

Master’s thesis
Master’s Programme in Information
Technology (30 ECTs)

Enhancing failure prediction from time
series histogram data:
through fine-tuned lower-dimensional representations

M.Sc. in Computer Science & Engineering (120 ECTs)

Halmstad 2023-09-29

Vijay Jayaraman

Vijay Jayaraman : Thesis Report, Enhancing Failure Prediction from
Time Series Histogram Data through Fine-tuned Lower-Dimensional
Representations, © September 2023

supervisors:
Thorsteinn Rögnvaldsson
Abdallah Alabdallah
Peyman Mashhadi
Yuantao Fan

"Dedicated to the unwavering support and love of my family:
To my beloved son Kabir, whose laughter and curiosity inspire me

daily,
To my loving wife Anisha, whose strength and encouragement

sustain me,
To my father Jayaram, whose guidance and support have shaped my

journey.
And to my late mother Manjula, whose memory lives on in my heart,

This thesis is a testament to the love and inspiration you have all
brought into my life."

A B S T R A C T

Histogram data are widely used for compressing high-frequency time-
series signals due to their ability to capture distributional informa-
tion. However, this compression comes at the cost of increased di-
mensionality and loss of contextual details from the original features.
This study addresses the challenge of effectively capturing changes
in distributions over time and their contribution to failure prediction.
Specifically, we focus on the task of predicting Time to Event (TTE) for
turbocharger failures.

In this thesis, we propose a novel approach to improve failure pre-
diction by fine-tuning lower-dimensional representations of bi-variate
histograms. The goal is to optimize these representations in a way
that enhances their ability to predict component failure. Moreover, we
compare the performance of our learned representations with hand-
crafted histogram features to assess the efficacy of both approaches.

We evaluate the different representations using the Weibull Time To
Event - Recurrent Neural Network (WTTE-RNN) framework, which is
a popular choice for TTE prediction tasks. By conducting extensive ex-
periments, we demonstrate that the fine-tuning approach yields supe-
rior results compared to general lower-dimensional learned features.
Notably, our approach achieves performance levels close to state-of-
the-art results.

This research contributes to the understanding of effective failure
prediction from time series histogram data. The findings highlight
the significance of fine-tuning lower-dimensional representations for
improving predictive capabilities in real-world applications. The in-
sights gained from this study can potentially impact various indus-
tries, where failure prediction is crucial for proactive maintenance
and reliability enhancement.

v

It isn’t what you don’t know that gets you into trouble,
it’s what you know for sure that just isn’t so.

— Mark Twain

A C K N O W L E D G E M E N T S

Firstly, I would like to thank the entire Strategic Product Planning &
Advanced Analytics team at the Service & Maintenance function at Sca-
nia, for giving me the opportunity to do my thesis with them. Also,
I’m grateful to my thesis advisor at Scania - Olof Steinert, for his
guidance and insights on predictive maintenance. I would also like
to thank Maharshi Dhada, for passing on his knowledge from his
research work, which has formed the premise to this thesis.
Secondly, I would like to thank my academic supervisors Thorsteinn
Rögnvaldsson and Abdallah Alabdallah for their relentless support,
constructive feedback and their constant nudge to do my best. I also
would like to thank Peyman Mashhadi and Yuantao Fan for support-
ing in spite of their limited time.
Lastly, I would like to thank my family and friends for always stand-
ing by side and rooting for me.

vii

C O N T E N T S

1 introduction 1

1.1 Problem Context 1

1.1.1 Histogram Feature Learning 2

1.2 Research Questions 2

1.3 Novelty 3

1.4 Background 4

1.4.1 Censoring 4

2 related work 5

2.1 Histogram Feature Learning 5

2.2 Representation Learning and Predictive Maintenance 6

2.3 Prognostic models 7

3 data pre-processing 9

3.1 Dataset 9

3.2 Data Description 9

3.3 Population Pruning 11

3.3.1 Population Pruning for Feature Learning 11

3.3.2 Population Pruning for WTTE-RNN Training 11

3.4 Data Pipeline 12

4 method 15

4.1 Feature Representations 15

4.1.1 Benchmark Features 15

4.1.2 Autoencoder Feature Learning 16

4.1.3 Flow matrix features 18

4.2 Prognostic Models 19

4.2.1 Working of WTTE-RNN Network 20

4.2.2 Survival Support Vector Machine (Survival Sup-
port Vector Machine (SSVM)) 21

4.3 Evaluation Methods 22

4.3.1 Mean Absolute error (Mean Absolute Error (MAE))and
Time Segment Evaluation 22

4.3.2 Concordance Index (c-index) and c-index De-
composition 23

5 results 25

5.1 Baseline Experiments 25

5.1.1 Experiment Design 25

5.2 Evaluating Representations on Time-to-event prediction
models 27

5.2.1 Autoencoder Feature Learning 27

5.2.2 Time-series Modelling 31

5.2.3 EMD flow with Survival SVM 39

6 discussion 41

6.1 Discussion and Interpretation of Results 41

6.2 Future Work 42

bibliography 43

ix

L I S T O F F I G U R E S

Figure 1 Left: Survival studies in actual time, Right: sur-
vival studies in normalized timelines to start at
t=0. Image credits: https://scikit-survival.readthedocs.io 4

Figure 2 Illustration of Time-series histogram for a par-
ticular Operational attribute for different sub-
ject vehicles (e.g. v1,v2,v3) 9

Figure 3 Left: Boost Pressure 1-D Histogram Snapshots
Visualized. Right: Turbine Speed 1-D Histogram
Snapshots Visualized 10

Figure 4 10

Figure 5 Illustration of Histogram Snapshots for each
vehicle sample 11

Figure 6 Data preparation pipeline including preprocess-
ing and data preparation for feature learning
and survival modeling. 12

Figure 7 Left: Average of 1000 2-D histogram snapshots;
Center: Individual 1-D histogram snapshots af-
ter summarising 2-D histogram along the y-
axis, indicating the 1-D histogram of the load;
Right: Individual 1-D histogram snapshots af-
ter summarising 2-D histogram along the x-
axis, indicating the 1-D histogram of the en-
gine RPM. 13

Figure 8 Feature engineering pipeline for generating Bench-
mark Features 15

Figure 9 Autoencoder feature learning process 17

Figure 10 Feature Learning architecture 17

Figure 11 Flow matrix feature preparation process 19

Figure 12 EMD Flow matrix between the first snapshot
and the last snapshot of the vehicle. Color cod-
ing: red indicates a change in the starting dis-
tribution, green indicates a change in the end-
ing distribution, and yellow indicates unchanged. 19

Figure 13 Prediction of failure distribution using the WTTE-
RNN network 21

Figure 14 Illustration of Padding and Masking process to
deal with variable sequence length 21

Figure 15 Time-segment based evaluation 22

Figure 16 Bottleneck layer comparison of train and val-
idation reconstruction loss for Convolutional
Neural Network - Autoencoder (CNN-AE) 30

Figure 17 Bottleneck layer comparison of train and vali-
dation reconstruction loss for Autoencoder (AE) 30

x

List of Figures xi

Figure 18 Comparative analysis of lower dimensions ver-
sus the amount of minimum reconstruction er-
ror achieved 30

Figure 19 Comparison of training and validation losses
of CNN-AE and the AE model after fine-tuning 31

Figure 20 Comparison of the error on a test set of CNN-
AE and AE model after fine-tuning 31

Figure 21 WTTE Results comparing the tuned and un-
tuned CNN-AE features with 95% prediction
interval on test set 34

Figure 22 WTTE Results With 95% prediction interval on
test set 35

Figure 23 Survival score using c-index with 95% predic-
tion interval on test set 36

Figure 24 Error in prediction RUL, when trained on dif-
ferent features:1) Only CNN fine-tuned features,
2) Benchmark Features + CNN fine-tuned fea-
tures, 3) Benchmark features 36

Figure 25 Different predicted RUL and the True RUL av-
eraged for all the vehicles in the dataset 37

Figure 26 WTTE-RNN vs RNN performance on bench-
mark features 37

Figure 27 Earth Mover Distance (EMD) distance visual-
ization of the 2-D Histogram of Engine load
on the y-axis versus the Engine RPM on the x-
axis of trucks that experienced a failure. Color
coding: Red channel indicates a change in the
starting distribution; the green channel indi-
cates a change in the ending distribution; yel-
low indicates "unchanged". The arrows indi-
cate the flow determined using EMD, where the
thickness of the arrow is proportional to the
amount of mass flow 38

Figure 28 EMD distance visualization of the 2-D Histogram
of Engine load on the y-axis versus the Engine
RPM on the x-axis of trucks that did not ex-
perience a failure. Color coding: The red chan-
nel indicates a change in the starting distribu-
tion; the green channel indicates a change in
the ending distribution; yellow indicates "un-
changed". The arrows indicate the flow deter-
mined using EMD, where the thickness of the
arrow is proportional to the amount of mass
flow 39

Figure 29 Time-Segment based mean absolute error com-
paring the two feature types 1)EMD flow fea-
tures; 2) Benchmark features 39

L I S T O F TA B L E S

Table 1 Baseline experiments on a simple WTTE-RNN
Network to understand feature importance; Bench-
mark features refer to the hand-crafted features
used in [3]. 26

Table 2 Simple WTTE-RNN Architecture 27

Table 3 CNN-AE Encode-Decoder Architecture 28

Table 4 AE Encode-Decoder Architecture 28

Table 5 Fine Tuning Architecture for CNN-AE 29

Table 6 WTTE-RNN Architecture 32

Table 7 RNN Architecture 33

Table 8 Summary of WTTE-RNN results with 95% pre-
diction interval 35

Table 9 Summary of results 35

Table 10 Modelling of Survival SVM on 1) EMD flow
features;2) Benchmark features. Modelling is
static, meaning each snapshot’s Remaining Use-
ful Life (RUL) is estimated 40

xii

A C R O N Y M S

DTC Diagnostic Trouble Code

RUL Remaining Useful Life

SVM Support Vector Machine

DRSA Deep Recurrent Survival Analysis

RPM Rotations Per Minute

TTE Time to Event

PR Precision Recall

MSE Mean Squared Error

PDF Probability Density Function

RSF Random Survival Forest

AUC Area Under the Curve

SSVM Survival Support Vector Machine

AE Autoencoder

RNN Recurrent Neural Network

LSTM Long Short Term Memory

WTTE-RNN Weibull Time To Event - Recurrent Neural Network

T-SNE T-Distributed Stochastic Neighbor Embedding

CNN Convolutional Neural Network

CNN-AE Convolutional Neural Network - Autoencoder

EMD Earth Mover Distance

MAE Mean Absolute Error

xiii

1
I N T R O D U C T I O N

1.1 problem context

Data-driven prognostics pose a significant challenge for automotive
manufacturers as they seek to enhance fleet managers’ experience
and mitigate losses caused by unexpected vehicle downtime. The core
of the problem lies in optimizing maintenance schedules and proac-
tively addressing vehicle component failures, thereby improving ve-
hicle service prognostics. Unplanned failures of vehicle components
result in substantial losses, primarily due to extended downtime and
potential delays in obtaining spare parts, as well as increased ex-
penses for roadside assistance or towing. An effective approach to
failure prognostics can empower fleet owners to plan service visits
strategically and address existing issues promptly. This, in turn, en-
ables vehicle manufacturers to better prepare for situations where
components might not exhibit apparent issues but are prone to fail-
ure in the near future. Thus, modeling failure prognosis for different
vehicle components becomes a crucial factor in enhancing the overall
vehicle service experience for both suppliers and consumers.

