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Abstract: Our study aimed to investigate the effects of exercise on HDL composition and functional
properties in overweight/obese subjects. Eighteen overweight/obese subjects (nine F and nine M,
BMI = 30.3 ± 3 kg/m2) attended supervised training for 7 weeks. The protocol included combined
resistance and conditioning training four to five times each week. The activity of the antioxidant
enzyme paraoxonase-1 (PON1) associated with HDL was evaluated in all subjects before and after
the training intervention. Moreover, myeloperoxidase (MPO) levels and oxidative stress markers
(ox-LDLs and total antioxidant capacity) were studied in the serums of the subjects. At the end of the
intervention, the activity of PON1 was increased (p < 0.0001), and MPO levels and the MPO/PON1
ratio were decreased (p < 0.0001). In addition, a significant improvement in muscle strength and max-
imal oxygen uptake (VO2max) (p < 0.0001) and a significant reduction in total and visceral adipose
tissue mass (p < 0.001) and waist circumference (p < 0.008), without any significant decrease in body
weight, were observed. A significant correlation was established between serum MPO/PON ratios,
HDL redox activity and ox-LDLs. In conclusion, our results demonstrate that exercise training, with-
out modifications of dietary habits, improved HDL functionality in overweight/obese adults, without
any significant reduction in BMI or modifications of glucose and lipid biochemical parameters.

Keywords: lipoproteins; oxidative stress; obesity; overweight; physical exercise

1. Introduction

Obesity is a multifactorial chronic disease defined by excess adipose mass and adipose
tissue expansion, which occur through adipocyte hypertrophy and hyperplasia. There is
increasing evidence that adipose tissue participates in several metabolic activities and is
involved in lipoprotein metabolism [1–4]. In overweight/obese subjects, the changes in the
morphology and function of adipose tissue are associated with alterations of plasma high-
density lipoprotein cholesterol (HDL-C) levels and HDL function. Low HDL-C levels [5]
and dysfunctional HDL with lower antioxidant and anti-inflammatory properties have been
frequently observed in obese patients [6,7]. In detail, HDLs isolated from obese subjects
exhibit lower levels and activity of the enzyme paraoxonase-1 (PON1) [8–11]. PON1 is
a 43–45 kDa glycoprotein, mainly synthesized by the liver, that circulates associated at
the HDL surface and contributes to the anti-atherogenic and anti-inflammatory properties
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of this lipoprotein class [12–14]. Different mechanisms contribute to the anti-atherogenic
properties of PON1; the enzyme protects low-density lipoproteins (LDLs) against oxidative
stress, reduces macrophage foam cell formation, reduces the ability of macrophages to
uptake ox-LDLs and inhibits the synthesis of monocyte chemotactic protein 1 (MCP-1).
Therefore, a decrease in PON1 activity is associated with impaired HDL functions [9,11].

Abdominal adiposity is also associated with a state of low-grade systemic inflamma-
tion; adipose tissue infiltrating macrophages and neutrophils contributes to the increased
secretion of pro-inflammatory cytokines (i.e., TNF-α) and pro-inflammatory and pro-
oxidant proteins such as myeloperoxidase (MPO) [2]. Higher levels of MPO are reported
in serums of obese subjects [15,16]. In addition, serum levels of MPO correlate with BMI
and are associated with increased markers of inflammation and insulin resistance [15].
The enzyme MPO is one of the main factors involved in the oxidative stress of plasma
lipoproteins. In fact, MPO generates hypochlorous acid, which oxidatively damages HDL
lipids and apoproteins, including the enzyme PON1 that is associated with HDL surfaces.
The compositional changes due to MPO impair the antioxidant properties and the reverse
cholesterol transport (RCT) ability of the HDL [17]. A link between MPO and PON1 on
the HDL has been described, as they reciprocally regulate each other’s activity. PON1
exerts a protective role against the lipid peroxidation carried out by MPO; on the contrary,
MPO promotes site-specific oxidative modification, which can lead to the impairment of
PON1 activity [18–20]. Therefore, an increase in the serum MPO/PON1 ratio is considered
a potential indicator of dysfunctional HDL [18,21]. In addition, pro-oxidant molecules
generated by MPO also increase the conversion of LDL into ox-LDL [18–20].

Dysfunctional lipoproteins and oxidative stress are involved in the development of
several complications and metabolic disorders associated with obesity, including cardiovas-
cular complications, type 2 diabetes, cancer and hepatic and renal dysfunction [13,22–25],
so they represent a possible therapeutic target.

Several meta-analyses have demonstrated evidence that physical activity exerts a
key role in the prevention of dysmetabolic diseases and decreases fat around the waist
and total body fat, slowing the development of abdominal obesity [26,27]. In addition,
positive effects have been described on lipoprotein levels. In sedentary obesity, increased
physical activity is generally associated with an increase in HDL cholesterol and a decrease
in triglycerides, whereas the results on LDL cholesterol are inconsistent [28,29]. Physical
exercise, apart from inducing quantitative alterations in serum lipids, exerts a beneficial
impact on HDL particle maturation, composition and functions [30,31]. The impact of
exercise on HDL function depends on several factors, including exercise type, intensity and
duration, as well as the characteristics (age, ethnicity, body mass, baseline HDL levels, diet,
medications, etc.) of subjects enrolled [30,32].

