�,λ(0) to M
,μ(0), that is, there
exists a constant C3 = C3(n,C0,CH ,C1,C2) ≥ 1 such that ‖Iα f ‖M
,μ(0) ≤
C3 ‖ f ‖M�,λ(0) for all f ∈ M�,λ(0).

(ii) The operator Iα is bounded from M�,λ(0) to WM
,μ(0), that is, there exists a con-
stant c3 = c3(n, c0,CH ,C1,C2) ≥ 1 such that ‖Iα f ‖WM
,μ(0) ≤ c3 ‖ f ‖M�,λ(0)

for all f ∈ M�,λ(0).

123



A new result on boundedness of the Riesz potential in… Page 5 of 27    62 

In our earlier paper [4, Theorem 3] it was proved result under conditions (1) and (3),
and the latter means that

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
≤ C4 
−1

(
rμ

u

)
for all u > 0, r > 0. (3)

The condition (3) is stronger than the assumption (2) because

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
≥
∫ 2u

u
t

α
n �−1

(
rλ

t

)
dt

t
≥ u

α
n

∫ 2u

u
�−1

(
rλ

2u

)
dt

t

≥ u
α
n

2

∫ 2u

u
�−1

(
rλ

u

)
dt

t
= ln 2

2
u

α
n �−1

(
rλ

u

)

and clearly the integral in (2) is smaller than the integral in (3). This improvement
provides us with larger classes of Orlicz functions � and 
, defining central Morrey–
Orlicz spaces where the operator Iα is bounded.

In the simplest case, when �(u) = u p, 
(u) = uq where 1 < p < q < ∞,
then the convergence of the integral in (1) means p <

n(1−λ)
α

and the assumption

itself gives equality α
n + λ−1

p = μ−1
q . Assumptions (2) and (3) are both equivalent

and give the following equations: 1
q = 1

p − α
n and λ

p = μ
q . Of course, with the above

assumptions, the operator Iα is bounded from Mp,λ(0) to Mq,μ(0).
Only later, on the Examples 2 and 3, we will see that the conditions (1) and (2) hold

but estimate (3) fails, which shows that our Theorem 1 improves Theorem 3 in [4].
Let us comment on what we can get when the numbers λ andμ come from “bound-

aries”.

Remark 1 If λ = μ = 0 we come to the same conclusion as in [4, Remark 4], that
is, condition (1) is sufficient for the boundedness of Iα from Orlicz space L�(Rn)

to weak Orlicz space WL
(Rn). If, in addition �∗ ∈ �2, then Iα is bounded from
L�(Rn) to L
(Rn). Note that in this case condition (2) follows from (1).

Remark 2 If λ = 0 and 0 < μ < 1, then the condition (3) is not satisfied, as we
already mentioned in [4, Remark 3] and therefore the result proved in [4] does not
include boundedness of the Riesz potential in this case. On the other hand, in this case,
assumption (1) is stronger than (2). Indeed,

u
α
n �−1

(
1

u

)
≤ 4

∞∫
u

t
α
n �−1

(
1

t

)
dt

t

≤ 4C1

−1(uμ−1) ≤ 4C1


−1
(
rμ

u

)
for all r > u > 0.

Therefore, if (1) holds, then Iα is bounded from L�(Rn) toWM
,μ(0). If, in addition
�∗ ∈ �2, then Iα is bounded from L�(Rn) to M
,μ(0). In particular, when �(u) =
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u p, 
(u) = uq , 0 < α
n < 1

p and α
n − 1

p = μ−1
q , then (1) holds. In fact, for all u > 0

∫ ∞

u
t

α
n �−1

(
1

t

)
dt

t
=

∞∫
u

t
α
n − 1

p −1 dt = 1
1
p − α

n

u
α
n − 1

p

= q

1 − μ
u

μ−1
q = C1


−1(uμ−1),

and we obtain (1) with C1 = q
1−μ

. Thus, from Theorem 1 we get that Iα is bounded
from L p(Rn) to Mq,μ(0). This result, in particular, was proved in [3, Theorem 2].

Remark 3 If 0 < λ < 1 and μ = 0, the conditions (2) and (3) are not satisfied.
Additionally, Iα is not bounded from M�,λ(0) to L
(Rn) by applying the necessary
condition for boundedness of Iα given in [4, Theorem 2(ii)]. In fact, let R ≥ 1,
xR = (R, 0, . . . , 0) ∈ R

n and fR(x) = χB(xR ,1)(x). Following the same arguments
as in [9, Proposition 1] and [4, Theorem 2(ii)] we obtain that

‖ fR‖M�,λ(0) ≤ 1

�−1
(

vλ
n

2nvn−1
Rλn
) and ‖Iα fR‖L
(Rn) ≥ 2α−nvn


−1
(

1
vn

) .

Thus,

lim inf
R→∞

‖Iα fR‖L
(Rn)

‖ fR‖M�,λ(0)
≥ 2α−nvn


−1
(

1
vn

) lim inf
R→∞ �−1

(
vλ
n

2nvn−1
Rλn
)

≥ 2α−nvn


−1
(

1
vn

) min

(
1,

vλ
n

2nvn−1

)
lim inf
R→∞ �−1(Rλn) = ∞,

and therefore Iα is not bounded from M�,λ(0) to L
(Rn).

Remark 4 If 0 < λ = μ < 1, then the assumption (2) does not hold. Indeed, let
r > u = rλ with r > 1. Then

u
α
n �−1

(
rλ

u

)
≤ C2


−1
(
rλ

u

)
, for all r > u > 0

means

r
αλ
n �−1(1) ≤ C2


−1(1), for all r > 1,

which is not true when r → ∞. Moreover, if either a = lim inf
t→0+

�−1(t)

−1(t)

> 0 or

b = lim inf
t→∞

�−1(t)

−1(t)

= ∞, then by Theorem 2 in [4] the Riesz potential Iα is not

bounded from M�,λ(0) to M
,λ(0). In particular, Iα is not bounded from Mp,λ(0)
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to Mq,λ(0) for any 1 ≤ p, q < ∞ (see also [9]). There remains an unresolved case
when a = 0 and b < ∞.

Proof of Theorem 1 (i) For any x ∈ Br and f ∈ M�,λ(0) we consider two disjoint
subsets

B1
r =

{
x ∈ Br : �

(
M f (x)

C0‖ f ‖M�,λ(0)

)
≤ |Br |λ−1

}
,

and

B2
r =

{
x ∈ Br : �

(
M f (x)

C0‖ f ‖M�,λ(0)

)
> |Br |λ−1

}
.

