
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2335

Scalable and Interoperable Low-Power
Internet of Things Networks

JOAKIM ERIKSSON

ACTA UNIVERSITATIS
UPSALIENSIS

2023

ISSN 1651-6214
ISBN 978-91-513-1951-3
urn:nbn:se:uu:diva-513926

Dissertation presented at Uppsala University to be publicly examined in Häggsalen,
Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 15 December 2023 at 13:15 for
the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty
examiner: Professor Leo Selavo (University of Latvia).

Abstract
Eriksson, J. 2023. Scalable and Interoperable Low-Power Internet of Things Networks.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 2335. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1951-3.

Internet of Things (IoT) is the concept of connecting devices to the Internet. IoT devices can be
anything from small temperature sensors to self-driving cars. The devices are typically resource-
constrained, connected wirelessly, and often battery-powered. In this thesis, we address energy
efficiency and the tools required for estimating power consumption, interoperability between
different implementations of IoT protocols, and scalability of the IoT networks in mesh
configurations. The contributions are made in the five included research papers addressing
these challenges. Firstly, we present and evaluate network-wide energy estimation support
in our simulation tool COOJA/MSPSim. Due to the timing accuracy of the simulation and
emulation, we get energy consumption estimates very close to hardware-based estimates. The
second contribution evaluates the capabilities of simulation tools for interoperability testing.
We show that it is possible to set up simulations of networks with multiple implementations
of the same open standards (6LoWPAN/RPL) and that it is possible to get results beyond pure
interoperability, including power consumption and network quality. Finally, we show that, by
carefully managing neighbor updates, it is possible to scale IoT networks even when the IoT
devices' memory limitations severely constrain the size of the neighbor table.

The experimental systems research that resulted in this thesis also provided significant
contributions to the open-source ecosystem around Contiki, an operating system for resource-
constrained IoT devices. This software, Contiki and COOJA/MSPSim, has been a cornerstone
in our capability to perform sound systems research and has been widely used by other research
groups in resource-constrained IoT research in academia and many companies for developing
commercial IoT devices.

Keywords: IoT, low-power networking, scalability, interoperability

Joakim Eriksson, Department of Electrical Engineering, Networked Embedded Systems, Box
65, Uppsala University, SE-751 03 Uppsala, Sweden.

© Joakim Eriksson 2023

ISSN 1651-6214
ISBN 978-91-513-1951-3
URN urn:nbn:se:uu:diva-513926 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-513926)

To Viktor, Oliver and Agneta

List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Joakim Eriksson, Fredrik Österlind, Niclas Finne, Adam Dunkels,
Nicolas Tsiftes, and Thiemo Voigt, "Accurate, network-scale power
profiling for sensor network simulators". In European Conference on
Wireless Sensor Networks, EWSN 2009 DOI:
https://doi.org/10.1007/978-3-642-00224-3_20

II Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes,
Adam Dunkels, Thiemo Voigt, Robert Sauter, and Pedro José Marrón,
"COOJA/MSPSim: Interoperability Testing for Wireless Sensor
Networks". In International Conference on Simulation Tools and
Techniques, Simutools 2009 DOI:
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5637

III JeongGil Ko, Joakim Eriksson, Nicolas Tsiftes, Stephen
Dawson-Haggerty, Jean-Philippe Vasseur, Mathilde Durvy, Andreas
Terzis, Adam Dunkels, and David Culler, "Industry: Beyond
Interoperability - Pushing the Performance of Sensor Network IP
Stacks". In ACM Conference on Embedded Networked Sensor Systems,
SenSys 2011 DOI: https://doi.org/10.1145/2070942.2070944

IV George Oikonomou, Simon Duquennoy, Atis Elsts, Joakim Eriksson,
Yasuyuki Tanaka, and Nicolas Tsiftes, "The Contiki-NG open source
operating system for next generation IoT devices". In SoftwareX,
Volume 18, June 2022 DOI:
https://doi.org/10.1016/j.softx.2022.101089

V Joakim Eriksson, Niclas Finne, Nicolas Tsiftes, Simon Duquennoy,
and Thiemo Voigt, "Scaling RPL to Dense and Large Networks with
Constrained Memory". In International Conference on Embedded
Systems and Networks, EWSN 2018 DOI:
https://dl.acm.org/doi/10.5555/3234847.3234863

Reprints were made with permission from the publishers.

Additional Publications

List of selected additional publications not included in the Thesis:

• Niclas Finne, Joakim Eriksson, Thiemo Voigt, George Suciu, Mari-Anais
Sachian, JeongGil Ko, and Hossein Keipour, "Multi-trace: multi-level
data trace generation with the COOJA simulator". In Intelligent Systems
for the Internet of Things, Workshop at 17th International Conference
on Distributed Computing in Sensor Systems (DCOSS), 2021

• Shuai Zhu, Thiemo Voigt, Daniel F Perez-Ramirez, and Joakim Eriks-
son "A Low-resolution infrared thermal dataset and potential privacy-
preserving applications". In DATA’21, Workshop at 19th ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys), 2021

• John Kanwar, Niclas Finne, Nicolas Tsiftes, Joakim Eriksson, Thiemo
Voigt, Zhitao He, Christer Åhlund, and Saguna Saguna "JamSense: In-
terference and Jamming Classification for Low-power Wireless Networks".
In 13th IFIP Wireless and Mobile Networking Conference (WMNC),
2021

• Eric Samikwa, Thiemo Voigt, and Joakim Eriksson, "Flood prediction
using IoT and artificial neural networks with edge computing". In Inter-
national Conferences on Internet of Things (iThings), 2020

• Carlos Gonzalo Peces, Joakim Eriksson, and Nicolas Tsiftes, "Sleepy
Devices Versus Radio Duty Cycling: The Case of Lightweight M2M".
In IEEE Internet of Things Journal nr 2, volume 6, 2019

• Luca Mottola, Gian Pietro Picco, Felix Jonathan Oppermann, Joakim
Eriksson, Niclas Finne, Harald Fuchs, Andrea Gaglione et al. "make-
Sense: Simplifying the Integration of Wireless Sensor Networks into
Business Processes". In IEEE Transactions on Software Engineering
45, 2017

• Simon Duquennoy, Joakim Eriksson and Thiemo Voigt, "Five-Nines Re-
liable Downward Routing in RPL". In arXiv 2017

• Oriol Piñol Piñol, Shahid Raza, Joakim Eriksson, and Thiemo Voigt,
"BSD-based elliptic curve cryptography for the open Internet of Things".

In 7th International Conference on New Technologies, Mobility and Se-
curity (NTMS), 2015

• Adam Dunkels, Joakim Eriksson, Niclas Finne, Fredrik Österlind, Nico-
las Tsiftes, Julien Abeillé, and Mathilde Durvy "Low-power IPv6 for the
Internet of Things". In Ninth International Conference on Networked
Sensing (INSS), 2012

• Jeonggil Ko, Joakim Eriksson, Nicolas Tsiftes, Stephen Dawson-Haggerty,
Andreas Terzis, Adam Dunkels, and David Culler "Contikirpl and tinyrpl:
Happy together". In Workshop on Extending the Internet to Low Power
and Lossy Networks, Workshop at IPSN 2011

• Adam Dunkels, Joakim Eriksson, Niclas Finne, and Nicolas Tsiftes,
"Powertrace: Network-level power profiling for low-power wireless net-
works". Report Swedish Institute of Computer Science, 2011

• Nicolas Tsiftes, Joakim Eriksson, and Adam Dunkels, "Low-power wire-
less IPv6 routing with ContikiRPL." In International Conference on In-
formation Processing in Sensor Networks (IPSN), 2010

• Niclas Finne, Joakim Eriksson, Nicolas Tsiftes, Adam Dunkels, and
Thiemo Voigt, "Improving Sensornet Performance by Separating Sys-
tem Configuration from System Logic". In European Conference on
Wireless Sensor Networks (EWSN), 2010

• Fredrik Österlind, Adam Dunkels, Thiemo Voigt, Nicolas Tsiftes, Joakim
Eriksson, and Niclas Finne, "Sensornet checkpointing: Enabling re-
peatability in testbeds and realism in simulations." In European Con-
ference on Wireless Sensor Networks (EWSN), 2009

• Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt, "Run-
time dynamic linking for reprogramming wireless sensor networks". In
International Conference on Embedded Networked Sensor Systems (Sen-
Sys), 2006

• Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
Thiemo Voigt, "Cross-level sensor network simulation with COOJA". In
IEEE Conference on Local Computer Networks (LCN), 2006

Contents

Part I: Dissertation Summary . 13

1 Introduction . 15
1.1 Low-Power Wireless Networking for Internet of Things 15

1.1.1 Application Areas . 16
1.1.2 Communication Protocols for IoT Devices 16
1.1.3 The Internet Protocols for IoT . 16

1.2 Resource-Constrained Devices . 17
1.2.1 Embedded Operating Systems . 17
1.2.2 Emulation and Simulation . 18

1.3 Research Methodology . 20
1.4 Dissertation Structure . 20

2 Research Challenges . 21
2.1 Power Profiling and Energy Efficiency . 21
2.2 IoT Network Interoperability . 21
2.3 IoT Network Scalability . 22

3 Contributions . 23
3.1 Operating System and Simulation Support for Network-Scale

Power Profiling . 23
3.2 Interoperability and Performance Testing for IoT Stacks 24
3.3 Network Scalability under Memory Constraints . 24
3.4 Software Contributions . 25

4 Summary of the Papers . 26
4.1 Paper I: Accurate, Network-Scale Power Profiling for Sensor

Network Simulators . 26
4.2 Paper II: COOJA/MSPSim: Interoperability Testing for

Wireless Sensor Networks . 27
4.3 Paper III: Industry: Beyond Interoperability - Pushing the

Performance of Sensor Network IP Stacks . 28
4.4 Paper IV: The Contiki-NG Open Source Operating System for

Next Generation IoT Devices . 29
4.5 Paper V: Scaling RPL to Dense and Large Networks with

Constrained Memory . 30

5 Related Work . 32
5.1 Operating Systems . 32

5.2 Simulation Tools . 33
5.3 Energy Estimation . 35
5.4 Automated Interoperability Testing . 36
5.5 Scalability of IP-based IoT Mesh Networks . 37

6 Conclusions and Future Work . 38
6.1 Conclusions . 38
6.2 Future Work . 39

7 Summary in Swedish . 41

References . 43

Acknowledgements

Personal Acknowledgements
Finally, after more than 20 years of being a Ph.D. student, I am at the stage
of writing the Acknowledgements. When I started at the Swedish Institute
of Computer Science (SICS) as a master’s thesis student, I decided to jump
out of the University and join a research institute. Little did I know that I
would be working there more than 25 years later and writing a Ph.D. thesis
Acknowledgments section, but I am happy that I do. There are so many people
that I have been working with during this time; I will include the ones I believe
are the most essential part of my success in getting a Ph.D.

First and foremost, my deepest gratitude to my primary supervisor, Profes-
sor Thiemo Voigt, who has been guiding me forward with infinite patience. I
would also like to show my gratitude to my current co-supervisor Professor
Per Gunningberg. He was one of my teachers at Uppsala University during
my computer science studies and also helped me find my way into SICS via
a master’s thesis project. During the years as a Ph.D. student, I have had sev-
eral other supervisors and co-supervisors, I am grateful for all their support
over the years, Professor Mats Björkman, Professor Arne Andersson, Profes-
sor Erik Aurell, Professor Mikael Gidlund.