In this research, we present an approach focused on estimating the
RUL of a specific time- critical component: the turbocharger. While
this might seem straightforward, we encounter several challenges:

• Lack of Direct Health Status Data: Direct health status measure-
ments for the turbocharger are unavailable, making it difficult
to assess its condition accurately.

• Irregular Sampling and Histogram Representation: The sensor
data related to the turbocharger is irregularly sampled and pre-
sented in the form of histograms, posing a unique data process-
ing challenge.

• Component-Level Data Resolution: The data is at the compo-
nent level rather than representing specific fault modes or Diag-
nostic Trouble Codes (DTCs), making it challenging to pinpoint
the exact cause of potential failures.

• Rare Occurrence of Turbocharger Failures: Turbocharger fail-
ures are infrequent events, further complicating the develop-
ment of accurate prognostic models.

While most of the above challenges can be addressed during the
modeling process, the absence of direct health status indicators emerges
as the most significant hurdle in solving this prognostic problem.
Business and data contract decisions have led to the summarization of
raw sensor data from different vehicles into histogram distributions.
This summarization results in the loss of specific sensor values for

1

2 introduction

each operational variable, posing challenges in extracting meaningful
information using feature learning and subsequently evaluating their
effectiveness in failure prognostics.

In this research, we focus on failure prognostics through time-to-
event prediction, also known as remaining useful life estimation. This
area is closely related to predictive maintenance, which requires ac-
tionable failure prognostics for real-world applications. As a compre-
hensive and in-depth study, our aim with time-to-event prediction is
to take a step forward in developing practical and effective prognostic
solutions.

1.1.1 Histogram Feature Learning

Feature learning is essential in understanding the various variations
present in histogram distributions and their relationship to depict-
ing a vehicle’s state as faulty or not. However, a significant challenge
arises when dealing with time series histogram data, where the tem-
poral information of variables is discarded, resulting in time-series of
histograms capturing temporal changes in variable distribution. De-
spite this challenge, such data holds promise for prognostic modeling,
necessitating additional feature engineering to ensure effective model
input.

Capturing distinguishability between histograms is crucial, as it in-
dicates variations or trends towards degradation or excessive strain
in the long or short term. Furthermore, reducing dimensions in the
spatial domain becomes vital for improved efficiency and better mod-
eling practices.

The prevalence of histogram usage in the automotive industry, par-
ticularly in optimizing maintenance schedules and reducing mainte-
nance costs through improved prognostic modeling is well-established.
While predicting part reliability with histogram data may be challeng-
ing and not the focus of this research or Scania’s specific goals, the
need for feature learning remains critical for effective failure prognos-
tic modeling.

In this research, we propose a deep learning-based feature learning
method aimed at effectively learning time series histogram data of
different operational variables to best estimate the survivability of
turbochargers in a population of trucks.

1.2 research questions

After describing the problem statement and providing background
information in this area, the scope of this research is defined by ad-
dressing the following questions:

1. What representations can be learned from histogram features,
including both hand- crafted and neural-network-based learned
features, that would be beneficial in failure prognostics?

1.3 novelty 3

2. How does the performance of failure prognostic models com-
pare when using hand-crafted histogram features versus neural-
network-based learned representations?

1.3 novelty

When modeling failure prognostics using histogram features, the fo-
cus has predominantly been on improving modeling practices by uti-
lizing various methods to represent the data in static or time-dependent
modes. However, limited attention has been given to understanding
how to extract the most informative features to enhance performance.

Feature learning can be achieved either through manual crafting or
representation learning methods such as AE. The problem with hand-
crafted features lies in the vast number of potential feature combina-
tions applicable in a single scenario, resulting in a daunting number
of experiments to identify the most effective methods. An example
of hand-crafted features can be found in [3], where histograms were
transformed into point features using similarity measures. While this
approach yielded seemingly reasonable results, questions remain re-
garding the trade-off between compression and retention of relevant
information.

On the other hand, AE offers neural network-based trainable fea-
ture extractors that often learn low-dimensional general representa-
tions of the data. An example in this domain is presented in [12],
where the focus was on using these general representations in a multi-
task learning scenario. However, the encoder-decoder architecture of
AE models tends to focus on reproducing the input, lacking a spe-
cific focus on features tailored for failure prognostics. To address this,
transfer learning and fine-tuning can be employed with labeled target
variables. In this case, however, we only have censoring information
and RUL data, which are not applicable to non-failed vehicles. There-
fore, using these labels would not be empirically accurate.

This work proposes a novel approach that involves fine-tuning
lower-dimensional representations to facilitate the selection of useful
features for the failure prognostics problem. Given that we lack any
information on the "health" status of a vehicle during its operation,
fine-tuning the network requires an alternate approach. The proposed
fine-tuning approach outperforms the network learning general rep-
resentations when evaluated on the WTTE-RNN network for time-to-
event prediction.

The upcoming chapters will delve into the essential aspects of the
problem being addressed and provide in-depth explanations of the
methodology employed in this research.

4 introduction

1.4 background

1.4.1 Censoring

In survival analysis, censoring is an important part of how the data
is interpreted. Out of the sample set of vehicles that we use in this
research, it comprise of vehicles; 1) Ones that in the period of the
study underwent a repair, which we will interpret as failure as we
don’t have the actual time of failure; 2) Ones that did not experience
a failure during the entire study period; 3) Ones that left the study
mid-way, and now we have no information on whether this vehicle
experienced a failure or not in the future. Here cases 2 & 3 would be
classified as right censoring of the data, wherein, we have data from
the start of its lifetime but not until the actual end of its lifetime. We
can see from figure 1(left), how our typical studies look like. There are
a few cases that experienced a failure and some did not or were not
captured due to censoring. But for ease of modeling, we normalize
the enrollment time as depicted in 1(right).

Formally, we can define the samples with right censoring in this
way, where y is given as the observable time and δ is given as the
event indicator {0,1}, t > 0 is the time when an event occurred and c >
0 is the time of censoring. Here the event indicates whether a failure
happened or not.

y =

t, if δ = 1

c, if δ = 0
(1)

Figure 1: Left: Survival studies in actual time, Right: survival studies in
normalized timelines to start at t=0. Image credits: https://scikit-
survival.readthedocs.io

2
R E L AT E D W O R K

2.1 histogram feature learning

In previous work, feature learning histogram data in prognostic mod-
eling scenarios has previously found applications of using similarity
or distance measures to understand deviations in distributions and
how they indicate faulty behavior. The main reasoning behind using
such metrics is its capacity to reduce the number of dimensions dras-
tically to point features and statistically still hold meaning. In [5], the
authors did a comparative study of various distance metrics in an
unsupervised setting, in which the state of the histogram snapshot
is derived based on its similarity from a central healthy snapshot.
The results showed Hellinger and Cosine distance measures being
the most sensitive to variations in snapshots of histogram data. This
study was however performed on a high-frequency regular sampling
setting (1Hz), which is different from the very low-frequency irreg-
ular sampling setting we have here (more about the data in chapter
3). In [3], the authors in collaboration with Scania, modeled failure
prognosis on very similar data as used in this research. They used
distance measures to depict variation in the state of time-series his-
togram snapshots by using; 1) the Distance of each snapshot in the
series from its respective sample’s first snapshot, and 2) the Distance
of each snapshot from the antecedent snapshot in the series. For this,
they found reasonable success using entropy-based similarity mea-
sures like intersection distance and also proposed using the K-L Di-
vergence for pre-processing the histogram data. In [2], the authors
introduce a comprehensive study on different similarity measures to
be used to compare normalized distributions which also include the
above metrics. One key issue with working with similarity measures
pointed as by [11] is that most of the similarity measures don’t give
a distance value for non-overlapping parts when comparing two his-
tograms, hence we could potentially be missing out on information.
As mentioned, learning such features by comparing different similar-
ity measures can be time-consuming to understand which features
could prove to be more useful than others and in which scenarios.

In previous research, the focus has been on feature learning from
histogram data in prognostic modeling scenarios. This has led to the
application of similarity or distance measures to understand devia-
tions in distributions and their indication of faulty behavior. The use
of such metrics is motivated by their ability to drastically reduce the
number of dimensions to point features while retaining statistical sig-
nificance.

For instance, in [5], the authors conducted a comparative study of
various distance metrics in an unsupervised setting, deriving the state
of histogram snapshots based on their similarity to a central healthy

5

6 related work

snapshot. The study revealed that Hellinger and Cosine distance mea-
sures were the most sensitive to variations in histogram snapshot
data. However, it’s worth noting that this research was conducted on
data with high-frequency regular sampling (1Hz), which contrasts
with the low-frequency irregular sampling used in our study (de-
tailed in Chapter 3).