We estimate the Riesz potential Iα f (x) by a sum of two integrals

|Iα f (x)| ≤
∫

|y|≤2r
| f (y)||x − y|α−n dy +

∫
|y|>2r

| f (y)||x − y|α−n dy

=: I1 f (x) + I2 f (x).

For x ∈ B1
r and |y| ≤ 2r we have |y − x | ≤ |y| + |x | ≤ 3r , and so

I1 f (x) =
∫

|y|≤2r
| f (y)||x − y|α−n dy ≤

∫
|y−x |≤3r

| f (y)||x − y|α−n dy.

By Hedberg’s pointwise estimate, given in Lemma 2, we obtain

I1 f (x) ≤ C5 |Br | α
n M f (x), where C5 = CH 3α v

−α/n
n .

This implies, for x ∈ B1
r , that

I1 f (x) ≤ C0 C5‖ f ‖M�,λ(0)|Br |
α
n �−1(|Br |λ−1).

On the other hand,

∞∫
u

t
α
n �−1(tλ−1)

dt

t
≥

2u∫
u

t
α
n �−1(tλ−1)

dt

t
≥ ln 2 u

α
n �−1((2u)λ−1)

≥ 2λ−1 ln 2 u
α
n �−1(uλ−1) ≥ 1

4
u

α
n �−1(uλ−1),

for any u > 0. Thus, applying assumption (1) we obtain
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I1 f (x) ≤ 4C0 C1 C5‖ f ‖M�,λ(0)

−1(|Br |μ−1)

≤ 4

2n(μ−1)
C0 C1 C5‖ f ‖M�,λ(0)


−1(|B2r |μ−1)

≤ 4 · 2n · C0 C1 C5 ‖ f ‖M�,λ(0)

−1(|B2r |μ−1).

To estimate the second integral I2 f (x), first note that when x ∈ B1
r and |y| > 2r we

have |x | < r < |y|/2 and |y−x | ≥ |y|−|x | > |y|/2, and so |x−y|α−n < 2n−α|y|α−n .
Thus, following Hedberg’s method, as in [4, pp. 18–20], we obtain

I2 f (x) ≤ 2n−α

∫
|y|>2r

| f (y)||y|α−n dy = 2n−α
∞∑
k=0

∫

r2k+1<|y|≤r2k+2

| f (y)||y|α−n dy

≤ 2n−α
∞∑
k=0

(2k+1r)α−n
∫

|y|≤2k+2r
| f (y)| dy.

Then, from Lemma 1, it follows that

I2 f (x) ≤ 2n−α+1
∞∑
k=0

(2k+1r)α−n|B2k+2r |λ ‖ f ‖�,λ,B2k+2r
‖χB2k+2r

‖�∗,λ,B2k+2r

≤ 2n−α+1‖ f ‖M�,λ(0)

∞∑
k=0

(2k+1r)α−n|B2k+2r |λ
�−1(|B2k+2r |λ−1)

|B2k+2r |λ−1

= 22n−α+1vn ‖ f ‖M�,λ(0)

∞∑
k=0

(2k+1r)α �−1(|B2k+2r |λ−1)

= 22n−α+1v
1− α

n
n

n ln 2
‖ f ‖M�,λ(0)

∞∑
k=0

|B2k+1r |
α
n �−1(|B2k+2r |λ−1)

|B2k+2r |∫
|B2k+1r |

dt

t

≤ 22n−α+2v
1− α

n
n ‖ f ‖M�,λ(0)

∞∑
k=0

|B2k+2r |∫
|B2k+1r |

t
α
n �−1(tλ−1)

dt

t

≤ C6 ‖ f ‖M�,λ(0)

∞∫
|B2r |

t
α
n �−1(tλ−1)

dt

t
, where C6 = 22n−α+2v

1− α
n

n .

Applying assumption (1) we get

I2 f (x) ≤ C1 C6 ‖ f ‖M�,λ(0)

−1(|B2r |μ−1).
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Thus, for x ∈ B1
r , we obtain

|Iα f (x)| ≤ I1 f (x) + I2 f (x) ≤ 2C7 ‖ f ‖M�,λ(0)

−1(|B2r |μ−1),

where C7 = C1 · max{4 · 2n · C0 C5,C6}. Since 2n(μ−1) < 1 it follows that
∫
B1
r




(
|Iα f (x)|

2C7 ‖ f ‖M�,λ(0)

)
dx ≤ |B1

r ||B2r |μ−1 ≤ 2n(μ−1)|Br |μ < |Br |μ.

Let now x ∈ B2
r . We can write Iα f (x) as follows

|Iα f (x)| ≤
∫

|x−y|≤δ

| f (y)||x − y|α−n dy +
∫

|x−y|>δ

| f (y)||x − y|α−n dy

=: I3 f (x) + I4 f (x),

where δ is defined in the following way

�

(
M f (x)

C0‖ f ‖M�,λ(0)

)
= |Br |λ

|Bδ| . (4)

Since x ∈ B2
r it follows that |Bδ| < |Br |. Hedberg’s pointwise estimate fromLemma 2

to I3 f (x) gives

I3 f (x) ≤ CH δαM f (x) = CH (δnvn)
α/n v

−α/n
n M f (x) = v

−α/n
n CH |Bδ| α

n M f (x),

and from the assumption (2) we get

I3 f (x) ≤ v
−α/n
n C2 CH


−1
( |Br |μ

|Bδ |
)

�−1
( |Br |λ

|Bδ |
)M f (x).

Next, since equality (4) holds it follows that

I3 f (x) ≤ v
−α/n
n C0 C2 CH ‖ f ‖M�,λ(0)


−1
( |Br |μ

|Bδ|
)

.

Applying again Hedberg’s method for I4 f (x) we obtain

I4 f (x) =
∫

|x−y|>δ

| f (y)||x − y|α−n dy =
∞∑
k=0

∫

2kδ<|x−y|≤2k+1δ

| f (y)||x − y|α−n dy

≤
∞∑
k=0

(2kδ)α−n
∫

|x−y|≤2k+1δ

| f (y)| dy

≤
∞∑
k=0

(2kδ)α−n
∫

B|x |+2k+1δ

| f (y)|χB(x,2k+1δ)(y) dy,

123
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where B|x |+2k+1δ is the smallest ball with the centre at origin containing B(x, 2k+1δ).