To further study the effect of physical activity on HDL functional properties and
oxidative stress in overweight and obese subjects, the effects of a training intervention pro-
tocol consisting of seven weeks, including combined resistance and conditioning training,
were investigated. Anthropometric parameters were studied in all subjects. Moreover, the
activity of the antioxidant enzyme PON1 and the redox activity of HDLs were evaluated in
the subjects before and after the training intervention. MPO levels and biochemical markers
of oxidative stress in the serums of the subjects (ox-LDL and total antioxidant capacity)
were also studied.

2. Materials and Methods
2.1. Subjects

Recruitment was carried out through announcements on social media and posters
on message boards in Umeå, Sweden. The choice of participants was intentionally non-
probabilistic, respecting the eligibility criteria summarized in Table 1. The current study
included men and women between the ages of 20 and 35, with BMIs ranging from
27.0 to 35.0 kg/m2, who had not engaged in regular exercise for at least 12 months prior
to the study. Participants were required to be free of any preexisting diagnosed diseases
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and able to participate in physical training without any injury or medical condition that
would restrict their involvement in strength and conditioning exercises. Exclusion criteria
were anemia, smoking, pregnancy, blood pressure readings exceeding 140/90 mmHg when
attending the laboratory and any health concerns such as upper respiratory tract infec-
tions, overload injuries or other medical conditions that may arise during the intervention
(Table 1).

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

· Age between 20 and 35 years
· BMI > 27.0 kg/m2

· No regular exercise for at least 12
months prior to the study

· No injury or medical condition
that restricts participation in
the exercises

· Smoking
· Blood pressure > 140/90 mmHg
· Anemia (Hb < 120 g/L women, <130 g/L men)
· Pregnancy
· Preexisting CVD, diabetes or any other diagnosed disease
· Refusal to give informed consent
· Withdrawal from the intervention for personal reasons

A total of 21 subjects fulfilled the inclusion criteria and volunteered to participate
in the study. Before inclusion, eligible subjects were given written and oral information
about the study and the possible risks associated with physical tests, training and blood
collection (which were assessed as small). All volunteers visited the orthopedic clinic at
Norrlands University Hospital, Umeå, Sweden, to have a medical assessment completed by
an experienced physician. The medical assessment included questions regarding medical
history, existing medical conditions, allergies, medications and family medical history.
Additionally, blood pressure, heart rate, breathing, eyes, throat, lymph nodes, reflexes,
joints and muscles were checked. No medical disorders or symptoms were found in any
person. Subjects included in the study did not receive any type of dietary intervention
and were instructed to maintain their dietary habits and routine activities. All included
subjects provided their written and informed consent for participation. The experimental
study protocol was conducted in accordance with the Helsinki Declaration and approved
(Dnr.13/262-31) by the Regional Ethical Review Board, Umeå, Sweden. Of the 21 included
subjects, 18 completed the study; the reasons for withdrawal from the study were personal
matters. The sample size (n = 18) was based on an expected improvement of 10 percent in
VO2max with 7 weeks of training, according to the data not earlier investigations, a power
of 0.8 and alfa = 0.05.

2.2. Exercise Training

The training intervention protocol consisted of seven weeks, including combined
resistance and conditioning training four to five times each week. The same training
program was applied to both men and women. Both the endurance and resistance training
shifted between easier and heavier sessions, and the intensity progressed gradually over
time to improve muscle strength and aerobic functions. The goal was to improve muscle
strength and endurance in a large proportion of muscle groups. All participants visited
the Sports Medicine facility to attend supervised training three times per week following
a 10 min easy warm-up (on a cycle ergometer or cross-trainer). Figure 1 summarizes the
weekly workout program. One workout consisted of the following:

1. A total of 10 repetitions of 5 or 10 s (varied from week to week) of all-out ergometer
cycling, with a start every minute and active recovery at a very easy workload in
between each bout.

2. A total of 20–35 min of intermittent ergometer cycling at moderate-to-high intensity
(altered resistance every 5 min, with a mean of 50 per cent of maximal aerobic power).

3. One 20–30 min intermittent workout with a cross-trainer or rowing machine (altered
resistance every 5 min, with 60–80 per cent of maximal heart rate).



Metabolites 2023, 13, 1068 4 of 15

Metabolites 2023, 13, x FOR PEER REVIEW 4 of 18 
 

 

1. A total of 10 repetitions of 5 or 10 s (varied from week to week) of all-out ergometer 

cycling, with a start every minute and active recovery at a very easy workload in 

between each bout. 

2. A total of 20–35 min of intermittent ergometer cycling at moderate-to-high intensity 

(altered resistance every 5 min, with a mean of 50 per cent of maximal aerobic power). 

3. One 20–30 min intermittent workout with a cross-trainer or rowing machine (altered 

resistance every 5 min, with 60–80 per cent of maximal heart rate). 