Similarly, in [3], in collaboration with Scania, modeled failure prog-
nosis on comparable data to what we are using in this research. They
utilized distance measures to depict variations in the state of time-
series histogram snapshots by measuring the distance of each snap-
shot in the series from its respective sample’s first snapshot, and the
distance of each snapshot from the antecedent snapshot in the series.
Entropy-based similarity measures, like intersection distance, were
found to be effective, and they also proposed using K-L Divergence
for preprocessing the histogram data.

In a comprehensive study by [2], different similarity measures for
comparing normalized distributions were discussed, including those
mentioned earlier. An important issue raised by [11] in working with
similarity measures is that most of them do not provide a distance
value for non-overlapping parts when comparing two histograms, po-
tentially leading to information loss.

While using similarity measures for feature learning can be valu-
able, it can also be time-consuming to understand which features may
be more useful in specific scenarios.

2.2 representation learning and predictive maintenance

Recently, representation learning using neural networks has achieved
significant success. Its popularity initially emerged from computer vi-
sion applications, where high-dimensional image and video data ne-
cessitate effective dimensionality reduction, as demonstrated in works
such as [14] and [4].

In the domain of Predictive Maintenance, researchers in [12] em-
ployed representation learning to extract low-dimensional bi-variate
histogram data in a multi-task supervised learning setting. Notably,
they achieved promising results by combining T-Distributed Stochas-
tic Neighbor Embedding (T-SNE) and AE for the detection task. How-
ever, it should be noted that T-SNE exhibited computational challenges
for higher-dimensional representations.

For higher-dimensional bottleneck scenarios, both AE and Convolutional
Neural Network (CNN)-AE showed favorable performance in the mul-
titask setting. Despite these advancements, the potential utility of
learned low-dimensional representations from autoencoders in fail-
ure prognostics remains to be thoroughly explored. We need to de-
termine whether these learned representations are more effective in
combination with hand-crafted features or even outperform them en-
tirely.

2.3 prognostic models 7

2.3 prognostic models

Several studies have modeled irregularly sampled histogram data
with limited emphasis on feature learning. In [6], the authors ex-
plored the failure prediction of NOx sensors using histogram data.
However, their approach was static, relying on the most recent snap-
shot of histogram features and employing Random Forest and Ran-
dom Survival methods without considering the temporal dimension.
Although this work was one of the early explorations into using his-
togram data for failure prognostics, feature learning was not a major
focus.

Similarly, in [8], the author modeled turbochargers’ failure using
sparse irregularly sampled histogram data and applied Survival Phase-
Long Short Term Memory (LSTM). Though the Survival Phase-LSTM

model outperformed Random Survival Forest in differentiating failed
cases from censored cases and predicting risk, there was little empha-
sis on feature learning.

In [13], the authors employed LSTM to build a prognostic model for
predicting the failure of lead acid batteries using histogram data.

[9] introduced the novel WTTE-RNN, which gained popularity in
churn prediction where customer event sampling is irregular. It has
also been applied in vehicle prognostics by [10], using manually crafted
point features derived from original histogram features. The WTTE-RNN

network’s main advantage lies in its inherent design for solving time-
to-event prediction problems with multi-variate features, making it
suitable for failure prognostics. The network learns to address both
censored and uncensored samples, as taken into account in its pro-
posed loss function, providing parameters of the Weibull distribution.

However, further investigations are required to determine which
additional features can enhance the existing hand-crafted features
and improve modeling performance.

3
D ATA P R E - P R O C E S S I N G

3.1 dataset

The dataset for this project is provided by Scania CV and consists of
a pool of at least 31,000 vehicles. Each vehicle contains approximately
1 to 130 time snapshots of data collected during the study period. In
this study, we are specifically dealing with right-censored vehicles for
the prognostic analysis.

Notably, all vehicles in the dataset have operated on a shared time-
line, but with different study start and end dates. This common time-
line implies that the components used by these vehicles, as well as
the data collection and processing strategies, are similar, eliminating
the need for data-cleaning methods.

Figure 2, illustrates time-series histogram data used in this study.
The figure depicts the timeline of one operational attribute (e.g. en-
gine RPM) for different vehicle subjects in the study. It also depicts
the irregularity in the frequency of binned histogram snapshots.

Figure 2: Illustration of Time-series histogram for a particular Operational
attribute for different subject vehicles (e.g. v1,v2,v3)

3.2 data description

An illustration of the data is shown in Figure 5. This research primar-
ily focuses on testing the efficacy of operational data; therefore, no
other specification or numerical features were used.

• Operational Data: These features comprise the main operational
data captured from various sensors of the vehicles. The opera-
tional data mostly consists of histogram data, accumulated over
different time snapshots. The histogram data is irregularly sam-
pled, depending on the frequency of the vehicle’s service visits
and data contract, which determines how often the vehicle’s

9

10 data pre-processing

data is uploaded to the servers. This group includes two cate-
gories of data: 1-D histogram features and 2-D histogram fea-
tures. The features in this group are as follows:

– 1-D Histogram Features: Boost Pressure (10 bins), Turbine
Speed (10 bins)

Figure 3: Left: Boost Pressure 1-D Histogram Snapshots Visualized. Right:
Turbine Speed 1-D Histogram Snapshots Visualized

– 2-D Histogram Features: Engine Load Matrix (Engine Load
Percentage (11 bins) x Rotations Per Minute (RPM) (12 bins)
= 132 cells)

Figure 4

It’s important to note that the operational data doesn’t directly
measure the health status but is instead the frequency of raw
sensor values that have been binned into histograms. Therefore,
a measure of health has to be derived from these bin values.

• Operating Time: The operating time feature can be derived by
summing the turbine speed data along the histogram axis for
each vehicle, which would give the operating time for that snap-
shot. This derived feature will be helpful for future analysis. The
operating time is used to derive the countdown function of time,
which will give us the RUL at each snapshot. The derived RUL is
used as one of the targets for the survival modeling.

• Censor: We are also provided with a feature that indicates whether
the vehicle underwent a repair (failure event) during the study
period or was censored. The data consists of only right-censored
cases. This forms the second target for the survival modeling.

3.3 population pruning 11

Figure 5: Illustration of Histogram Snapshots for each vehicle sample

3.3 population pruning

3.3.1 Population Pruning for Feature Learning

To ensure a clear understanding of modeling performances in this re-
search, certain decisions were made in collaboration with the decision-
makers at Scania CV to down-sample clean data. The population
pruning was conducted as follows:

1. Missing Values: Out of the original population, approximately
7,000 vehicles were found to have at least one null value in any
of their bin features. Since the underlying reasons for these null
value occurrences are still unknown, and to avoid introducing
potential biases through imputation, we chose to drop all sam-
ples that had a single null value in any of their snapshots.

2. Lifetime Operating Time: To ensure a minimum runtime in ve-
hicles and to have sufficient snapshots, a decision was made to
filter vehicles that have accumulated at least 100 units of oper-
ating time in their lifetime.

3. Minimum and Maximum Snapshot Frequency: The data we
have is irregularly sampled over a calendar period, which does
not directly indicate run-time or operation period. For consis-
tency, we consider the operating time of the vehicles as our time
indicator. Thus, we filter vehicles that have a sampling duration
of 60 operation time units in at least one instance. Addition-
ally, we combine snapshots that have a sampling duration of
less than 7 operation time units. Finally, we have a sampling
duration ranging between 7 and 60 operation time units.

After this pruning, we are left with approximately 16,000 vehicles
with snapshots ranging between 3 and 42, resulting in about 200,000

rows in total. This pruned population of data will be used for feature-
learning purposes.

3.3.2 Population Pruning for WTTE-RNN Training

In the experiments explored by the authors on the effect of WTTE-
RNN [9] and in other works like [10], it was found that the WTTE-
RNN network is prone to instability when using an imbalanced set

12 data pre-processing

of censored to uncensored cases during training. To address this, we
use a ratio of 1:1 of uncensored to censored samples for training. After
applying this pruning, we are left with approximately 2,200 vehicle
samples, resulting in about 25,000 rows in total.

3.4 data pipeline

Figure 6: Data preparation pipeline including preprocessing and data prepa-
ration for feature learning and survival modeling.

The data pipeline is depicted in Figure 6. The pipeline illustrates
the different steps applied to the data before feature learning and sur-
vival modeling. The data is first received in the form of accumulative
frequency counts, after which population pruning is performed as
mentioned above. The remaining steps are explained below:

1. Difference Histograms: The histograms from the original accu-
mulative forms are differenced between consecutive histograms
specific to the samples. This process yields a profiled snapshot,
providing insights into the occurrences during the interval of
the snapshots.

Ht
idelta

= Ht
i −Ht−1

i , where Ht
i > Ht−1

i for all snapshots.

Here: i refers to a bin feature, t refers to the time index of the
snapshots.

2. Summarising 2-D Histograms: The dataset contains two types
of histogram features - 1-D histograms and 2-D histograms. Op-
tionally, the 2-D histograms can be summarised along the axes
to obtain two constituent 1-D histograms. While this step is per-
formed for benchmark features in [3], it is not done for the
feature learning process. Figure 7 shows the depiction of 2-D
histograms and their summarised 1-D histograms.

3. Normalising Histograms: The histograms are normalized to de-
pict a probability density function, with values in the range [0-
1], instead of the existing frequency counts. This is achieved by
dividing each bin feature by the sum of all bin values.

Ht
inorm

=
Ht

i

Hsum
, for every ith bin for each histogram.

Here: Ht
sum =

∑N
i=0H

t
i , N -> number of bins.

3.4 data pipeline 13

Figure 7: Left: Average of 1000 2-D histogram snapshots; Center: Individual
1-D histogram snapshots after summarising 2-D histogram along
the y-axis, indicating the 1-D histogram of the load; Right: Indi-
vidual 1-D histogram snapshots after summarising 2-D histogram
along the x-axis, indicating the 1-D histogram of the engine RPM.

4. Data Split: For the purpose of feature learning, the data is split
into train, validation, and test sets stratified based on the censor
target variable. This split is performed to retain the distribution
of the data across all subsets, with a ratio of 70:10:20 for train,
validation, and test splits, respectively.

4
M E T H O D

In this section, we will describe different representations that will be
used for the 1-D and 2-D histogram features as part of the feature
engineering process. Our ultimate goal is to perform time-to-event
prediction, and thus, we will discuss the prognostic models, how we
model them, and how we evaluate their performance.