From Lemma 1, using the fact that B|x |+2k+1δ ∩ B(x, 2k+1δ) = B(x, 2k+1δ), we get

I4 f (x) ≤ 2
∞∑
k=0

(2kδ)α−n|B|x |+2k+1δ|λ‖ f ‖�,λ,B|x |+2k+1δ
‖χB(x,2k+1δ)‖�∗,λ,B|x |+2k+1δ

≤ 2 ‖ f ‖M�,λ(0)

∞∑
k=0

(2kδ)α−n |B(x, 2k+1δ)| �−1

( |B|x |+2k+1δ|λ
|B(x, 2k+1δ)|

)

= 2n+1vn

n ln 2
‖ f ‖M�,λ(0)

∞∑
k=0

(2kδ)α �−1

( |B|x |+2k+1δ|λ
|B(x, 2k+1δ)|

) |B(x,2k+1δ)|∫

|B(x,2kδ)|

dt

t
.

Since |x | ≤ r and 2kδ ≤ ( t
vn

)
1
n ≤ 2k+1δ it follows that

|B|x |+2k+1δ| ≤ vn(r + 2k+1δ)n ≤ vn

⎛
⎝r + 2

t
1
n

v
1
n
n

⎞
⎠

n

= (v
1
n
n r + 2t

1
n )n

= (|Br | 1n + 2t
1
n )n ≤ 2n(|Br | 1n + t

1
n )n ≤ 4n max{|Br |, t}.

So using the concavity of �−1, we get

I4 f (x) ≤ 2n+1v
1− α

n
n

n ln 2
‖ f ‖M�,λ(0)

∞∑
k=0

|B(x,2k+1δ)|∫

|B(x,2kδ)|
t

α
n �−1

(
4λn(max{|Br |, t})λ

t

)
dt

t

≤ 4λn2n+1v
1− α

n
n

n ln 2
‖ f ‖M�,λ(0)

∞∫
|Bδ |

t
α
n �−1

(
(max{|Br |, t})λ

t

)
dt

t

≤ C8 ‖ f ‖M�,λ(0)

⎡
⎢⎣

|Br |∫
|Bδ |

t
α
n �−1

( |Br |λ
t

)
dt

t
+

∞∫
|Br |

t
α
n �−1(tλ−1)

dt

t

⎤
⎥⎦ ,

where C8 = 4λn2n+1v
1− α

n
n

n ln 2 ≤ 4n ·2n+2·v1−
α
n

n
n . Based on the assumptions of (1), (2) and the

fact that |Bδ| < |Br | we get

I4 f (x) ≤ C8 ‖ f ‖M�,λ(0)

[
C2 
−1

( |Br |μ
|Bδ|

)
+ C1 
−1(|Br |μ−1)

]

≤ C8 (C2 + C1) ‖ f ‖M�,λ(0)

−1
( |Br |μ

|Bδ|
)

.
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Thus, for x ∈ B2
r we obtain

|Iα f (x)| ≤ I3 f (x) + I4 f (x) ≤ C9 ‖ f ‖M�,λ(0)

−1
( |Br |μ

|Bδ|
)

,

with C9 = v
−α/n
n C0 C2 CH + C8 (C1 + C2). Then

∫
B2
r




(
|Iα f (x)|

C9 ‖ f ‖M�,λ(0)

)
dx ≤

∫
Br

|Br |μ
|Bδ| dx

= |Br |μ−λ

∫
Br

�

(
M f (x)

C0‖ f ‖M�,λ(0)

)
dx

≤ |Br |μ−λ

∫
Br

�

(
M f (x)

‖M f ‖M�,λ(0)

)
dx ≤ |Br |μ.

Finally, since Br = B1
r ∪ B2

r and the last two sets are disjoint, and by the convexity
of 
 it follows that

∫
Br




(
|Iα f (x)|

C3 ‖ f ‖M�,λ(0)

)
dx =

∫

B1
r




(
|Iα f (x)|

C3 ‖ f ‖M�,λ(0)

)
dx

+
∫

B2
r




(
|Iα f (x)|

C3 ‖ f ‖M�,λ(0)

)
dx

≤ 1

2

∫

B1
r




(
|Iα f (x)|

2C7 ‖ f ‖M�,λ(0)

)
dx

+1

2

∫

B2
r




(
|Iα f (x)|

C9 ‖ f ‖M�,λ(0)

)
dx

≤ |Br |μ,

where C3 = 2max{2C7,C9}. Hence, ‖Iα f ‖M
,μ(0) ≤ C3 ‖ f ‖M�,λ(0).
(ii) Similarly to the previous case, we will present Br as a union of two disjoint

subsets Br = B1
r ∪ B2

r , where B1
r and B2

r are defined in the same way as in the first
part of the proof with respect to the constant c0, that is,

B1
r =

{
x ∈ Br : �

(
M f (x)

c0‖ f ‖M�,λ(0)

)
≤ |Br |λ−1

}
,
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and

B2
r =

{
x ∈ Br : �

(
M f (x)

c0‖ f ‖M�,λ(0)

)
> |Br |λ−1

}
.

For x ∈ Br we get




(
|Iα f (x)|

c3 ‖ f ‖M�,λ(0)

)
≤ 1

2



( |Iα f (x)|χB1
r
(x)

4 c7 ‖ f ‖M�,λ(0)

)
+ 1

2



( |Iα f (x)|χB2
r
(x)

2 c9 ‖ f ‖M�,λ(0)

)

=: 1
2
(I5 + I6),

where c3 = 2 max{4 c7, 2 c9}, c7 = C1 max{4·2n ·c0 C5,C6}, c9 = v
−α/n
n c0 C2 CH+

C8(C1 +C2). We follow the same calculations as in the proof of Theorem 3(ii) in [4]
and we get

d

(



(
|Iα f (x)|

c3 ‖ f ‖M�,λ(0)

)
, u

)
≤ d(I5, u) + d(I6, u)

and

sup
u>0


(u)

|Br |μ d

(
|Iα f (x)|

c3 ‖ f ‖M�,λ(0)
, u

)
≤ sup

u>0

u

|Br |μ d(I5, u) + sup
u>0

u

|Br |μ d(I6, u),

where we used the property 
(u) d(g, u) = v d(g, 
−1(v)) = v d(
(g), v) for any
u > 0 with v = 
(u).