Resistance exercises (3–4 exercises) were performed in the second halves of No. 1 and 

No. 2 workouts. The resistance training consisted of exercises with free weights, machines 

and body weight as resistance. The resistance training sessions shifted focus every second 

week, focusing on endurance strength (10–30 repetitions per 2–4 sets/exercise) one week 

and muscle hypertrophy (6–8 repetitions and 3–6 sets/exercise) the other. The resistance 

was increased if more repetitions were achieved than the upper limit of the determined 

repetition range. Likewise, the weights were decreased if fewer repetitions than the lower 

repetition limit were achieved. 

In addition to the supervised training, participants also performed one to two ses-

sions per week of continuous low-intensity (1–1.5 h at a heart rate between 120 and 140 

bpm) aerobic training (Nordic walking) on their own in an optional outdoor environment. 

Each walking session was measured with a heart rate monitor with GPS (Polar RS800CX, 

Polar Electro Oy, Kempele, Finland). The training program is available on request. 

 

Figure 1. Overview of weekly workouts for overweight/obese subjects. The figure was generated 

using Microsoft PowerPoint using royalty-free vectors from https://stock.adobe.com/ (accessed on 

25 September 2023). 

2.3. Test for Aerobic Capacity and Muscle Strength 

All participant performed an incremental cycling test under a cycle ergometer 

(Monark, 894, Monark Exercise AB, Vansbro, Sweden) under standard environmental con-

ditions; the room temperature was controlled and maintained at 19–20 °C. The settings on 

the cycle ergometer were adjusted for each individual and reused at the retest after the 

intervention period. Feet were securely strapped to the pedals. Prior to the test, partici-

pants completed a 5 min warm-up at 30–50 watts with a pedaling rate of 60–70 rpm. The 

submaximal test started at 30 W with continuous increases of 15 W every fourth minute 

until the 90 W level was completed (pedaling rate of 70 rpm). Each four-minute interval 

was followed by one minute of recovery sitting on the cycle ergometer before the next 

interval began. After one minute of recovery following completion of the fifth submaximal 

workload, the VO2max test began at 105 W with an increase of 15 W each minute until 

SUPERVISED TRAINING
ADDITIONAL 

ACTIVITY

WORKOUT 1 WORKOUT 2 WORKOUT 3 WORKOUT 4

HIGH-INTENSITY 
INTERVAL
TRAINING

HIGH-INTENSITY 
INTERVAL 
TRAINING

HIGH-INTENSITY 
INTERVAL 
TRAINING

LOW-INTENSITY 
INTERVAL 
TRAINING

10 repetitions, 5 or 10
seconds of all-out ergometer
cycling with a start every

minute and active recovery at
a very easy workload in-
between each bout

20–35 minutes of intermittent
ergometer cycling at moderate to
high intensity (altered resistance

every 5 minutes, with a mean of
50 percent of maximal aerobic
power)

20–30 minute intermittent
workout on a cross-trainer
or rowing machine (altered

resistance every 5 minutes,
60–80 percent of maximal
heart rate)

1 to 2 sessions per week of
continuous low-intensity
(1–1.5 hours at a heart

rate between 120 and 140
bpm) aerobic training
(Nordic walking) outdoors

RESISTANCE 
TRAINING

RESISTANCE 
TRAINING

3–4 exercises utilizing free
weights, machines, and body
weight as resistance

3–4 exercises utilizing free
weights, machines, and body
weight as resistance

Figure 1. Overview of weekly workouts for overweight/obese subjects. The figure was generated
using Microsoft PowerPoint using royalty-free vectors from https://stock.adobe.com/ (accessed on
25 September 2023).

Resistance exercises (3–4 exercises) were performed in the second halves of No. 1 and
No. 2 workouts. The resistance training consisted of exercises with free weights, machines
and body weight as resistance. The resistance training sessions shifted focus every second
week, focusing on endurance strength (10–30 repetitions per 2–4 sets/exercise) one week
and muscle hypertrophy (6–8 repetitions and 3–6 sets/exercise) the other. The resistance
was increased if more repetitions were achieved than the upper limit of the determined
repetition range. Likewise, the weights were decreased if fewer repetitions than the lower
repetition limit were achieved.

In addition to the supervised training, participants also performed one to two sessions
per week of continuous low-intensity (1–1.5 h at a heart rate between 120 and 140 bpm)
aerobic training (Nordic walking) on their own in an optional outdoor environment. Each
walking session was measured with a heart rate monitor with GPS (Polar RS800CX, Polar
Electro Oy, Kempele, Finland). The training program is available on request.

