
Formal Methods in Computer-Aided Design 2022

Awaiting for Godot: Stateless Model Checking that
Avoids Executions where Nothing Happens
Bengt Jonsson

Uppsala University, Sweden
Email: bengt@it.uu.se

Magnus Lång
Uppsala University, Sweden
Email: magnus.lang@it.uu.se

Konstantinos Sagonas
Uppsala University, Sweden and NTUA, Greece

Email: kostis@it.uu.se

Abstract—Stateless Model Checking (SMC) is a verification
technique for concurrent programs that checks for safety violations
by exploring all possible thread schedulings. It is highly effective
when coupled with Dynamic Partial Order Reduction (DPOR),
which introduces an equivalence on schedulings and need explore
only one in each equivalence class. Even with DPOR, SMC often
spends unnecessary effort in exploring loop iterations that are pure,
i.e., have no effect on the program state. We present techniques
for making SMC with DPOR more effective on programs with
pure loop iterations. The first is a static program analysis to detect
loop purity and an associated program transformation, called
Partial Loop Purity Elimination, that inserts assume statements to
block pure loop iterations. Subsequently, some of these assumes
are turned into await statements that completely remove many
assume-blocked executions. Finally, we present an extension of the
standard DPOR equivalence, obtained by weakening the conflict
relation between events. All these techniques are incorporated
into a new DPOR algorithm, OPTIMAL-DPOR-AWAIT, which can
handle both awaits and the weaker conflict relation, is optimal in
the sense that it explores exactly one execution in each equivalence
class, and can also diagnose livelocks. Our implementation in
NIDHUGG shows that these techniques can significantly speed up
the analysis of concurrent programs that are currently challenging
for SMC tools, both for exploring their complete set of interleavings,
but even for detecting concurrency errors in them.

I. INTRODUCTION

Ensuring correctness of concurrent programs is difficult,
since one must consider all the different ways in which
actions of different threads can be interleaved. Stateless model
checking (SMC) [9] is a fully automatic technique for finding
concurrency bugs (i.e., defects that arise only under some
thread schedulings) and for verifying their absence. Given a
terminating program and fixed input data, SMC systematically
explores the set of all thread schedulings that are possible
during program runs. A special runtime scheduler drives the
SMC exploration by making decisions on scheduling whenever
such choices may affect the interaction between threads. SMC
has been implemented in many tools (e.g., VeriSoft [10],
CHESS [20], Concuerror [6], NIDHUGG [2], rInspect [24],
CDSCHECKER [21], RCMC [14], and GENMC [18]), and
successfully applied to realistic programs (e.g., [11] and [17]).

SMC tools typically employ dynamic partial order reduction
(DPOR) [8, 1] to reduce the number of explored schedulings.
DPOR defines an equivalence relation on executions, which
preserves relevant correctness properties, such as reachability
of local states and assertion violations. For correctness, DPOR
needs to explore at least one execution in each equivalence

if(x[0] > x[1])
swap(x[0], x[1]);

y := 1;
do b := y
while(b ̸= 2);
if(x[0] > x[1])
swap(x[0], x[1])

p
do a := y
while(a ̸= 1);
if(x[1] > x[2])
swap(x[1], x[2]);

y := 2

q

Figure 1: A concurrent program implementing a sorting network. p sorts x[0]
and x[1], and then uses y to signal that x[1] is ready. q waits for y to be 1
and then sorts x[1] and x[2], completing one round of bubble sort. In the
second round, shown in blue, q signals that the next “generation” of x[1] is
ready by setting y to 2, upon which p finishes the sort by sorting x[0] and
x[1] again. Initially y= 0.

class. We call a DPOR algorithm optimal if it guarantees the
exploration of exactly one execution per equivalence class.

In SMC, loops have to be bounded if they do not already
terminate in a bounded number of iterations. Loop bounding
may in general not preserve assertion failures. Hence a
fairly large loop bound should be used, but this is often
practically infeasible, and thus loop bounding must strike a
balance between these two concerns. However, for loops whose
execution has no global effects, the number of equivalence
classes that need be explored by SMC can be significantly
reduced while still preserving correctness properties, using
techniques that we will present in this paper.

Consider the first round of the program snippet in Fig. 1
(shown in black), where thread q executes a loop that waits for
thread p to set the shared variable y to 1. A naïve application
of SMC with DPOR will explore an unbounded number of
executions, since (in the absence of loop bounding) there is an
infinite number of equivalence classes, one for each number of
performed loop iterations. All iterations of this loop, however,
are pure, i.e., they have no effect on the program state. For
such loops, a bound of one will preserve correctness properties.
In our example, the do-while loop of thread q can be rewritten
into the sequence of statements a := y; assume(a= 1), which
will cause the SMC exploration to permanently block thread q
whenever the condition of the assume is violated.

Using assume statements to bound loops causes executions
where the condition of the assume is violated and its corre-
sponding thread is blocked to be explored. This happens even if
the condition will eventually be satisfied, and the original loop
will exit, under any fair thread scheduling. Assume-blocking
of a thread can occur in many contexts, each generating an
execution that need not be explored. (We will shortly see this
for the example in Fig. 1.) Furthermore, and perhaps more

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_35 This article is licensed under a Creative
Commons Attribution 4.0 International License

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

seriously, this use of assumes prevents SMC from diagnosing
livelocks in which the loop never exits even under fair thread
scheduling. This is because a blocked execution corresponding
to a livelock can also result from a spurious execution in which
the assume reads a shared variable before it has been written
to by another thread.

Here is where await statements can lead to further reductions.
An await loads from a shared variable, but only if the loaded
value satisfies some condition, otherwise it blocks. In contrast
to assume-blocking, await-blocking is not permanent but can be
repealed if the condition is later satisfied. Thereby, executions
where blocking occurs by reading “too early” are avoided.
Moreover, such executions can be distinguished from livelocks,
in which the condition is not satisfied after some bounded time.
For our example, the rewrite of the do-while loop into an
await(y= 1) statement results in a program for which SMC
would explore only a single execution in which the await reads
the value written by thread p.

Consider now the full program in Fig. 1, which performs a
concurrent sort of a three-element array using a sorting network.
This program can be scaled to larger arrays for increased
available parallelism. Since any network sorting an array of
size n will have at least Ω(n logn) occurrences of a code snippet
which exchanges two values after exiting a spinloop, exploring
such a program with SMC will explore Ω(2n logn) executions,
even after rewriting the spinloops using assume statements. On
the other hand, when using await statements, all executions
fall into the same equivalence class. Thus, an optimal SMC
algorithm that can properly handle awaits will explore only
one execution, thereby achieving exponential reduction.

In this paper, we present techniques to (i) automatically
transform a program to an intermediate representation that
uses await as a primitive, and (ii) explore its executions
using a provably optimal DPOR algorithm that is await aware
and also uses a conflict relation between statements which
is weaker than the standard one. We first present a static
program analysis technique to detect pure loop executions
and an associated program transformation, called Partial Loop
Purity (PLP) Elimination, that inserts assume statements which
are then turned into awaits if preceded by the appropriate
load. We prove that PLP is sound in the sense that it
preserves relevant correctness properties, including local state
reachability and assertion failures. We also present and prove
conditions under which PLP is guaranteed to remove all pure
executions of a loop. Finally, we prove that our new DPOR
algorithm OPTIMAL-DPOR-AWAIT, which is an extension of
the Optimal-DPOR algorithm of Abdulla et al. [1, 3], is correct
and optimal, also with respect to our weaker conflict relation.