4.1 feature representations

Histogram features, as discussed previously, provide limited contex-
tual information and therefore require feature engineering to extract
their full potential. In this section, we will explore several represen-
tations of histogram data, aiming to capture variations that can po-
tentially improve the estimation of remaining useful life. Starting
with the work developed by the authors of [3], we will build upon
their Benchmark Features to incorporate additional information. These
Benchmark Features are essentially hand-crafted features, and we will
evaluate them using the WTTE-RNN prognostic model.

The next part of this section delves into the autoencoder-based rep-
resentation learning method. We propose a novel approach to fine-
tune the network, and the prognostic model used to evaluate these
features is the WTTE-RNN.

Lastly, we explore the use of EMD Flow features, which contain the
flow information between distributions. These features will be evalu-
ated using a static survival regression model, such as SSVM, instead
of the temporal WTTE-RNN. In this approach, each snapshot is treated
as an individual sample.

4.1.1 Benchmark Features

Figure 8: Feature engineering pipeline for generating Benchmark Features

The feature engineering method adopted by [3] will serve as our
Benchmark features. The processing of these features is depicted in Fig-
ure 8, an extension of the pipeline shown in Figure 6. The 1-D His-
togram features of Boost Pressure and Turbine Speed were used as is,
while the 2-D Histogram of the engine-load matrix was summarized
along each axis to obtain two 1-D constituent Histograms, one for the

15

16 method

engine and the other for the load. These constituent histograms were
then converted into two major point features for each operational
variable. To achieve this conversion, the authors tracked their entropy
across two features using the intersection similarity measure.

The point features created from each histogram variable are as fol-
lows:

1. Similarity feature from healthy snapshot - The intersection
similarity measure was used to compare each snapshot in a
sample with its corresponding first snapshot. Mathematically,
this is illustrated as the intersection distance of At0 (sample’s
initial snapshot) with At (current snapshot):

Dist(At0 ,At) =
∑N

i=0min(At0 ,At)

2. Similarity feature from antecedent snapshot - The intersection
similarity measure was used to compare each snapshot with
its preceding snapshot within the same sample. Mathematically,
this can be represented as the intersection distance of At−1 (an-
tecedent snapshot) with At (current snapshot), both from the
same sample.

Dist(At−1,At) =
∑N

i=0min(At−1
i ,At)

After converting them into point features, the temporal dimension
of the features is kept intact, giving us 2 point features for every snap-
shot in every sample for every operational variable. While the aim of
their research was to compress the histogram features into point fea-
tures, the loss of information from the 2-D histogram was done to
further simplify the dimensions instead of dealing with varying di-
mensional data. This leads us to explore the gap of using the 2-D
histogram without summarizing along axes using the autoencoder-
based feature learning method to automatically select important fea-
tures that may have been previously missed during summarization.

An alternative to the author’s decision to attribute ’healthy’ snap-
shot status to each vehicle’s first snapshot is to use a central healthy
snapshot. The central healthy snapshot is the average of all the first
snapshots for each vehicle sample. This helps give each sample a de-
viation from a certain constant, rather than using individual ’healthy’
snapshots. It also promotes more collaborative learning among differ-
ent samples in the dataset.

4.1.2 Autoencoder Feature Learning

Before discussing the architecture in detail, let’s highlight the differ-
ent components of the feature learning method, as depicted in Figure
9. As mentioned earlier, the 2-D histogram has been unexplored by
the authors of [3]. Therefore, in the autoencoder feature learning pro-
cess, we take advantage of this and face the challenge of effectively re-
ducing the features, originally 132 dimensions, to lower-dimensional
representations. To achieve this, we draw inspiration from [12] and
apply the Autoencoder (AE) or Convolutional Autoencoder (CNN-AE)
to learn the bottleneck features.

4.1 feature representations 17

Figure 9: Autoencoder feature learning process

For the AE-based feature learning, we propose a novel method of
performing transfer learning and fine-tuning on the trained encoder.
In this scenario, we do not have a reasonable target feature to tune
our networks. Instead, we tune the encoded representation to model
the intersection similarity between the 2-D histogram and the cen-
tral ’healthy’ snapshot. This helps the model learn the deviation of
the histograms from a healthy state. The general architecture of this
approach is depicted in Figure 10.

Figure 10: Feature Learning architecture

The first part of the network depicts the standard autoencoder ar-
chitecture, where we intend to use either the CNN-AE or the plain
AE. Here, the role of the autoencoder is to learn lower dimensions by
reconstructing itself from the input. The second part of the network
displays transfer learning of the lower-dimensional representations.
The second part uses only the encoder in inference mode (by mak-
ing the parameters non-trainable) and adds another dense layer of
the same shape as that of the bottleneck layer. After that, there is a

18 method

sigmoid layer as we proceed to perform regression to model the one-
dimensional intersection distance between the input snapshot and the
central ’healthy’ snapshot. The extra dense layer that is added acts as
a moderator, focusing the low-dimensional representation from the
previous layer and tuning it to learn deviations from the healthy sta-
tus. The third part of the network is the inference of the fine-tuned
network. The output of the added dense layer during the fine-tuning
phase is then used to convert the 2-D histogram inputs into learned
low-dimensional representations. This can now be used to train the
WTTE-RNN to learn from the temporal dimension aspect of these fea-
tures.

In the architecture shown in 10, the highlighted red box encom-
passes the entirety of my contribution. This work continues to build
upon and improve the research conducted by [3]. In their work, the
authors exclusively utilized 1-D time-series histograms, converting
them into point features. One of these point features is the intersec-
tion distance from different histogram snapshots to each vehicle’s re-
spective first histogram snapshot. However, a significant gap in their
research was the unexplored territory of 2-D histograms. Therefore,
this thesis centers on the utilization of autoencoders to extract fea-
tures from time-series 2-D histograms. To fine-tune the autoencoders,
the distance to the average of all vehicles’ first snapshots was em-
ployed. The rationale behind this choice is as follows:

1. [5] used the distance from the average of histogram snapshots
to detect deviations from the normal behavior of components.
Calculating the average of all snapshots in the Scania dataset
posed computational challenges due to the numerous snapshots
from over 30,000 vehicles. Therefore, selecting the average of the
first snapshots was a more feasible option.

2. In [3]’s work, they assumed that each vehicle’s first snapshot
represented a "healthy" state of the component. However, ex-
perts at Scania believed that this assumption might not always
hold true, as the data collection process could start at a time
much later than the vehicle’s initial operation. Consequently,
calculating the average of the first snapshots provides a more
comprehensive understanding of the initial state compared to
individual snapshots.

4.1.3 Flow matrix features

To understand the variations of the 2-D histogram data during its
healthy phase and at the end of the study phase, we use flow matrices
generated by using the Earth Mover’s Distance (EMD) between any
two distributions. The EMD distance solves an optimization problem
to determine the least amount of energy required to transform one
distribution into another. An example of the EMD flow matrix between
the first and last snapshot is visualized in Figure 12.

The feature preparation process is illustrated in Figure 11. As men-
tioned above, the EMD distance provides an estimate of the minimum

4.2 prognostic models 19

Figure 11: Flow matrix feature preparation process

Figure 12: EMD Flow matrix between the first snapshot and the last snap-
shot of the vehicle. Color coding: red indicates a change in the
starting distribution, green indicates a change in the ending dis-
tribution, and yellow indicates unchanged.

energy required to move one image/distribution to another, making
it an optimization problem. These features are predominantly used to
understand if they can hold a temporal change in distribution via the
flow matrix. If so, the use of Recurrent Neural Network (RNN) might
become redundant for the problem.

4.2 prognostic models

In the context of this research, our objective is to establish a model
that captures the relationship between histogram features and their
temporal variations leading to failures. Having explored various ways
to represent histogram data effectively, we are now poised to assess
these representations in estimating the remaining useful life of the
turbocharger. In the subsequent sections, we delve into the discussion
of prognostic models for this purpose.

20 method

4.2.1 Working of WTTE-RNN Network

In this section, we will discuss the theoretical framework underlying
the operation of the WTTE-RNN network [9]. The WTTE-RNN is particu-
larly notable for its capability to incorporate survival analysis within
an RNN architecture. While the original WTTE-RNN model introduced
by the authors in [9] addresses the general case of re-occurring events
for a single subject, it is important to clarify whether this applies to
your data in this study.

The primary innovation in the WTTE-RNN lies in its novel loss func-
tion, which is minimized during the neural network’s training pro-
cess to estimate the parameters of the Weibull probability distribution
for time-to-event predictions.

The specific structure of the loss function is outlined below:

log(L) =
N∑

n=1

Tn∑
n=0

[
un
t log

[
Pr(Yn

t = yn
t |x

n
0:t)

]
+ (1− un

t) log
[
Pr(Yn

t > yn
t |x

n
0:t)

]]
(2)

Where: un
t : Indicates the censoring label; 1 -> observable, 0-> non-

observable un
t log

[
Pr(Yn

t = yn
t |x

n
0 : t

]
: Indicates the case where we

have the sample that is observable, in such a case we want the loss
function to converge the predicted time-to-event Yn

t to the provided
time-to-event yn

t target feature as it is the actual information of failure
(or repair). (1− un

t)log
[
Pr(Yn

t = yn
t |x

n
0 : t

]
: This term considers the

censored cases, where the target time-to-event that we have does not
indicate failure or repair but indicates an end of study therefore, the
loss should be minimized for cases where Yn

t is greater than that of
the end of study event yn

t . Tn: Indicates the number of snapshots in
this N: Indicates the number of samples in the dataset

The probabilities that we have in this equation is a probability dis-
tribution from survival analysis, so we assume the distribution to be
a Weibull distribution, the loss function employed in the WTTE-RNN is
defined as follows:

log(Ld) =

N∑
n=1

Tn∑
n=0

(
un
t

[
exp

[(
ynt + 1

αn
t

)βn
t

−

(
ynt
αn
t

βn
t

)]
− 1

]
−

(
ynt + 1

αn
t

))βn
t

Here, the variables used in the equation are explained as follows:

• un
t : Censoring label; 1 for observable, 0 for non-observable

• yn
t : Target time-to-event feature

• αn
t and βn

t : Parameters of the Weibull distribution

• Tn: Number of snapshots for the sample n

• N: Total number of samples in the dataset

4.2 prognostic models 21

The parameters α and β of the Weibull distribution are learned
through optimization of the loss function. The α parameter reflects
the anticipated time until event occurrence, while β indicates the con-
fidence level of the prediction. The WTTE-RNN outputs these parame-
ters, which are then used to construct a probability distribution for
failure prediction. The time-to-event estimation is obtained from the
mode of this distribution. The WTTE-RNN takes into account the histor-
ical information up to the current time-step to predict the remaining
useful life, as depicted in Figure 13.