2.3. Test for Aerobic Capacity and Muscle Strength

All participant performed an incremental cycling test under a cycle ergometer (Monark,
894, Monark Exercise AB, Vansbro, Sweden) under standard environmental conditions; the
room temperature was controlled and maintained at 19–20 ◦C. The settings on the cycle
ergometer were adjusted for each individual and reused at the retest after the intervention
period. Feet were securely strapped to the pedals. Prior to the test, participants completed
a 5 min warm-up at 30–50 watts with a pedaling rate of 60–70 rpm. The submaximal test
started at 30 W with continuous increases of 15 W every fourth minute until the 90 W level
was completed (pedaling rate of 70 rpm). Each four-minute interval was followed by one
minute of recovery sitting on the cycle ergometer before the next interval began. After one
minute of recovery following completion of the fifth submaximal workload, the VO2max
test began at 105 W with an increase of 15 W each minute until exhaustion (VO2max).
The participants were allowed to choose an optional pedaling rate. The VO2max was
determined as the highest mean VO2 of a cohesive 60 s period. Analyses of air flow and
respiratory gases were performed with a Jaeger Oxycon Pro system (Erich Jaeger GmbH,
Hochberg, Germany). To assess lower body strength, each participant performed a test
to determine three repetition maximum (3 RM) in leg press with a plate-loaded leg press
machine (Gymleco, Eskilstuna, Sweden).

https://stock.adobe.com/
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2.4. Levels of Lipoproteins, Insulin, Glucose and hsCRP

Assessments of body weight and height were completed through standard clinical
procedures, and body composition was determined using intelligent dual-energy X-ray
absorptiometry technology (iDXA, GE Healthcare, Madison, WI, USA).

Serums were obtained from venous blood samples collected in the morning following
an overnight fast, prior to and following 7 weeks of exercise training. The collected venous
blood (via a venflon iv catheter) was handled according to the manufacturer’s instructions
(BD Vacutainer® blood collection tubes) and centrifuged at 3000× g and +4 ◦C for 10 min
then stored in −80 ◦C until time of analysis. Fasting glucose, high-sensitivity CRP (hsCRP),
insulin, blood lipids and lipoproteins were evaluated at the accredited Clinical Chemistry
Laboratory, Uppsala University Hospital, Sweden. Glucose, hsCRP, blood lipids and
lipoproteins were analyzed on an Architect 8200 (Abbott Laboratories, Abbott Park, IL,
USA) with reagents from the same manufacturer. Insulin was measured using a Cobas E
analyzer (Roche Diagnostics, Mannheim, Germany). Homeostatic model assessment for
insulin resistance (HOMA-IR) and non-HDL cholesterol were calculated as described by
Wallace et al. [33] and Ridefelt et al. [34], respectively.

2.5. Serum Total Antioxidant Potential (PAT)

Serum total antioxidant potential was measured using oxygen radical absorbance
capacity (ORAC) adapted for semi-automated measurement on a 96-well microplate reader
(Synergy HT; BioTek, Winooski, VT, USA) [35].

2.6. Levels of Oxidized LDL (ox-LDL)

ox-LDL in serum was determined by a sandwich ELISA procedure using the murine
monoclonal antibody mAB-4E6 as the capture antibody and a peroxidase-conjugated an-
tibody against oxidized apolipoprotein B (ApoB) bound to the solid phase (Mercodia AB,
Uppsala, Sweden). The assay was performed according to the instructions of the manufac-
turer. Results were reported as U for L of serum. Sensitivity of ox-LDL measurements was
<1 mU/L, and intra- and inter-assay coefficients of variation were 1.7–2.7% and 7.8–9.7%,
respectively.

2.7. Myeloperoxidase (MPO) Levels

A solid-phase two-site MPO ELISA Kit (Mercodia AB, Uppsala, Sweden) was used
to evaluate serum MPO. The assay was performed according to the instructions of the
manufacturer. Serum samples of controls and patients were included on each plate. Results
were reported as ng of MPO per mL of serum. Sensitivity of ox-MPO measurements was
≤3 ng/mL, and intra- and inter-assay coefficients of variation were 3.0–4.4% and 5.5–9.9%,
respectively.

2.8. Paraoxonase-1 (PON1) Activity

PON1 activity was assayed in serum by using three substrates: phenyl acetate,
paraoxon or dihydrocoumarin. All assays of PON1 activity were performed in a 96-well
plate, in a total reaction volume of 200 µL. Each 96-well plate included blank samples to
monitor spontaneous hydrolysis of substrates [36].

Paraoxonase (PON) Activity. The basal assay mixture included 50 mM glycine/NaOH
with a pH of 10.5, 1 mM CaCl2 and 2.0 mmol/L paraoxon. A total of 5 µL of undiluted
serum was taken for a total reaction volume of 200 µL. Paraoxon hydrolysis was spectropho-
tometrically monitored for 8 min (every 15 s) at 412 nm. One unit of PON1 paraoxonase
activity was equivalent to one nmol of paraoxon hydrolyzed/min/mL.