All these techniques are available in NIDHUGG, a state-of-the-
art SMC tool, and in the paper’s replication package [13]. Our
evaluation, using multi-threaded programs which are currently
challenging for most tools, shows that our techniques can
achieve significant (and sometimes exponential) reduction
in the total number of executions that need to be explored.
Moreover, they enable detection of concurrency bugs which
were previously out-of-reach for most concurrency testing tools.

do a := x
while(a ̸= 1);
b := y

p
y := 42;
x := 1

q

(a) A program with a spinloop.

a := x;
assume(a = 1);
b := y

p

(b) p rewritten with assume.

await(x = 1);
b := y

p

(c) p rewritten with await.

Figure 2: Multi-threaded program illustrating the rewrites; initially, x= y= 0.
For (b) and (c), q is the same as in (a).

II. ILLUSTRATION THROUGH EXAMPLES

In this section, we illustrate our contributions through
examples. First, in §II-A we show how assume and await

statements are inserted. In §II-B we illustrate how our optimal
DPOR algorithm handles await statements, and in §II-C how
it handles the weaker conflict relation in which atomic fetch-
and-adds on the same variable are not conflicting.

We consider programs consisting of a finite set of threads
that share a finite set of shared variables (x, y, z). A thread has
a finite set of local registers (a, b, c), and runs a deterministic
code, built from expressions, atomic statements, and synchro-
nisation operations, using standard control flow constructs.
Atomic statements read or write to shared variables and
local registers, including atomic read-modify-write operations,
such as compare-and-swap and fetch-and-add. Synchronisation
operations include locking a mutex and joining another thread.
Executions of a program are defined by an interleaving of
statements. We use sequential consistency in this paper, but
we note that some weak memory models (e.g., TSO and PSO)
can be modelled by an interleaving-based semantics, so our
work can be extended to DPOR algorithms [2] that handle such
memory models. Our loop transformations introduce await

statements, that take a conditional expression over a global
variable as a parameter and come in several forms: simple
awaits (await(x = 0)), load-await (a := await(x = 0)),
and exchange-await (a := xchgawait(x = 0, := 1)). These
operations block until their condition is satisfied.

A. Introducing Await Statements

Let us show an example of how loops are transformed by
introducing assume and await statements. Consider the loop
in Fig. 2a. There, thread p executes a spinloop, waiting for
thread q to set the shared variable x. Each iteration of this
loop, in which the value loaded into a is different from 1, is
pure, i.e., it does not modify shared variables, nor any local
register that may be used after the end of the loop. Therefore
an assume statement is introduced at the point where the thread
can distinguish pure executions from impure ones, i.e., after
a has been loaded. The result of such a rewrite is shown in
Fig. 2b. This program has two traces, one in which the assume

succeeds, representing the executions in which the original loop
terminates, and one where thread p gets assume-blocked. The
latter trace will exist even in the case where the original loop is
guaranteed to terminate under a fair scheduler. This problem is
remedied by replacing the load into a and the following assume

statement by an await with a test on the shared variable from
which a reads. Such a rewrite results in the program in Fig. 2c.
In this case, the await statement may permanently block only

285

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

Initially: x= y= 0

x := 1;
y := 1

p
x := 2;
y := 2

q

join threads p and q;
assert(|x - y| < 2)

0,0

1,0

1,1

2,1

2,2
q2: y := 2

q1: x := 2

p2: y := 1

2,0
q2: y := 2

q1: x := 2

p1: x := 1 q1: x := 2

Figure 3: Program with a correctness assertion, and execution trees with the
first scheduling of the program; nodes show the values of variables x and y.

if the original loop can livelock under fair scheduling. In our
simple example, the rewritten program has only a single trace,
since the original loop is guaranteed to terminate and can be
replaced by the await. Programs with more complex loops
(e.g., loops that are pure only along a subset of their paths)
are also handled by our program transformation (§III), but the
loop is not eliminated when assumes or awaits are introduced.

B. OPTIMAL-DPOR-AWAIT by Example
DPOR algorithms are based on regarding executions as

equivalent if they induce the same ordering between executions
of conflicting statements. The standard conflict relation regards
two accesses to the same variable as conflicting if at least
one is a write. We begin by illustrating the Optimal-DPOR
algorithm [3] on the simple program in Fig. 3. There two
threads, p and q, write to two shared variables x and y in
sequence. Optimal-DPOR starts by exploring an arbitrary
interleaved execution of the program. Assume it is p1.p2.q1.q2
as shown in Fig. 3 (we will denote executions by sequences of
thread identifiers, possibly subscripted by sequence numbers).
Each explored execution is then analysed to find races, i.e.,
pairs of conflicting events that are adjacent in the happens-
before order induced by the conflict relation. (An event is a
particular execution step of a thread in an execution.) Our first
execution contains two races, (p1,q1) and (p2,q2). For each
race, Optimal-DPOR creates a so-called wakeup sequence, i.e.,
a sequence which continues the analysed execution up to the
first event in a way which reaches the second event instead of
the first event. For the first race, the wakeup sequence is q1,
and for the second race, it is p1.q1.q2. The wakeup sequences
are inserted as new branches just before the first event of the
corresponding race, thereby gradually building a tree consisting
of the explored executions and added wakeup sequences. The
execution tree after the first execution is shown in Fig. 3.

After processing the first execution, Optimal-DPOR then
picks the leftmost unexplored leaf in the tree, and extends it
arbitrarily to a full execution, in which races are analysed, etc.
As the algorithm backtracks, it deletes the nodes it backtracks
from in the execution tree. The second execution has two
races, (p1,q1) as well as (p2,q2). However, the corresponding
wakeup sequences will result in executions that are redundant,
i.e., equivalent to already inserted ones, so no further insertion
takes place. The algorithm proceeds in this way until there are
no more unexplored leafs corresponding to wakeup sequences.
In total, there are four executions explored by Optimal-DPOR,
corresponding to the four possible final valuations of x and y.

0,0

1,0

0,0

0,0

0,1
q2: y := 1

q1: await(x = 0)

p2: x := 0

p1: x := 1 q1: await(x = 0)

Initially: x= y= 0

x := 1;
x := 0

p
await(x = 0);
y := 1

q

Figure 4: Exploration of a program with an await with two satisfying writes.

0,0

1,0

2,0

5,0
r1: x+:=3

q1: x+:=1

p1: x+:=1
3,0

s1: await(x = 3)

r1: x+:=3

x +:= 1

p
x +:= 1

q
x +:= 3

r
await(x = 3);
y := 1

s

Figure 5: Exploration of a program with fetch-and-adds. Initially, x= y= 0.

Let us now look at how OPTIMAL-DPOR-AWAIT extends
Optimal-DPOR to work for programs with awaits. Consider
the program in Fig. 4. There, p writes to the global variable x,
first updating it to 1, and then back to 0. Assume that the first
execution is p1.p2.q1.q2. The analysis of races performed by
Optimal-DPOR must now be extended to consider that await
statements are sometimes blocked. First, the conflict between
p2 with q1 will not be handled like a race, since q1 is blocked
just before p2. Therefore, we find the closest preceding point
in the execution at which q1 is not blocked, which in this case
is at the beginning. We then construct the wakeup sequence q1
and insert it at the beginning; cf. Fig. 4. Since this program
only has two traces, OPTIMAL-DPOR-AWAIT will terminate
after exploring the second execution.