From the first part of the proof of this theorem for any r > 0 we have

I5 = 


( |Iα f (x)|χB1
r
(x)

2 · 2c7 ‖ f ‖M�,λ(0)

)
≤ 1

2
|B2r |μ−1χB1

r
(x) <

1

2
|Br |μ−1χB1

r
(x)

and

sup
u>0

u

|Br |μ d(I5, u) ≤ 1

2
sup
u>0

u

|Br |μ d(|Br |μ−1χB1
r
(x), u)

= 1

2
sup
u>0

u d

(
1

|Br |χB1
r
(x), u

)
≤ 1

2
.

For I6 from the first part of the proof of this theorem we obtain

I6 = 


( |Iα f (x)|χB2
r
(x)

2 c9‖ f ‖M�,λ(0)

)
≤ 1

2

|Br |μ
|Bδ| χB2

r
(x),
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where δ is defined as in (4) with respect to c0, that is,

�

(
M f (x)

c0‖ f ‖M�,λ(0)

)
= |Br |λ

|Bδ| .

Thus,

I6 ≤ 1

2
|Br |μ−λ�

(
M f (x)

c0‖ f ‖M�,λ(0)

)
χB2

r
(x)

and doing the same calculations as in the proof of Theorem 3(ii) in [4] we get

sup
u>0

u

|Br |μ d(I6, u) ≤ 1

2
.

Hence,

sup
u>0


(u)

|Br |μ d

(
|Iα f (x)|

c3‖ f ‖M�,λ(0)
, u

)
≤ 1

and ‖Iα f ‖WM
,μ(0) ≤ c3‖ f ‖M�,λ(0). �
Below we present examples for our Theorem 1. In our earlier paper [4] we have

shown that Example 1 holds under conditions (1) and (3), which clearly means that it
also holds under conditions (1) and (2) of Theorem 1.

Example 1 Let 0 < α < n, 0 ≤ λ < 1, 1 < p <
n(1−λ)

α
, 0 ≤ a ≤

√
1 − 1

p − (1 − 1
p )

and

�−1(u) =
{
u

1
p for 0 ≤ u ≤ 1,

u
1
p (1 + ln u)−a for u ≥ 1,


−1(u) = u
1
q with 1 < p < q < ∞.

If 1
q = 1

p − α
n , λ

p = μ
q , then conditions (1) and (2) of Theorem 1 are satisfied, and

the Riesz potential Iα is bounded from M�,λ(0) to M
,μ(0). We note that condition
0 ≤ a ≤ 1

p ensures that function �−1(u) is increasing on (0,∞) and �−1(u)/u is

decreasing on (0,∞). Then the function �−1(u) is equivalent to a concave function
on (0,∞) (cf. [1, pp. 117–118] or [11, p. 49]). On the other hand, if we have stronger

requirement 0 ≤ a ≤
√
1 − 1

p − (1− 1
p ), then it is possible to prove that the function

�−1(u) is concave on (0,∞). In particular, if a = 0 we get the Spanne–Peetre type
result [15] proved in [5, Proposition 1.1], that is, the Riesz potential Iα is bounded from
Mp,λ(0) to Mq,μ(0) under the conditions 1 < p <

n(1−λ)
α

, 0 ≤ λ < 1, 1
q = 1

p − α
n

and λ
p = μ

q .
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The next two examples satisfy conditions (1) and (2), but the requirement (3) does
not hold for them.

Example 2 Let 0 < α < n, 0 < λ,μ < 1, 1 < p1 < p2 <
n(1−λ)

α
, 1 < q1 < q2 <

∞ and

�(u) = max(u p1 , u p2), 
(u) = max(uq1 , uq2).

If 1
p1

− α
n = 1

q1
, λ

p1
<

μ
q1

and 1
p2

− α
n = 1

q2
, λ

p2
= μ

q2
, then conditions (1) and (2)

of Theorem 1 are satisfied and the Riesz potential Iα is bounded from M�,λ(0) to
M
,μ(0).

Example 3 Let 0 < α < n, 0 < λ,μ < 1, 1 < p1 < p2 < ∞, 1 < q1 < q2 <

∞, a, b > 0 and

�−1(u) =
⎧⎨
⎩
u

1
p1 (1 − ln u)a for 0 < u ≤ 1,

u
1
p2 (1 + ln u)−b for u ≥ 1,


−1(u) =
⎧⎨
⎩
u

1
q1 (1 − 1−λ

1−μ
ln u)a for 0 < u ≤ 1,

u
1
q2 for u ≥ 1.

If 1
p1

− α
n = 1

q1
, 1

p2
− α

n = 1
q2

, λ
p2

= μ
q2

, λ
p1

<
μ
q1

and 0 < a ≤ 1−μ
1−λ

( 1
q1

− 1
q2

), 0 <

b ≤ 1
p2
, then conditions (1) and (2) of Theorem 1 are satisfied and the Riesz potential

Iα is bounded from M�,λ(0) to M
,μ(0).

The technical details related to the proofs in Examples 2 and 3 are shifted to the
“Appendix” in Sect. 4.

3 Two properties of central Morrey–Orlicz spaces

Properties of Morrey and central Morrey spaces were considered by several authors
(for example V. I. Burenkov, V. S. Guliyev, E. Nakai, Y. Sawano and others). Here
we will present some properties of central Morrey–Orlicz spaces. It is known that
Mp,λ(0) �= {0} if and only if λ ≥ 0 (see [2]). In the next proposition we describe
when the central Morrey–Orlicz space M�,λ(0) is nontrivial.

Proposition 1 Let � be an Orlicz function and λ ∈ R. The space M�,λ(0) �= {0} if
and only if λ ≥ 0.

Proof Let first λ < 0 and f ∈ M�,λ(0), such that f �≡ 0. Then

sup
r>0

∥∥∥∥∥
f

‖ f ‖M�,λ(0)

∥∥∥∥∥
�,λ,Br

= 1
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and therefore

∥∥∥∥∥
f

‖ f ‖M�,λ(0)

∥∥∥∥∥
�,λ,Br

≤ 1 for all r > 0.

Thus,

1

|Br |λ
∫
Br

�

(
| f (x)|

‖ f ‖M�,λ(0)

)
dx ≤ 1 for all r > 0.

On the other hand, there exists t0 > 0, such that
∫
Bt0

�
( | f (x)|

‖ f ‖M�,λ(0)

)
dx > 0 and for

any r > t0 and λ < 0 we have

∫
Bt0

�

(
| f (x)|

‖ f ‖M�,λ(0)

)
dx ≤

∫
Br

�

(
| f (x)|

‖ f ‖M�,λ(0)

)
dx ≤ |Br |λ → 0 as r → ∞,

which means that f (x) = 0 on Bt0 and we are done.
Let now λ ≥ 0. Then we will show that there exists f ∈ M�,λ(0), such that f �≡ 0.