Arylesterase (ARE) Activity. Serum samples were diluted 1:10 with 50 mM Tris-HCl
with a of pH 8.0 and 1 mM CaCl2, and then 5 µL was taken for a total reaction volume
of 200 µL. After addition of the substrate phenyl acetate (1 mmol/L), the hydrolysis was
monitored at 270 nm for 3 min (every 15 s). One unit of arylesterase activity was equivalent
to one µmol of phenyl acetate hydrolyzed/min/mL.
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Lactonase (LAC) Activity. Serum samples were diluted 1:10 with 50 mM Tris-HCl
with a pH of 7.5 and 1 mM CaCl2, and 3 µL was then taken for the assay. After addition of
the substrate dihydrocoumarin (DHC) (1.0 mM), the hydrolysis was monitored at 270 nm
for 10 min (every 15 s). One unit of lactonase activity was equivalent to one µmol of DHC
hydrolyzed/min/mL.

2.9. HDL Redox Activity

HDL redox activity was assessed using a fluorometric biochemical cell-free assay [37].
This assay measures the effects of HDL on the rate of oxidation of the fluorogenic probe
dihydrorhodamine 123 (DHR). HDLs were isolated from the serum of subjects using
selective precipitation with polyethylene glycol. A stock solution of DHR (50 mM) was
diluted at 1:1000 in iron-free N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid-buffered
saline (HBS; HEPES 20 mM, NaCl 150 mM, pH 7.4) prepared as previously described [37].
In a 96-well plate, aliquots of HDL (1.25 µg HDL-cholesterol) and DHR working solution
(final concentration of 7 µM) were added, and the volume was diluted to 200 µL with
HBS buffer. Immediately following DHR addition, the plate was protected from light and
placed in a fluorescence plate reader. The fluorescence of each well was assessed at 2 min
intervals for 1 h with a microplate reader (Synergy HT, BioTek, Winooski, VT, USA) using a
485/538 nm excitation/emission filter. The oxidation rate was calculated for each well as
the slope for the linear regression of fluorescence intensity between 10 and 60 min (DHR
oxidation rate or DOR) and expressed as fluorescence units per minute (FU/min). The
value was calculated as the mean of quadruplicates for the wells containing only DHR and
for samples containing DHR and individual samples.

2.10. Statistical Analysis

Statistical analysis was performed with GraphPad Prism (GraphPad, San Diego, CA,
USA). All data are expressed as means ± SD. To analyze the difference between pre-
intervention and post-intervention values, the Wilcoxon test was used due to the small
sample size. To verify the correlations between the clinical and biochemical parameters,
the Spearman’s correlation test was used. A p value of ≤0.05 was considered statistically
significant. Correlation matrix was obtained using Displayr platform for survey data
analysis (https://www.displayr.com, accessed on 20 September 2023).

3. Results
3.1. Anthropometric and Biochemical Characteristics

The seven weeks with combined endurance and resistance training resulted in a
significant improvement in VO2max as well as muscle strength in parallel to a significant
decrease in fat mass measures and significant increase in lean mass, without any significant
change in body mass index (BMI) (Table 2). Table 2 also summarizes the blood biochemical
parameters of subjects before and after the exercise training. All subjects were metabolically
healthy at the beginning of the study, as shown by the levels of fasted glucose, insulin
and lipoproteins. In fact, all the participants had lipid parameters within the National
Cholesterol Education Program (NCEP) reference ranges [38]. After short-term exercise
training, a significant decrease in total cholesterol and fasting insulin was observed (Table 2).
No significant changes were observed in the levels of other plasma lipids, C-reactive protein
(hsCRP), glucose or HOMA-IR (Table 2). No significant differences were observed in HDL
cholesterol and triglyceride levels and other biochemical parameters between men and
women enrolled in our study before and after exercise training.

3.2. Serum PON1 Activity and MPO Levels

At baseline, PON1-paraoxonase activity showed great variability (403–1220 U/mL)
in the subjects included in the study. Higher PON1-paraoxonase activity was observed
in all subjects after exercise training (Figure 2a). The increase was statistically significant
(p < 0.0001) and ranged between 2% and 45%. Similar results were obtained for PON1

https://www.displayr.com
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arylesterase and lactonase activities (Figure 2b,c) (p < 0.0001). PON1 is associated with HDL;
therefore, we calculated the standardized enzyme activity value for HDL-C (PON1/HDL-
C). There was also significant increase in the ratio of PON1/HDL-C after physical training.

Table 2. Anthropometric and biochemical characteristics of subjects before (PRE) and at the end
(POST) of the seven-week exercise training.

PRE
(Mean ± SD)

POST
(Mean ± SD) p Value

Anthropometrics
Body weight (kg) 93.2 ± 12.5 93.3 ± 12.4 0.990
BMI (kg ·m−2) 30.3 ± 2.5 30.3 ± 2.6 0.867
Fat mass (kg) 37.1 ± 8.2 35.7 ± 8.3 <0.001
FMI (kg ·m−2) 12.1 ± 2.6 11.6 ± 2.6 <0.001
Lean mass (kg) 52.3 ± 8.6 54.4 ± 8.6 <0.0001
LMI (kg ·m−2) 17.2 ± 1.6 17.6 ± 1.7 0.0002
Visceral fat mass (kg) 1.1 ± 0.6 0.9 ± 0.8 0.0076
Waist circumference (cm) 95.6 ± 8.6 93.8 ± 8.3 0.0081