C. Handling Atomic Fetch-and-Add Instructions in DPOR

To reduce the number of equivalence classes that need be
explored by a DPOR algorithm, one can weaken the standard
conflict relation between statements by considering two atomic
fetch-and-add (FAA) statements on the same variable as non-
conflicting if the loaded values are afterwards unused. In the
absence of await statements, many existing DPOR algorithms
like Optimal-DPOR handle this definition without modification.
However, this weakening has a subtle interaction with await

statements that must be handled by OPTIMAL-DPOR-AWAIT.
Consider the program in Fig. 5. In this program, three threads,

p, q, and r, add atomically to the shared variable x, and a thread
s awaits x having the value 3. We assume that DPOR considers
the FAA statements p1, q1, and r1 to be non-conflicting, but
conflicting with the statement s1, should it execute.

Assume that the first explored execution is p1.q1.r1. From
this point, we cannot substitute s1 for either of p1, q1, or r1, as
s1 is not enabled after any of q1.r1, p1.r1 or p1.q1, respectively.
Yet, there is another execution in which s1 is enabled. In
order to construct this execution, we must not only schedule
s1 before one of the other events, but before two, both of p1
and q1, so that only r1 remains. Then, we could construct the
wakeup sequence r1.s1. In general, OPTIMAL-DPOR-AWAIT

286

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

may need to reorder the sequence of independent FAAs that
precede an await statement and select a subsequence of them,
in order to unblock the await statement. This can be done
in several ways, and OPTIMAL-DPOR-AWAIT is optimised to
avoid enumerating all of them. In §IV-B, we will see how.

III. PARTIAL LOOP PURITY ELIMINATION

In this section, we describe Partial Loop Purity Elimination,
a technique that prevents SMC from exploring executions with
pure loop iterations. It consists of (1) a static analysis technique
which annotates programs with conditions under which a loop
will execute a pure iteration, and (2) a program transformation
which inserts assume statements based on the analysis.

We consider loops consisting of a set of basic blocks, with
a single header block. Each basic block contains a sequence of
program statements. Blocks are connected via edges, labelled
by conditions. We also consider program representations on
Static Single Assignment (SSA) form, which means that each
register is assigned by exactly one statement. Thus, a register
uniquely identifies the statement that assigns to it. When the
value of a register in one block depends on which predecessor
block was executed, this is expressed using a phi node. For
example, in a block C with predecessors A and B containing
registers a and b, respectively, the statement c := φ(A : a,B : b)
defines the register c to get the value of a when the previous
basic block was A and of b when the previous block was B.

An execution of a loop iteration is pure if the execution starts
and ends at the header of the loop, and during the iteration
(i) no modification of a global variable is performed, (ii) nor
of any local variable that may be used after the end of the
iteration, and (iii) no internal (not to the header) backedge
is taken. In SSA form, modification of local variables can be
inferred from the phi nodes in the header. If such a phi node
uses a different value on the backedge to the header than when
first entering, then the loop iteration modified a local variable
that is used on some path after the iteration, and we call the
header impure along the backedge. Our definition considers
executions that complete inner loop iterations to be non-pure.
However, our PLP transformation will block inner loops from
completing pure iterations.

A register a reaches a program point l if all paths to l pass a’s
definition. During a loop execution, we say that an expression
over registers is defined-true at some program point l in the
loop, if the expression evaluates to true under (i) the current
valuation of registers that were assigned either outside the loop
or during the current loop iteration, and (ii) any valuation of
all other registers. We now define a central concept; that of
the Forward Purity Condition.

Definition 1 (Forward Purity Condition). Let l be a program
point in a loop. Then, a Forward Purity Condition (FPC) at l
is an expression in Disjunctive Normal Form over the registers
such that if an execution, without leaving the loop or taking
an internal backedge, proceeds to a program point l′, at which
the expression is defined-true, then

(i) the execution from l′ will reach the loop header without
taking an internal backedge, and

. . .

a := x;
b := y

z := 42

a = 4
a ̸= 4

a ≥ 4

. . .
a < 4

(a) A loop with non-purity
and conditional branches.

. . .

[a > 4]
a := x;
assume(a ≤ 4);
[a > 4]
b := y

[a > 4]

[False]
z := 42;
[a ≥ 4]

a = 4
[a ≥ 4]
a ̸= 4

a ≥ 4

. . .
a < 4

(b) The loop annotated with FPCs and
with the assume that is inserted.

Figure 6: Program snippet illustrating the concepts of the PLP transformation.

(ii) the execution from l to the loop header will not modify
any global variables nor any local variable that may be
used after execution has reached the loop header.

We will denote a FPC with brackets, for example [c > 42] or
[False]. A purity condition (PC) of a loop is a FPC of the loop
at the beginning of its header. Thus, whenever a loop iteration
passes a program point where the PC is defined-true, and has
not taken an internal backedge, then that iteration is pure.

We illustrate these concepts for the program snippet in
Fig. 6a. In it, the loop loads x and y into registers a and b,
then branches on the value of a, and along the path where
a = 4, there is a write to z. Since a write to a global variable
is non-pure, the loop is not pure whenever a = 4. The two
paths converge in a common block where a loop condition
(a ≥ 4) is checked. This loop is pure if (i) it takes the backedge,
i.e., a ≥ 4 holds, and (ii) the write to z is not performed, i.e.,
a ̸= 4 also holds. The conjunction of these conditions, a > 4,
becomes a purity condition for the entire loop. We thereafter
insert an assume with the negation of a disjunct of the PC at
the earliest point that it is defined-true, i.e., after the load of x,
shown in blue in Fig. 6b.

Let us now describe the analysis stage for computing purity
conditions. Its first step is to compute FPCs at all points in
the loop. Intuitively, the FPC at a point l is a disjunction
c1 ∨ ·· ·∨ cn, where each ci is a (forward) path condition for
reaching the header via a pure execution from l. We compute
FPCs by backwards propagation through statements and basic
blocks. Let FPC(s•) be the FPC immediately after statement
s, let FPC(•s) be the FPC immediately before statement s,
let FPC(•B) be the FPC at the beginning of block B, and let
FPC(B•) be the FPC at the end of block B.

For each statement s, we compute FPC(•s) as FPC(s•)∧g,
where g is the condition under which s does not update a global
variable. For instance, g is False for stores, True for loads,
a = 0 for an atomic add of form x +:= a, a = b for an atomic
exchange of form b := xchg(x,a), and c = 1 for an atomic
compare-exchange of form c := cmpxchg(x,a,b).