We follow ideas from [9, Proposition 1] and consider function fR(x) = χB(xR ,1)(x),
where R > 1 and xR = (R, 0, . . . , 0).Wewill show that f ∈ M�,λ(0) for any λ ≥ 0.
In our previous paper we have shown that

‖ fR‖M�,λ(0) = sup
r>R−1

1

�−1
( |Br |λ

|Br∩B(xR ,1)|
) ,

for details we refer to the proof of Theorem 2 in [4]. Since |Br ∩ B(xR, 1)| ≤
|B(xR, 1)| = vn it follows that

|Br |λ
|Br∩B(xR ,1)| ≥ |Br |λ

vn
and 1

�−1
( |Br |λ

|Br∩B(xR ,1)|
) ≤ 1

�−1
( |Br |λ

vn

) .
Thus,

‖ fR‖M�,λ(0) = sup
r>R−1

1

�−1
( |Br |λ

|Br∩B(xR ,1)|
) ≤ sup

r>R−1

1

�−1
( |Br |λ

vn

) = 1

�−1
( |BR−1|λ

vn

) ,

where the last equality is true since λ ≥ 0. Therefore, fR ∈ M�,λ(0). �
Next we consider inclusion properties of central Morrey–Orlicz spaces. In the case

of classical Morrey and classical central Morrey spaces it is known that if 1 ≤ p <

q < ∞, 0 ≤ μ < λ < 1 and 1−λ
p = 1−μ

q , then

Mq,μ(Rn)
1

↪→ Mp,λ(Rn) and Mq,μ(0)
1

↪→ Mp,λ(0). (5)
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Both inclusions are proper (see, for example, [6]).We also note that the second embed-
ding in (5) is also true for 1 < λ < μ. We have shown in [4] that the embeddings (5)
follow by the Hölder–Rogers inequality with q

p > 1. In the next theorem we present
inclusion properties of central Morrey–Orlicz spaces.

Proposition 2 Let � and 
 be Orlicz functions, 0 ≤ λ,μ < 1. Then M
,μ(0) ↪→
M�,λ(0) if and only if there are constants A1, A2 > 0, such that

(i) �( u
A1

) ≤ 
(u)
λ−1
μ−1 for all u > 0 and

(ii) �( u
A2

) ≤ 
(u)rλ−μ for all u, r > 0, satisfying 
−1(rμ−1) < u.

Proof Let first f ∈ M
,μ(0), f �≡ 0, Br be any open ball in Rn and functions � and

 satisfy conditions (i) and (ii). Then

1

|Br |μ
∫
Br




(
| f (x)|

‖ f ‖M
,μ(0)

)
dx ≤ 1

and so 


(
| f (x)|

‖ f ‖M
,μ(0)

)
< ∞ a.e. in Br . We divide Br into two disjoint subsets

B3
r :=

{
x ∈ Br : |Br |μ−1 < 


(
| f (x)|

‖ f ‖M
,μ(0)

)
< ∞ a.e.

}

and

B4
r :=

{
x ∈ Br : |Br |μ−1 ≥ 


(
| f (x)|

‖ f ‖M
,μ(0)

)
a.e.

}
.

Let us denote t = |Br | and u = | f (x)|
‖ f ‖M
,μ(0)

. Then, for x ∈ B3
r we have 0 < tμ−1 <


(u) and from (ii) it follows that

1

|Br |λ
∫
B3
r

�

(
| f (x)|

A2‖ f ‖M
,μ(0)

)
dx ≤ 1

|Br |λ
∫
B3
r




(
| f (x)|

‖ f ‖M
,μ(0)

)
|Br |λ−μ dx

= 1

|Br |μ
∫
B3
r




(
| f (x)|

‖ f ‖M
,μ(0)

)
dx ≤ 1

|Br |μ
∫
Br




(
| f (x)|

‖ f ‖M
,μ(0)

)
dx ≤ 1.

For x ∈ B4
r we get 0 < 
(u) ≤ tμ−1 and from (i) it follows that

1

|Br |λ
∫
B4
r

�

(
| f (x)|

A1‖ f ‖M
,μ(0)

)
dx ≤ 1

|Br |λ
∫
B4
r




(
| f (x)|

‖ f ‖M
,μ(0)

) λ−1
μ−1

dx

≤ 1

|Br |λ
∫
B4
r

(
|Br |μ−1

) λ−1
μ−1

dx = |B4
r |

|Br | ≤ 1.
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Thus,

1

|Br |λ
∫
Br

�

(
| f (x)|

2max(A1, A2)‖ f ‖M
,μ(0)

)
dx

≤ 1

2|Br |λ
[∫

B3
r

�

(
| f (x)|

A1‖ f ‖M
,μ(0)

)
dx +

∫
B4
r

�

(
| f (x)|

A2‖ f ‖M
,μ(0)

)
dx

]
≤ 1

and so ‖ f ‖M�,λ(0) ≤ 2max(A1, A2)‖ f ‖M
,μ(0).
Let now ‖ f ‖M�,λ(0) ≤ C‖ f ‖M
,μ(0) for any f ∈ M
,μ(0) and some constant

C > 0. First for any t > 0 we consider ft (x) = χBt (x). Then, using Lemma 1(iii) we
obtain

1

�−1(|Bt |λ−1)
≤ C


−1(|Bt |μ−1)
,

which also means that 
−1(sμ−1) ≤ C�−1(sλ−1) for all s > 0 or sμ−1 ≤

(C�−1(sλ−1)). By change of variables �−1(sλ−1) = u we get

�(u)
μ−1
λ−1 ≤ 
(Cu) for all u > 0,

so we have condition (i) with A1 = C .
For the proof of the second part, i.e. to prove the necessity of the condition (ii),

we refer to the proof of Lemma 4.12 and Theorem 4.1 in [8] and to Theorem 4.9 and
Lemma 4.10 in [14]. �
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4 Appendix

We will present here all the technical proofs related to Examples 2 and 3.

Proof of Example 2 The function

�(u) = max(u p1 , u p2) =
{
u p1 for 0 ≤ u ≤ 1,

u p2 for u ≥ 1,

is an Orlicz function, �∗ ∈ �2 and

�−1(u) = min

(
u

1
p1 , u

1
p2

)
=
⎧⎨
⎩
u

1
p1 for 0 ≤ u ≤ 1,

u
1
p2 for u ≥ 1.