Another important person in my life as a Ph.D. student and researcher at
SICS and now RISE is Dr. Sverker Janson, who offered an exciting master’s
thesis project and, after that, allowed me to work in his research lab, and was
my manager for over two decades. I would also like to thank my current man-
ager, Dr. Hanifeh Khayyeri, for supporting me while working on finalizing
my thesis.

Some years into my employment at SICS, we created the Network Em-
bedded Systems group with a strong focus on sensor networks and IoT. Our
research group has been very successful and is also a strong reason for my
success in getting a Ph.D. I would like to thank all the current and previous
researchers in our group, including Dr. Nicolas Tsiftes, Niclas Finne, Dr.
Adam Dunkels, Professor Luca Mottola, Dr. Simon Duquennoy, Dr. Fredrik
Rosendal, and Joel Höglund.

Other colleagues at RISE I would like to thank for exciting discussions and
projects include Professor Seif Haridi, Dr. Mats Carlsson, Dr. Per Mildner, Dr.
Daniel Gillblad, Dr. Rebecca Steinert, Dr. Ahmad Al-Shishtawy, Professor
Jim Dowling, Professor Dejan Kostic, Professor Kristina Höök, Dr. Anna
Ståhl, and Dr. Anton Gustafsson.

Last but not least, I would like to thank my family, Agneta, Oliver, and
Viktor, for their understanding and support while writing the thesis, and my
parents, Sylvia and Ruben, who supported me throughout my journey of be-
coming and being a computer science student.

Funding Acknowledgements
While conducting the research for this thesis, I have been involved in a large
number of research projects, most of which were supported through public
funding. I am very grateful to all the funding agencies for financing the re-
search. The agencies include Swedish Agency for Innovation Systems (VIN-
NOVA), Swedish Foundation for Strategic Research (SSF), and the Swedish
Knowledge Foundation (KKS), and European Commission under the FP7.
Finally I am also grateful to Yanzi Networks, a Swedish SME, that funded
most of the work resulting in Paper V, where we worked on commercializing
Contiki-based IoT products and services. When working on this thesis, I was
employed as a researcher by RISE, Research Institutes of Sweden, and before
that by SICS, Swedish Institute of Computer Science AB (merged into RISE).

Joakim Eriksson
Solna, October 2023

Part I:
Dissertation Summary

1. Introduction

The Internet of Things (IoT) is the concept of connecting devices to the In-
ternet. IoT devices come in a wide variety and include smartphones, home
appliances, industrial sensors, actuators, and vehicles. A complete IoT system
also includes everything from the IoT devices to cloud services, including the
gateway that connects devices to the Internet. In many cases, the IoT devices
form a mesh network and communication terminates at a gateway that either
hosts an application with local logic or forwards the data to the cloud, often
after protocol translation. IP-based IoT connectivity provides end-to-end con-
nection, without protocol translation, to the cloud, thus providing a possibility
of true end-to-end security.

This thesis focuses on system software for low-power IoT devices and IP-
based mesh networks between the devices and the gateway.

1.1 Low-Power Wireless Networking for Internet of
Things

Low-power wireless networking is used for a large number of different types
of applications such as remote sensing and monitoring, smart office sensing
and actuation, and wearables. These networks can have different topologies,
typically either a star topology where every device connects via a single hop to
a central gateway, or a mesh topology where many nodes can forward packets
and create a longer-range network via multiple hops to the gateway. Differ-
ent applications use different communication protocols and topologies. Star
networks such as BLE [9] are often used for single hop, short-range networks
such as smart home appliances and wearables, while LoRa/LoRaWAN [4] and
mioty [22] are used in long-range single-hop networks such as farming, smart
cities, and monitoring of remote equipment. More complex mesh networks
are used in some smart building and smart home applications (Thread [25] or
Zigbee [72]) using short-range links with IEEE 802.15.4 on 2.4 GHz, while
smart grids and smart cities use longer-range links on sub-GHz (Wi-Sun [26]).
Typical devices for low-power wireless networking consist of a system-on-
chip with a microprocessor (MCU), built-in radio, and digital and analog I/Os.
These devices are usually powered by batteries and are often designed to have
an expected battery lifetime of up to ten years [53].

To achieve ten years of battery lifetime devices are, as much as possible,
in deep-sleep modes that consume a very small amount of power. They only

15

wake up regularly to measure, process and communicate during a short period
(typically below 100 ms). In the simplest form of network topology where ev-
erything is single-hop, all the devices can have very long sleep times as there
is no need to route packets to other nodes. The situation in mesh networks
is much more complex as many nodes need to route for other nodes further
from the gateway. In a mesh network, the routing nodes either need to be
mains powered or make use of a duty-cycling protocol such as IEEE 802.15.4
Time-Slotted Channel Hopping (TSCH) [30] that allow the radio and the mi-
croprocessor to be in sleep states for most of the time but still wake up at short
intervals to forward packets on behalf of neighboring nodes.

1.1.1 Application Areas
IoT is used in many types of application areas where remote sensing and ac-
tuation are needed. Infrastructure monitoring is one case where sensors are
deployed on bridges, buildings, or the electrical grid to monitor the condi-
tion of the infrastructure to enable predictive maintenance [49]. Another area
where IoT is used is in smart buildings [3, 36] where sensors provide de-
tailed information about indoor air quality (temperature, CO2 and particles),
and energy consumption. These IoT systems provide building users with data
for better indoor environment control and optimization of the building’s en-
ergy consumption. IoT is also used in many other areas, including wearables
for personal health and medical applications, sensors and actuators for smart
homes, and condition monitoring of industrial equipment.

1.1.2 Communication Protocols for IoT Devices
IoT devices are connected to the gateway and/or cloud via several different
protocols. High-performance IoT devices, such as network cameras and wire-
less audio speakers can be connected via WiFi or even Ethernet. Low power
and more resource-constrained devices such as battery-powered sensors typi-
cally use low-power communication protocols such as 6LoWPAN [52], BLE,
Z-Wave, Zigbee or LoRa. In the near future, it seems like the low-power
version of telecom protocols will also be viable options, especially NB-IoT
(Narrowband IoT) that is designed to have a lower bitrate and significantly
lower power consumption than the previous telecom alternatives [1, 2].

1.1.3 The Internet Protocols for IoT
In 2005, the first draft of 6LoWPAN communication was submitted to the
IETF, the Internet Engineering Task Force, the organisation that handles stan-
dardisation of the Internet Protocols. Now, there are many completed RFCs
from the initial 6LoWPAN IPHC, IPv6 header compression for IEEE802.15.4

16

to the more recent 6TiSCH for reliable low-power wireless connectivity [51,
67, 69]. Recently the 6LoWPAN-based Thread [68] protocol established itself
as one of the likely candidates for being the main alternative for low-power
IoT devices in smart homes.

1.2 Resource-Constrained Devices
The work in this thesis revolves around highly resource-constrained devices.
A typical device is the Telos B [57], also called Tmote Sky, with a 16-bit
MSP430 MCU with 10 kB RAM and 48 kB Flash, an 802.15.4 radio, and a few
sensors. The Tmote Sky was, for a long time, the most common platform for
research within wireless sensor networks. Recently, more and more devices
contain a system-on-chip where MCU and radio-chip are integrated into one
single chip, typically with more memory than the Tmote Sky and a 32-bit
ARM cortex M3 MCU. A study by Ko et al. that analyses the shift from 8/16-
bit to 32-bit shows that the expected increase in power consumption and usage
of RAM/flash when upgrading to 32-bits is not that big. This result indicates
that it is likely that most future low-power products will use 32-bit MCUs [40].
Even with the move to 32-bit MCUs, the flash and RAM will be limited, and
given these constraints, devices cannot use a fully featured operating system
such as Linux but need a more lightweight operating system (OS). The work
in this thesis has been performed on this type of resource-constrained devices
using Contiki OS as the operating system.

1.2.1 Embedded Operating Systems
Even for very resource-constrained IoT devices it is important to develop ap-
plications on top of an OS. Like Linux or Windows, the embedded OSes sup-
port memory management, processes, networking, and peripherals such as
GPIO, sensors, and radios. This section introduces the OSes that are most
relevant to the thesis.

Contiki [15] is a very lightweight event-based operating system with sup-
port for many IoT device platforms with built-in 802.15.4 radio. Contiki also
supports a full IPv6 stack with 6LoWPAN compression [17], multi-hop mesh
networking, and many application layer protocols including HTTP, MQTT,
and LWM2M. During the work resulting in this thesis, I contributed to Con-
tiki’s 6LoWPAN stack and maintained the Tmote Sky platform. Contiki and
the full IPv6 stack, including an application, fit the 50 kB flash of the Tmote
Sky, making it one of the smallest operating systems with a full IPv6 stack. In
2017, we released Contiki-NG (Contiki-Next Generation, described in Paper
IV), a fork with a focus on standards-based communication and support for
modern IoT devices.

17

TinyOS [28] was one of the first OSes for sensor networks and IoT. It is
an event-driven OS designed for resource-constrained hardware such as the
Tmote Sky and made use of a component-oriented C-language extension.
TinyOS’s IPv6 stack, BLIP, implements 6LoWPAN compression and supports
RPL-routing via TinyRPL [39]. We used both TinyOS and Contiki to evaluate
automatic interoperability testing as described in Paper II and Paper III.

1.2.2 Emulation and Simulation
A simulator is a software tool that simulates selected parts of the behavior
of the real world and is normally used as a tool for research and develop-
ment. Simulators exist in a wide variety of fields, including physics, biology,
economics, and computer systems. Depending on the intended usage of the
simulator, different parts of the real-world system are modeled. The parts that
are modeled can also be of varying abstraction levels. A wireless sensor net-
work simulator simulates the wireless media and the nodes in the network.
Some sensor network simulators have a detailed model of the wireless me-
dia, including the effects of obstacles between nodes [37], while others have
a more abstract model [45]. In many wireless sensor simulators, the focus is
on the node models where the nodes can be simulated in detail, in some cases
using hardware emulation for realistic execution of the node’s firmware. In
this thesis, the focus is mainly on simulators that have detailed node models.

During the development of applications, systems, and protocols for sensor
networks, a large part of the time is spent compiling, testing, debugging and
evaluating. Either a network of real sensor nodes or a wireless sensor net-
work simulator is used during the testing, debugging and evaluation. Besides
Contiki, our research group also develops simulation tools such as COOJA/M-
SPSim [19, 55]. By using COOJA/MSPSim we have found both alignment
problems and compiler bugs during the development and porting of commu-
nication stacks and other software. COOJA/MSPSim is also used for Contiki-
NGs automatic tests at GitHub to enable full system testing.

Research experiments for sensor networks and IoT are either deployed and
evaluated in a testbed with real devices or in a simulator [24, 31]. When using
simulators, the evaluation can be much faster, and information about nodes
and their communication can be measured at a high level of detail. It is also
possible to repeat the exact same experiment several times, something more or
less impossible when evaluating an experiment in a testbed with real devices.
In a simulation, it is also possible to control most aspects of the environment,
including the number of nodes, mobility, and packet loss ratio. The main
problem with simulators is that they abstract away aspects of the real world,
which means that they will never fully replace testing in testbeds to validate
the simulation results. An example of a limitation in our simulator is COOJA’s
quite simple radio propagation models.