Aerobic capacity and muscle strength
VO2max (L ·min−1) 3.3 ± 0.7 3.7 ± 0.8 0.0002
Leg press (kg) 280.0 ± 86.7 483.3 ± 177.4 <0.0001

Biochemical parameters
TGs (mmol/L) 1.38 ± 0.72 1.39 ± 0.77 0.89
TC (mmol/L) 5.07 ± 0.99 4.61 ± 1.48 0.031
HDL-C (mmol/L) 1.54 ± 0.29 1.47 ± 0.32 0.123
Non-HDL cholesterol (mmol/L) 3.53 ± 1.01 3.14 ± 1.45 0.059
Apo AI (g/L) 1.62 ± 0.22 1.56 ± 0.19 0.44
Apo B (g/L) 0.92 ± 0.26 0.90 ± 0.31 0.66
hsCRP (mg/L) 3.39 ± 3,51 2.59 ± 2.17 0.348
HOMA-IR 3.72 ± 2,09 2.99 ± 1.93 0.106
Fasting glucose (mmol/L) 5.27 ± 0.46 5.52 ± 0.56 0.189
Fasting insulin (mUI/L) 16.40 ± 11.36 11.84 ± 6.56 0.036

Data are means ± S.D. Statistical analysis was performed using Wilcoxon test. BMI, body mass index; FMI, fat
mass index; LMI, lean mass index; BMI, body mass index; VO2max, maximal oxygen uptake; TGs, triglycerides;
TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; Apo AI, Apolipoprotein AI; Apo B, Apolipopro-
tein B; hsCRP, C-reactive protein; HOMA-IR, homeostatic model assessment of insulin resistance.Metabolites 2023, 13, x FOR PEER REVIEW 8 of 18 
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Figure 2. Paraoxonase (PON) (a), arylesterase (ARE) (b) and lactonase (LAC) (c) activities of PON1 in
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The MPO enzyme levels evaluated in the serums of the subjects ranged from 46 ng/mL
to 153 ng/mL. Lower MPO levels were observed in the subjects after exercise training
(p < 0.001) (Figure 3a); the decrease ranged from −4% to −36%.
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The comparison of the ratio between serum MPO level/PON1 paraoxonase activity
(MPO/PON1 ratio) showed a decrease in obese subjects after exercise training (Figure 3b)
(p < 0.0001). Recently, the MPO/PON1 ratio has been suggested as a novel biomarker
of HDL functionality [39]; therefore, our data confirm that, although pre- and post-HDL-
C levels did not undergo changes, HDL function appeared to be improved following
exercise training.

3.3. HDL Redox Activity

HDL redox activity was assessed by measuring the increasing fluorescence of dihy-
drorhodamine 123 oxidation over time. As reported in Figure 4, the mean values of the
oxidation rate of DHR (DOR) in HDLs isolated from the subjects were significantly lower
after exercise training (p < 0.001). These results demonstrate that HDLs from subjects after
training have a lower intrinsic ability to be oxidized.
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Figure 4. Redox activity of HDLs isolated from serums of subjects before (PRE) and at the end of the
seven-week exercise training (POST). Values are reported as oxidation rate of DHR (DOR). Statistical
analysis was performed using Wilcoxon test. *** p < 0.001.

3.4. Serum Lipid Peroxidation and Antioxidant Potential

The levels of oxidized LDL (ox-LDL) in subjects included in the study ranged from
40 U/L to 103 U/L. Exercise training was associated with a significant decrease in ox-LDL
levels (p < 0.05) (Figure 5a). These data suggest a decrease in lipoprotein oxidation in obese
subjects following treatment. The evaluation of the total antioxidant potential (PAT) of the
serums (evaluated using ORAC assay) demonstrated an increase in antioxidant capacities
following the exercise treatment (Figure 5b).
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Figure 5. Levels of oxidized LDL (ox-LDL) (a) and total antioxidant potential (b) of serums of subjects
before (PRE) and at the end of the seven-week exercise training (POST). Statistical analysis was
performed using Wilcoxon test. ** p < 0.05; *** p < 0.001.