If u ≥ 1, then estimate (1) holds since

∞∫
u

t
α
n �−1(tλ−1)

dt

t
=

∞∫
u

t
α
n + λ−1

p1
dt

t
=

∞∫
u

t
− 1

q1
+ λ

p1
−1

dt

= 1
1
q1

− λ
p1

u
− 1

q1
+ λ

p1 <
1

1
q1

− λ
p1

u
μ−1
q1 = 1

1
q1

− λ
p1


−1(uμ−1),

where the last integral is convergent because p1 <
n(1−λ)

α
. �

If 0 < u ≤ 1, then estimate (1) holds since

∞∫
u

t
α
n �−1(tλ−1)

dt

t
=

1∫
u

t
α
n �−1(tλ−1)

dt

t
+

∞∫
1

t
α
n �−1(tλ−1)

dt

t

=
1∫

u

t
α
n + λ−1

p2
dt

t
+

∞∫
1

t
α
n + λ−1

p1
dt

t

=
1∫

u

t
μ−1
q2

−1
dt +

∞∫
1

t
− 1

q1
+ λ

p1
−1

dt

= q2
1 − μ

(
u

μ−1
q2 − 1

)
+ 1

1
q1

− λ
p1

= q2
1 − μ

u
μ−1
q2 +

(
1

1
q1

− λ
p1

− 1
1−μ
q2

)

≤ q2
1 − μ

u
μ−1
q2 = q2

1 − μ

−1(uμ−1),

123



A new result on boundedness of the Riesz potential in… Page 19 of 27    62 

where the last inequality is true since p1 < p2 and therefore 1
q1

− λ
p1

>
1−μ
q2

.

Estimate (2) also holds for any r > u > 0. Indeed, let first r > 1, then 1 < rλ <

rμ < r . We consider three cases on u.

1◦. If u < rλ, then we get

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t

= r
μ
q2 u

− 1
q2 + r

λ
p2

rλ∫
u

t
α
n − 1

p2
−1

dt + r
λ
p1

r∫

rλ

t
α
n − 1

p1
−1

dt

=
(
rμ

u

) 1
q2 + q2r

λ
p2

(
u

− 1
q2 − r

λ
(

α
n − 1

p2

))
+ q1r

λ
p1

(
r
λ
(

α
n − 1

p1

)
− r

α
n − 1

p1

)

= (1 + q2)

(
rμ

u

) 1
q2 + (q1 − q2)r

λ α
n − q1r

λ−1
p1

+ α
n ≤ (1 + q2)


−1
(
rμ

u

)
,

where the last inequality is true since q1 < q2.
2◦. If 1 < rλ < rμ < u < r , then we obtain

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
= r

λ
p1 u

α
n − 1

p1 + r
λ
p1

r∫
u

t
α
n − 1

p1
−1

dt

< r
μ
q1 u

− 1
q1 + q1r

μ
q1

(
u

− 1
q1 − r

− 1
q1

)
< (1 + q1)

(
rμ

u

) 1
q1

= (1 + q1)

−1
(
rμ

u

)
.

3◦. If 1 < rλ < u < rμ < r , then taking into account that 1
p1

> 1
p2

and rλ

u < 1 we
obtain

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
= r

λ
p1 u

α
n − 1

p1 + r
λ
p1

r∫
u

t
α
n − 1

p1
−1

dt

= u
α
n

(
rλ

u

) 1
p1 + q1

⎛
⎝
(
rλ

u

) 1
p1
u

α
n − r

λ
p1

− 1
q1

⎞
⎠

< (1 + q1)u
α
n

(
rλ

u

) 1
p2 = (1 + q1)r

μ
q2 u

− 1
q2 = (1 + q1)


−1
(
rμ

u

)
.
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Let now 0 < r ≤ 1. Then 0 < u < r ≤ rμ ≤ rλ ≤ 1 and (2) holds since

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
= r

λ
p2 u

− 1
q2 + r

λ
p2

r∫
u

t
α
n − 1

p2
−1

dt

=
(
rμ

u

) 1
q2 + q2r

μ
q2

(
u

− 1
q2 − r

− 1
q2

)
≤ (1 + q2)


−1
(
rμ

u

)
.

Thus, all conditions of Theorem 1 are satisfied and Iα is bounded from M�,λ(0) to
M
,μ(0).

Let us note that this example does not satisfy the condition (3), that is, the condition

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
≤ C4 
−1

(
rμ

u

)
for all u > 0, r > 0

does not hold in this case. Indeed, let 0 < r < 1 and u > r . We choose any number ν,

such that 0 < λ < ν < μ < 1 and let u = rν. Then 0 < r < rμ < u = rν < rλ < 1
and we get

∞∫
u

t
α
n �−1

(
rλ

t

)
dt

t
= r

λ
p2

rλ∫
rν

t
− 1

q2
−1

dt + r
λ
p1

∞∫

rλ

t
− 1

q1
−1

dt

= q2r
λ
p2

− ν
q2 − q2r

λ
p2

− λ
q2 + q1r

λ
p1

− λ
q1

= q2r
μ
q2

− ν
q2 + (q1 − q2)r

λα
n .

Since λα
n = λ

p2
− λ

q2
= μ−λ

q2
>

μ−ν
q2

and 1
q1

> 1
q2

it follows that

lim
r→0+

∞∫
u
t

α
n �−1

(
rλ

t

)
dt
t


−1
( rμ

u

) = lim
r→0+

q2r
μ−ν
q2 + (q1 − q2)r

λα
n

r
μ−ν
q1

= lim
r→0+ r

(μ−ν)
(

1
q2

− 1
q1

) (
q2 + (q1 − q2)r

λα
n − μ−ν

q2

)
= ∞.

Thus, this example does not satisfy condition (3), which shows that Theorem 1
improves our result proved in [4, Theorem 3].

Proof of Example 3 Since λ
p1

<
μ
q1

and 1 < q1 < q2 < ∞ it follows that

μ − λ

q2
= λ

p2
− λ

q2
= λ

p1
− λ

q1
<

μ

q1
− λ

q1
= μ − λ

q1
,

and so λ < μ. Moreover, note that conditions a ≤ 1
p1

, b ≤ 1
p2

and a ≤ 1
q1

1−μ
1−λ

ensure

that functions�−1(u) and
−1(u) are increasing on (0,∞), and functions�−1(u)/u
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and 
−1(u)/u are decreasing on (0,∞). Then �−1(u) and 
−1(u) are equivalent to
concave functions on (0,∞) (cf. [1, pp. 117–118] or [11, p. 49]). There exist concrete
parameters a and b, for which functions �−1(u) and 
−1(u) are concave on (0,∞),
but it requires long calculations to prove this, so we omit such details. In addition, for
further estimations we require that 0 < a ≤ 1−μ

1−λ
( 1
q1

− 1
q2

).