18

The term emulator is another name for an instruction set simulator. An
emulator allows compiled code, the firmware, to be executed without modi-
fications and therefore not only simulates the effect of using a protocol, but
simulates the effect of using the specific protocol implementation, compiled
with the same compiler, and using the same radio-driver that will be used on
the actual device when deployed.

Some of the work in this thesis relies on the COOJA/MSPSim Simulator.
COOJA/MSPSim combines two tools into a wireless sensor network simu-
lator that allows execution of fast nodes compiled for the host machine (e.g.,
x86/linux) and of slower emulated nodes running the same firmware as the real
IoT device would run (compiled msp430 software). This ability of COOJA
is called cross-level simulation [55]. The following sections introduce these
tools in more detail.

MSPSim [19] is a Java-based instruction-level emulator of the MSP430 mi-
croprocessor series. It emulates complete sensor networking platforms such
as the Tmote Sky [57] and ESB/2 [62]. MSPSim provides detailed simula-
tion with accurate timing and strong debugging support. MSPSim combines
cycle-accurate interpretation of MCU instructions with a discrete-event-based
simulation of all other components, both internal and external. MSPSim uses
an event-based execution kernel that enables accurate timing while limiting the
host processor’s utilization. MSPSim provides debugging capabilities such as
breakpoints, watches, logging, and single-stepping as well as statistics about
the operating modes of the emulated components. These statistics include
elapsed processing time in the different low-power modes that can be used for
energy consumption estimations. Users can access all features and informa-
tion via a command line interface or Java APIs. I initiated the MSPSim project
and have been the leading developer of the emulation platform.

COOJA is a flexible Java-based network simulator initially designed for
simulating networks of IoT nodes running the Contiki operating system. In a
COOJA simulation, each node can be of a different type; differing not only
in onboard software but also in the simulated hardware. COOJA is flexible
in that many parts of the simulator can be easily replaced or extended with
additional functionality. COOJA can execute Contiki programs by running
the program code compiled for the desktop host CPU or running code com-
piled for the IoT device in MSPSim. COOJA can also run nodes programmed
in Java. The different approaches have advantages and disadvantages. Java-
based nodes enable much faster simulations but do not run deployable code.
Emulating nodes allows control and retrieval of more fine-grained execution
details compared to Java-based nodes or nodes running PC host code. Com-
bining the different levels in the same simulation gives both a fast simulation
and fine-grained execution details on selected nodes. COOJA is also useful for
executing firmware from multiple OSes in the same simulation. This is shown
in Paper II and Paper III, where we perform interoperability testing in COOJA
with both Contiki and TinyOS.

19

1.3 Research Methodology
The research methodology used during the work with this thesis is experimen-
tal computer science. The methodology is defined in the publication “Aca-
demic Careers for Experimental Computer Scientists and Engineers” [11] as
“the building of, or the experimentation with or on, nontrivial hardware or soft-
ware systems.”. In my case, I have focused on developing nontrivial software
systems for resource-constrained hardware combined with low-power wireless
networking. In experimental computer science, we first set up a hypothesis on
the expected behavior or performance of the system under experimentation.
This hypothesis is then confirmed (or rejected) via evaluation of the system.
Typically, the evaluation of these type of systems use metrics that focus on the
combination of constraints and performance, for example, energy consump-
tion, packet reception ratio, and memory consumption.

The experiments included in this thesis have been performed in simulation
of such hardware and on real IoT devices in testbeds. One of the included
results is also evaluated in real deployments with hundreds of devices.

1.4 Dissertation Structure
The dissertation contains two parts: Part I, a dissertation summary that intro-
duce the research topic and summarize included publications, and Part II, the
included research publications.

The first chapter in Part I introduces the research topics and the technology
involved. Chapter 2 describes the relevant research challenges in the area.
Chapter 3 discusses the contributions and impact of our research. Finally,
Chapter 4 contains a summary of included publications and a description of
my contribution.

The second part contains the five publications that are included in this dis-
sertation.

20

2. Research Challenges

There are a wide variety of challenges within the research field of Internet of
Things. This section covers the ones that have been my focus during the work
with this dissertation. They are mainly related to low-power networking of
constrained devices.

2.1 Power Profiling and Energy Efficiency
Most IoT devices are battery-powered and are often designed to have a bat-
tery lifetime of five to ten years [53]. This is the main reason for the use of
low-power components such as small MCUs, low-power radios and resource-
efficient operating systems and communication stacks. When comparing the
energy consumption of different implementations, it is important to know
the energy consumption in detail. Keeping track of the energy consumption
can be done in software by measuring the on-time of each hardware compo-
nent [16, 29], or by external measurement hardware that measures the accumu-
lated power consumed by the device. One example of a hardware-supported
power profiling testbed is the D-Cube benchmarking infrastructure [63, 64]
which provides fine-grained measurement of power consumption in a con-
trolled wireless environment. The research challenge in focus of the thesis
is how to achieve energy consumption estimation of IoT software with low
overhead and high accuracy. Paper I investigates this challenge.

2.2 IoT Network Interoperability
Interoperability between implementations of IoT network stacks is an essen-
tial feature for the commercial success of wireless IoT networking technology.
Interoperability testing is fairly easy on higher levels of the protocol stack
when two implementations can exchange some application messages and eas-
ily know what to expect. Testing a complete IoT mesh stack is a more complex
task that requires many nodes running the implementation to form the mesh
topology before the test can be completed and interoperability can be evalu-
ated. Most of the interoperability tests are performed by bringing implementa-
tions and devices to interoperability test events and setting up a series of tests
for evaluating various aspects of interoperability. The main challenge related

21

to interoperability is how to efficiently test multiple implementations in com-
plex network topologies. Many tests also lack quality of the output, as they are
focused on determining interoperability between implementations. There is a
need for more quantitative metrics for evaluating performance when interoper-
ability is achieved, e.g., performance when running multiple implementations.
In simulation-based testing, it is possible to extract information about proces-
sor and memory usage, packet forwarding delays, and many other parameters
from all nodes. This information is useful for calculating performance metrics
for the protocol implementations under test.

The specific research challenge addressed in this thesis is how to perform
interoperability tests of IoT software that are fast, automatic, and provide fine-
grained data. Paper II and Paper III, explore this challenge.

2.3 IoT Network Scalability
IoT devices can communicate using various wireless technologies such as
WiFi, Bluetooth, and 6LoWPAN. While working with Yanzi Networks, an IoT
startup, we realized that gateway costs dominated the cost of the whole IoT
system, both hardware cost and the deployment cost of the gateway. There-
fore, the IoT network protocols must allow the IoT network to scale to a large
number of devices. Bluetooth networks have typically been able to attach just
a few devices per gateway, while most WiFi systems are able to handle hun-
dreds of devices. Both these technologies use star network topologies by de-
fault. This means they cannot handle devices more than one network hop away
from the gateway. This thesis focuses on 802.15.4 and 6LoWPAN, which al-
low more complex multi-hop network topologies. The challenge of scalability
comes from the fact that the devices are resource-constrained. For example,
they cannot store large number of neighbor entries and routes in the neighbor
and routing table at the same time as they need to keep data about neighbors
and links. This is because the cost of rediscovering that data is too high with
respect to both energy and bandwidth. Routing devices in dense deployments
will have lots of potential neighbors to store in the tables, and each routing
device might need to route for many devices further away from the gateway.

Another issue with network scalability in most IoT networks is related to
the wireless medium itself. In a high-density environment where many devices
might transmit simultaneously, the reception of the data will likely fail due to
packet collisions at the receiver. This can be managed in multiple ways (time
slotting, channel hopping, etc), but when the density of devices is too high, it
will still limit the scalability of the network.

The research challenge in focus of this thesis is how to support scalability
of an IoT network given a high number of neighboring nodes, even when
the IoT devices are significantly resource-constrained. Paper V addresses this
challenge.

22

3. Contributions

The contributions that are the results of the work behind this dissertation are
focused on the research challenges described in the previous chapter. Using
our operating system and the simulation tools I have developed as a part of this
thesis, I have shown that (1) it is possible to automate the process of and add
quantitative metrics to interoperability testing, an important activity to achieve
the success of standards-based IoT protocols and (2) by careful management
of neighbor and routing information, it is possible to significantly improve the
scalability of the RPL routing protocol.

Since experimental computer science not only results in specific research
contributions but, in many cases, also provides the software and tools to re-
peat the experiments, we will report both types of contributions. In our case,
this means that many of the software systems developed for the experiments
are available as open-source software on GitHub, mainly in the Contiki-NG
repository.

In the rest of this chapter, I will first elaborate on the research contributions,
followed by a separate section summarizing software contributions.

3.1 Operating System and Simulation Support for
Network-Scale Power Profiling

Measuring power consumption at a high resolution is very important when
designing ultra-low power communication protocols and smart utilization of
peripherals [41]. As Contiki is designed for low-power, many mechanisms
for low-power operation and energy consumption estimation have been added.
For example, Contiki contains an energy estimation module [16] that measures
time in relevant energy states of the most important components, including
MCU and radio. This will give each device an internal estimate of its energy
consumption at a fairly low cost in terms of RAM, flash, and processor cycles
on the device. In a simulated environment like COOJA/MSPSim this type
of measurement can be performed by the simulator itself without any cost in
terms of resources in the simulated devices. In simulation, the measurement
can also be made more fine-grained as there is less limitation on the clock
speed and resolution of the timers available to the IoT firmware. In Paper I,
we show that COOJA/MSPSim based energy estimations correspond well with
results using similar methods on real hardware, making it a powerful tool for
comparing different implementations in simulation, even when the firmware
does not support energy estimations.

23

3.2 Interoperability and Performance Testing for IoT
Stacks

Interoperability and performance testing of wireless low-power protocols is
typically done via test fest events or interop events where the main purpose
is to produce interoperability test reports that consists of a matrix of answers
on which stacks were interoperable and what features they are tested on [21].
Our contribution to improve interoperability testing is twofold: (1) we make
use of simulation and emulation tools to speed up testing, and (2) we evaluate
some performance metrics beyond those typically used.

In Paper II we show that we can run simulations consisting of nodes ex-
ecuting firmware based on different operating systems. In this specific case,
we show both Tiny OS and Contiki running in the same simulation and com-
municating with the same protocols. We also evaluate the power consumption
of both stacks via the built-in energy estimator in COOJA/MSPsim (described
in Paper I), making it possible to evaluate the energy efficiency of communi-
cation stacks and IoT applications. The main contribution of Paper III is that
it takes the interoperability and performance testing one step forward by test-
ing the interoperability of two complete 6LoWPAN stacks, including the RPL
routing protocol. This task previously required meeting up and running tests
with complete software and hardware. Using our approach, the development
team can iteratively improve the code base while the tests are run entirely em-
ulated in COOJA/MSPSim. One of the most valuable features of simulation
and emulation is the zero cost of full state inspection of both devices and all
communication, making debugging very fast compared with physical interop
tests. We found bugs and incompatibilities in both stacks during the work with
Paper III.