FPCs for basic blocks are computed as follows. First, for an
edge with condition g from a block A in the loop to a block B,
let FPC(A,B) be the FPC along that edge, defined as follows;

287

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

• if B is outside the loop, then FPC(A,B) = [False],
• if B is the header block, then if B is impure along (A,B),

then FPC(A,B) = [False], otherwise FPC(A,B) = [g].
• if B is inside the loop, then FPC(A,B) = [False] if the

edge from A to B is an internal backedge (A,B), otherwise
FPC(A,B) = [FPC(•B)∧g],

We propagate FPCs backwards through basic blocks by
the above rules for statements. We then compute the FPC
at the end of a block A with outgoing arcs to B1, . . . ,Bk as
FPC(A•) =

⋁︁k
i=1 FPC(A,Bi). We can thereafter calculate FPCs

for basic blocks by starting from the edges that leave the loop
or go back to its header. Cycles in the control flow graph are
no issue, since the FPC of a backedge (A,B) does not depend
on B. In Fig. 6b, we can see the FPCs computed by the analysis
on the example.

After the analysis, we insert assume statements. Given a
purity condition of form c1 ∨ c2 ∨ ·· · ∨ cn, for each ci we
insert an assume(¬ci) at the earliest point that is textually
after the definitions of all registers in ci. For registers that do
not reach the insertion location, arbitrary values can be used
when execution does not pass their definitions. Moreover, if
any memory access along the path corresponding to ci cannot
be statically determined not to segfault, we must not insert ci
before that memory access. For this purpose, we associate an
optional “earliest insertion point” with every ci in each FPC
computed by the analysis. Finally, to exclude paths that took
some internal backedge, a “took internal backedge” boolean
register is introduced, computed by phi-nodes, and included in
the conjunction ci.

Theorem 1, whose proof appears in the extended version [12]
of this paper, states two essential properties of PLP. These
properties intuitively say that PLP removes pure executions
while preserving relevant correctness properties. If σ is a local
state occurring in a loop L of a thread p, we say that L is
unavoidably pure from σ to denote that whenever thread p is
in local state σ during an execution, then p is in the process
of completing a pure iteration of L.

Theorem 1. Let P′ be the program resulting from applying
PLP to P. Then P′ satisfies the following properties.

1) Local State Preservation: each local state σ of a thread p
which is reachable in P is also reachable in P′, provided
no loop of p is unavoidably pure from σ .

2) Pure Loop Elimination: no execution of P′ exhibits a
completed pure loop iteration of some thread.

We remark that in the definition of pure loop iterations,
we assume possibly conservative characterisations of “global
variable” and “local variable that may be used after the end of
the iteration” that can be determined by a standard syntactical
analysis of the program, and hence used in the PLP analysis.

IV. THE OPTIMAL-DPOR-AWAIT ALGORITHM

In this section, we present OPTIMAL-DPOR-AWAIT, a
DPOR algorithm for programs with await statements, which
is both correct and optimal. Given a terminating program on

given input, it explores exactly one maximal execution in each
equivalence class induced by the equivalence relation ≃.

A. Happens-Before Ordering and Equivalence

DPOR algorithms are based on a partial order on the events
in each execution. Given an execution E of a program P, an
event of E is a particular execution step by a single thread; the
i’th event by thread p is identified by the tuple ⟨p, i⟩, and ˆ︁e
denotes the thread p of an event e = ⟨p, i⟩. Let dom(E) denote
the set of events in E. We define a happens-before relation on
dom(E), denoted hb−→E , as the smallest transitive relation such
that e hb−→E e′ if e occurs before e′ in E, and either

(i) e and e′ are performed by the same thread, e spawns the
thread which performs e′, or e′ joins the thread which
performs e, or

(ii) e and e′ access a common shared variable x, at least
one of them writes to x, and they are not both atomic
fetch-and-add operations.

Note that the last condition makes atomic fetch-and-add
operations on the same shared variable independent. It follows
that hb−→E is a partial order on dom(E). We define two
executions, E and E ′, as equivalent, denoted E ≃ E ′, if they
induce the same happens-before relation on the same set of
events, (i.e., dom(E) = dom(E ′) and hb−→E=

hb−→E ′). If E ≃ E ′,
then all variables are modified by the same sequence of
statements, implying that each thread runs through the same
sequence of local states in E and E ′.

B. The Working of the OPTIMAL-DPOR-AWAIT Algorithm

OPTIMAL-DPOR-AWAIT is shown in Algorithm 1. It
performs a depth-first exploration of executions using the
recursive procedure Explore(E), where E is the currently
explored execution, which can also be interpreted as the stack
of the depth-first exploration. In addition, for each prefix E ′

of E, the algorithm maintains
• a sleep set sleep(E ′), i.e., a set of threads that should not

be explored from E ′, for the reason that each extension of
form E ′.p for p ∈ sleep(E ′) is equivalent to a previously
explored sequence,

• a wakeup tree wut(E ′), i.e., an ordered tree ⟨B,≺⟩, where B
is a prefix-closed set of sequences, whose leaves are called
wakeup sequences, and ≺ is the order in which sequences
were added to wut(E ′). For each w ∈ B the sequence E ′.w
will be explored during the call Explore(E ′) in the order
given by ≺.

All previously explored sequences together with the current
wakeup tree (i.e., all sequences of form E ′.w for w ∈ wut(E ′)
and a prefix E ′ of E) form the current execution tree, denoted E .
The branches of E are ordered by the order in which they were
added to the tree. Note that the recursive call to Explore(E)
may insert into wut(E ′) for prefixes E ′ of E.

Let v\ p denote the sequence v with the first occurrence of
an event by thread p (if any) removed. Let next[E](p) denote
the next event performed by thread p after E. Two important
concepts are races and weak initials.

288

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

Definition 2 (Non-Blocking Races). Let e,e′ be two events
in different threads in an execution E, where e occurs before
e′. Then e and e′ are in a non-blocking race, denoted e ≾E e′,
if (i) e and e′ are adjacent in hb−→E (i.e., e hb−→E e′, and for no
other event e′′ we have e hb−→E e′′ hb−→E e′), and (ii) e′ cannot
be enabled or disabled by an event in another thread.

Definition 3 (Weak Initials). For an execution E.w, the set
of weak initials of w (after E), denoted WI[E](w), is the set
of threads p such that E.w ≃ E.p.(w \ p) if p is in w, and
E.w.p ≃ E.p.w if p is not in w.

Intuitively, p ∈ WI[E](w) if next[E](p) is independent with all
events that precede it in w in the case that p is in w, otherwise
with all events in w. If p ∈ WI[E](w) we say that w is redundant
wrt. E.p, since some extension of E.w is equivalent to some
extension of E.p. An important property of the execution tree
E that is maintained by the algorithm is that an extension w
of an existing sequence E is added only if E does not contain
an execution of form E ′.p such that E ′ but not E ′.p is a prefix
of E, and w′.w is redundant wrt. E ′.p, where E ′ is defined by
E = E ′.w′.

For the OPTIMAL-DPOR-AWAIT algorithm, we define
• pre(E,e) as the prefix of E up to but not including e,
• notdep(e,E) as the subsequence of E of events that occur

after e but do not happen-after e.
• u ≲[E] w to denote that E.u.v ≃ E.w for some v; intuitively

u is a “happens-before prefix” of w.
The algorithm runs in two phases: race detection (lines 3–22)

and exploration (lines 24–33). Exploration picks the next
unexplored leaf of the exploration tree and extends it with
arbitrary scheduling to a maximal execution. This leaf is
reached step-by-step: at each step, the current execution E is
extended by the leftmost child of the root of wut(E) and used
in a recursive call to Explore (lines 28–31) in order to perform
the next step. If wut(E) only contains the empty sequence,
an arbitrary thread is chosen for the next step and added to
wut(E) (line 26). This step-by-step extension of the current
execution is continued until a maximal execution is reached.
At each step, the new sleep set after E.p is constructed by
taking the elements of sleep(E) that are independent with p.
After a recursive call to E.p, the subtree rooted at E.p can be
removed from the wakeup tree. To remember that we should
not attempt to explore any sequences that are redundant wrt.
E.p, we add p to sleep(E).