3.5. Correlations

The pairwise correlation between each of the studied clinical and biochemical param-
eters, which were evaluated in the subjects before and at the end of seven-week training,
was considerable (Figure 6). The LMI was significantly positively correlated to the VO2max
(r = 0.61, n = 36, p < 0.001); these results confirm that subjects with a larger muscle mass show
higher oxygen consumption. A significant positive correlation was observed between the
BMI of subjects and their CRP (r = 0.53, n = 36, p < 0.002) and TG (r = 0.64, n = 36, p < 0.0001)
and ApoB (r = 0.46, n = 36, p < 0.001) plasma levels (Figure 6). A significant positive correla-
tion was also established between the visceral fat mass of the subjects and their TG (r = 0.68,
n = 36, p < 0.0001), TC (r = 0.47, n = 36, p < 0.005) and ApoB plasma levels (r = 0.68, n = 36,
p < 0.0001); weak negative correlations between visceral fat mass and serum HDL-C levels
(r =−0.32, n = 36, p < 0.05) and HDL redox activity (r =−0.34, n = 36, p < 0.05) were observed
(Figure 6).Metabolites 2023, 13, x FOR PEER REVIEW 12 of 18 
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Figure 6. Correlation matrix for clinical and biochemical parameters. Values inside each box represent
Spearman’s correlation coefficient. BMI, body mass index; FMI, fat mass index; LMI, lean mass
index; VO2max, maximal oxygen uptake; TGs, triglycerides; TC, total cholesterol; HDL-C, high-
density lipoprotein cholesterol; CRP, C-reactive protein; PON-ARE, PON1-arylestrase activity; PON-
LAC, PON1 lactonase activity; PON, PON1 paraoxonase activity; ox-LDL, oxidized LDL; MPO,
myeloperoxidase; PAT, serum total antioxidant potential; DOR oxidation rate of DHR.
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Serum PON1 activities were negatively correlated with MPO levels (Figure 5). A signifi-
cant positive correlation was established between HDL redox activity and the MPO/PON1
ratio (r = 0.61, n = 36, p < 0.0001) and PON1 paraoxonase activity (r = −0.64, n = 36,
p < 0.0001) in the serums of obese subjects before and after training. Furthermore,
MPO/PON1 ratio values were negatively correlated with PAT values (r = −0.51, n = 36,
p < 0.003) and, albeit not as strongly, positively correlated to ox-LDL levels (r = 0.33, n = 36,
p < 0.05) observed in the serums of obese subjects before and after training.

4. Discussion

Previous studies have investigated the effects of physical activity on HDL functions
in overweight and normal-weight subjects, as summarized in recent metanalyses [30,32].
Nevertheless, when dealing with the effects of combined physical exercise (aerobic and
resistance training), evidence is still scarce for the population with obesity. Combined
physical exercise has been appointed as an ideal treatment for overweight and obese people,
due to its concomitant effects on cardiorespiratory and muscular fitness, as recommended
by the American College of Sports Medicine [40]. Furthermore, a recent meta-analysis of
randomized clinical trials showed that exercise training increased HDL-C to a greater extent
than dietary intervention alone for overweight individuals [28,41]. In our study, marked
improvements in VO2max and muscle strength were observed after the training period.
Significant reductions in total and visceral adipose tissue mass and waist circumference
were observed without any significant decrease in body weight and BMI. These data are in
agreement with other studies [42]. A significant increase in the activity of the antioxidant
HDL-associated enzyme paraoxonase-1 (PON1) and a decrease in MPO levels, with a de-
crease in the MPO/PON1 ratio, were observed in the serums of obese subjects after a 7-week
training intervention. Moreover, HDLs isolated from the serums of obese subjects showed a
lower susceptibility to oxidative stress and higher antioxidant activity. The improvement
of HDL functionality after exercise training was associated with a significant decrease in
levels of ox-LDL and an increase in serum antioxidant potential. These changes occurred
despite no significant change in HDL cholesterol levels or modifications of other plasma
lipids. These results confirm that lifestyle changes, such as physical exercise, improved HDL
function even before there were appreciable changes in HDL levels [30,32,43].

The PON1 enzyme has been reported to contribute to the anti-atherogenic and anti-
inflammatory properties of HDL [12,14]. In obese subjects, the decrease in PON1 activity
is associated with a loss of ability to inhibit lipoprotein oxidation and correlated with
increased oxidative stress [9,11]. The increase in PON1 activities, including the lactonase
activity, the native enzyme activity [44], after a 7-week training intervention supports
the positive effect of physical activity on HDL. Previous studies have shown a signif-
icant improvement in PON1 activity and HDL functionality after a period of physical
exercise practice in normal-weight or obese subjects [45–49]. However, contrasting results
have been reported by other authors, and no significant modification in PON1 activ-
ity and HDL function have been observed after physical activity in overweight/obese
subjects [50,51]. These data suggest that the impact of exercise on HDL function and PON1
activity depends on several factors, including exercise type, intensity and duration, as well
as clinical characteristics (age, ethnicity, body mass, diet, medications, etc.) [30,32,52]. The
molecular mechanisms involved in the increased PON1 activities after exercise training
may include an effect on PON1 hepatic synthesis or secretion and/or modification of PON1
interactions with HDL. Previous studies have reported that high ROS and pro-inflammatory
cytokines (TNF-a, IL-1 and IL-6) from the adipose tissue and liver modulate hepatic PON1
synthesis through cell receptor-mediated signaling pathways and nuclear receptors (such
as peroxisome proliferator-activated receptors, PPARs) [53,54]. Moreover, PON1 was found
to be inactivated by oxidized lipids [55]. We suggest that physical exercise, associated with
a significant reduction in total and visceral adipose tissue mass, results in reduced oxidative
stress and pro-inflammatory and pro-oxidant proteins, such as MPO, leading to the increase
in PON1 expression and activity in overweight/obese subjects (Figure 7). The significant