3.3 Network Scalability under Memory Constraints
During my work with the IoT start-up Yanzi Networks, we did a series of
scalability experiments by setting up hundreds of IoT devices and evaluated
network topology stability and reliability of the network. The initial stability
was far from satisfying due to intensive neighbor churn. Since we use storing
mode of RPL, which stores routes to the next hop in each node, the neigbor
churn caused inconsistencies in the topology. In the specific hardware used,
STM32W, it is impossible to increase the neighbor table to fit all neighbors
seen, nor handle all route requests received. In total, this device has 16 kB
RAM and the tables allowed ten neighbors and 20 routes. Paper V’s contri-
butions are (1) an end-to-end route registration mechanism for storing mode
RPL, so that registering nodes know if the route was registered all the way to
the gateway, and (2) a neighbor policy mechanism that protects neighbors from
deletion and carefully controls which new neighbors enter the neighbor table.

24

These two mechanisms solved the scalability issue for the RPL routing proto-
col for the Yanzi devices, and we can now scale beyond 600 devices, all within
single-hop communication range, with only tens of neighbors and routes in the
tables. We have upstreamed this improvement to Contiki’s GitHub repository.

3.4 Software Contributions
During the research work I have been doing, I have developed software that,
most of the time, ended up as open-source contributions. I am the initia-
tor and leading developer of the MSPSim emulator and its integration into
COOJA. MSPSim has provided our research team and many other research
teams with a very efficient tool for debugging, measuring, and evaluating new
code and mechanisms for IoT, including low-power protocol implementations.
MSPSim has been extended and used in many research projects. Some ex-
amples are: SIREN, that extends MSPSim for batteryless energy harvesting
devices [23], Shimmer that adds support for Bluetooth communication [42],
and Stecklina et al.’s work that implements support for secure memory mod-
els [66].

I am also one of the two leading developers of ContikiRPL, which our re-
search team and many others in academia have used for their research [6, 18,
71]. Our RPL implementation is the basis for the default routing protocol in
Contiki-NG, and we were among the first to implement RPL during the stan-
dardization process within the IETF ROLL-working group.

Furthermore, I was the lead developer of our LwM2M stack and the IPSO-
objects implementation in Contiki. This implementation has been part of in-
terop tests, used by commercial companies, and integrated into Zephyr OS
when they needed an LwM2M implementation.

Finally, before starting my research on sensor networks and IoT, I was part
of the research team that arranged the AI-competition Trading Agent Compe-
tition, TAC, for several years. I was the lead developer of the implementation
of the competition servers during both TAC Classic and TAC SCM - a game
that we co-developed with Professor Norman Sadeh and Raghu Arunacha-
lam at Carnegie Mellon University. We arranged the competition at several
AI conferences, including AAAI. Our publication for TAC-03 [60] has more
than a hundred citations, and several hundred publications are related to the
competition.

25

4. Summary of the Papers

4.1 Paper I: Accurate, Network-Scale Power Profiling
for Sensor Network Simulators

Joakim Eriksson, Fredrik Österlind, Niclas Finne, Adam Dunkels, Nicolas
Tsiftes, Thiemo Voigt. In Proceedings of EWSN 2009, the 6th European Con-
ference on Wireless Sensor Networking. Cork, Ireland, February 2009.

Summary
In this paper, we evaluate the accuracy of the combined sensor network sim-
ulation tool COOJA/MSPSim, which consists of COOJA, a sensor network
simulator, and MSPSim, a sensor node emulator. The evaluation uses Con-
tiki’s power profiler as baseline [16]. The power profiler measures time spent
in different modes for each chip on a node and calculates power consumption
by multiplying time with a pre-measured current draw and battery voltage. We
compare experimental results measured on real sensor nodes with simulation
results for three different MAC protocols. The MAC protocols are of varying
types, one is TDMA-based (CoReDac), and one is low-power probing (LPP),
and the final one is based on low-power listening (X-MAC). The results of
the evaluation indicate that COOJA/MSPSim enables accurate network-scale
simulation of the power consumption of sensor networks.

Contribution
The main contribution of this paper is that we evaluate the accuracy of power
profiling in simulation by comparing the results from the simulation with re-
sults from execution on real sensor nodes. We did this evaluation on a network
scale, which differs from previous efforts that only evaluated single nodes
without any communication aspects. Another important contribution is the
simulation tool, COOJA/MSPSim that supports accurate power profiling.

My Contribution
I am the main developer of MSPSim, and during the work on this paper, I
improved it for better support of power profiling, improved the CC2420 radio
chip emulation, and extended the integration with COOJA. I also made some
of the experiments and wrote parts of the paper.

26

Reflections
In this paper, we evaluated and improved the simulation’s power profiling fea-
tures, a vital part of speeding up research and development of energy-efficient
software and communication protocols for IoT. More than 50 other publica-
tions have cited the paper, and this type of feature is still crucial since energy
efficiency is still an important feature of IoT and other systems.

4.2 Paper II: COOJA/MSPSim: Interoperability Testing
for Wireless Sensor Networks

Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam Dunk-
els, Thiemo Voigt, Robert Sauter, Pedro José Marrón.
In Proceedings of SIMUTools 2009, the Second International Conference on
Simulation Tools and Techniques. Rome, Italy, March 2009.

Summary
In this paper, we show that COOJA/MSPSim can be used for interoperabil-
ity tests between different protocol stack implementations in different sensor
network operating systems. We also, show that the built-in power profiling
in MSPSim is as accurate as the Contiki’s power profiler and that it can be
used for power profiling any application without any power profiling support
from the operating system in the node. We evaluate COOJA/MSPSim for use
in interoperability tests by adding support for TinyOS and performing basic
experiments where nodes based on TinyOS communicate with nodes based on
Contiki OS.

Contribution
The main contributions of this paper are that we show that COOJA/MSPSim
can be used as an interoperability testing tool and that it accurately evalu-
ates the power consumption of the simulated nodes. Interoperability testing
in COOJA/MSPSim gives the tester much more detailed information than per-
forming the same test on real nodes since the full state in all nodes can be
inspected at any time.

My Contribution
I performed some of the research experiments and wrote parts of the paper. I
also improved MSPSim for better support of the radio chip CC2420, specifi-
cally to meet the needs of TinyOS such as support for SFD capture interrupt.

Reflections
This is the first paper where we show interoperability testing in simulation
tools. At the time of writing, this work has 290 citations and is still cited in new

27

publications in 2023. New full system simulation tools like Renode [7] can add
another aspect of heterogeneity regarding hardware variations. Integrating this
with IoT wireless network simulators like COOJA is an exciting opportunity,
allowing even more variety in the testing scenarios.

4.3 Paper III: Industry: Beyond Interoperability -
Pushing the Performance of Sensor Network IP
Stacks

JeongGil Ko, Andreas Terzis, Johns Hopiks University, Joakim Eriksson, Nico-
las Tsiftes, Adam Dunkels, Stephen Dawson-Haggerty, David Culler, Jean-
Philippe Vasseur, Mathilde Durvy In proceeding of SenSys 2011, November
1-4, 2011, Seattle, WA, USA.

Summary
In this paper, we present two interoperable implementations of the IPv6 proto-
col stack for low-power and lossy networks. The stacks also use two different
operating systems, Contiki OS and TinyOS, representing two independently
developed stacks. The interoperability between the stacks is evaluated on a
basic IP-packet exchange and validation of the behavior and network perfor-
mance when mixing a varying percentage of the two stacks. We assess the
cost of interoperability and show that the performance and overhead are simi-
lar to more specialized state-of-the-art low-power protocol stacks. We evalu-
ate performance in sensor network testbeds and COOJA/MSPSim, simulating
complete networks with both stacks.

Contribution
The main contribution of the paper is that we evaluate interoperability with
respect to additional performance metrics compared to other efforts such as
plugfests [56]. We also show that performance depends on the topology and
the number of nodes running each stack. Finally, we also illustrate the useful-
ness of using simulation tools to trigger hard-to-find bugs and interoperability
issues.

My Contribution
I worked mainly with the simulation experiments and finding and fixing bugs
and issues in the ContikiRPL implementation. I also found and reported some
issues with the TinyOS implementation. I did parts of the evaluation and wrote
parts of the paper.

Reflections
This is a follow-up paper on interoperability tests in simulation. We extend
the work from the previous with a collaboration with the TinyOS team and

28

evaluated not only interoperability as a binary statement but also added other
performance metrics. Given the recent success of the 6LoWPAN-based proto-
col Thread [68], this type of testing is getting even more relevant and might,
in the long run, enable testing of both interoperability and other metrics, in-
cluding energy consumption ratings in the same tools. This would allow for
similar labeling as household appliances’ energy ratings - such as EU’s energy
consumption labeling scheme.

4.4 Paper IV: The Contiki-NG Open Source Operating
System for Next Generation IoT Devices

George Oikonomou, Simon Duquennoy, Atis Elsts, Joakim Eriksson, Yasuyuki
Tanaka, Nicolas Tsiftes In SoftwareX, Volume 18, June 2022.

Summary
In this paper, we present the Contiki OS fork, Contiki-NG. The first release of
Contiki-NG introduces many new features, but it also re-uses, with or with-
out modification, many of the features of the original Contiki OS, such as the
scheduler, the event-based kernel, data structure manipulation libraries and
storage. Contiki-NG also uses, with minor modifications, multiple networking-
related software components, including the original implementations of 6LoW-
PAN and RPL (called RPL Classic in Contiki-NG). For improved scalability,
Contiki-NG provides RPL Lite, a cut-down version of the RPL implementa-
tion that only supports the non-storing mode of RPL but is more lightweight.
The paper also describes the new focus on reliability and security and the pro-
cess used for releases and pull requests to the Contiki-NG GitHub repository.

Contribution
The paper is the first publication that describes Contiki-NG and the purpose
of forking. While not adding any new research in itself, the paper summa-
rizes many of the efforts of the work that have resulted in a solid support for
IP-based communication, 6LoWPAN, energy-efficient communication, and a
toolset for research and development of advanced IoT applications.

My Contribution
I was one of the leading people who set up the Contiki-NG repository and
worked on the cleanup and new ways of working with the codebase. I was
part of the team that wrote the paper. I wrote the LwM2M section of the paper
as I am the main developer of the LwM2M implementation in Contiki-NG.

Reflections
As mentioned above, this paper is not a scientific publication and does not
add any new research, but is included in my thesis as it represents the re-

29

sults of many years of research that have been performed using Contiki and
Contiki-NG. This paper contains the software-based results from many of my
additional publications that are not part of the thesis and a whole body of work
by others. This paper is the first Contiki-NG publication from the Contiki-NG
team, and it has more than 60 citations at the time of writing.

4.5 Paper V: Scaling RPL to Dense and Large Networks
with Constrained Memory

Joakim Eriksson, Niclas Finne, Nicolas Tsiftes, Simon Duquennoy, Thiemo
Voigt. In Proceedings of EWSN 2018, the International Conference on Em-
bedded Wireless Systems and Networks. Madrid, Spain, February 2018.

Summary
In this publication, we show that the routing protocol RPL can handle very
dense and large-scale networks even with small routing and neighbor tables.
We add a new standard-compliant mechanism to RPL that details some parts of
the RPL RFC that ensures that a node in the network that requires downward
routing will know that it has a route from the gateway. We also show that
this mechanism, end-to-end DAO, improves the network’s reliability. We also
added a neighbor table policy that protects neighbors used as a next-hop in
routing from being removed. The neighbor policy is designed not to require
a large neighbor table even if the network topology is dense and significantly
more neighbors exist than can be stored in the table. Both mechanisms are
designed to avoid conflicts with the RPL RFC to enable interoperability with
nodes not implementing these mechanisms. We evaluate both mechanisms and
show that they enable stable RPL topologies even when nodes cannot store all
neighbors in the tables.