First we will show that (1) holds for any u > 0. Let ε > 0 be sufficiently small
such that 0 < ε < 1

q1
− λ

p1
− a(1 − λ). Observe that

1

q1
− λ

p1
− a(1 − λ) ≥ 1

q1
− λ

p1
− (1 − μ)

(
1

q1
− 1

q2

)

>
1

q1
− μ

q1
− (1 − μ)

(
1

q1
− 1

q2

)
= (1 − μ)

1

q2
> 0.

Then the function

f1(t) = t
λ
p1

− 1
q1

+ε
(1 + ln t1−λ)a is decreasing on [1,∞). (6)

We consider separately two cases on u. For u ≥ 1 we have

∞∫
u

t
α
n �−1(tλ−1)

dt

t
=

∞∫
u

t
α
n + λ−1

p1 (1 + ln t1−λ)a
dt

t
=

∞∫
u

t
λ
p1

− 1
q1

+ε
(1 + ln t1−λ)a

dt

t1+ε

≤ u
λ
p1

− 1
q1

+ε
(1 + ln u1−λ)a

∞∫
u

dt

t1+ε
= 1

ε
u

λ
p1

− 1
q1 (1 + ln u1−λ)a .

Since λ
p1

<
μ
q1

it follows that

∞∫
u

t
α
n �−1(tλ−1)

dt

t
≤ 1

ε
u

μ
q1

− 1
q1

(
1 + 1 − λ

1 − μ
ln u1−μ

)a
= 1

ε

−1(uμ−1),

and therefore estimate (1) holds for u ≥ 1. �

Let 0 < u < 1. Then

∞∫
u

t
α
n �−1(tλ−1)

dt

t
=

1∫
u

t
α
n + λ−1

p2 (1 + ln tλ−1)−b dt

t
+

∞∫
1

t
α
n + λ−1

p1 (1 − ln tλ−1)a
dt

t

=
1∫

u

t
μ
q2

− 1
q2 (1 + ln tλ−1)−b dt

t
+

∞∫
1

t
λ
p1

− 1
q1 (1 + ln t1−λ)a

dt

t
.
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The function (1 + ln tλ−1)−b is increasing for any 0 < t < 1 and by (6) we obtain

∞∫
u

t
α
n �−1(tλ−1)

dt

t
≤

1∫
u

t
μ−1
q2

−1
dt +

∞∫
1

t
λ
p1

− 1
q1

+ε
(1 + ln t1−λ)a

dt

t1+ε

≤ q2
1 − μ

(
u

μ−1
q2 − 1

)
+

∞∫
1

t−1−ε dt

= q2
1 − μ

u
μ−1
q2 +

(
1

ε
− q2

1 − μ

)
.

If 1
ε

− q2
1−μ

≤ 0, then we are ready with (1) for 0 < u < 1. If 1
ε

− q2
1−μ

> 0, then

since 1 < u
μ−1
q2 we get

∞∫
u

t
α
n �−1(tλ−1)

dt

t
≤ q2

1 − μ
u

μ−1
q2 +

(
1

ε
− q2

1 − μ

)
u

μ−1
q2 = 1

ε

−1(uμ−1),

and therefore estimate (1) holds for 0 < u < 1.
Next, we will show that (2) holds. Let first 0 < r ≤ 1. Then 0 < r ≤ rμ ≤ rλ ≤ 1

and for any 0 < u < r we obtain

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t

= r
λ
p2 u

− 1
q2

(
1 + ln

rλ

u

)−b

+
r∫

u

t
α
n

(
rλ

t

) 1
p2
(
1 + ln

rλ

t

)−b
dt

t
.

Since (1+ ln rλ

u )−b ≤ 1 and the function (1+ ln rλ

t )−b is increasing for any t ∈ (0, rλ)

it follows that

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
≤ r

μ
q2 u

− 1
q2 + r

μ
q2

(
1 + ln rλ−1

)−b
r∫

u

t
− 1

q2
−1

dt

≤
(
rμ

u

) 1
q2 + q2r

μ
q2

(
u

− 1
q2 − r

− 1
q2

)

≤ (1 + q2)

(
rμ

u

) 1
q2

= (1 + q2)

−1
(
rμ

u

)
.
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Thus, we get that (2) holds for any 0 < u < r ≤ 1.
Let now r > 1. Then 1 < rλ < rμ < r . We consider three cases on u.

1◦. Let first 0 < u < rλ < rμ < r . Then

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
= r

λ
p2 u

− 1
q2

(
1 + ln

rλ

u

)−b

+
rλ∫
u

t
α
n

(
rλ

t

) 1
p2
(
1 + ln

rλ

t

)−b
dt

t
+

r∫

rλ

t
α
n

(
rλ

t

) 1
p1
(
1 − ln

rλ

t

)a
dt

t

<

(
rμ

u

) 1
q2 + r

λ
p2

rλ∫
u

t
− 1

q2

(
1 + ln

rλ

t

)−b
dt

t

+r
λ
p1

r∫

rλ

t
− 1

q1
+ε
(
1 + ln

t

rλ

)a dt

t1+ε
.

Let 0 < ε < 1
q1

− a. Since the function (1 + ln rλ

t )−b is increasing for any

t ∈ (0, rλ) and

f2(t) = t
− 1

q1
+ε
(
1 + ln

t

rλ

)a
is decreasing on (rλ,∞), (7)

it follows that

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t

≤
(
rμ

u

) 1
q2 + r

μ
q2

rλ∫
u

t
− 1

q2
−1

dt + r
λ
p1

− λ
q1

+λε

r∫

rλ

t−1−ε dt

=
(
rμ

u

) 1
q2 + q2r

μ
q2 (u

− 1
q2 − r

− λ
q2 ) + 1

ε
r
λ
(

1
p1

− 1
q1

)
− 1

ε
r
λ
(

1
p1

− 1
q1

)
+ε(λ−1)

≤ (1 + q2)