Figure 13: Prediction of failure distribution using the WTTE-RNN network

To accommodate multi-length sequences, padding is applied to en-
sure uniform snapshot counts for all sequences during batch training
[7]. A masking layer is also introduced in the network to disregard
values that are masked. For padding, an arbitrary value of -99 is used
to prevent confusion with valid data, as our dataset lacks values in
this range. Masked snapshots are handled during evaluation by using
the last valid snapshot for prediction continuation. To ensure accurate
error evaluation, masked snapshots are excluded to prevent bias. The
padding and masking mechanisms are illustrated in Figure 14.

Figure 14: Illustration of Padding and Masking process to deal with variable
sequence length

4.2.2 Survival Support Vector Machine (SSVM)

The SSVM is an extension of the original Support Vector Machine tai-
lored for time-to-event data in survival analysis. Much like the SVM,

22 method

the SSVM offers computational efficiency and is effective in capturing
underlying non-linear relationships by utilizing kernel functions. Ker-
nel functions such as the Radial Basis Function (RBF) map the data
into higher-dimensional hyperplanes, allowing the identification of a
survival decision boundary.

While the SSVM shares advantages with the SVM, its focus on sur-
vival analysis leads to specific applications:

1. Ranking samples with short survival times

2. Regression by predicting time-to-event values for samples

For the purpose of this study, we opt for using the SSVM in a
regression setup, enabling a direct comparison of its performance
with that of the WTTE-RNN. In some experiments involving hand-
crafted features, we utilize a static survival model. Given the nature
of our data-time-series histograms- and the specific experiment re-
quirements, the SSVM is a suitable choice. Its computation efficiency
further contributes to its selection.

4.3 evaluation methods

To assess the performance of our prognostic models, we employ the
following evaluation methods:

4.3.1 Mean Absolute error (MAE)and Time Segment Evaluation

The prediction of time-to-event (TTE) involves solving a survival re-
gression problem, and the mean absolute error (MAE) is a suitable
metric for quantifying its performance. However, to comprehensively
analyze the networks’ performance across different time segments,
we conduct a time segment-based evaluation on the outcomes. We
divide the entire timeline of the vehicles into uniform segments of
15 time units and assess the results accordingly. This approach also
accommodates the irregular sampling of our time-series data. Dur-
ing the evaluation, we calculate the mean absolute error only for the
uncensored cases. This decision is driven by the lack of reliable infor-
mation about the actual failure times for censored cases, rendering
the use of the end-of-study timeline inappropriate.

An illustration of the time-segment-based evaluation is provided
in Figure 15.

Figure 15: Time-segment based evaluation

4.3 evaluation methods 23

4.3.2 Concordance Index (c-index) and c-index Decomposition

The concordance index (c-index) stands as the prevalent metric uti-
lized in survival analysis. It serves as a measure of rank correlation be-
tween the predicted risk scores and the observed time-to-event points.
To illustrate, consider two samples, A and B. If only A experiences an
event during the study while B is censored, the pair of points (A, B)
is deemed concordant if the estimated risk of failure for A surpasses
that of B, and simultaneously, the time to event of B exceeds that of
A.

We employ the c-index to assess the performance of the time-to-
event network in terms of censored features. Although, the MAE pro-
vides a reasonably effective evaluation for uncensored cases, extend-
ing our understanding to real-life scenarios–where most cases are
censored–requires an evaluation of how well the network ranks cen-
sored cases against uncensored ones.

In addition to the c-index, we intend to conduct an evaluation using
c-index decomposition [1]. This metric dissects the c-index by sepa-
rately ranking censored and uncensored cases. This approach offers a
detailed analysis of the performance of survival models in each case.

5
R E S U LT S

5.1 baseline experiments

To lay the foundation for our future experiments, it is essential to
gain a comprehensive understanding of how specific features per-
form within the context of RNN modeling. In this regard, we con-
duct a comparative analysis of various sets of hand-crafted features
and subject them to evaluation.

5.1.1 Experiment Design

Hence, we conduct the following baseline experiments using a scaled-
down version of the WTTE-RNN network. The simplified WTTE-RNN

architecture is outlined in Table 2. This scaled-down version of the
network shares similarities with the main experiments, but with the
distinction that it exclusively employs the last remaining useful life
(RUL) as the target. Thus, this network operates as a sequence-to-one
model for the baseline comparison. The experiments we undertake
are as follows:

1. Average Model - In this experiment, the model emulates the be-
havior of constantly outputting the average last remaining use-
ful life from the training set (only for uncensored cases). The
performance error is then measured by comparing against the
actual remaining useful life. This serves as a baseline for assess-
ing the relative performance of other models.

2. Age & Usage Features - This baseline experiment aims to di-
rectly evaluate the impact of truck age and usage on the re-
maining useful life. The experiment employs only two features:
truck age and truck usage between snapshots. Both features are
expressed in terms of operating time units and have been scaled
to fit within the range of 0 to 1. Since this experiment is intended
for comparison with other models, only the last snapshots are
utilized. Therefore, a static model of Survival SVM in regression
configuration is applied to predict the remaining useful life. Un-
like the RNN experiments, the static model cannot incorporate
information from other time snapshots.

3. Raw Histogram Features - In this experiment, the original raw
histogram features are used in their normalized form. The fea-
ture space encompasses 152 dimensions, which corresponds to
the total number of bin features for each operational variable.

4. Benchmark Features - This experiment employs the hand-crafted
features as described in [3]. The features consist solely of 1-

25

26 results

D histograms, including the 2-D histograms that were summa-
rized along the axes and used as individual 1-D histograms.

5. Benchmark Features with 2-D Histogram Point Features - Build-
ing on the benchmark features, this experiment applies the sim-
ilarity measure in a similar manner to the benchmark features,
but on the 2-D histograms without prior summarization. The
newly created point features from this process are used along-
side the existing features from the benchmark study, and their
combined performance is evaluated.

6. Benchmark Features using Hellinger Distance - In this experi-
ment, the benchmark features, which were originally transformed
using intersection distance, are now modified to employ Hellinger
distance instead.

7. Benchmark Features with Modified Health Feature - The bench-
mark features were converted into two point features, one of
which signifies the similarity to each vehicle’s first snapshot as
an indicator of deviation from its healthy state. This experiment
explores the effects of using a centralized healthy histogram,
which is calculated as the average of all the first snapshots:

Dist(Acentral,At) =

n∑
i=0

min(Acentral,At)

where; n:= number of snapshots in a sample, t:= time index in
a sample

Acentral =

∑N
i=0A

t0
i

N

where; N represents the number of samples.

Model Type Input Config Train MAE Val MAE Test MAE

Static Avg. model 11.17 ± 1.21 11.40 ± 1.25 -

Static Age, Usage 12.28 ± 1.5 12.29 ± 1.5 -

RNN Raw Histogram 21.48 ± 2.45 21.21 ± 2.30 22.29 ± 2.35

RNN Benchmark 9.01 ± 0.92 9.96 ± 1.21 9.15 ± 1.2

RNN Benchmark + 2-D Hist. Point 9.33 ± 1.35 9.92 ± 2.1 9.99 ± 2.5

RNN Benchmark + Hellinger Dist. 11.82 ± 1.34 11.48 ± 1.25 11.04 ± 1.1

RNN Benchmark + Modified Healthy Sim. 9.28 ± 1.1 10.28 ± 1.8 9.85 ± 1.32

Table 1: Baseline experiments on a simple WTTE-RNN Network to under-
stand feature importance; Benchmark features refer to the hand-
crafted features used in [3].

The results of the baseline experiments are presented in Table 1.
Upon reviewing the outcomes, it becomes evident that the network
struggles to effectively learn from the higher-dimensional raw his-
togram data. This observation underscores the necessity for feature
learning in addressing this problem.

5.2 evaluating representations on time-to-event prediction models 27

Input Shape Layer type Hidden layer Output Shape

(None , None, 10) Mask - (None , None, 10)

(None , None, 10) LSTM 24 (None , 24)

(None , 24) Dense 30 (None ,30)

(None , 30) Dense 20 (None , 20)

(None , 20) Dense 10 (None , 10)

(None , 10) Dense 2 (None , 2)

(None , 2) Lambda - (None , 2)

Table 2: Simple WTTE-RNN Architecture

Another noteworthy finding pertains to the replacement of intersec-
tion distance with Hellinger distance in the creation of point features.
Curiously, the error rate slightly increases when utilizing Hellinger
distance. This outcome is intriguing considering the near-linear rela-
tionship between intersection distance and Hellinger distance.

Furthermore, an experiment involving the alteration of the defi-
nition of a healthy histogram has been conducted. The comparison
involves using a centrally averaged healthy histogram against the
conventional approach of using individual samples’ first snapshot
histograms as indicators of a healthy state. While this modification
does not notably reduce the error rate, the results remain compara-
ble to those achieved with the benchmark model. This insight sug-
gests that, within this context, the concept of an average healthy his-
togram aligns with the histograms derived from individual samples’
first snapshots.

5.2 evaluating representations on time-to-event predic-
tion models

Having conducted preliminary baseline experiments, we are now pre-
pared to outline our main experimental approach. For these primary
experiments, we will employ the WTTE-RNN in its full sequence-to-
sequence mode. This configuration allows us to leverage the net-
work’s capability to estimate the RUL across the entire trajectory of
each sample. In this endeavor, we aim to juxtapose the performance
of the benchmark features against that of the features learned through
the Autoencoder methodology.