Contribution
The main contribution of the paper is the design and evaluation of the two
mechanisms that allow storing-mode RPL to scale well in both large and dense
networks without extending the RAM of the routing devices.

My Contribution
I am the main designer and implementer of both mechanisms in the Con-
tikiRPL routing implementation. I have also performed research experiments
and written most parts of the paper.

Reflections
Both issues with storing-mode RPL did get attention in the IETF Roll working
group, and at least one informal RFC per issue has been active since the pub-
lication of the paper [33, 34]. Today, most of the current applications using

30

RPL do use the non-storing mode that scales better in itself and has the end-
to-end DAO-ACK built-in. However, even non-storing mode will need a strict
neighbor management policy to handle dense networks with more neighbors
than can be stored in the neighbor table. Otherwise, nodes might have to drop
packets during forwarding when the next-hop neighbor is not in the table.

31

5. Related Work

This chapter discusses related work on the research topics covered in this the-
sis. It also includes some related work on operating systems and simulation
tools, which have been essential for most of this thesis’s research.

5.1 Operating Systems
Most of this thesis’s research work heavily relies on embedded operating sys-
tems. This section describes related operating systems for IoT applications.

TinyOS [28] is one of the first operating systems for IoT and wireless
sensor networks. Similar to Contiki, it is an event-driven OS designed for
resource-constrained hardware such as the Tmote Sky. Tiny OS made use of
a component-oriented C-language extension called nesC and a compiler that
produced a compact C-program for compilation with a regular C compiler.
Learning this new language requires effort from developers, which is a signif-
icant difference from Contiki, where the OS is developed in plain C. While
very successful in academia, TinyOS never established itself as a commercial
product OS.

RIOT OS is an IoT OS designed with a focus on resource-constrained de-
vices [8]. While Contiki is an event-driven OS, RIOT is a fully multi-threaded
OS with real-time support. There is support for many of the latest IETF stan-
dards related to IoT, including 6LoWPAN, RPL and CoAP. Unlike most other
IoT operating systems, RIOT decided on a GNU LGPL license, which might
somewhat limit its usage in commercial products, but there is academic sup-
port for RIOT.

Tock [46] is an operating system for low-power resource-constrained plat-
forms. Tock focuses on software security and uses the hardware protection
mechanisms and type safety of the Rust programming language [13]. Tock
isolates software faults, provides memory protection, and manages memory
for dynamic applications. A key difference between many other IoT OSes and
Tock is the strong isolation of applications that allow concurrent execution of
applications in similar ways as larger OS-es (Linux, Windows, etc). Currently,
Tock is available on a large number of platforms and illustrates how to achieve
software security using modern MCU architectures combined with a modern
programming language. While Contiki focuses on communication, Tock fo-
cuses on a secure software runtime and lacks communication stacks in the OS
source code.

32

Zephyr OS is another operating system for resource-constrained IoT de-
vices. Zephyr is hosted under the Linux Foundation but makes use of the
Apache license to allow usage without forcing the release of source code.
Zephyr OS has very strong platform support with hundreds of different boards
supported. The operating system originates from a commercial OS called Vir-
tuoso, but it was open-sourced in 2016. Initially, Zephyr borrowed the 6LoW-
PAN and RPL implementation from Contiki but re-implemented the complete
IP stack since then. Zephyr supports IPv4/IPv6 and BLE but lacks support for
6LoWPAN IoT low-power mesh with RPL and TSCH (6TiSCH). Zephyr OS
has the strongest industrial support with companies including Intel, NXP, and
Nordic Semiconductor as a part of the project’s consortium.

Recently WebAssembly [70] (WASM), a virtual machine initially designed
for safe and fast execution of software modules in the browser, has been used
for IoT devices. The WASM ecosystem includes several open-source imple-
mentations of the runtime and a large number of compilers and tools for build-
ing software modules from a wide variety of programming languages. Cur-
rently, there are no complete IoT operating systems fully based on WASM,
but there are examples of IoT systems using WASM. One example is the
WASM implementation WAIT [47], which shows that WASM can be used
on resource-constrained IoT devices and provides a set of IoT-related APIs for
WASM-based software modules.

5.2 Simulation Tools
Simulation tools are essential for evaluating and testing during the develop-
ment of new IoT communication protocols and software features. Many of
the simulators are for a specific IoT OS, but some are also generic IoT and
networking simulators.

TinyOS simulation tool, TOSSIM [45], allows the simulation of complete
TinyOS systems, including communication between simulated sensor nodes.
TOSSIM, TinyOS’s simulation tool, compiles to the native CPU architecture
of the machine that is running the simulation (typically x86). Unlike the
COOJA simulation platform, TOSSIM cannot emulate IoT devices.

Renode [20] is an emulation and simulation platform for modern proces-
sor architectures such as ARM, RISC-V and Intel x86. Renode supports
multi-device simulations and supports radio medium and wired connectivity
between devices. The focus of Renode is to enable continuous integration
tests of complex embedded hardware and software setups. Renode lacks sup-
port for some of the ultra-low-power platforms that made COOJA successful
(msp430 / Tmote Sky) in the wireless sensor network research field but sup-
ports modern replacements such as ARM Cortex M3 and SoC’s based on that
MCU architecture.

33

The widely used Network Simulator, NS, currently at version 3, is a dis-
crete event network simulator developed in C++ and Python. NS-3 is more
of a simulation building library than a complete simulation application with
GUI like COOJA. Simulations in NS-3 are defined in C++ and scripted via
Python scripts, a significant difference from COOJA where configuration files
describe the simulations. As NS-3 mainly focuses on IP networking over eth-
ernet and WiFi it lacks many of the protocols and features of the IoT devices
supported in COOJA.

IoTSim-Edge is a simulation framework that models both IoT devices and
Edge platforms in the same simulator [35]. IoTSim-Edge supports a set of IoT
protocols and models both the performance and energy consumption of sup-
ported protocols. It also provides a way to model edge applications and their
analytics operations and modeling of mobile IoT devices and the handover of
mobile devices between edge nodes. A significant difference between COOJA
and IoTSim-Edge is that the latter does not include emulation or OS-level na-
tive execution. Thus all modeling is on a higher level which means it will not
model all details of the IoT devices’ software and behavior.

IoTNetSim is a simulator for end-to-end modeling and simulation of IoT
systems, including IoT devices, the network with network devices and the
cloud [61]. IoT, fog, and edge nodes can be configured for connection type
to model communication speed correctly. IoTNetSim models the complete
IoT network, data collection, energy consumption, and analytics in the cloud.
IoTNetSim can predict battery lifetime, the storage size of data collected, and
many other parameters. The level of abstraction is much higher in IoTNet-
Sim when compared to COOJA. COOJA uses the actual implementation of
the application and communication protocols, while IoTNetSim models the
application and protocols. COOJA is also limited to simulating the low-power
IoT network, while IoTNetSim models the whole end-to-end IoT system and
application.

Kaala is another simulator designed for end-to-end Internet of Things (IoT)
systems [12], aiming to enhance the realism of IoT simulations by integrating
with cloud services from providers such as Azure, AWS, and Google. Kaala
provides emulation of IoT devices by running application logic in separate
processes. Unlike COOJA/MSPSim’s emulation, where low-power IoT de-
vices are emulated and run their original firmware, Kaala uses docker and
Mininet [38] to set up Linux-based emulation IoT devices in a realistic net-
work topology. Kaala’s emulation is more similar to COOJA’s simulation
when nodes are executed on the native host, but the focus on Kaala is more on
the whole IoT system, including IoT cloud services, while COOJA’s focus is
on low-power IoT network simulations.

34

5.3 Energy Estimation
Energy estimation support, either in software or hardware, is a critical feature
for research on energy-efficient IoT communication and applicaions. This sec-
tion covers work related to energy estimation. Typically, an energy estimator
will measure the energy used for some important components. Within IoT, the
microprocessor and the radio are the key components that need to be measured
to understand the impact of computation versus communication.

PowerTOSSIM [65] is an extension to TOSSIM [45], TinyOS simulation
tool, for estimating per-node power consumption. However, TOSSIM and
PowerTOSSIM only support simulations of nodes at the operating system
level, while COOJA supports detailed emulation on some platforms. Emu-
lation will typically give a better estimation as the instruction sets in the dif-
ferent MCU architectures and differences in compilers can cause a difference
in timing on the code-block level.

AEON [43, 44] is a tool for predicting the power consumption of TinyOS
applications using the AVRORA emulator. AEON can predict TinyOS appli-
cations significantly better than PowerTOSSIM and is a similar approach to
the one taken in COOJA and MSPSim where an MCU emulator is used to
allow the predictor to access very detailed timing of all executed code and to
track, in detail, the usage of all different hardware components. The main dif-
ference between COOJA and AEON is that COOJA supports all sorts of sim-
ulation/emulation combinations (e.g., both OS-level simulation and emulator-
driven simulation) while AEON is only emulator-driven. AEON also only
supports Avr-based platforms, while COOJA supports MSP430-based plat-
forms.

Jha et al. [35] present IoTSim-Edge, a simulation platform that focuses
on the ability to evaluate the performance of heterogeneous IoT devices and
edge configurations. It simulates the behavior of communication protocols
and applications rather than emulating the devices as COOJA/MSPSim does.
IoTSim-Edge provides models for the energy consumption of the devices and
the communication. Still, since it is a simulation, it will not evaluate the actual
applications and protocol implementations intended to be run in the various
devices but an estimate based on simulated protocols and applications.

Another option for software-based energy estimation is to use a complex
testbed with energy measurements of the device while measuring GPIO pins
that relate to different states of the radio, microprocessor, and other compo-
nents. This can at times be somewhat less intrusive as software-based estima-
tors need to add code for tracing the component usage. However, even with a
hardware-based energy meter, the software needs to be modified to indicate the
type of mode the microprocessor and the radio are in. Flocklab [48] uses this
approach and has a sophisticated hardware solution for high-resolution mea-
surement of power consumption. While less intrusive on devices like Tmote
Sky, where the radio is separate from the MCU and therefore possible to moni-

35

tor via hardware, it is not as non-intrusive on modern SoC-based devices where
the radio and MCU are in the same chip.

One of the most sophisticated evaluation frameworks for wireless IoT net-
working is D-cube [63, 64]. It extends the metrics beyond energy-related
properties and adds end-to-end latency and a set of reliability metrics for fully
benchmarking IoT networking. D-cube is mainly a software infrastructure
and supports multiple hardware devices as IoT devices under evaluation, and
it uses dedicated hardware for high-quality energy consumption estimations.
For the highest possible quality of the measurements, D-cube requires some
minor modifications of the evaluated firmware (for precise timing indications,
etc).

In many cases, energy estimation focuses on estimating the lifetime of
battery-powered devices. Quite often, an ideal battery model is used. Dron
et al. [14] add a battery model into the calculations to better estimate the de-
vice lifetime. The improved lifetime estimator uses COOJA and MSPSim to
allow detailed simulation of the whole IoT network, and they show that the
ideal battery model commonly used overestimates network lifetime by more
than 30 percent.