The race detection phase is entered when the explored
sequence E is maximal. There we examine E for races
and construct new non-redundant executions. We distinguish
between two types of races: non-blocking races, such as
between a write and a read, handled on lines 3–6, and blocking
races, such as involving an await event, handled on lines 7–22.

For each non-blocking race e ≾E e′, we let E ′ be the prefix
of E that precedes e, and construct a wakeup sequence v by
appending ˆ︁e′ to the subsequence of events that occur after e
in E but do not happen-after e (line 5). By construction, the
sequence E ′.v is an execution. Moreover ˆ︁e ̸∈ WI[E ′](v) since

Algorithm 1: OPTIMAL-DPOR-AWAIT

Initial call: Explore(⟨⟩) with wut(⟨⟩)= ⟨{⟨⟩} , /0⟩, sleep(⟨⟩)= /0

1 Explore(E)
2 if enabled(E) = /0 then
3 foreach e,e′ ∈ dom(E) such that (e ≾E e′) do
4 let E ′ = pre(E,e)
5 let v = (notdep(e,E).ˆ︁e′)
6 if sleep(E ′)∩WI[E ′](v) = /0 then insert(v,E ′)
7 foreach ⟨e′,E ′⟩ ∈ ({⟨next[E](p),E⟩| p is blocked after E}
8 ∪ {⟨e′,pre(E,e′)⟩ | e′ is in E and may block}) do
9 can-stop := False

10 foreach e in E ′ (starting from the end)
11 that may enable or disable e′ do
12 let E ′′ = pre(E,e)
13 let w = notdep(e,E)
14 if e conflicts with all events that may
15 enable or disable e′ then can-stop := True
16 did-insert := False
17 foreach maximal subsequence u of w such that
18 u ≲[E ′′] w and e′ is enabled after E ′′.u do
19 did-insert := True
20 let v = u.ˆ︁e′
21 if sleep(E ′′)∩WI[E ′′](v) = /0 then insert(v,E ′′)
22 if can-stop and did-insert then break
23 else
24 if wut(E) = ⟨{⟨⟩} , /0⟩ then
25 choose p ∈ enabled(E)
26 wut(E) := ⟨{p} , /0⟩
27 while ∃p ∈ wut(E) do
28 let p = min≺{p ∈ wut(E)}
29 sleep(E.p) := {q ∈ sleep(E) | p,q independent after E}
30 wut(E.p) := subtree(wut(E), p)
31 Explore(E.p)
32 add p to sleep(E)
33 remove all sequences of form p.w from wut(E)
34 insert(v,E ′)
35 u := ⟨⟩
36 let c be the list of children of u in wut(E ′) from left to right
37 foreach sequence u.p in c do
38 if p ∈ WI[E ′.u](v) then
39 if p ̸∈ v or (v := v\ p) = ⟨⟩ then return
40 u := u.p
41 if u is a leaf of wut(E ′) then return
42 goto line 36
43 add v as a new rightmost descendant of u in wut(E ′)
44 return

the occurrence of e′ in v does not happen-after e. Thus, v is
non-redundant wrt. E ′.ˆ︁e. If v is also non-redundant wrt. E ′.p
for each p ∈ sleep(E ′), then v is inserted into the wakeup tree
at E ′, extending wut(E ′) with a new leaf if necessary.

Races involving events that can be blocked are handled
at lines 7–22. For each such event e′, we extract the prefix
E ′ that precedes e′. Then, for each e in E ′ that potentially
conflicts with e′, we extract the prefix E ′′ preceding e and
the sequence w of events that does not happen-after e. For
each maximal happens-before prefix u of w after which e′ is
enabled, we construct a wakeup sequence v as u.ˆ︁e′ (line 20),
which is checked for redundancy and possibly inserted into
the wakeup tree in the same way as for a nonblocking race.
Such prefixes can be enumerated by recursively removing the

289

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

suffix of one event that may enable or disable e′ at a time,
stopping whenever e′ is enabled by the current prefix. As an
optimisation, implemented by the flags can-stop and did-insert,
once the algorithm has found a wakeup sequence that enables
e′ before some event that conflicts with every event that may
enable or disable e′, it needs not consider reversing e′ with
even earlier events e, as those reversals will be considered in
a later recursive call.

The function insert(v,E) for inserting a sequence v into a
wakeup tree wut(E ′) is shown in lines 34–44. Starting from the
root, represented by the empty sequence, it traverses wut(E ′)
downwards (the current point being u), always descending
(line 40) to the leftmost child u.p such that p is a weak initial
of the remainder of v until either (i) arriving at a leaf indicating
that v was redundant to begin with and wut(E ′) can be left
unchanged (line 41), (ii) encountering a p which is not in v, or
exhausting v (line 39), or (iii) arriving at a node with no child
passing the test at line 38, and then adding the remainder of v
as a new leaf (line 43), since it was shown to be non-redundant.

Algorithm OPTIMAL-DPOR-AWAIT is correct and optimal
in the sense that it explores exactly one maximal execution
in each equivalence class, as stated in the following theorem
whose proof is in the extended version of this paper [12].

Theorem 2. For a terminating program P,
OPTIMAL-DPOR-AWAIT has the properties that (i) for
each maximal execution E of P, it explores some execution
E ′ with E ′ ≃ E, and (ii) it never explores two different but
equivalent maximal executions.

V. IMPLEMENTATION AND EVALUATION

We have implemented our techniques on top of the NIDHUGG
tool. NIDHUGG is a state-of-the-art stateless model checker for
C/C++ programs with Pthreads, which works at the level of
LLVM Intermediate Representation (IR), typically produced
by the Clang compiler. We have added our PLP analysis
and transformations, as well as the rewrite from load-assume,
exchange-assume, and compare-exchange-assume pairs into
load-await and exchange-await, as passes over LLVM IR.
NIDHUGG comes with a selection of SMC algorithms. One of
them is Optimal-DPOR, which we have used as a basis for our
implementation of OPTIMAL-DPOR-AWAIT including IFAA,
the optimisation of treating fetch-and-add instructions to the
same memory location as independent. All the techniques in
this paper are now included in upstream NIDHUGG and are
enabled when giving the -optimal flag.

A. Overall Performance

First, we evaluate our technique and compare its performance
against baseline NIDHUGG and the SAVER [16] technique,
implemented in a recent version of GENMC [18]. SAVER has a
similar goal to our PLP transformation, but tries to identify pure
loop iterations dynamically, aborting threads if they perform a
pure loop iteration. SAVER’s approach does not allow further
rewrite with awaits.