5.2.1 Autoencoder Feature Learning

In our pursuit of feature learning, our initial step involves identifying
a suitably lower-dimensional space that can efficiently reconstruct the
input while incurring minimal loss during the process. To this end,
we delve into both the AE and the CNN-AE methodologies. Our ob-
jective is to contrast their performances during the subsequent fine-
tuning phase, thereby gaining insights into which autoencoder con-
figuration is optimal for the estimation of RUL.

28 results

5.2.1.1 Experiment Design

The architecture of the CNN encoder-decoder, employed for the pur-
pose of learning lower-dimensional representations, is presented in
Table 3. The activation function ’ReLU’ was applied to all layers, ex-
cept for the output layer, which was set to ’sigmoid’. Notably, the
use of max pooling appeared to effectively summarize the convolu-
tion outputs, surpassing the strategy of employing a stride of 2. This
contrasts with the assertion made by the authors of [12], who sug-
gested that a higher stride performs better for down-sampling. It’s
worth noting that their work dealt with histograms of nearly twice
the size (24x24), whereas this study focuses on histograms of dimen-
sions (12x12).

Input Shape Layer type Hidden layer Output Shape

(None , 12, 12, 1) Conv2D(3x3/1)(Input) 24 (None , 12, 12, 24)

(None , 12, 12, 24) MaxPool2D - (None , 6, 6, 24)

(None , 6, 6, 24) Flatten - (None , 864)

(None , 864) Dense(Bottleneck) 16 (None , 16)

(None , 16) Reshape - (None , 6, 6, 24)

(None , 6, 6, 24) Conv2DTranspose(3x3/1) 24 (None , 12, 12, 24)

(None , 12, 12, 24) Conv2D(3x3/1)t(Output) 1 (None , 12, 12, 1)

Table 3: CNN-AE Encode-Decoder Architecture

The architecture of the Dense encoder-decoder, employed for the
purpose of learning lower-dimensional representations, is depicted in
Table 4. All layers utilized the ’ReLU’ activation function, with the ex-
ception of the output layer, which employed the ’sigmoid’ activation
function. While a ’linear’ activation layer was tested at the bottleneck,
it was found that ’ReLU’ performed better in this context.

Input Shape Layer type Hidden layer Output Shape

(None , 132) Dense(Input) 64 (None , 64)

(None , 64) Dense 32 (None , 32)

(None , 32) Dense(Bottleneck) 16 (None , 16)

(None , 16) Dense 32 (None ,32)

(None , 32) Dense 64 (None , 64)

(None , 64) Dense(output) 132 (None , 132)

Table 4: AE Encode-Decoder Architecture

The chosen combination of layers in each of the networks proved
to be most effective in this scenario and was validated by comparing
their reconstruction errors on the test set. No Dropout or Batch Nor-
malisation layers were implemented in both networks, as they did
not contribute to improving the validation score or enhancing model
generalization in this case. The networks were trained for 200 epochs,
utilizing the Adam optimizer with a learning rate of 0.0005. Several
combinations of other optimizers and learning rates were tested, but
this particular set of hyperparameters yielded the best results in this
context.

5.2 evaluating representations on time-to-event prediction models 29

The fine-tuning architecture capitalizes on the acquired represen-
tations from the preceding step. The encoder segment of the autoen-
coder was utilized by freezing its layers and employing them in in-
ference mode. For the fine-tuning process, we replicated the shape of
the dense layer, as we sought to study the impact of the fine-tuning
process. In this approach, only the learned representations from the
CNN-AE were employed for fine-tuning. The target output for fine-
tuning is the intersection distance between the input and the central
healthy histogram, making it a regression problem. Given that the
output is confined within the range of 0 and 1, the output layer em-
ploys a ’sigmoid’ activation function to constrain the output within
this interval.

In Table 5, the fine-tuning architecture is outlined. Based on the
autoencoder experiments for both CNN-AE and AE, a 16-dimensional
bottleneck layer demonstrated the best performance. Consequently, a
new trainable dense layer was appended with 16 dimensions, utiliz-
ing the ’ReLU’ activation function, while the output layer was con-
figured with a ’sigmoid’ activation function to restrict the output
between 0 and 1. The encoder network was maintained in a non-
trainable state (inference mode).

Input Shape Layer type Hidden
layer

Output Shape Trainable

(None , 12, 12, 1) or
(None, 132)

Encoder Input - - False

- Dense(Bottleneck) 16 (None , 16) False

(None , 16) Dense 16 (None , 16) True

(None , 16) Dense 1 (None , 1) True

Table 5: Fine Tuning Architecture for CNN-AE

5.2.1.2 Autoencoder-based Lower Dimensional Representations

In this section, an experiment is conducted on the CNN-AE and AE

networks described in Chapter 4. These networks are trained to recon-
struct 2-dimensional inputs and 1-dimensional outputs, respectively.
The experiments involve varying the bottleneck dimensions from 4 to
20. The results are then compared and presented in Figures 16 and
17. The reconstruction loss exhibits a decreasing trend as the dimen-
sions are increased, starting from a reasonably low value. However, it
eventually saturates, indicating that further increases in dimensions
would either insignificantly reduce the loss or, as observed in these
cases, increase the error. Notably, the 16-dimensional bottleneck di-
mension demonstrates the most effective ability to reproduce the in-
put with the lowest reconstruction error. As a result, we proceed with
this bottleneck dimension for the subsequent step of fine-tuning the
network.

30 results

Figure 16: Bottleneck layer comparison of train and validation reconstruc-
tion loss for CNN-AE

Figure 17: Bottleneck layer comparison of train and validation reconstruc-
tion loss for AE

5.2.1.3 Analysis lower Dimensional Representations

An analysis of the reconstruction error, measured as MAE on the test
set, was conducted for various bottleneck dimensions. A significant
drop in error is observed when comparing the 4-dimensional and 8-
dimensional bottleneck dimensions. Subsequently, for each increase
of 4 dimensions, a consistent linear decrease in error is observed.
This trend highlights the trade-off between adding more dimensions
to maximize the potential of the bottleneck layer in capturing input
data and learning general representations. High error values would
not be ideal for subsequent steps in the feature learning process and
ultimately for RUL estimation. Additionally, it is noteworthy that the
CNN-AE outperforms the AE in terms of reconstruction capabilities. A
visual representation of these comparisons is presented in Figure 18.

Figure 18: Comparative analysis of lower dimensions versus the amount of
minimum reconstruction error achieved

5.2 evaluating representations on time-to-event prediction models 31

5.2.1.4 Fine-tuning Bottleneck Dimensions

After acquiring lower-dimensional representations of the input data
through bottleneck features, it is essential to guide these general rep-
resentations towards effectively discerning the similarity of the input
2-D histograms from their original healthy state. As no explicit fea-
ture indicates the histograms contributing to the maximum deviation
from their healthy state, it becomes necessary to introduce a feature
representing the intersection distance between the input histogram
and the central healthy histogram. Fine-tuning was conducted on
both the CNN-AE and the AE, with the results of the two configura-
tions compared below.

Figure 19: Comparison of training and validation losses of CNN-AE and the
AE model after fine-tuning

Figure 20: Comparison of the error on a test set of CNN-AE and AE model
after fine-tuning

The tuned CNN-AE model will serve as the learned features for
modeling time-to-event prediction. These learned features will be in-
tegrated into the WTTE-RNN in two ways: 1) as standalone features;
and 2) in tandem with hand-crafted benchmark features. Compar-
ative assessments of their performances will be made against the
benchmark features.

5.2.2 Time-series Modelling

As the next step towards time-to-event prediction, we will proceed
with utilizing the complete WTTE-RNN network, which predicts the

32 results

RUL for all snapshots of a given sample. Subsequent sections will
delve into the architecture details and present the outcomes of the
prediction models.

5.2.2.1 Experiment Design

1. WTTE-RNN Model -

The network architecture employed for the WTTE-RNN network
is provided in Table 6. This architecture is derived from the
works of [3] and [10], where their network designs were uti-
lized without alteration. The rationale behind using their ar-
chitectures was to isolate the effects of the newly introduced
learned representations.

The architecture begins with a masking layer that facilitates the
network’s recognition of time-sequence inputs with certain val-
ues masked using an arbitrary value beyond the range of the
existing feature values. This masking enables the network to dis-
regard these values and label them as masked. Subsequently, an
LSTM layer is employed, as recommended in [9]. Although the
authors propose any RNN layer can be used, the LSTM layer
yielded the best results for this particular scenario. Following
the LSTM layer, a series of dense layers are incorporated. All
layers in the network are activated using the ’tanh’ function. Fi-
nally, the last dense layer should possess two dimensions, as the
intention is to apply the Weibull loss function, thereby obtain-
ing ’alpha’ and ’beta’ values. These values enable the generation
of a Weibull distribution for the projected remaining useful life.
The median of this distribution is then extracted.

Input Shape Layer type Hidden layer Output Shape

(None , None, 43) Mask 20 (None , None, 43)

(None , None, 43) LSTM 20 (None , None, 20)

(None , None, 30) Dense 30 (None , None, 30)

(None , None, 20) Dense 30 (None , None, 20)

(None , None, 10) Dense 30 (None , None, 10)

(None , None, 2) Dense 30 (None , None, 2)

(None , None, 2) Lambda - (None , None, 2)

Table 6: WTTE-RNN Architecture

2. Direct Regression of Survival Time with RNN

The performance of WTTE-RNN was assessed by comparing it
to that of a RNN network (direct regression of survival time). In
order to use the plain RNN network in the context of survival
analysis, we use a special loss function as shown below;

1 (x) = m ·

|y− ŷ| , if ex = 1

max(0,y− ŷ), if ex = 0
(3)

5.2 evaluating representations on time-to-event prediction models 33

where:

• x: Index of the subject vehicle in data

• m: the masking weight (only use the non-masked values
for loss calculation)

• ex: censor value (1 or 0)

• y: True TTE

• ŷ: Predicted TTE

This loss function first and foremost factors in the censored and
non-censored cases differently. Secondly, it takes into consider-
ation the masking of the values, which is specific to our case
working with non-fixed time sequences.

As can be seen in table 7, the architecture used for the RNN is
not very different from that of the WTTE-RNN architecture (ta-
ble 6) except for the Lambda layer in the WTTE-RNN network.
This will help us compare the behavior of the two networks ob-
jectively. Other training hyper-parameters also were kept con-
stant.