(
rμ

u

) 1
q2 − r

αλ
n (q2 − 1

ε
+ 1

ε
rε(λ−1)),

where the last expression follows from two equalities μ−λ
q2

= λ
p2

− λ
q2

= αλ
n and

λ( 1
p1

− 1
q1

) = αλ
n . Observe that

1

q1
− a ≥ 1

q1
− 1 − μ

1 − λ

(
1

q1
− 1

q2

)
= 1

q1

μ − λ

1 − λ
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+ 1

q2

1 − μ

1 − λ
= μ − λ

1 − λ

(
1

q1
− 1

q2

)
+ 1

q2
>

1

q2
,

and we choose ε > 0 such that 1
q2

< ε < 1
q1

− a. Then q2 − 1
ε

+ 1
ε
rε(λ−1) > 0

for any r > 1. Thus, for rλ > u we obtain

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
≤ (1 + q2)

(
rμ

u

) 1
q2 = (1 + q2)


−1
(
rμ

u

)
,

which shows that (2) holds for u < rλ < rμ < r .
2◦. Let now 1 < rλ < u < rμ < r . By (7) we have

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t

= r
λ
p1 u

− 1
q1

(
1 + ln

u

rλ

)a +
r∫

u

t
α
n

(
rλ

t

) 1
p1
(
1 + ln

t

rλ

)a dt

t

= r
λ
p1 u

− 1
q1

(
1 + ln

u

rλ

)a + r
λ
p1

r∫
u

t
− 1

q1
+ε

(1 + ln
t

rλ
)a

dt

t1+ε

≤ r
λ
p1 u

− 1
q1

(
1 + ln

u

rλ

)a + r
λ
p1 u

− 1
q1

+ε
(
1 + ln

u

rλ

)a r∫
u

t−1−ε dt

≤
(
1 + 1

ε

)
r

λ
p1 u

− 1
q1

(
1 + ln

u

rλ

)a
.

Since ln u
rλ ≤ u

rλ − 1 for any u
rλ > 1 and a < 1

p1
− 1

p2
it follows that

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
≤
(
1 + 1

ε

)
r

λ
p1 u

− 1
q1

( u

rλ

)a

≤
(
1 + 1

ε

)
r

λ
p1 u

− 1
q1

( u

rλ

) 1
p1

− 1
p2 =

(
1 + 1

ε

)
r

λ
p2 u

− 1
q1

+ 1
q1

− 1
q2

=
(
1 + 1

ε

)(
rμ

u

) 1
q2 =

(
1 + 1

ε

)

−1

(
rμ

u

)
,

where we used equality 1
p1

− 1
p2

= 1
q1

− 1
q2

. Thus, condition (2) is true also for

1 < rλ < u < rμ < r .
3◦. Finally, we will show that (2) holds for 1 < rλ < rμ < u < r . Again by (7) we

get
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u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t

= r
λ
p1 u

− 1
q1

(
1 − ln

rλ

u

)a
+

r∫
u

t
α
n

(
rλ

t

) 1
p1
(
1 + ln

t

rλ

)a dt

t

= r
λ
p1 u

− 1
q1

(
1 + ln

u

rλ

)a
+ r

λ
p1

r∫
u

t
− 1

q1
+ε
(
1 + ln

t

rλ

)a dt

t1+ε

≤
(
1 + 1

ε

)
r

λ
p1 u

− 1
q1

(
1 + ln

u

rλ

)a
.

Since the function g(u) = 1 + ln u
rλ −

(
1 + ln u

rμ

)(
1 + ln rμ−λ

)
is decreasing

for any rμ < u < r it follows that g(u) ≤ g(rμ) = 0. Thus, taking into account
that ln rμ−λ ≤ rμ−λ − 1 for any r > 1 and μ > λ we obtain

(1 + ln
u

rλ
)a ≤ (1 + ln

u

rμ
)a(1 + ln rμ−λ)a ≤ ra(μ−λ)(1 + ln

u

rμ
)a .

Applying estimates a < 1
p1

− 1
p2

and 1−λ
1−μ

> 1 we get

u
α
n �−1

(
rλ

u

)
+

r∫
u

t
α
n �−1

(
rλ

t

)
dt

t
≤
(
1 + 1

ε

)
u

− 1
q1 r

a(μ−λ)+ λ
p1

(
1 + ln

u

rμ

)a

≤
(
1 + 1

ε

)
u

− 1
q1 r

μ
p1

− μ
p2

+ λ
p2

(
1 + ln

u

rμ

)a

≤
(
1 + 1

ε

)
u

− 1
q1 r

μ
q1

− μ
q2

+ μ
q2

(
1 + 1 − λ

1 − μ
ln

u

rμ

)a

=
(
1 + 1

ε

)(
rμ

u

) 1
q1
(
1 − 1 − λ

1 − μ
ln

rμ

u

)a
=
(
1 + 1

ε

)

−1

(
rμ

u

)
.

Thus, all conditions of Theorem 1 are satisfied and Iα is bounded from M�,λ(0) to
M
,μ(0).

It is important to mention that this example does not satisfy the condition (3), that
is, the condition

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
≤ C4 
−1

(
rμ

u

)
for all u > 0 and for all r > 0

is not true for functions �−1 and 
−1 defined in Example 3. Indeed, let 0 < r < 1
and u = 1. Then taking into account that (1− ln rλ

t )a is increasing function on [1,∞)
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we get

∞∫
u

t
α
n �−1

(
rλ

t

)
dt

t
= r

λ
p1

∞∫
1

t
− 1

q1

(
1 − ln

rλ

t

)a dt
t

≥ r
λ
p1

(
1 + ln

1

rλ

)a ∞∫
1

t
− 1

q1
−1

dt = q1r
λ
p1

(
1 + ln

1

rλ

)a
.

Since λ
p1

<
μ
q1

it follows that

lim
r→0+

∞∫
u
t

α
n �−1

(
rλ

t

)
dt
t


−1
( rμ

u

) ≥ lim
r→0+

q1r
λ
p1 (1 + ln 1

rλ )a

r
μ
q1 (1 + 1−λ

1−μ
ln 1

rμ )a
= q1 lim

s→∞
s

μ
q1

− λ
p1 (1 + λ ln s)a

(1 + (1−λ)μ
1−μ

ln s)a

= q1 lim
s→∞

s
μ
q1

− λ
p1 (λ ln s)a(

(1−λ)μ
1−μ

ln s
)a = ∞.

Thus, the condition (3) is not satisfied for the functions � and 
, defined in
Example 3. However, as it was shown above, all conditions of Theorem 1 are sat-
isfied, which shows that Theorem 1 improves our result proved in [4, Theorem 3].
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