For our evaluation, we used a set of real-world benchmarks
similar to those used by the SAVER [16] paper. We note that

all atomic memory accesses in these benchmarks have been
converted to SC, as this is the only common memory model
that both tools support. Where relevant, benchmarks are ran
with the same loop bound as in the SAVER paper. For most
benchmarks, this is one greater than the number of threads.
After the benchmark name, the number of threads are shown in
parentheses. Benchmarks mcslock, qspinlock and seqlock are
tests of data structures from the Linux kernel. Benchmarks
ttaslock and twalock are mockups based on, but not the same as,
the benchmarks in the SAVER paper, because its authors were
not at liberty to share the original benchmark sources. Both
are tests of locking algorithms. Benchmark mpmc-queue tests
a multiproducer-multiconsumer queue algorithm, linuxrwlocks
tests a readers-writers lock algorithm, treiber-stack tests a
lock-free stack algorithm, and ms-queue tests a lock-free
queue. Benchmarks mutex and mutex-musl test two mutex
algorithms, the second one used in the musl C standard library
implementation. Benchmark sortnet is an extended version
of the concurrent sort program from Fig. 1. In this version,
the sorting networks are generated using Batcher’s odd-even
mergesort. The number of elements sorted is twice the number
of threads, so sortnet(6) sorts 12 elements. In our replication
package [13], all the tools and benchmarks are provided, as
well as scripts that can replicate the tables in this section.

We evaluate all techniques based on the number of executions
they explore. In fact, we show this number using an addition
of form T +B, where T is the number of explored completed
executions and B is the number of executions that are blocked
in the sense that either an await is deadlocked or some thread
is blocked for executing assume(false) (in NIDHUGG) or a
pure loop iteration (in SAVER). We remark that the SAVER
paper reports only the T part, but, as we will see, often the
number of blocked executions is significant and outnumbers
the number of explored completed executions. Obviously, both
numbers contribute to the time an SMC tool takes to explore
these programs. The evaluation was performed on a Ryzen
5950X running a July 2022 Arch Linux system.

In Table I, there are four sets of NIDHUGG columns. Baseline
shows the performance of unmodified NIDHUGG/Optimal. The
PLP columns shows the performance of using unmodified NID-
HUGG/Optimal together with Partial Loop Purity Elimination.
Pure loops are bounded with assumes. The PLP+Await columns
shows the result of PLP and transforming assumes into awaits,
where possible. Finally, the . . . +IFAA columns report results
from when OPTIMAL-DPOR-AWAIT treats atomic fetch-and-
add operations as independent. For the two sets of GENMC
columns, the SAVER columns show the performance of GENMC
v0.6, which implements the SAVER technique, and the Baseline
columns show the performance of GENMC v0.5.3, which does
not. The timeout we have used for these benchmarks is 1 hour.

Starting at the top of Table I, qspinlock is a benchmark that
does not benefit from SAVER nor PLP, but establishes that the
baseline algorithms of both tools are very similar but GENMC
is faster. In the next four benchmarks (mcslock, twalock, mutex,
and mutex-musl), both PLP and SAVER are ineffective, but
awaits eliminate most of the blocked traces (in mcslock) or

290

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

Table I: Number of (complete+blocked) executions explored by algorithms implemented in GENMC and NIDHUGG on a set of challenging benchmarks, as
well as the execution time (in seconds) taken. The � symbol means that the exploration did not finish in 1h, and † means that the tool crashed.

GENMC NIDHUGG

Baseline SAVER Baseline PLP PLP+Await . . . +IFAA

Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time Execs Time

qspinlock(2) 6+2 0.02 6+2 0.02 6+2 0.06 6+2 0.08 6+2 0.08 6+2 0.09
qspinlock(3) 564+462 0.06 564+462 0.06 564+462 0.20 564+462 0.20 564+456 0.21 564+456 0.20

mcslock(3) 336+426 0.09 336+426 0.09 336+426 0.20 336+426 0.23 336+72 0.18 336+72 0.18
mcslock(4) 26232+33432 42.06 26232+33432 3.95 26232+33432 16.59 26232+33432 16.95 26232+4824 9.53 26232+4824 9.43

twalock(3) 96+90 0.02 96+90 0.02 96+90 0.09 96+90 0.09 96 0.08 96 0.08
twalock(4) 6144+7224 0.35 6144+7224 0.36 6144+7224 1.40 6144+7224 1.45 6144 0.80 6144 0.81

mutex-musl(2) 20+2 0.02 20+2 0.01 20+2 0.07 20+2 0.07 20 0.06 20 0.07
mutex-musl(3) 136728+12834 4.74 136728+12834 5.03 25146+93000 11.89 25146+93000 12.04 25146+81972 10.90 14736+36846 5.29

mutex(2) 12+2 0.02 12+2 0.02 12+2 0.07 12+2 0.07 12 0.07 10 0.07
mutex(3) 9486+1236 0.35 6582+1188 0.25 9486+1236 1.07 6582+1188 0.84 6582+336 0.76 3618+312 0.44

ms-queue(3) 925+350 0.13 75+284 0.06 901+374 0.58 901+374 0.58 901+374 0.59 901+374 0.60
ms-queue(4) 11696504+8399226 2388.57 10662+192438 18.35 � � � � � � � �

linuxrwlocks(3) 38033+31993 3.03 24+59 0.02 38033+31993 6.95 38033+31993 7.24 38033 4.36 3840 0.54
linuxrwlocks(4) � � 1060+5518 0.22 � � � � � � � �

ttaslock(3) 162+183 0.02 162+183 0.03 162+183 0.10 36+81 0.08 36 0.07 36 0.07
ttaslock(4) 20760+29440 1.34 20760+29440 1.46 20760+29440 4.94 576+2308 0.30 576 0.15 576 0.15

seqlock(3) 147+230 0.04 9+83 0.02 147+230 0.14 9+83 0.10 9+36 0.08 9+36 0.09
seqlock(4) 87980+105123 19.68 88+2805 0.17 87980+104583 41.58 88+2769 0.44 88+729 0.20 88+729 0.20

mpmc-queue(3) 11206+11612 1.35 166+987 0.09 11206+8188 3.35 166+840 0.24 166+517 0.20 76+421 0.17
mpmc-queue(4) � � 39706+1277783 87.18 � � 39706+1123234 226.45 39706+360426 88.29 5410+114208 24.15

treiber-stack(3) 426 0.04 274+80 0.04 426 0.16 274+80 0.14 274+60 0.15 274+60 0.15
treiber-stack(4) 1546168+9216 217.44 250088+167916 33.17 1546168+9216 403.58 250088+167916 98.24 250088+90896 87.92 250088+90896 88.20

sortnet(4) † † 1+728 0.33 1+312 0.48 1+312 0.45 1 0.08 1 0.08
sortnet(5) † † 1+15231 10.87 1+4517 9.38 1+4517 9.47 1 0.08 1 0.08
sortnet(6) † † 1+163292 140.83 1+38285 100.18 1+38285 98.82 1 0.08 1 0.08

all of them (in the remaining three). Moreover, we see that
IFAA is effective in mutex and mutex-musl, and manages to
almost halve the total number of executions explored.

PLP fails to identify the loop purity in ms-queue. The
restriction on the form of purity conditions imposed by our
implementation in NIDHUGG is underapproximating the purity
condition to [False]. This demonstrates a downside with doing
purity analysis statically, as SAVER never needs to represent
purity conditions in order to eliminate pure loop iterations.