Input Shape Layer type Hidden layer Output Shape

(None , None, 43) Mask 20 (None , None, 43)

(None , None, 43) LSTM 20 (None , None, 20)

(None , None, 30) Dense 30 (None , None, 30)

(None , None, 20) Dense 30 (None , None, 20)

(None , None, 10) Dense 30 (None , None, 10)

(None , None, 2) Dense 30 (None , None, 2)

Table 7: RNN Architecture

5.2.2.2 Time-To-Event Prediction

1. Performance of fine-tuned vs. non-fine-tuned features on WTTE-
RNN

Once the lower-dimensional representations have been fine-tuned,
the estimation of the turbocharger’s remaining useful life be-
comes feasible. In the initial stage, we will model both the fine-
tuned features and the un-tuned features (encoded features fol-
lowing AE reconstruction) to assess the effectiveness of our fine-
tuning approach.

The outcomes of this experiment are depicted in Figure ??. The
results clearly indicate that the fine-tuned encoded features out-
perform the un-tuned encoded features.

2. Performance of Benchmark vs. fine-tuned vs. both combined
features on WTTE-RNN

For the subsequent experiment, we will assess the performance
of the learned features from the tuned network in comparison
to the benchmark features. The outcomes of the WTTE-RNN
modeling are illustrated in Figure 22. The WTTE-RNN results

34 results

Figure 21: WTTE Results comparing the tuned and un-tuned CNN-AE fea-
tures with 95% prediction interval on test set

indicate that the combination of both feature sets, as well as the
CNN features alone, do not exhibit improvements beyond the
benchmark features’ performance across the segmented time-
line.

A noteworthy observation is that the CNN features alone match
the results of the benchmark features, but they fail to surpass
them. This is intriguing given that the CNN features encode
larger non-summarized 2-D histograms in contrast to the bench-
mark model’s utilization of summarized 1-D histograms. Fur-
ther investigation into how these 2-D histograms encapsulate
information would be crucial to comprehend this behavior.

A summary of the results can be found in Table 8. Additionally,
the results portray the 95% prediction intervals, derived from
running 10 ensembles of the same network using the three dif-
ferent feature types. The prediction interval serves to assess the
robustness of the WTTE-RNN network. Interestingly, the predic-
tion interval scores indicate a certain degree of network insta-
bility, possibly attributed to the variable sequence lengths and
the network’s handling of such instances. Further exploration
of this phenomenon is left for future work.

The evaluation of the WTTE network results is carried out us-
ing the MAE. However, this evaluation can only be conducted on
the uncensored cases, as the error is well-defined solely for such
instances. Consequently, to gauge the model’s performance on
the censored cases, we employed the survival ranking score of
the c-index. To achieve this, we utilized the c-index decompo-
sition method introduced in Chapter 4. This approach allows
us to evaluate the c-index for censored, uncensored, and overall
scenarios. The outcomes are presented in Figure 23.

Observing the results, we note a remarkable similarity in scores
across all three feature types. Benchmark features exhibit a slightly
superior performance compared to the others. An interesting
observation is that the model generally excels in ranking the

5.2 evaluating representations on time-to-event prediction models 35

Figure 22: WTTE Results With 95% prediction interval on test set

Time Seg-
ments

Only Benchmark Features CNN features + Benchmark
features

Only CNN features

15 15.58 ± 2.79 17.77 ± 3.10 12.24 ± 2.00

30 12.46 ± 2.65 14.00 ± 2.95 12.29 ± 2.15

45 12.68 ± 2.30 13.76 ± 4.52 13.39 ± 3.47

60 13.81 ± 6.73 14.08 ± 4.63 14.65 ± 5.44

75 17.29 ± 3.79 16.99 ± 5.21 17.77 ± 4.33

90 24.35 ± 1.77 22.84 ± 4.10 23.64 ± 2.30

105 35.55 ± 0.90 34.04 ± 2.66 34.68 ± 1.41

120 48.24 ± 1.35 46.82 ± 2.14 47.60 ± 1.83

135 61.37 ± 1.38 60.28 ± 2.24 60.99 ± 2.12

150 73.58 ± 1.62 73.26 ± 1.83 73.75 ± 1.99

Table 8: Summary of WTTE-RNN results with 95% prediction interval

uncensored features as opposed to the censored ones. This dis-
parity suggests that the WTTE-RNN model exhibits a bias toward
uncensored cases. This phenomenon aligns with the claim made
by the authors of the network, who noted that incorporating
censored samples during training may introduce a degree of
instability to the network.

A summarized presentation of the c-index results is provided
in Table 10.

Features c-index c-index-uncensored c-index-censored

Only Benchmark Fea-
tures

0.775 ± 0.0565 0.796 ± 0.061 0.752 ± 0.055

Combined CNN Fea-
tures and Benchmark
Features

0.741 ± 0.086 0.788 ± 0.090 0.69±0.090

Only CNN Features 0.747±0.095 0.793±0.085 0.69±0.110

Table 9: Summary of results

3. Understanding the WTTE-RNN

When analyzing the WTTE performances in figure 21 and 22,
we can notice strange behavior in the MAE values of the non-

36 results

Figure 23: Survival score using c-index with 95% prediction interval on test
set

fine tuned model (figure 21:red bars), where the MAE values go
down and then go back up as the model is predicting values
closer to end-of-life. In other models (figure 21:yellow), figure
22: all;), this phenomenon is also visible although with a smaller
magnitude. We need to break this down to understand this fur-
ther.

Figure 24: Error in prediction RUL, when trained on different features:1)
Only CNN fine-tuned features, 2) Benchmark Features + CNN
fine-tuned features, 3) Benchmark features

In addition to the MAE of the RUL, results presented in 22, we
also need to look at the error values presented in figure 24. This
illustrates the errors (average true - predicted RUL) for three
different feature sets (benchmark features + cnn fine-tuned fea-
tures, cnn fine- tuned features and benchmark features). In the
figure, it is noticeable that the errors are initially negative but
trend towards becoming positive as the trucks approach the
point of failure. This trend is also closely observed in Figure 25,
which displays the true RUL time steps alongside the predicted
RUL time steps averaged for all vehicles in the dataset.

Furthermore, in figure 25, all the predicted RULs appear to be
diverging slightly from the true RUL, indicating that the WTTE-
RNN tends to under- predicts failures. This behavior aligns
with the results presented by [3]. Notably, the predicted RULs
based on the benchmark features and the tuned Autoencoder
(AE) RUL shows a tendency to converge towards the true RUL,
whereas the non- fine-tuned AE RUL appears to diverge from
the true RUL. Consequently, a significant deviation in MAE is

5.2 evaluating representations on time-to-event prediction models 37

Figure 25: Different predicted RUL and the True RUL averaged for all the
vehicles in the dataset

observed in the non-fine-tuned AE RUL beyond the 60 segments
leading up to the time of failure.

4. WTTE-RNN vs Direct Survival Time Regression with RNN

In figure 26, the MAEWTTE consistently remains significantly
lower than MAERNN across all time segments. Notably, the MAEWTTE

indicates an error lower than 20 time units from 90 time units
onward to failure whereas the MAERNN reaches a similar error
level only from 30 time units onward. This displays the superi-
ority of the WTTE-RNN over the RNN model in terms of pre-
dictability and preparation for failure. Hence, the WTTE-RNN
having the alpha and beta parameters responsible for predict-
ing the Weibull distribution would better suit the survival mod-
elling problem than just a typical RNN in this case.

Figure 26: WTTE-RNN vs RNN performance on benchmark features

38 results

Figure 27: EMD distance visualization of the 2-D Histogram of Engine load
on the y-axis versus the Engine RPM on the x-axis of trucks
that experienced a failure. Color coding: Red channel indicates a
change in the starting distribution; the green channel indicates a
change in the ending distribution; yellow indicates "unchanged".
The arrows indicate the flow determined using EMD, where the
thickness of the arrow is proportional to the amount of mass flow

5.2.2.3 Analysis

The 2-D histograms for the Engine and Load variables consist of 132

dimensions, which is essential to capture a more comprehensive un-
derstanding of the turbocharger’s behavioral characteristics, given
their dependency on its changes. To differentiate between snapshots,
we utilize the Earth Mover’s Distance (EMD) distance metric to visual-
ize the distribution shifts between the first and penultimate snapshots
of the subject. The EMD calculates dissimilarities between two distri-
butions.

In Figure 27 and 28, we present the distributions of the first snap-
shot, the penultimate snapshot, and the corresponding EMD distance
between them. Figure 27 pertains to cases where a failure event oc-
curred during the subject’s lifespan, while Figure 28 relates to sub-
jects where no failure was recorded. In the EMD visualization, colors
indicate distribution changes, with intensity reflecting the magnitude
of change. Specifically, red and green denote the first and penultimate
snapshot distributions, respectively. Arrows represent the flow from
the distribution of the first snapshot to that of the penultimate one.

Upon analyzing these visualizations, it becomes evident that the
variation in the 2-D histogram data primarily occurs along each of
the axes rather than obliquely. This observation helps explain why
the performance of the CNN features does not surpass that of the
benchmark features, which summarized the 2-D histograms along
the axes.

Furthermore, we are interested in expanding this study to explore
the potential of flow matrices derived from the EMD computations
in replacing the need for an RNN in survival modeling. Instead, we
aim to employ a more general survival model, such as survival SVM,
to estimate the remaining useful life. However, it’s important to note
that in this approach, there would be no temporal encoding between
snapshots of a sample.

5.2 evaluating representations on time-to-event prediction models 39

Figure 28: EMD distance visualization of the 2-D Histogram of Engine load
on the y-axis versus the Engine RPM on the x-axis of trucks that
did not experience a failure. Color coding: The red channel indi-
cates a change in the starting distribution; the green channel in-
dicates a change in the ending distribution; yellow indicates "un-
changed". The arrows indicate the flow determined using EMD,
where the thickness of the arrow is proportional to the amount of
mass flow

5.2.3 EMD flow with Survival SVM

The EMD flow captures changes between distributions, essentially rep-
resenting the flow in time. To investigate its potential in simulating
temporal changes and possibly replacing the need for an RNN net-
work in this time-series problem, we conduct a comparative analysis.
As part of this analysis, we aim to apply a static survival regression
model on the flow data.

