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1 Introduction

In emergency and perioperative medicine, it is of utmost 
importance to have reliable measurements of arterial oxy-
gen saturation to ensure adequate delivery of oxygen to 
the tissues [1, 2]. A standard method for arterial oxygen 
saturation monitoring is to use a peripheral pulse oximeter. 
Although the technique is well established, it is not without 
problems. The algorithm used for the calculation of arterial 
oxygen saturation relies on the detection of a pulse wave, 
potentially impairing peripheral measurements during low 
perfusion states [3–6]. Non-invasive technology for moni-
toring respiratory status has several obvious benefits, i.e. 
easy, pain-free application and ability for continuous moni-
toring. In recent years, this has led to the development of 
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Abstract
Purpose: This study intended to determine, and non-invasively evaluate, sternal intraosseous oxygen saturation (SsO2) 
and study its variation during provoked hypoxia or hypovolaemia. Furthermore, the relation between SsO2 and arterial 
(SaO2) or mixed venous oxygen saturation (SvO2) was investigated. Methods: Sixteen anaesthetised male pigs underwent 
exsanguination to a mean arterial pressure of 50 mmHg. After resuscitation and stabilisation, hypoxia was induced with 
hypoxic gas mixtures (air/N2). Repeated blood samples from sternal intraosseous cannulation were compared to arterial 
and pulmonary artery blood samples. Reflection spectrophotometry measurements by a non-invasive sternal probe were 
performed continuously. Results: At baseline SaO2 was 97.0% (IQR 0.2), SsO2 73.2% (IQR 19.6) and SvO2 52.3% (IQR 
12.4). During hypovolaemia, SsO2 and SvO2 decreased to 58.9% (IQR 16.9) and 38.1% (IQR 12.5), respectively, p < 0.05 
for both, whereas SaO2 remained unaltered (p = 0.44). During hypoxia all saturations decreased; SaO2 71.5% (IQR 5.2), 
SsO2 39.0% (IQR 6.9) and SvO2 22.6% (IQR 11.4) (p < 0.01), respectively. For hypovolaemia, the sternal probe red/
infrared absorption ratio (SQV) increased significantly from baseline (indicating a reduction in oxygen saturation) + 5.1% 
(IQR 7.4), p < 0.001 and for hypoxia + 19.9% (IQR 14.8), p = 0.001, respectively. Conclusion: Sternal blood has an oxygen 
saturation suggesting a mixture of venous and arterial blood. Changes in SsO2 relate well with changes in SvO2 during 
hypovolaemia or hypoxia. Further studies on the feasibility of using non-invasive measurement of changes in SsO2 to 
estimate changes in SvO2 are warranted.
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several new non-invasive applications, such as blood vol-
ume measurements, organ viability and estimation of vas-
cular tone [7].

Deep penetration of light into the tissues is required for 
non-invasive measurement of intraosseous blood flow. The 
depth of penetration depends on the geometry of the sen-
sor, the chosen wavelength and the intensity of emitted light 
[8–11]. Numerous publications have demonstrated the pos-
sibility of non-invasive blood flow measurement in the bone 
tissue in various locations, e.g. patella, tibia, clavicle and 
sternum [8, 9, 11–14]. The sternum has a central anatomi-
cal location and a high degree of vascularisation. Also, it 
has a retained haematopoietic activity with a demand for 
adequate perfusion, which makes it of clinical interest for 
non-invasive measurements. We recently demonstrated 
that a novel non-invasive photoplethysmography (PPG) 
sternal probe could rapidly and accurately monitor arte-
rial oxygen saturation changes during gradually increasing 
hypoxia in man [11]. Still, even if data shows a good cor-
relation between sternal probe readings and arterial oxygen 
saturation (SaO2) during hypoxia, it is not completely clear 
if the probe measures arterial- and/or venous saturation 
as both are expected to decrease during hypoxia. Earlier 
publications have estimated sternal intramedullary oxygen 
saturation (SsO2) between 70 and 80%, indicating a mixed 
arteriovenous oxygen saturation [13, 15]. How low perfu-
sion states affect the blend of arterial and venous blood in 
the sternum is unknown. In order to conduct and correctly 
interpret non-invasive measurements of sternal intraosseous 
oxygen saturation, it is crucial to describe possible pertur-
bations of sternal oxygen delivery in relation to changes in 
systemic circulation or respiration.