In linuxrwlocks, PLP is ineffective, because this benchmark
does not contain pure loop iterations as we have defined them.
Rather, the loop contains a pair of fetch-and-add and fetch-and-
sub that cancel out, which is called a “zero-net-effect” loop
in the SAVER paper [16]. These are out of scope for a static
analysis, as SAVER has to dynamically undo the elimination if
a read appears to have observed the intermediate effect. Despite
the lack of PLP, OPTIMAL-DPOR-AWAIT significantly speeds
up linuxrwlocks.

In ttaslock, we believe some implementation issue is prevent-
ing SAVER from eliminating pure loop iterations. PLP does
work, however, and awaits eliminate all the blocked executions.

In the next three benchmarks (seqlock, mpmc-queue and
treiber-stack), PLP discovers the same pure loop iterations
as SAVER, and permits a rewrite to awaits that significantly
reduces the search space, even by an order of magnitude for
seqlock, and on mpmc-queue IFAA further halves it.

Finally, OPTIMAL-DPOR-AWAIT really shines on sortnet.
GENMC cannot take advantage of awaits, and so has to explore

an exponential number of (assume-blocked) traces, where
NIDHUGG can explore the program in just one. Unfortunately,
GENMC v0.5.3 crashes on this benchmark, but we believe it
would yield the same numbers as SAVER, which also explores
a significant number of redundant executions.

B. Effectiveness on SafeStack

Next, we evaluate the ability of OPTIMAL-DPOR-AWAIT
to expose difficult-to-find bugs in real-world code bases.
The benchmark we will use is called safestack. It was first
posted to the CHESS forum, and subsequently included in
the SCTBench [23] and SVComp benchmark suites. The
original safestack code attempts to implement a lock-free
stack but contains an ABA bug which is quite challenging
for concurrency testing and SMC tools to find, in the sense
that exposing the bug requires at least five context switches.
The test harness is also quite big, containing three threads
each performing four operations on the stack. Let us refer
to this original harness as safestack-444 to indicate that each
of its three threads performs four operations (pop, push, pop,
push). We will also use shortened versions of this harness: four
versions with just two threads, and four versions where each
of the three threads performs fewer operations. The smallest
harness that exposes the bug is safestack-331.

We first compare the two SMC tools and their algorithms on
versions of safestack that do not exhibit the bug and thus require
exhaustive exploration of all traces. Table II shows the results.
First, notice that the dynamic technique that SAVER implements

291

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

Table II: Number of (complete+blocked) executions that SMC algorithms in GENMC and NIDHUGG explore on shortened, bug-free versions of safestack.

GENMC NIDHUGG

Benchmark Baseline SAVER Baseline PLP PLP+Await . . . +IFAA

safestack-21(2) 119+6 119+6 119+6 34+2 34+1 19+1
safestack-31(2) 928+107 928+107 928+107 103+27 103+25 56+25
safestack-32(2) 7189+296 7189+296 7189+296 1073+27 1073+12 463+12
safestack-33(2) 121334+12652 121334+12652 121334+12652 6434+1636 6434+1584 2600+1160
safestack-211(3) 1267120+325932 995224+325932 1259280+324382 2690+1126 2690+928 962+686
safestack-311(3) 0+286818740 0+275399108 � 0+26536 0+24078 0+14960
safestack-321(3) � � � 906529+388117 906529+331337 288057+216830

is completely or mostly ineffective in these programs; compare
it to the baseline numbers. In contrast, PLP achieves significant
reduction of the set of executions that NIDHUGG explores.
Finally, both the transformation of assumes to awaits and
the IFAA optimisation are applicable and result in further
reductions in the number of explored executions. The number
of complete traces is 0 on safestack-311 since the code does
not allow popping the last element, so all traces end up with
one thread livelocking in pop with the queue containing only
one element. For Table II, the timeout used is 10 hours.

With our next and last experiment, using safestack-331, we
can evaluate the tools’ abilities to expose the bug. Neither
GENMC, with or without SAVER, nor baseline NIDHUGG find
anything after running for more than 2000 hours! On the
other hand, if we run NIDHUGG with PLP, awaits, and IFAA, it
discovers the bug in just 8 minutes, after exploring 2+2453474
traces. How much of its search space an SMC tool has to search
before it encounters a bug can be up to “luck”, so to ensure that
this result is not due to luck we “fix” the bug by commenting
out all the assertions in the benchmark and run NIDHUGG
again. This gives us an upper bound on the size of the search
space, i.e., how much would need to be searched to find the bug
in the worst case, and also provides an indication of how long
it might take to verify the program after fixing the bug. On the
fixed safestack-331, NIDHUGG terminates in only 24 minutes
after exploring 5772+8521721 traces. This demonstrates how
the techniques we presented in this paper substantially reduce
the search space on safestack, allowing the bug to be found
or its absence verified by an exhaustive SMC technique. To
our knowledge, no other exhaustive technique has ever been
able to discover the bug in safestack.

VI. RELATED WORK

Since SMC tools assume the analysed program to terminate,
they must first bound unbounded loops. Several tools [2, 21, 14,
15] have an automatic loop unroller that is parameterised by a
chosen loop bound. Several SMC tools, including NIDHUGG [2],
RCMC [14] and GENMC [15], transform simple forms of
spinloops, such as the one shown in Fig. 2a, to assume

statements, but only transform simple polling loops that can
be recognised syntactically. We are not aware of any tool that
transforms loops into await statements, meaning existing tools
are susceptible to scalability problems for programs like the
sorting networks shown in Fig. 1. An SMC technique that
can diagnose livelocks of spinloops under fair scheduling is
VSYNC [22]. However, to do so it enforces fairness, and cannot

bound the loop even with an assume, thus exploring many more
traces than tools which transform spinloops to assumes.

SAVER [16] also aims to block pure loop iterations by
introducing assume statements. It identifies pure loop iterations
dynamically, instead of by static analysis as in our approach.
SAVER’s approach allows to detect a larger class of pure loop
iterations, but it does not allow further rewrite with awaits.
Furthermore, our PLP transformation can block a looping thread
at any point in the loop, not just at the back edge. SAVER also
employs several smaller program transformations, such as loop
rotation and merging of bisimilar control flow graph nodes,
that can increase the number of loops that may qualify as pure.
These transformations are orthogonal to the detection of pure
loop iterations, and could also be used in our framework.

Checking for purity of loop iterations is an idea that has
appeared in other contexts, such as to verify atomicity for
concurrent data structures [7, 19] and to reduce complexity for
model checking them (e.g., [4]).

The Optimal-DPOR algorithm implemented in NIDHUGG,
handles mutex locks but not await statements. In the jour-
nal article of the Optimal-DPOR algorithm [3], principles
for handling other blocking statements are presented. Our
OPTIMAL-DPOR-AWAIT develops these principles into a
practical and efficient algorithm, which we have also imple-
mented in NIDHUGG. As future work, the Optimal-DPOR with
Observers [5] algorithm, which allows two statements to only
conflict in the presence of a third event, could also be extended
(potentially at higher cost) to handle awaits.

VII. CONCLUDING REMARKS

We have presented techniques for making SMC with DPOR
more effective on loops that perform pure iterations, including a
static program analysis technique to detect pure loop executions,
a program transformation to block and also remove them, a
weakening of the standard conflict relation, and an optimal
DPOR algorithm which handles the so introduced concepts.
We have implemented the techniques in NIDHUGG, showing
that they can significantly speed up the analysis of concurrent
programs with pure loops, and also detect concurrency errors.