5.4 Automated Interoperability Testing
IoT and its communication protocols started with proprietary protocols and re-
search experiments but is now a mature field with many standardized protocols
and commercial products. Interoperability testing is a critical tool for devel-
oping standards and commercial products, and automation of interoperability
testing can significantly improve development efficiency.

Rosenkranz et al. [59] present a distributed testing platform for interoper-
ability tests. They claim that emulation and simulation-based interoperability
testing allow white-box testing, but it is not feasible when the number of em-
ulated devices is too high. They propose a distributed testing framework that
allows platform providers to plug-in to the test and even connect parts of the
framework remotely. This enables what the authors call a permanently avail-
able, distributed plugtest. This allows efficient testing, but there are limitations
when it comes to timing. A platform with these limitations is likely not useful
for testing time-synchronized protocols (e.g., TSCH) that require millisecond
precision of timing possible in emulated environments such as COOJA/MSP-
Sim or even with a detailed simulation as with COOJAs native simulation.

PatrIoT is another IoT interoperability and integration testing platform with
the ability to perform tests in simulation or physical testbeds [10]. The main
focus of PatrIoT is testing the interoperability and integration of complete IoT
cloud services using simulated IoT devices, which differs from our approach,
where we use COOJA/MSPSim for testing the IoT protocol implementations
for interoperability.

36

5.5 Scalability of IP-based IoT Mesh Networks
Iova et al. [32] identify RPL Scalability as an issue where RPL implementa-
tions in Contiki and TinyOS illustrate that RPL is not scalable on low-power
devices due to high memory requirements w.r.t both flash and RAM. The au-
thors evaluate storing mode RPL and conclude that RPL is not scalable on
low-power devices as they will quickly hit the limit of neighbors and routes
the devices can store. The evaluation makes use of smart city topologies that
consist of very few paths to the root node and might cause problems. In dense
deployments with many paths to root it is, even using storing mode, possible
to scale with a reasonably stable topology given a good neighbor policy and
using end-to-end DAO registration as we have shown in the final paper in this
thesis.

Thread [25] is another 6LoWPAN-based IoT mesh protocol with roots from
NEST’s smart thermostat and smart home mesh networks. Thread is a low-
power mesh network standard, based on distance vector routing. Thread al-
lows up to 32 simultaneously active routers. Child nodes, or non-router nodes
under each router, are assigned an IPv6 address indicating which router they
are associated with. Thread has a limited scalability per sub-network, but re-
cently, it has been improved to handle routing between multiple sub-networks.
According to the Thread Group, the Thread protocol scales to a few hundred
nodes. RPL, on the other hand, is capable of handling large networks but the
routing model is significantly different as it creates a DODAG (destination-
oriented directed acyclic graph) that is typically less dense than the Thread
mesh. This routing model often results in a longer path between two pairs of
nodes. If needed, it is possible to improve the path length issue in RPL-based
Networks either by adding multiple gateways or using specific RPL protocol
adaptations.

There is a set of other alternatives for IoT connectivity that are not IP-based
mesh but are still relevant alternatives for some applications. LoRa is one of
the long-range alternatives that allow for low-power and long-range communi-
cation. LoRa nodes do not communicate with each other directly. Instead, they
are configured as star networks, with a central gateway that relays messages
between the nodes. Telecom networks are also starting to provide IoT-related
connectivity with NB-IoT [58] and other 5G mechanisms for low-power con-
nectivity. Unlike other solutions, these will have a dedicated spectrum, al-
lowing careful network planning without interference from other networks.
Finally, Wi-Fi 6 release 2 [5] provides new energy management features for
low-power IoT devices, making Wi-Fi a better option for IoT than previously.
Most of these other mechanisms are based on star networks, which is good for
the ability of the device to keep a low memory usage for networking and also
allow longer sleep times as the gateway is typically always awake. The main
issue with star networks is range since all devices must reach the gateway in
one hop.

37

6. Conclusions and Future Work

This chapter concludes the thesis and describes some potential future work.

6.1 Conclusions
This thesis presents research contributions within the wireless sensor network
and Internet of Things research areas. The contributions focus on communi-
cation and networking with low-power and resource-constrained devices.

Paper I focuses on enabling energy estimation at network scale. We show
that it is possible to estimate power consumption even when there is no sup-
port in the firmware using a time-keeping mechanism that records usage time
per hardware component and their state in a simulated environment. This en-
ables instant comparison of low-power protocol implementations and other
low-power mechanisms.

Paper II and Paper III demonstrate that interoperability testing can be more
than a large physical meeting where lots of protocol implementations are tested
against each other, with a binary outcome. We show that we can perform the
interoperability tests in simulation and that it is possible to achieve contin-
uous testing as the stack implementations are always available for testing in
the simulation environment. We also show that interoperability tests using
fine-grained simulation can provide interesting information in terms of per-
formance metrics that can guide further development and give more detailed
understanding of interoperability in complex environments (such as multi-hop
mesh networks). During this work, we used our simulation platform COO-
JA/MSPSim, but in the future, we will likely use tools like Renode that sup-
ports more modern system-on-chips.

Paper IV presents Contiki-NG, a new Contiki fork created to establish a
clean version of the OS for modern IoT system-on-chips, focusing on standards-
based protocol implementations. Contiki and Contiki-NG represent the main
software stacks I have used for this thesis’s research. The Contiki-NG reposi-
tory is also where most of the code from my research is published.

Finally, Paper V describes our results relating to network scalability and
topology stability when deploying large and dense IoT networks. This work
takes its challenge from real-world deployments. We design and evaluate sev-
eral mechanisms and show that it is possible to improve scalability by carefully
managing neighbors and ensuring end-to-end information about routing topol-
ogy. This work also resulted in input to IETF’s ROLL working group and an
IETF draft on neighbor management policy in the IETF LWIG working group.

38

Using our operating system and the simulation tools I have developed as a
part of this thesis, I have shown that (1) it is possible to automate the process of
and add quantitative metrics to interoperability testing, an important activity
to achieve the success of standards-based IoT protocols and (2) by careful
management of neighbor and routing information, it is possible to significantly
improve the scalability of the RPL routing protocol. I believe that these results
are applicable in other IoT and low-power networking scenarios.

6.2 Future Work
In the near future, we will continue improving Contiki-NG and its 6LoWPAN
stack, especially for ultra-low power devices. Contiki-NG is soon too small
and limited to be relevant in today’s common IoT System-on-chips (ARM-32
bit with a significant amount of RAM, typically 64 kB or more), at least if the
IoT applications continue to be low-complexity sense-and-communicate ap-
plications. However, the current trends of integrating machine learning (ML)
into IoT devices might change things to focus on resource efficiency on the
OS and application level to allow more resources for machine learning. Fu-
ture work for our research related to Contiki will include supporting machine
learning mechanisms and adding secure and lightweight execution environ-
ments. One of the secure execution environments in focus right now is We-
bAssembly [50, 70]. It is currently gaining much attention and is a perfect
fit for IoT devices due to its low resource requirements. Combining the two
trends of machine learning in IoT devices with support for both ML models
in the devices and the needed software logic for the ML models is an excit-
ing opportunity. There is already some ongoing work in this direction, like
WebAssembly System Interface (WASI) and WASI-NN neural network inter-
faces for WebAssembly. With support for this, it would be easier to deploy
ML-models and the supporting software in any IoT device that supports We-
bAssembly and WASI-NN, independent of their underlying hardware. This
will likely be an essential part of the future for IoT software within a few
years.

We will also look into what type of impact the private 4G/5G network for
industries, buildings, and cities will have on low-power IoT networks. These
4G/5G networks allow any industry or city to get their spectrum for hosting
a wireless enterprise network based on telecom technologies, using the com-
plete system from telecom providers or only using the hardware (e.g., base sta-
tions) and combine that with a fully open-source core network [27]). Combin-
ing local low-energy IP-based mesh networks with these long-range networks
4G/5G or even LoRa is an exciting research area for end-to-end, low-power,
and secure connectivity for large-scale IoT deployments.

Finally, an interesting area where a tiny and energy-efficient operating sys-
tem is relevant is the battery-free devices such as the Onio.zero [54]. The

39

resource constraints of the devices are similar to what was the case when the
development of Contiki started more than fifteen years ago. The Onio.zero has
2 kB RAM, up to 32 kB flash, and a 32-bit RISC-V MCU and can use energy
from radio transmitters, light, and other external energy sources. Challenges
include how to manage computation and networking when having intermittent
power and how to achieve secure and standards-based communications. This
is something we will also likely investigate.

40

7. Summary in Swedish

Internet of Things, IoT, eller på svenska: Sakernas internet, är ett begrepp som
innefattar alla fysiska saker med inbyggd uppkoppling till internet. Vanliga
datorer och datacenter räknas inte in, men allt från självkörande bilar, mobil-
telefoner till små temperatursensorer och strömbrytare räknas som en del av
sakernas internet. Dessa kopplas oftast trådlöst till internet och många av dem
är batteridrivna vilket innebär att de har begränsad tillgång till energi. Där-
med behöver de vara energieffektiva för att uppnå en lång batterilivslängd. En
annan viktig aspekt utöver energieffektivitet är att få olika enheter, från olika
leverantörer, att samverka i samma nätverk och att följa standarder. I vårt arbe-
te har vi fokuserat på IP-baserade nätverk och att säkerställa interoperabilitet
genom att de olika enheterna följer de standarder som gäller för resursbegrän-
sade IoT-nätverk. För att IoT-nätverken skall kunna hantera många enheter
behöver även olika skalbarhetsaspekter tas i beaktande. Typiskt sett har ett
IoT-nätverk en eller flera anslutningspunkter mot internet (gateways). Des-
sa anslutningspunkter kan antingen bygga stjärnnätverk, där alla IoT-enheter
kopplas direkt mot anslutningspunkten, eller olika former av mesh-nätverk
där flera IoT-enheter kan vidarebefordra trafik mellan enheter i nätverket och
etablera ett så kallat multi-hop nätverk. Enheterna som vi använder i vår forsk-
ning har typiskt 10-100 kB RAM (arbetsminne), 50-500 kB flash (program-
minne) och en inbyggd lågenergiradio för uppkoppling. En vanlig målsättning
för batterilivslängd på dessa enheter är fem till tio år. Fokus i avhandlingen
ligger på nätverk av typen mesh-nätverk och att göra det möjligt för de minsta
och mest resursbegränsade enheterna att kunna kopplas upp på ett energieffek-
tivt, interoperabelt och skalbart sätt. De vetenskapliga bidragen i avhandlingen
representeras av fem forskningsartiklar som alla bidrar till detta mål.

Under den forskning som ligger till grund för avhandlingen har jag använt
och vidareutvecklat Contiki och Contiki-NG som är operativsystem för IoT-
enheter. Jag har även använt och vidareutvecklat simuleringsverktyget COO-
JA/MSPSim som har förmågan att simulera kompletta IoT-nätverk där radi-
omediet och alla IoT-enheter simuleras. COOJA/MSPSim stödjer detaljerad
simulering av IoT-noder och möjliggör därmed detaljerad analys av kommu-
nikationsprotokoll och dess egenskaper.