The study was constructed with two separate aims. The 
first was to determine oxygen saturation in the sternum, 
using CO-oximetry, during changes in inspired oxygen con-
tent and tissue oxygen extraction and its relation to SaO2 
and mixed venous oxygen saturation (SvO2). The primary 
outcome was SsO2 evaluated in anaesthetised pigs during 
a reduced fraction of inspired oxygen (FiO2) or blood loss, 
increasing oxygen extraction but leaving arterial oxygen 
saturation unchanged. For this aim, we hypothesised that 
SsO2 would decrease during hypovolaemia and hypoxia.

For the second aim, we wanted to compare sternal med-
ullary-, arterial- and SvO2 with non-invasive measurements 
of changes in intraosseous oxygen saturation, using the 
earlier described [11] novel sternal probe. The outcome for 
the second aim was the sternal probe quotient value (SQV) 
obtained from the sternal probe. We hypothesised that the 
sternal probe accurately detects decreased SsO2. In addition, 
we hypothesised that SsO2 is related to SvO2 and that the 
probe thus will be able to monitor changes in SvO2.

2 Materials and methods

2.1 Animals

The Animal Ethics Committee of Uppsala University, Swe-
den, approved the experiment (5.8.18–02325/2019, date of 
approval 2019-03-29). All animals were treated according 
to the Swedish Board of Agriculture guidelines and com-
plied with the European Convention for the Protection of 
Vertebrate Animals used for Experimental and other Scien-
tific Purposes (Council of Europe No 123, Strasbourg 1985). 
The manuscript adheres to the ARRIVE 2.0 guidelines.

A local farmer in Uppsala, Sweden, supplied male Nor-
weigian Landrace breed/Hampshire/Yorkshire pigs. The 
animals were born on the farm and housed in large cages 
with water and food ad libitum. Sixteen pigs aged 3–4 
months were included in the study.

2.2 Anaesthesia and preparation

Upon arrival from the local breeder (20 min transport), all 
animals were calm and normothermic. The pigs arrived at 
8.00 am at the laboratory in separate large cases, two at a 
time. Two animals per day were included in the study. All 
animals were anaesthetised with an intramuscular injection 
of 6 mg/kg tilétamine-zolezepam (Zoletil®, Virbac, Den-
mark) and 2.2 mg/kg xylazine (Rompun®, Elanco, Den-
mark). The animals were placed on a surgical table and 
tracheotomised. Mechanical ventilation was started with a 
Servo-I ventilator (Maquet Critical Care, Solna, Sweden). 
Ventilator settings was - FiO2 0.3, PEEP 5 cm H20, tidal 
volume of 10 ml/kg, respiratory rate 25/min. After periph-
eral venous access had been established in both ears, a 
bolus dose of 20 mg of morphine and 100 mg ketamine was 
administered intravenously. Maintenance of general anaes-
thesia was performed with an infusion of pentobarbital 
8 mg/kg/h and morphine 0.26 mg/kg/h dissolved in a buff-
ered solution of Glucose 2.5% 4 ml/kg/h. A separate infu-
sion pump administered rocuronium bromide (Esmeron®, 
Merck & Co. Inc., Kenilworth, NJ, USA) at 3.6 mg/kg/h. 
Ringer’s Acetate was administered intravenously at 10 ml/
kg/h for the first hour and then reduced to 5 ml/kg/h. During 
the experiment, anaesthetic depth and pain sensation was 
monitored by continuous monitoring of mean arterial pres-
sure (MAP), and intermittent evaluation of eyelid reflexes 
and pain sensation in the hoof.