To establish a benchmark for this exercise, we leverage the results
obtained from the RNN. Specifically, we consider the RNN error for
uncensored data and its c-index scores, which indicate how well it
ranks censored cases compared to uncensored data. These benchmark
results will serve as a reference point for our analysis.

Figure 29: Time-Segment based mean absolute error comparing the two fea-
ture types 1)EMD flow features; 2) Benchmark features

The results presented in Table 10 and the plots in Figure 29 clearly
demonstrate that the model’s performance is far from achieving re-

40 results

Model Input Train c-index Test c-index

Survival- SVM EMD Flow features 0.53 0.53

Survival- SVM Benchmark features 0.53 0.63

Table 10: Modelling of Survival SVM on 1) EMD flow features;2) Benchmark
features. Modelling is static, meaning each snapshot’s RUL is esti-
mated

sults comparable to those of the WTTE-RNN. The model consistently
predicts a constant value of approximately 134 units, which corre-
sponds to the median RUL present in the dataset. This trend also ex-
plains the increasing MAE observed across the earliest time segments
to the lowest ones.

While the flow data does visually capture variations in distribu-
tions and encodes the flow between different distributions, it doesn’t
inherently encode temporal information. Similarly, the benchmark
features also represent histogram variations over time but in a much
lower-dimensional point feature space. Despite these differences, nei-
ther the high- dimensional flow matrix nor the low-dimensional bench-
mark features perform well with the static survival model. This fur-
ther underscores the importance of utilizing an RNN for accurately
estimating RUL in this context.

6
D I S C U S S I O N

6.1 discussion and interpretation of results

This chapter aims to provide a comprehensive analysis of the results
presented in Chapter 5. It elucidates the objectives of this research
and how they were achieved.

While the exploration of feature learning for histogram data in sur-
vival analysis is not novel, it remains an intricate problem. Earlier
efforts, as mentioned before, often involved converting histograms
into point features and tracing their dynamics. Notably, the work of
[3] transformed histograms into point features for estimating remain-
ing useful life. Building upon this foundation, we extended our in-
vestigation to features that were previously summarized, specifically
the 2-D histograms. Although authors like [12] delved into learning
low-dimensional representations of 2-D histograms, this was predom-
inantly executed within a supervised learning context. However, in
our research, the estimation of remaining useful life is framed as a
survival regression problem, necessitating an indicator for both the
time-to-event and the censoring label to enable the model to formu-
late a credible survivability estimation. Given the high dimensionality
of 2-D histograms, we sought efficient and meaningful representa-
tions to unveil deterioration in an unsupervised manner. To this end,
we adopted a CNN-based autoencoder approach to uncover lower-
dimensional general representations of input 2-D histograms. Sub-
sequently, we fine-tuned this approach to perceive deviations from
the central normal histogram. This fine-tuning approach allowed the
network to learn problem-specific representations for remaining use-
ful life estimation. Our results highlight that the performance of the
autoencoder-based feature learning method is comparable to that of
benchmark hand-crafted features. Evaluation segmented over time
indicates that while the error is relatively high for initial snapshots,
the RNN network improves performance as more snapshots become
available, rendering reasonable estimates of remaining useful life. This
progression can be applied to predictive maintenance applications,
where inference is monitored at each snapshot but only acted upon
after a certain number of snapshots with the lowest error are accumu-
lated.

The utilization of the EMD flow estimation enabled us to compre-
hend the variations between a vehicle’s initial state and its end state.
The flow estimation provides a close approximation of how these
variations transpired. Investigation of the flow reveals that most vari-
ations between histograms occur along axes that are either latitudi-
nal or longitudinal in nature, with minimal variations in oblique di-
rections. This insight indicates that the matrix can be summarized
into subsequent 1-D histograms in this scenario, although this ap-

41

42 discussion

proach might not hold true for all cases. Furthermore, a prelimi-
nary exploration aimed to ascertain whether the flow matrices could
negate the necessity for RNNs, possibly reflecting variation displace-
ment through flow information. However, the results only slightly ex-
ceeded random behavior, demonstrating that static flow information
lacks temporal context or insight into variable changes over time.

6.2 future work

This research, due to its limited scope, could not delve into various
other ideas, some of which are highlighted in this section.

The study’s focus was on achieving a generalized approach in mod-
eling different populations. The dataset comprised various vehicle
types, yet these distinctions were not considered in assessing the
model’s overall performance. This approach aimed to ascertain whether
distinct populations exhibit similar failure characteristics concerning
turbocharger modeling. A potential avenue for future research in-
volves investigating methods to homogenize the populations or in-
corporating their heterogeneity into the modeling process.

The division of the dataset into training, validation, and testing sub-
sets was stratified based on censor labels, ensuring label distribution
consistency across the subsets. However, a more beneficial approach
could involve stratifying the split based on the lifetime operational
period in addition to censor distribution. This enhancement or future
work could lead to improved model performance.

This research introduces a novel fine-tuning method that models
snapshot similarities. From empirical findings and experimentation,
it is evident that the intersection distance similarity measure yields
optimal results due to its inherent ability to measure entropy accu-
rately. Thus, an avenue for future research could be the exploration
of alternative similarity measures tailored for this purpose.

B I B L I O G R A P H Y

[1] Abdallah Alabdallah, Mattias Ohlsson, Sepideh Pashami, and
Thorsteinn Rognvaldsson. The concordance index decomposi-
tion: a measure for a deeper understanding of survival predic-
tion models, 02 2022.

[2] Sung-Hyuk Cha. Comprehensive survey on distance/similar-
ity measures between probability density functions. Int. J. Math.
Model. Meth. Appl. Sci., 1, 01 2007.

[3] Maharshi Dhada, Ajith Kumar Parlikad, Olof Steinert, and Tony
Lindgren. Weibull recurrent neural networks for failure progno-
sis using histogram data. Neural Computing and Applications, 35,
09 2022. doi: 10.1007/s00521-022-07667-7.

[4] Haoqiang Fan, Zhimin Cao, Yuning Jiang, Qi Yin, and Chinchilla
Doudou. Learning deep face representation, 2014.

[5] Yuantao Fan, Slawomir Nowaczyk, and Thorsteinn Rognvalds-
son. Using histograms to find compressor deviations in bus fleet
data. Diva, 01 2014. doi: 10.13140/2.1.3249.5680.

[6] Ram Bahadur Gurung. Random forest for histogram data : an appli-
cation in data-driven prognostic models for heavy-duty trucks. Depart-
ment of Computer and Systems Sciences, Stockholm University,
Stockholm, 2020. ISBN 9789179110246. Diss. (sammanfattning)
Stockholm : Stockholms universitet, 2020.

[7] Nikhil Ketkar. Introduction to Keras, pages 97–111. Apress,
Berkeley, CA, 2017. ISBN 978-1-4842-2766-4. doi: 10.
1007/978-1-4842-2766-4_7. URL https://doi.org/10.1007/

978-1-4842-2766-4_7.

[8] F. Liljefors. Time dependent modeling of turbocharger failure
using machine learning (dissertation). Diva portal, 2020. doi:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287451.

[9] Egil Martinsson. Wtte-rnn: Weibull time to event recurrent neural
network. PhD thesis, Chalmers University of Technology & Uni-
versity of Gothenburg, 2016.

[10] Adrià Salvador Palau, Kshitij Bakliwal, Maharshi Harshadbhai
Dhada, Tim Pearce, and Ajith Kumar Parlikad. Recurrent neu-
ral networks for real-time distributed collaborative prognostics.
2018 IEEE International Conference on Prognostics and Health Man-
agement (ICPHM), pages 1–8, 2018.

[11] Francesc Serratosa and A. Sanfeliu. Signatures versus his-
tograms: Definitions, distances and algorithms. Pattern Recog-
nition, 39:921–934, 05 2006. doi: 10.1016/j.patcog.2005.12.005.

43

https://doi.org/10.1007/978-1-4842-2766-4_7
https://doi.org/10.1007/978-1-4842-2766-4_7

44 bibliography

[12] Evaldas Vaiciukynas, Matej Ulicny, Sepideh Pashami, and Sla-
womir Nowaczyk. Learning low-dimensional representation
of bivariate histogram data. IEEE Transactions on Intelligent
Transportation Systems, PP:1–13, 09 2018. doi: 10.1109/TITS.2018.
2865103.

[13] Sergii Voronov. Machine Learning Models for Predictive Main-
tenance. 03 2020. ISBN 9789179299231. doi: 10.3384/diss.
diva-162649.

[14] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and
Qing He. Supervised representation learning: Transfer learning
with deep autoencoders. In IJCAI, pages 4119–4125, 2015. URL
http://ijcai.org/Abstract/15/578.

http://ijcai.org/Abstract/15/578

bibliography 45

46 bibliography

.

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem Context
	1.1.1 Histogram Feature Learning

	1.2 Research Questions
	1.3 Novelty
	1.4 Background
	1.4.1 Censoring

	2 Related Work
	2.1 Histogram Feature Learning
	2.2 Representation Learning and Predictive Maintenance
	2.3 Prognostic models

	3 Data Pre-processing
	3.1 Dataset
	3.2 Data Description
	3.3 Population Pruning
	3.3.1 Population Pruning for Feature Learning
	3.3.2 Population Pruning for WTTE-RNN Training

	3.4 Data Pipeline

	4 Method
	4.1 Feature Representations
	4.1.1 Benchmark Features
	4.1.2 Autoencoder Feature Learning
	4.1.3 Flow matrix features

	4.2 Prognostic Models
	4.2.1 Working of WTTE-RNN Network
	4.2.2 Survival Support Vector Machine (SSVM)

	4.3 Evaluation Methods
	4.3.1 Mean Absolute error (MAE)and Time Segment Evaluation
	4.3.2 Concordance Index (c-index) and c-index Decomposition

	5 Results
	5.1 Baseline Experiments
	5.1.1 Experiment Design

	5.2 Evaluating Representations on Time-to-event prediction models
	5.2.1 Autoencoder Feature Learning
	5.2.2 Time-series Modelling
	5.2.3 EMD flow with Survival SVM

	6 Discussion
	6.1 Discussion and Interpretation of Results
	6.2 Future Work

	Bibliography