För att kunna skapa energieffektiv mjukvara för IoT-enheter behövs verk-
tyg för att utvärdera energiförbrukning för hela IoT-nätverk. I vårt simule-
ringsverktyg COOJA/MSPSim finns stöd för att uppskatta energiförbrukning
på ett detaljerat sätt genom att mäta hur lång tid olika delkomponenter som
radio, mikroprocessor och sensorer är aktiva. COOJA/MSPSim kombinerar si-
mulering av kommunikationsmediet med en detaljerad emulering av nodernas

41

mikroprocessorer vilket ger en verklighetstrogen och högupplöst uppskattning
av tidsåtgång för varje simulerad nod. Vi visar att det går att få både detaljerade
och verklighetstrogna resultat för hela det simulerade IoT-nätverket.

En annan möjlighet är att använda simuleringsramverket för att testa och
utvärdera olika implementationer av IoT-protokoll. I detta sammanhang är fo-
kus på att avgöra om de olika implementationerna är interoperabla, dvs. att
de kan kommunicera med varandra. I många fall utförs interoperabilitetstes-
ter vid fysiska möten där alla tar med sig sina respektive implementationer
och utför tester i en fysisk testmiljö. Vi visar att det går att snabba upp inte-
roperabilitetstester genom att använda simuleringsbaserade tester av multipla
implementationer. I och med att vi kan få fram en hel del extra information
under simulering så är det möjligt att utvärdera mer än bara om de olika im-
plementationerna fungerar tillsammans. Man kan bland annat få ut detaljer
kring energieffektivitet och kvalitet på kommunikationen i nätverket, i olika
storlekar av nätverket, densitet och blandning av de olika implementationerna.

Förutom energieffektivitet är även allmän resurseffektivitet viktigt för en-
heter i IoT-nätverk, specifikt kan minnesutnyttjande bli ett problem då dessa
enheter typiskt har relativt lite minne. Detta innebär ofta att enheterna har be-
gränsade möjligheter att lagra information om grannar, dvs. andra noder inom
radioräckvidd och rutter i nätverket. I vårt arbete med IoT-nätverk har vi tittat
specifikt på denna typ av utmaning och effekten av att ha ett mycket begränsat
lagringsutrymme i kombination med många grannar i nätverket. Normalt sett
läggs nya grannar i minnet för att utvärdera länkkvalitet och andra aspekter.
Problemet med den regeln är att det ständigt behöver läggas in information
om nya grannar när inte alla får plats i minnet, eftersom gamla glöms bort och
blir därmed nya igen. Detta orsakar instabilitet och en ständig omkonfigure-
ring av nätverket. För att undvika instabilitet kan ett strikt regelverk, en policy,
som beskriver hur man hanterar nya grannar och vilka som skall bytas ut. I det
sista arbetet i avhandlingen utvärderar vi implementationen av en policy för
hantering av grannar och vilka effekter den får för olika storlek av nätverk och
olika antal grannar. Vi visar att med en strikt policy i kombination med några
andra förbättringar kan man uppnå ett stabilt och skalbart IoT-nätverk även om
noderna har ett mycket begränsat minne.

Utöver de artiklar som inkluderas i denna avhandling så har vi även arbetat
med att sprida resultat via bidrag till standardisering av IoT-routingprotokoll
(IETF RPL) samt arbetat med att släppa mjukvara som öppen källkod. De
flesta av de utvecklade mjukvarukomponenterna och simuleringsverktygen
har blivit tillgängliga som öppen källkod inom ekosystemen för Contiki och
Contiki-NG. Mjukvaran används av både forskare inom IoT och sensornätverk
så väl som inom kommersiella IoT-projekt och produkter.

42

References

[1] Muhammad Tahir Abbas, Johan Eklund, Anna Brunstrom, Stefan Alfredsson,
Mohammad Rajiullah, Karl-Johan Grinnemo, Giuseppe Caso, Konstantinos
Kousias, and Özgü Alay. On the energy-efficient use of discontinuous reception
and release assistance in nb-iot. In 2022 IEEE 8th World Forum on Internet of
Things (WF-IoT), pages 1–7, 2022.

[2] Ansuman Adhikary, Xingqin Lin, and Y-P Eric Wang. Performance evaluation
of nb-iot coverage. In 2016 IEEE 84th Vehicular Technology Conference
(VTC-Fall), pages 1–5. IEEE, 2016.

[3] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei,
and Thomas Weng. Occupancy-driven energy management for smart building
automation. BuildSys’10 - Proceedings of the 2nd ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Buildings, pages 1–6, 11
2010. ISBN: 978-1-4503-0458-0

[4] LoRa Alliance. A technical overview of LoRa and LoRaWAN. White Paper,
November, 20, 2015.

[5] WiFi Alliance. Wi-fi 6 - release 2 adds new features for advanced wi-fi
applications, 2021.
https://www.wi-fi.org/news-events/newsroom/wi-fi-certified-6-
-release-2-adds-new-features-for-advanced-wi-fi-applications

[6] Emilio Ancillotti, Raffaele Bruno, and Marco Conti. The role of the rpl routing
protocol for smart grid communications. IEEE Communications Magazine,
51(1):75–83, 2013.

[7] Antmicro. The renode - a virtual development tool for multi-node embedded
networks. http://www.rust-lang.org

[8] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann,
Martine S. Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and
Matthias Wählisch. Riot: An open source operating system for low-end
embedded devices in the iot. IEEE Internet of Things Journal, 5(6):4428–4440,
Dec 2018. ISSN: 2327-4662

[9] SIG Bluetooth. Specification of the bluetooth system-covered core package
version: 4.0. Bluetooth Special Interest Group, 2010.

[10] Miroslav Bures, Bestoun S. Ahmed, Vaclav Rechtberger, Matej Klima, Michal
Trnka, Miroslav Jaros, Xavier Bellekens, Dani Almog, and Pavel Herout.
Patriot: Iot automated interoperability and integration testing framework. In
2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST), pages 454–459, 2021.

[11] National Research Council. Academic Careers for Experimental Computer
Scientists and Engineers. The National Academies Press, Washington, DC,
1994. ISBN: 978-0-309-04931-
3https://www.nap.edu/catalog/2236/academic-careers-for-
-experimental-computer-scientists-and-engineers

43

[12] Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, and Zhi-Li
Zhang. Kaala: Scalable, end-to-end, iot system simulator. In Proceedings of the
ACM SIGCOMM Workshop on Networked Sensing Systems for a Sustainable
Society, NET4us ’22, page 33–38, New York, NY, USA, 2022. Association for
Computing Machinery. https://doi.org/10.1145/3538393.3544937

[13] The Rust developers. The rust programming language.
http://www.rust-lang.org

[14] Wilfried Dron, Simon Duquennoy, Thiemo Voigt, Khalil Hachicha, and Patrick
Garda. An emulation-based method for lifetime estimation of wireless sensor
networks. In International Conference on Distributed Computing in Sensor
Systems (IEEE DCOSS 2014), 2014.

[15] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Workshop on
Embedded Networked Sensors, Tampa, Florida, USA, November 2004.

[16] Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes, and Zhitao He.
Software-based on-line energy estimation for sensor nodes. In EmNets ’07:
Proceedings of the 4th workshop on Embedded networked sensors, pages
28–32, 2007.

[17] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’Flynn, Blake
Leverett, Eric Gnoske, Michael Vidales, Geoff Mulligan, Nicolas Tsiftes, Niclas
Finne, and Adam Dunkels. Making Sensor Networks IPv6 Ready. In
Proceedings of the Sixth ACM Conference on Networked Embedded Sensor
Systems (ACM SenSys 2008), Raleigh, North Carolina, USA, November 2008.

[18] Inès El Korbi, Mohamed Ben Brahim, Cedric Adjih, and Leila Azouz Saidane.
Mobility enhanced rpl for wireless sensor networks. In 2012 third international
conference on the network of the future (NOF), pages 1–8. IEEE, 2012.

[19] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, and Thiemo
Voigt. Mspsim – an extensible simulator for msp430-equipped sensor boards.
In Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The Netherlands, January 2007.

[20] Joakim Eriksson, Niclas Finne, Nicolas Tsiftes, Thiemo Voigt, Mikael Gielda,
and Peter Gielda. Demo abstract: Emulink-heterogeneous sensor network
simulation in cooja. In European Conference on Wireless Sensor Networks
(EWSN), 2013.

[21] ETSI. Etsi brochure interoperability best practices, 2012.
"https://portal.etsi.org/CTI/Downloads/ETSIApproach/-
IOT_Best_Practices.pdf"

[22] ETSI. Short range devices; low throughput networks (ltn); protocols for radio
interface a etsi ts 103 357. Standard, ETSI, 2018.

[23] Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sorber. Realistic
simulation for tiny batteryless sensors. In Proceedings of the 4th International
Workshop on Energy Harvesting and Energy-Neutral Sensing Systems, pages
23–26, 2016.

[24] Omprakash Gnawali, Leonidas Guibas, and Philip Levis. A case for evaluating
sensor network protocols concurrently. In Proceedings of the fifth ACM
international workshop on Wireless network testbeds, experimental evaluation
and characterization, pages 47–54, 2010.

44

[25] Thread Group. Thread specification 1.2. Standard, Thread Group, June 2019.
[26] Hiroshi Harada, Keiichi Mizutani, Jun Fujiwara, Kentaro Mochizuki, Kentaro

Obata, and Ryota Okumura. Ieee 802.15. 4g based wi-sun communication
systems. IEICE Transactions on Communications, 100(7):1032–1043, 2017.

[27] Shaddi Hasan, Amar Padmanabhan, Bruce Davie, Jennifer Rexford, Ulas Kozat,
Hunter Gatewood, Shruti Sanadhya, Nick Yurchenko, Tariq Al-Khasib, Oriol
Batalla, et al. Building flexible,{Low-Cost} wireless access networks with
magma. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1667–1681, 2023.

[28] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. In
Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, November 2000.

[29] Philipp Hurni, Benjamin Nyffenegger, Torsten Braun, and Anton Hergenroeder.
On the accuracy of software-based energy estimation techniques. In Wireless
Sensor Networks: 8th European Conference, EWSN 2011, Bonn, Germany,
February 23-25, 2011. Proceedings 8, pages 49–64. Springer, 2011.

[30] "IEEE". Ieee standard for low-rate wireless networks. IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011), pages 1–709, 2016.

[31] Muhammad Imran, Abas Md Said, and Halabi Hasbullah. A survey of
simulators, emulators and testbeds for wireless sensor networks. In 2010
International Symposium on Information Technology, volume 2, pages
897–902. IEEE, 2010.

[32] Oana Iova, Gian Pietro Picco, Timofei Istomin, and Csaba Kiraly. Rpl, the
routing standard for the internet of things . . . or is it? In IEEE Communications
Magazine, Institute of Electrical and Elec- tronics Engineers, pages 16–22,
2016.