The animals were surgically prepared with an arterial 
catheter placed in a right cervical artery. A 3-lumen central 
venous catheter was inserted through a right-sided cervi-
cal vein and forwarded to the central vena cava. The same 
vessel was used to introduce a ballon tipped pulmonary 
artery catheter (7.5 F Swan-Ganz, Edwards Lifesciences, 
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Irvine, CA). On the left side of the neck, a central bleed-
ing catheter (an introducer used for Swan-Ganz catheters) 
was introduced in a cervical vein. A urinary catheter was 
introduced by a small vesicotomy after a mini-laparotomy. 
Doppler flow probes were applied to the left renal vein and 
left carotid artery for a separate study investigating renal 
function, which is reported elsewhere [16].

After thorough cleansing with soap, water, and ethanol, 
double adhesive tape was used to attach the sternum probe 
(RespiHeart) [11] to the caudal part of the sternum. In the 
cranial part of the sternum, a 45 mm, 15 G intraosseous can-
nula (EZ-IO, Teleflex corp., Morrisville, NJ) was inserted 
at approximately 30–45° (Fig. 1). The correct intraos-
seous placing was verified by aspiration of blood and by 
post mortem incision down to the bone. All animals were 
given 60 min to recover before the experimental protocol 
commenced.

2.3 Protocol

Haemorrhage resulting in hypovolaemia was used to cause 
hypoperfusion and increased peripheral oxygen extraction. 
Reduced FiO2 was used to lower arterial oxygen saturation. 
Thus, low sternal medullary oxygen saturation was induced 
either by increased oxygen extraction or low oxygen deliv-
ery. The animals were put in a left lateral position. The pro-
tocol started with a 30 min baseline registration, after which 
bleeding to a predetermined MAP of 50 mmHg was com-
menced. This MAP-level was kept for 30 min. Blood was 
collected in heparinised bags. Subsequent resuscitation was 
done with blood and Ringers Acetate in a 1:1 ratio. Hypoxia 
was achieved by changing the air supply to the ventila-
tor with nitrogen. An end-tidal O2 level of approximately 

14–16% was sufficient to produce stable hypoxia of 80% 
arterial saturation measured by a pulse oximeter.

Blood was sampled from the systemic artery, pulmo-
nary artery and the sternum at baseline, MAP-target, end 
of bleeding, before and after hypoxia. Marrow blood sam-
ples, from the sternum, were analysed spectrophotometri-
cally on an OSM3® blood gas analyser (Radiometer AS, 
Copenhagen, Denmark). Systemic and pulmonary artery 
blood samples were analysed both on an ABL800 blood gas 
analyser (Radiometer AS, Copenhagen, Denmark) and on 
the OSM3→. The OSM3→ corrected the readings for por-
cine haemoglobin. Recordings from the sternal probe were 
performed before and during the different provocations of 
hypovolaemia and hypoxia.

At the end of the experiment, the animals were euthanised 
with an overdose of KCl. Included humane endpoints in the 
study protocol were; hyperthermia (> 40 °C) at arrival to 
the laboratory, MAP < 40 mmHg despite treatment, Pulmo-
nary artery pressure > arterial pressure despite treatment and 
arterial oxygen saturation < 85% despite treatment (besides 
hypoxic provocation).

2.4 Sternal probe data

The sternum probe has been described in detail previously 
[11, 17]. The raw signal of the infrared and red light from 
the sternal probe was transferred via Bluetooth communica-
tion to a laptop via a data acquisition programme. Matlab 
R2018b (Mathworks, Massachusetts, USA) was used for 
applying a 1 Hz low pass filter and for further analysis of 
the signal. A quotient of infrared and red lights was formed 
(Sternal Probe Quotient value – SQV) and subsequently 
used for comparison against measured SaO2, SsO2 and 
SvO2.

2.5 Statistics

Since this is the first study using the sternum probe on pigs, 
no a priori sample size calculation could be performed. Data 
are presented as mean (SD) or median (IQR) for normally 
and non-normally distributed data, respectively.