Metabolites 2023, 13, 1068 11 of 15

negative correlation observed between PON1 activity and MPO levels of the subjects in-
cluded in our study confirm the key role of MPO in modulating PON1 activity. PON1 and
MPO are both associated with the HDL lipid surface, forming a ternary complex [56]. HDL
is a selective in vivo target for MPO-catalyzed oxidation [57]. MPO generates hypochlorous
acid, which oxidatively damages lipid and protein HDLs. Extensive MPO-mediated post-
translational modifications, including the oxidation of tryptophan, tyrosine and methionine
residues, as well as the carbamylation of lysine residues, are detected in ApoAI and PON1.
These modifications are associated with impaired antioxidative and RCT abilities of HDL
and also with an increased conversion of LDL into ox-LDL [18–20,57].
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Figure 7. Effect of exercise training on paraoxonase-1 (PON1) activity in overweight/obese subjects.
Exercise training is associated with a reduction in total and visceral adipose tissue (1). There is a
consequent decrease in MPO levels and markers of lipid peroxidation in blood (2). In hepatic cells,
the decreases in lipid peroxidation and pro-inflammatory products could modulate PON1 gene
expression (3). The increased PON1 secretion (4) results in higher PON1 activity in serum (5). The
higher PON1 activity could be also due to the reduced inhibitory effect exerted by lipid peroxidation
products and by MPO; on the other hand, the higher PON1 activity could contribute to reduce
ox-LDL and MPO pro-oxidant activity (6) (↑ increase; ↓ decrease). The figure was generated using
Microsoft PowerPoint (version 16.16.27) using royalty-free vectors from https://freesvg.org (accessed
on 19 August 2023) and https://stock.adobe.com/ (accessed on 25 September 2023).

Previous studies have investigated the modifications of MPO levels after dietary inter-
vention and aerobic exercise in obese subjects [51] and subjects with metabolic syndrome
(MetS) [43,58,59]. A decrease in serum MPO levels was shown after 3 weeks of a low-
fat diet and aerobic exercise in 31 obese men, 15 of whom had MetS; the modifications
were associated with decreases in BMI, serum lipids and markers of lipid peroxidation
(8-isoprostaglandin F2α) and markers of inflammation such as CRP, soluble ICAM-1, sol-
uble P-selectin and matrix metalloproteinase-9 [51]. Mathew et al. reported a significant
decrease in the MPO products 3-chlorotyrosine and 3-nitrotyrosine in HDL after 12 weeks
of moderate exercise and dietary changes in patients with MetS, even in the absence of mod-
ification of body weight; the decrease in these products was correlated with improvement
in HDL cholesterol efflux capacity [43]. Nonetheless, to the current researchers’ knowledge,
no studies have yet been conducted to investigate the effects of physical activity, without
dietary intervention, on MPO levels and on the MPO/PON1 ratio in obesity. Our results
showed a significant negative correlation between serum MPO/PON ratios and HDL redox
activity. Therefore, our study confirms that the combined use of these two important
HDL-associated enzymes, PON1 and MPO, and the evaluation of the MPO/PON1 ratio

https://freesvg.org
https://stock.adobe.com/


Metabolites 2023, 13, 1068 12 of 15

are valuable markers of HDL functionality. The improvement of HDL functionality after
exercise training was associated with a significant decrease in the levels of ox-LDL and an
increase in serum antioxidant capacity in the serums of overweight/obese subjects. All
these results suggest that overweight/obese adults may benefit from combined physical
exercise programs in many metabolic aspects that are related to protection against the
development of cardiovascular disease.

5. Conclusions

Obesity represents a significant public health concern with one third of adults clas-
sified as living with obesity. We found that in overweight/obese subjects, the combined
physical exercise program, without active modifications of dietary habits, improved aerobic
capacity and muscle strength and decreased total and visceral adipose tissue mass and
waist circumference without any significant decrease in body weight. These modifications
were associated with a reduced MPO/PON1 ratio and increased HDL functionality, along
with an improvement of the oxidant/antioxidant balance. These dynamic changes in the
HDL function and oxidation state of subjects in short-term combined physical exercise
programs prior to changes in HDL cholesterol levels and without modifications of the
dietary habits or BMIs of the subjects, are a key finding of this work. These data indicate
that HDL functional modifications are realized early and are independent of HDL choles-
terol improvement and modification of body weight. It has to be stressed that the subjects
included in our study were without any alteration of metabolic parameters associated
with cardiovascular diseases. In fact, all the participants had lipid parameters within the
National Cholesterol Education Program (NCEP) reference ranges.

Some limitations of the current study must be considered, including the small number
of obese subjects included and the absence of a control group of overweight/obese subjects
who did not receive any type of training intervention.

These results could contribute to the whole of solid evidence that can guide the pre-
scription of physical exercise treatment for overweight/obese subjects, aiming to reduce
cardiovascular risk and improve general health. Moreover, current communication strate-
gies surrounding physical activity for overweight/obese subjects are manly related to
dietary therapy and weight loss; however, this approach often appears inadequate. Infor-
mation about other health-relevant outcomes, rather than weight loss by itself, could make
physical activity more relevant and compelling for overweight/obese subjects to initiate
and sustain.
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