ACKNOWLEDGEMENTS

This work was partially supported by the Swedish Research
Council through grants #621-2017-04812 and 2019-05466, and
by the Swedish Foundation for Strategic Research through
project aSSIsT. We thank the anonymous FMCAD reviewers
for detailed comments and suggestions which have improved
the presentation aspects of our work.

292

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic
partial order reduction,” in Symposium on Principles of Programming
Languages, ser. POPL 2014. New York, NY, USA: ACM, 2014, pp. 373–
384. [Online]. Available: http://doi.acm.org/10.1145/2535838.2535845

[2] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and
K. Sagonas, “Stateless model checking for TSO and PSO,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS,
vol. 9035. Berlin, Heidelberg: Springer, 2015, pp. 353–367. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-46681-0_28

[3] P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Source sets: A
foundation for optimal dynamic partial order reduction,” Journal of the
ACM, vol. 64, no. 4, pp. 25:1–25:49, Sep. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3073408

[4] P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine,
“An integrated specification and verification technique for highly
concurrent data structures,” Int. J. Softw. Tools Technol. Transf.,
vol. 19, no. 5, pp. 549–563, 2017. [Online]. Available: https:
//doi.org/10.1007/s10009-016-0415-4

[5] S. Aronis, B. Jonsson, M. Lång, and K. Sagonas, “Optimal dynamic
partial order reduction with observers,” in Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference,
ser. LNCS, vol. 10806. Cham: Springer, Apr. 2018, pp. 229–248.
[Online]. Available: https://doi.org/10.1007/978-3-319-89963-3_14

[6] M. Christakis, A. Gotovos, and K. Sagonas, “Systematic testing for
detecting concurrency errors in Erlang programs,” in Sixth IEEE
International Conference on Software Testing, Verification and Validation,
ser. ICST 2013. Los Alamitos, CA, USA: IEEE, Mar. 2013, pp.
154–163. [Online]. Available: https://doi.org/10.1109/ICST.2013.50

[7] C. Flanagan, S. Freund, and S. Qadeer, “Exploiting purity for atomicity,”
IEEE Trans. Software Eng., vol. 31, no. 4, pp. 275–291, Apr. 2005.
[Online]. Available: https://doi.org/10.1109/TSE.2005.47

[8] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Principles of Programming Languages,
(POPL). New York, NY, USA: ACM, Jan. 2005, pp. 110–121. [Online].
Available: http://doi.acm.org/10.1145/1040305.1040315

[9] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in Principles of Programming Languages, (POPL). New
York, NY, USA: ACM Press, Jan. 1997, pp. 174–186. [Online].
Available: http://doi.acm.org/10.1145/263699.263717

[10] ——, “Software model checking: The VeriSoft approach,” Formal
Methods in System Design, vol. 26, no. 2, pp. 77–101, Mar. 2005.
[Online]. Available: http://dx.doi.org/10.1007/s10703-005-1489-x

[11] P. Godefroid, R. S. Hanmer, and L. Jagadeesan, “Model checking without
a model: An analysis of the heart-beat monitor of a telephone switch
using VeriSoft,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA. New
York, NY, USA: ACM, Mar. 1998, pp. 124–133. [Online]. Available:
https://doi.org/10.1145/271771.271800

[12] B. Jonsson, M. Lång, and K. Sagonas, “Awaiting for Godot: Stateless
model checking that avoids executions where nothing happens,” arXiv
CoRR, Aug. 2022, Extended Version with Proofs. [Online]. Available:
https://arxiv.org/abs/2208.09259

[13] ——, “Replication Package for Awaiting for Godot: Stateless Model
Checking that Avoids Executions where Nothing Happens,” Aug. 2022,
artifact for the FMCAD 2022 paper with the same title. [Online].

Available: https://doi.org/10.5281/zenodo.6979940
[14] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective

stateless model checking for C/C++ concurrency,” Proc. ACM on
Program. Lang., vol. 2, no. POPL, pp. 17:1–17:32, Jan. 2018. [Online].
Available: https://doi.org/10.1145/3158105

[15] M. Kokologiannakis, A. Raad, and V. Vafeiadis, “Model checking for
weakly consistent libraries,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2019. New York, NY, USA: ACM, Jun. 2019, pp. 96–110.
[Online]. Available: https://doi.org/10.1145/3314221.3314609

[16] M. Kokologiannakis, X. Ren, and V. Vafeiadis, “Dynamic partial order
reductions for spinloops,” in Formal Methods in Computer Aided Design,
ser. FMCAD 2021. IEEE, Oct. 2021, pp. 163–172. [Online]. Available:
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25

[17] M. Kokologiannakis and K. Sagonas, “Stateless model checking of
the Linux kernel’s hierarchical read-copy-update (tree RCU),” in
Proceedings of International SPIN Symposium on Model Checking of
Software, ser. SPIN 2017. New York, NY, USA: ACM, 2017, pp.
172–181. [Online]. Available: https://doi.org/10.1145/3092282.3092287

[18] M. Kokologiannakis and V. Vafeiadis, “GenMC: A model checker
for weak memory models,” in Computer Aided Verification - 33rd
International Conference, CAV 2021, Proceedings, Part I, ser. LNCS,
vol. 12759. Springer, Jul. 2021, pp. 427–440. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8_20

[19] M. Lesani, T. D. Millstein, and J. Palsberg, “Automatic atomicity
verification for clients of concurrent data structures,” in Computer Aided
Verification, CAV 2014, ser. LNCS, A. Biere and R. Bloem, Eds., vol.
8559. Cham: Springer, Jul. 2014, pp. 550–567. [Online]. Available:
https://doi.org/10.1007/978-3-319-08867-9_37

[20] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
“Finding and reproducing heisenbugs in concurrent programs,” in
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, ser. OSDI ’08. Berkeley, CA, USA:
USENIX Association, Dec. 2008, pp. 267–280. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855760

[21] B. Norris and B. Demsky, “A practical approach for model
checking C/C++11 code,” ACM Trans. Program. Lang. Syst.,
vol. 38, no. 3, pp. 10:1–10:51, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2806886

[22] J. Oberhauser, R. L. d. L. Chehab, D. Behrens, M. Fu, A. Paolillo,
L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, and V. Vafeiadis,
“Vsync: Push-button verification and optimization for synchronization
primitives on weak memory models,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2021. New
York, NY, USA: ACM, 2021, p. 530–545. [Online]. Available:
https://doi.org/10.1145/3445814.3446748

[23] P. Thomson, A. F. Donaldson, and A. Betts, “Concurrency testing
using controlled schedulers: An empirical study,” ACM Trans. Parallel
Comput., vol. 2, no. 4, pp. 23:1–23:37, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2858651

[24] N. Zhang, M. Kusano, and C. Wang, “Dynamic partial order reduction
for relaxed memory models,” in Programming Language Design and
Implementation (PLDI). New York, NY, USA: ACM, Jun. 2015, pp. 250–
259. [Online]. Available: http://doi.acm.org/10.1145/2737924.2737956

293

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on October 17,2023 at 09:39:28 UTC from IEEE Xplore. Restrictions apply.