Depending on data distribution, a paired t-test or Wil-
coxon signed-rank test was used to analyse the differences 
within the variables between baseline and provocation for 
normally and non-normally distributed data, respectively. 
The sampled blood gases were not normally distributed. To 
analyse the dependent oxygen saturation data between base-
line and provocation, for both hypoxia and hypovolaemia, 
a generalised estimated equation (GEE)-model was esti-
mated assuming an exchangeable correlation structure. The 
models included an interaction effect between the variables. 
GEE is suitable for longitudinal analyses of non-normal 

Fig. 1  A post-mortem picture illustrating the cranial site of sternal 
intraosseous cannulation and the caudal placement of the non-invasive 
sternal probe
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hypoxic provocation, blood was sampled at baseline and 
after a steady state of 80% oxygen saturation, as measured 
by a peripheral pulse oximeter (Table 1). The fraction of 
inspired oxygen (FiO2) required to reach a steady state of 
80% oxygen saturation was between 0.14 and 0.18. Some 
animals developed tachycardia, which was most likely a 
physiological response to hypoxia, as responses to pain and 
reflexes were otherwise absent.

3.1 Aim 1 – alterations in SsO2

During the hypovolaemic provocation, SsO2 and SvO2 
decreased, whereas SaO2 remained the same (Table 1). 
The GEE-models tested the interrelationships between 
SaO2, SsO2 and SvO2. The model’s intercept was 97.0% 
(SE 0.12). The estimated general difference in oxygen sat-
uration between SsO2 versus SaO2 and SvO2 versus SaO2 
was − 22.1% (SE 1.70), p < 0.001 and − 41.8% (SE 2.29), 
p < 0.001, respectively. Hypovolaemia had no significant 
effect on perturbating the model compared to baseline, 
+ 0.1% (SE 0.14), p = 0.51. The arterial oxygen saturation 
remained stable throughout the hypovolaemic provoca-
tion, but SsO2 versus SaO2 decreased with − 14.3% (SE 
3.37), p < 0.001 and SvO2 versus SaO2 -19.3% (SE 3.19), 
p < 0.001, respectively (Fig. 2a).

Contrary to the induced hypovolaemia, during the 
hypoxic provocation, all oxygen saturations (SaO2, SsO2 
and SvO2) decreased significantly (Table 1). The GEE-mod-
el’s intercept was 97.1% (SE 0.07). The general average 
estimated difference between SsO2 versus SaO2 and SvO2 
versus SaO2 was − 28.5% (SE 3.51), p < 0.001 and − 46.3% 
(SE 2.86), p < 0.001, respectively. Inducing hypoxia resulted 
in an average decrease in oxygen saturations with − 25.6% 
(SE 1.24), p < 0.001. At hypoxia, all evaluated oxygen satu-
rations had decreased, which led to the estimated difference 
between SsO2 and SvO2 versus SaO2 was no longer found 

data [18]. Results from the GEE model are presented as esti-
mated coefficients with the associated standard error (SE). 
Assessing agreement between blood gas analysis of SsO2 
and SvO2 was achieved with Bland-Altman plots [19], with 
data presented as bias (SD). Statistica 13 software (TIBCO 
Software inc, Palo Alto, CA) was used for analysis and Sig-
maplot 14 (Systat Software Inc, San Jose, CA) for graph-
ics. The GEE models were estimated in R version 4.1.1 (R 
Core Team (2021). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https://www.R-project.org/) using the 
geepack package. A two-sided p-value of < 0.05 was consid-
ered statistically significant.

3 Results

All animals (n = 16), with a mean weight of 25.8 kg (SD 
2.1), completed the experimental protocol. Because of an 
unstable signal during the hypoxic provocation, sternal 
probe measurements from one animal had to be excluded 
during the hypoxic provocation. A total of 170 arterial, ster-
nal and mixed venous blood gases were sampled. Because 
of technical failure of the blood gas apparatus, three arterial, 
four sternal and fifteen mixed venous samples could not be 
analysed.

Four sternal blood samples are missing because of diffi-
culties in the aspiration of blood. Three sternal samples had 
an aspiration time longer than desired with disproportionate 
high oxygen saturation and hence were excluded.