[33] Rahul Jadhav, Rabi Narayan Sahoo, Simon Duquennoy, and Joakim Eriksson.
Neighbor management policy for 6lowpan. Internet Draft (Work in Progress)
draft-ietf-lwig-nbr-mgmt-policy-03, IETF, February 2019.
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-nbr-
-mgmt-policy-03

[34] Rahul Jadhav, Rabi Narayan Sahoo, and Yuefeng Wu. Rpl observations.
Internet Draft (Work in Progress), IETF, 2021.
https://datatracker.ietf.org/doc/html/draft-ietf-roll-rpl-
-observations-07

[35] Devki Nandan Jha, Khaled Alwasel, Areeb Alshoshan, Xianghua Huang,
Ranesh Kumar Naha, Sudheer Kumar Battula, Saurabh Garg, Deepak Puthal,
Philip James, Albert Y. Zomaya, Schahram Dustdar, and Rajiv Ranjan.
Iotsim-edge: A simulation framework for modeling the behavior of internet of
things and edge computing environments. Softw. Pract. Exp., 50(6):844–867,
2020. https://doi.org/10.1002/spe.2787

[36] Youngmin Ji, Kisu Ok, and Woo Suk Choi. Occupancy detection technology in
the building based on iot environment sensors. In Proceedings of the 8th
International Conference on the Internet of Things, IOT ’18, New York, NY,
USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3277593.3277633

45

[37] Loizos Kanaris, Charalambos Sergiou, Akis Kokkinis, Aris Pafitis, Nikos
Antoniou, and Stavros Stavrou. On the realistic radio and network planning of
iot sensor networks. Sensors, 19:3264, 07 2019.

[38] Karamjeet Kaur, Japinder Singh, and Navtej Singh Ghumman. Mininet as
software defined networking testing platform. In International conference on
communication, computing & systems (ICCCS), pages 139–42, 2014.

[39] Jeonggil Ko, Joakim Eriksson, Nicolas Tsiftes, Stephen Dawson-Haggerty,
Andreas Terzis, Adam Dunkels, and David Culler. ContikiRPL and TinyRPL:
Happy Together. In Proceedings of the workshop on Extending the Internet to
Low power and Lossy Networks (IP+SN 2011), April 2011.

[40] JeongGil Ko, Kevin Klues, Christian Richter, Wanja Hofer, Branislav Kusy,
Michael Bruenig, Thomas Schmid, Qiang Wang, Prabal Dutta, and Andreas
Terzis. Low power or high performance? a tradeoff whose time has come (and
nearly gone). In Wireless Sensor Networks: 9th European Conference, EWSN
2012, Trento, Italy, February 15-17, 2012. Proceedings 9, pages 98–114.
Springer, 2012.

[41] Vasilis Konstantakos, K. Kosmatopoulos, Spyridon Nikolaidis, and Theodore
Laopoulos. Measurement of power consumption in digital systems. IEEE
Transactions on Instrumentation and Measurement, 55(5):1662–1670, 2006.

[42] Patrick Kugler, Philipp Nordhus, and Bjoern Eskofier. Shimmer, cooja and
contiki: A new toolset for the simulation of on-node signal processing
algorithms. In 2013 IEEE International Conference on Body Sensor Networks,
pages 1–6. IEEE, 2013.

[43] Olaf Landsiedel, Klaus Wehrle, and S. Gotz. Accurate prediction of power
consumption in sensor networks. In Proceedings of The Second IEEE Workshop
on Embedded Networked Sensors (EmNetS-II), Sydney, Australia, May 2005.

[44] Olaf Landsiedel, Klaus Wehrle, Simon Rieche, Stefan Gotz, and Leo Petrak.
Aeon: Accurate prediction of power consumption in sensor networks. 4. GI/ITG
KuVS Fachgespräch „Drahtlose Sensornetze “, page 72, 2004.

[45] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate and
scalable simulation of entire tinyos applications. In Proceedings of the first
international conference on Embedded networked sensor systems, pages
126–137, 2003.

[46] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 234–251, New York, NY, USA, 2017. ACM.
http://doi.acm.org/10.1145/3132747.3132786

[47] Borui Li, Hongchang Fan, Yi Gao, and Wei Dong. Bringing webassembly to
resource-constrained iot devices for seamless device-cloud integration. In
Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services, MobiSys ’22, New York, NY, USA, 2022.
Association for Computing Machinery.
https://doi.org/10.1145/3498361.3538922

[48] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. Flocklab: A testbed for distributed, synchronized
tracing and profiling of wireless embedded systems. In Proceedings of the 12th

46

international conference on Information processing in sensor networks, pages
153–166, 2013.

[49] Ye Liu, Thiemo Voigt, Niklas Wirström, and Joel Höglund. Ecovibe:
On-demand sensing for railway bridge structural health monitoring. IEEE
Internet of Things Journal, 6(1):1068–1078, 2019.

[50] Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Victor Bankowski, Paulius
Daubaris, Risto Mikkola, and Oleg Beletski. Webassembly modules as
lightweight containers for liquid iot applications. In Marco Brambilla, Richard
Chbeir, Flavius Frasincar, and Ioana Manolescu, editors, Web Engineering,
pages 328–336, Cham, 2021. Springer International Publishing.

[51] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and David
Culler. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. Internet
proposed standard RFC 4944, Internet Engineering Task Force, September
2007.

[52] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop
on Embedded networked sensors, pages 78–82, 2007.

[53] Technical Specification Group GSM/EDGE Radio Access Network. Cellular
system support for ultra-low complexity and low throughput internet of things
(ciot). Technical report, 3GPP, 2015.

[54] ONiO. Onio.zero. Web page, 2023. Visited 2023-11-04.
https://www.onio.com/products/onio-zero.html

[55] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. Cross-level sensor network simulation with cooja. In Proceedings of the
First IEEE International Workshop on Practical Issues in Building Sensor
Network Applications (SenseApp 2006), Tampa, Florida, USA, November 2006.

[56] Maria Rita Palattella, Xavier Vilajosana, Tengfei Chang, Miguel Angel
Reina Ortega, and Thomas Watteyne. Lessons learned from the 6tisch plugtests.
In Internet of Things. IoT Infrastructures: Second International Summit, IoT
360° 2015, Rome, Italy, October 27-29, 2015, Revised Selected Papers, Part II,
pages 415–426. Springer, 2016.

[57] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling ultra-low
power wireless research. In Proceedings of The Fourth International
Conference on Information Processing in Sensor Networks. IPSN/SPOTS’05,
Los Angeles, CA, USA, April 2005.

[58] Rapeepat Ratasuk, Benny Vejlgaard, Nitin Mangalvedhe, and Amitava Ghosh.
Nb-iot system for m2m communication. In 2016 IEEE wireless
communications and networking conference, pages 1–5. IEEE, 2016.

[59] Philipp Rosenkranz, Matthias Wählisch, Emmanuel Baccelli, and Ludwig
Ortmann. A distributed test system architecture for open-source iot software. In
Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial
Systems, IoT-Sys ’15, pages 43–48, New York, NY, USA, 2015. ACM.
http://doi.acm.org/10.1145/2753476.2753481

[60] Norman Sadeh, Raghu Arunachalam, Joakin Eriksson, Niclas Finne, and
Sverker Janson. Tac-03–a supply-chain trading competition. AI magazine,
24(1):92–92, 2003.

[61] Maria Salama, Yehia Elkhatib, and Gordon Blair. Iotnetsim: A modelling and
simulation platform for end-to-end iot services and networking. In Proceedings

47

of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing, UCC’19, page 251–261, New York, NY, USA, 2019. Association
for Computing Machinery.

[62] Jochen Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo Voigt.
Scatterweb - low power sensor nodes and energy aware routing. In Proceedings
of Hawaii International Conference on System Sciences, 01 2005.

[63] Markus Schuß, Carlo Alberto Boano, and Kay Römer. Moving beyond
competitions: Extending d-cube to seamlessly benchmark low-power wireless
systems. In 2018 IEEE Workshop on Benchmarking Cyber-Physical Networks
and Systems (CPSBench), pages 30–35. IEEE, 2018.

[64] Markus Schuß, Carlo Alberto Boano, Manuel Weber, and Kay Römer. A
competition to push the dependability of low-power wireless protocols to the
edge. In Proceedings of the 14th International Conference on Embedded
Wireless Systems and Networks (EWSN), Uppsala, Sweden, 2017.

[65] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and
Matt Welsh. Simulating the power consumption of large-scale sensor network
applications. In 2nd International Conference on Embedded Networked Sensor
Systems (ACM SenSys), November 2004.

[66] Oliver Stecklina, Frank Vater, Thomas Basmer, Erik Bergmann, and Hannes
Menzel. Hybrid simulation environment for rapid msp430 system design test
and validation using mspsim and systemc. In 14th IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems,
pages 167–170. IEEE, 2011.

[67] Pascal Thubert. An Architecture for IPv6 over the Time-Slotted Channel
Hopping Mode of IEEE 802.15.4 (6TiSCH). Technical report, Internet
Engineering Task Force, May 2021. RFC 9030.

[68] Jennifer Pattison Tuohy. Thread is matter’s secret sauce for a better smart home,
2022.
https://www.theverge.com/23165855/thread-smart-home-protocol-
-matter-apple-google-interview

[69] Tim Winter (Ed.), Pascal Thubert (Ed.), and RPL Author Team. RPL: IPv6
Routing Protocol for Low power and Lossy Networks. Technical report,
Internet Engineering Task Force, March 2012. RFC 6550.

[70] Alon Zakai, Andreas Haas, Andreas Rossberg, Ben Titzer, Dan Gohman, Derek
Schuff, JF Bastien, Luke Wagner, and Michael Holman. Bringing the web up to
speed with webassembly. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Barcelona, Madrid, 2017.

[71] Tao Zhang and Xianfeng Li. Evaluating and analyzing the performance of rpl in
contiki. In Proceedings of the first international workshop on Mobile sensing,
computing and communication, pages 19–24, 2014.

[72] Zigbee. Web page. 2007-11-21. http://www.zigbee.org.

48

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 2335

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-513926

ACTA UNIVERSITATIS
UPSALIENSIS

2023

	Abstract
	List of papers
	Additional Publications
	Contents
	Acknowledgements
	Part I: Dissertation Summary
	1. Introduction
	1.1 Low-Power Wireless Networking for Internet of Things
	1.1.1 Application Areas
	1.1.2 Communication Protocols for IoT Devices
	1.1.3 The Internet Protocols for IoT

	1.2 Resource-Constrained Devices
	1.2.1 Embedded Operating Systems
	1.2.2 Emulation and Simulation

	1.3 Research Methodology
	1.4 Dissertation Structure

	2. Research Challenges
	2.1 Power Profiling and Energy Efficiency
	2.2 IoT Network Interoperability
	2.3 IoT Network Scalability

	3. Contributions
	3.1 Operating System and Simulation Support for Network-Scale Power Profiling
	3.2 Interoperability and Performance Testing for IoT Stacks
	3.3 Network Scalability under Memory Constraints
	3.4 Software Contributions

	4. Summary of the Papers
	4.1 Paper I: Accurate, Network-Scale Power Profiling for Sensor Network Simulators
	4.2 Paper II: COOJA/MSPSim: Interoperability Testing for Wireless Sensor Networks
	4.3 Paper III: Industry: Beyond Interoperability - Pushing the Performance of Sensor Network IP Stacks
	4.4 Paper IV: The Contiki-NG Open Source Operating System for Next Generation IoT Devices
	4.5 Paper V: Scaling RPL to Dense and Large Networks with Constrained Memory

	5. Related Work
	5.1 Operating Systems
	5.2 Simulation Tools
	5.3 Energy Estimation
	5.4 Automated Interoperability Testing
	5.5 Scalability of IP-based IoT Mesh Networks

	6. Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	7. Summary in Swedish
	References