Before the commencement of the different provoca-
tions, the pigs were normotensive and had a normal arte-
rial oxygen saturation measured by pulse oximetry (SpO2) 
(Table 1). For the hypovolaemic provocation, haemorrhage 
were successfully used to induce a low circulatory state, 
and all animals reached the desired MAP-target. During the 

Table 1 Physiological variables measured during the different provocations
Normovolaemia Hypovolaemia p Normoxia Hypoxia p

Pigs (N) 16 16 15 15
SpO2

a (%) 100(IQR 2.0) 100(IQR 0.0) 0.089 100(IQR 0.3) 76(IQR 5.5) 0.002
MAPb (mmHg) 95(IQR 9.0) 50(IQR 2.3) 0.002 88(IQR 10.0) 81(IQR 16.5) 0.014
HRc (beat/min) 88(IQR 15.3) 95.5(IQR 14.3) 0.062 101(IQR 27.3) 136(IQR 32.0) 0.006
COd (L/min) 3.3(SD 0.9) 2.5(SD 0.4) 0.002
CVPe (cm H2O) 5(IQR 0.5) 1(IQR 1.0) < 0.001
PAf (mmHg) 16.9(SD 3.0) 11.7(SD 2.1) < 0.001
PCWPg (mmHg) 7.7(SD 1.5) 4.6(SD 1.5) < 0.001
SaO2

h (%) 97.0(IQR 0.3) 97.0(IQR 0.4) 0.44 97.0(IQR 0.2) 71.5(IQR 5.2) 0.001
SsO2

i (%) 72.0(IQR 7.5) 58.9(IQR 16.) < 0.001 73.2(IQR 19.6) 39.0(IQR 6.9) < 0.001
SvO2

j (%) 55.2(IQR 16.1) 38.1(IQR 12.5) 0.002 52.3(IQR 12.4) 22.6(IQR 11.4) 0.002
aSaturation by peripheral pulse oximetry, bMean Arterial Pressure, cHeartrate, dCardiac output, eCentral venous pressure, fPulmonary artery 
pressure, gPulmonary capillary wedge pressure, hArterial oxygen saturation, iSternal intramedullary oxygen saturation, jMixed venous oxygen 
saturation. Data are presented as mean (SD) or median (IQR) for normally and non-normally distributed data
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Agreement between SsO2 and SvO2 were analysed with 
Bland-Altman plots. The bias for baseline was 17.6 (SD 
8.5), end of hypovolaemia 18.0 (SD 17.1) and at hypoxia 
17.7 (SD 16.2), respectively. There was a consistent bias 
for the three situations but with a low precision according to 
large confidence intervals (Fig. 5).

3.3 Haemorrhage

Signal artefacts in the sternal probe reading during hypo-
volaemia prevented further analysis in one animal. Hence, 
individual analyses were performed using 15 animals. Fig-
ure 6 is a typical registration of the IR-wavelength, from the 
sternal probe, for one selected individual. The start of posi-
tive inclination marks the onset of bleeding, which subse-
quently ends on a plateau where the target MAP is reached, 
and the rate of bleeding is drastically reduced. In Fig. 7, a 
boxplot shows the dynamic distribution of how the signal 
strength from the IR-wavelength is altered during bleeding. 
The registered intensity of the IR-wavelength had a signifi-
cant increase from baseline with a mean difference of 0.23 
Arbitrary units (AU) (SD 0.024), p < 0.001.

4 Discussion

The main finding of the current study is that sternal medul-
lary oxygen saturation has a value that is lower than arterial 
but higher than mixed venous oxygen saturation, indicating 
an arteriovenous mixture of blood. When capillary extrac-
tion of oxygen was increased as the effect of hypovolaemia, 
SaO2 was, as expected, unaltered. However, SsO2 changed 
with SvO2 found in the pulmonary artery. Changes in the 

to be significant. SsO2 versus SaO2 was − 2.9% (SE 4.53), 
p = 0.53, and SvO2 versus SaO2 was − 1.4% (SE 4.14), 
p = 0.74, respectively (Fig. 2b).

3.2 Aim 2 – SQV and SvO2

During both hypovolaemia and hypoxia, SQV increased 
significantly from baseline, reflecting a measured decrease 
in oxygen saturation. However, the increase in SQV was 
not equal for the hypovolaemic and the hypoxic provoca-
tion + 5.1% (IQR 7.4), p = 0.001 versus + 19.9% (IQR 14.8), 
p < 0.001, respectively (Fig. 3).

Figure 4 illustrates the increase in SQV with the con-
comitant alterations in SaO2, SsO2 and SvO2 as the effect of 
hypovolaemia (Fig. 4a) and hypoxia (Fig. 4b), respectively.

Fig. 3  A box plot illustrating the distribution of the sternal probe 
absorption ratio between infrared and red lights (sternal probe quotient 
value (SQV)) during baseline and provocation for hypovolaemia and 
hypoxia, respectively

 

Fig. 2 Predicted oxygen saturation (%) values from the Generalised 
Estimated Equation (GEE) model for hypovolaemia (a) and hypoxia 
(b), respectively. Standard Errors (SE) are illustrated with red, blue 

and green lines for arterial (SaO2), sternal (SsO2) and mixed venous 
oxygen saturation (SvO2), respectively
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extent sternal perfusion is altered when the total circulating 
blood volume is reduced and the impact of intramedullary 
oxygen extraction on SsO2.

During exsanguination, SaO2 remained unchanged, 
while a decrease in both SvO2 and SsO2 was noted (Table 1; 
Fig. 2a). This was as expected since a reduction in tissue 
oxygen delivery leads to increased extraction of oxygen and 
hence a reduction of oxygen saturation in venous blood. 
Contrary to the hypoxic provocation, which demonstrated 
a significant decrease in SsO2, SaO2 and SvO2. Although 
not as profound as in the hypoxic experiments, the result-
ing decrease in SsO2 during hypovolaemia was detected by 
the sternal probe (Fig. 3). The resulting reduction of SsO2 
after a decrease in FiO2 was accurately registered by the 
sternal probe (Figs. 2b, 3 and 4b), a result in line with previ-
ous findings. This implies that the blood oxygen saturation 

sternal probe readings relate to changes in SsO2, and thus 
SvO2, during hypovolaemia or hypoxia.

The anatomical structure of bone tissue results in mixed 
arteriovenous blood flow [20]. Even though the sternum 
has a sustained haematopoietic activity and is highly vas-
cularised [21], the SsO2 has been estimated to be roughly 
between 70 and 80% [13, 15]. With the assumption that 
the sternum has abundant blood perfusion, we have earlier 
shown the feasibility of monitoring arterial oxygen changes 
induced by hypoxia with a non-invasive probe targeting the 
sternal intraosseous portion of blood [11]. A linear associa-
tion between SQV and SaO2, in that study, made it possible 
to calibrate SQV against SaO2 and hence estimate arterial 
oxygen saturation, despite a lower oxygen saturation in the 
marrow. However, these saturation changes were performed 
at rest and during normovolaemia. Little is known to which 

Fig. 5 Bland-Altman plots illustrating the agreement between medul-
lary sternal oxygen saturation (SsO2) and mixed venous oxygen sat-
uration (SvO2) for (a) baseline, (b) hypovolaemia, and (c) hypoxia. 

Because of technical difficulties, data for SvO2 is missing for six ani-
mals during the hypoxic provocation

 

Fig. 4 Relative changes between baseline and provocation for oxygen 
saturation measured in arterial (SaO2), sternal (SsO2) or mixed venous 
(SvO2) blood plotted against relative changes of the sternal probe quo-

tient value (SQV) during (a) hypovolaemia (SaO2 n = 15, SsO2 n = 14 
SvO2 n = 10) and (b) hypoxia (SaO2 n = 13, SsO2 n = 15, SvO2 n = 9). 
Data are presented as mean (standard error (SE))

 

1 3

852



Journal of Clinical Monitoring and Computing (2023) 37:847–856

high oxygen demand (e.g. hyperthermia, pain or shivering). 
On the contrary, a high SvO2 indicates either an inability to 
use oxygen, e.g. in sepsis, high-flow states or a decreased 
oxygen demand (e.g. hypothermia or anaesthesia) [24–26]. 
SvO2 is clinically a very valuable indicator of adequate oxy-
gen status [23, 25, 27, 28]. The downside is the need for 
central venous cannulation and insertion of a pulmonary 
artery catheter (PAC), a procedure not without risks [29]. 
A less invasive alternative to placing a PAC is to analyse 
central venous oxygen saturation (ScvO2) from the superior 
vena cava as a surrogate for SvO2, as the trend differences 
are the same for the two [30]. A possibility for non-invasive 
estimation of SvO2 would be of value for clinical decision 
making. Especially since deviations of normal SvO2-values 
has been linked as a marker for clinical outcome in a vari-
ety of situations, e.g. mortality in septic patients, postop-
erative complications or the success of weaning a patient 
from a ventilator [31–36]. Apart from PPG, Near infrared 
Spectroscopy (NIRS) is another optical method capable of 
measuring regional tissue oxygenation by determining the 
concentrations of oxygenated and deoxygenated haemoglo-
bin [37–39]. The use of NIRS has been evaluated in several 
studies focusing on central or mixed venous oxygen satu-
ration [30, 40–42]. In our study, SQV and SvO2 changed 
in parallel during blood loss, whereas SaO2 remained unal-
tered, indicating the potential for non-invasive measure-
ment of SvO2 over the sternum. Although SvO2 generally 
was lower than the SsO2, the bias between SsO2 and SvO2 
in Bland-Altman plots (Fig. 5) was consistent for baseline, 
hypoxia and hypovolaemia. One possible solution for this is 
using a conversion factor to the measured SQV to estimate 
the SvO2. However, like calibrating a device for measuring 
SaO2, this sternal probe will need to be calibrated against 
a spectrum of various mixed venous oxygen saturations to 
give a continuous accurate estimate of SvO2.

Using photoplethysmography (PPG) for assessing hypo-
volaemia has been a subject of extensive research, with 
varying results [43–47]. The DC-component of the PPG-
signal has been assumed to represent total illuminated blood 
volume and thereby an indirect estimate of average circu-
lating blood volume [10]. This study found that the sig-
nal strength of the IR-wavelength, from the sternal probe, 
increased almost momentarily as the exsanguination was 
started (Fig. 6). One explanation for this might be that a 
reduced blood volume will absorb less light and then more 
light will reach the photodetector, which is in line with pre-
viously reported observations [48].

4.1 Limitations

The current results derive from animal experiments and 
cannot be directly applied to humans. However, inducing 

measured by non-invasive monitoring over the sternum is 
an arteriovenous mix. During circumstances with parallel 
changes in arterial and venous oxygen saturation, it appears 
possible to estimate arterial oxygen saturation from the ster-
nal probe reading. However, this is probably not the case 
during situations with an increased sternal intramedullary 
oxygen extraction and maintained arterial oxygen saturation.

Oxygen deprived blood returning from the upper and 
lower part of the body mixes in the heart´s right ventricle 
before being re-saturated with oxygen in the lungs. This mix-
ture of venous blood is referred to as mixed venous blood, 
and its saturation (SvO2) reflects the global oxygen con-
sumption and delivery in the body. SvO2 is usually between 
65 and 85% in both pigs and humans [22, 23]. A low SvO2 
generally represents either a state of decreased oxygen deliv-
ery (e.g. haemorrhage, hypoxia or reduced perfusion) or a 

Fig. 7  A box plot illustrating the increase in signal strength of the 
infrared (IR)-wavelength, from the sternal probe, during concomitant 
exsanguination

 

Fig. 6 Illustration of the time course during the hypovolaemic provo-
cation for one selected individual. The intensity of the infrared (IR)-
wavelength, from the non-invasive sternal probe, deviates from base-
line at the onset of bleeding (40 s) and plateaus when the target MAP 
has been reached, and the exsanguination ceases (640 s)
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