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Abstract 

Background: Body composition (BC) is an important factor in determining the risk 
of type 2-diabetes and cardiovascular disease. Computed tomography (CT) is a use-
ful imaging technique for studying BC, however manual segmentation of CT images 
is time-consuming and subjective. The purpose of this study is to develop and evaluate 
fully automated segmentation techniques applicable to a 3-slice CT imaging proto-
col, consisting of single slices at the level of the liver, abdomen, and thigh, allowing 
detailed analysis of numerous tissues and organs.

Methods: The study used more than 4000 CT subjects acquired from the large-scale 
SCAPIS and IGT cohort to train and evaluate four convolutional neural network based 
architectures: ResUNET, UNET++, Ghost-UNET, and the proposed Ghost-UNET++. The 
segmentation techniques were developed and evaluated for automated segmentation 
of the liver, spleen, skeletal muscle, bone marrow, cortical bone, and various adipose 
tissue depots, including visceral (VAT), intraperitoneal (IPAT), retroperitoneal (RPAT), 
subcutaneous (SAT), deep (DSAT), and superficial SAT (SSAT), as well as intermuscular 
adipose tissue (IMAT). The models were trained and validated for each target using 
tenfold cross-validation and test sets.

Results: The Dice scores on cross validation in SCAPIS were: ResUNET 0.964 (0.909–
0.996), UNET++ 0.981 (0.927–0.996), Ghost-UNET 0.961 (0.904–0.991), and Ghost-
UNET++ 0.968 (0.910–0.994). All four models showed relatively strong results, however 
UNET++ had the best performance overall. Ghost-UNET++ performed competitively 
compared to UNET++ and showed a more computationally efficient approach.

Conclusion: Fully automated segmentation techniques can be successfully applied 
to a 3-slice CT imaging protocol to analyze multiple tissues and organs related to BC. 
The overall best performance was achieved by UNET++, against which Ghost-UNET++ 
showed competitive results based on a more computationally efficient approach. The 
use of fully automated segmentation methods can reduce analysis time and provide 
objective results in large-scale studies of BC.
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Introduction
Obesity is one of the key risk factors for the development of several cardiometabolic 
diseases, including type 2-diabetes (T2D), cardiovascular disease (CVD), non-alco-
holic fatty liver disease and hypertension [1, 2]. Body composition (BC) analysis stud-
ies, the amounts and distribution of fatty and non-fatty tissues in different depots, 
including adipose tissue, muscle, liver and bone within the body. Accurate quantifica-
tion of BC helps to understand cardiometabolic diseases and their prediction and pre-
vention [3], with both total and regional adipose tissue being of importance. Adipose 
tissue compartment consists of visceral (VAT), subcutaneous (SAT), retroperitoneal 
(RPAT), intraperitoneal (IPAT), deep (DSAT), superficial SAT (SSAT), and intramus-
cular adipose tissue (IMAT). VAT is found in the intraabdominal region, surrounding 
intraabdominal tissues and organs. VAT can be separated into two sub-depots, RPAT 
and IPAT, the clinical significance of differentiating between IPAT and RPAT has been 
emphasized in [4, 5], with IPAT being linked to an increased risk of diabetes and both 
IPAT and RPAT having distinct associations with metabolic syndrome. Similarly, the 
SAT depot, which is located under the skin, can be separated into SSAT and DSAT. 
These depots have been found to contain different cell types and show differences in 
metabolic activity [3, 6–8].

For human BC analysis, several medical imaging techniques, such as magnetic reso-
nance imaging (MRI) and computed tomography (CT), are often used [3]. These tech-
niques are commonly adopted to quantify adipose tissue, muscle, and liver fat content in 
the body. The quantified adipose tissue measurements are often generated using manual 
or semi-automated image analysis techniques, which are usually time consuming and 
might give subjective results [9].

In the last decade, artificial intelligence (AI) has influenced many fields, with health-
care being one of the prime domains for which AI has shown remarkable performance. 
Various AI-based techniques have been developed to perform different tasks in the field 
of medicine. Due to automatic feature extraction and outcome prediction, deep learn-
ing has been widely adopted to solve various medical image analysis tasks [10]. Many 
deep learning-based techniques have been proposed for segmentation and BC analysis, 
including solutions for quantification of adipose tissue, muscle, and liver depots from 
CT images [11–14]. Typically, large amounts of data are required for the development of 
a deep learning model.

In this study, we used deep learning techniques to perform an advanced BC analysis 
on two large cohort studies; the Swedish CardioPulmonary bioImage Study (SCAPIS, 
n = 30,154) and the Impaired Glucose Tolerance Microbiota Study (IGT, n = 1965). 
SCAPIS [15] is a large-scale study that mainly focuses on analysing cardiovascular and 
pulmonary diseases, with CT angiography of the coronary arteries being the preferred 
technique. Similarly, the IGT [16] study aims to understand how the gut microbiota 
affects glucose dysregulation and cardiovascular disease development. Both studies 
include a 3-slice CT imaging protocol, which generates single axial slices at the level of 
the liver, abdomen, and thigh for quantification of BC. By restricting the image acquisi-
tion to three slices, the exposure of ionizing radiation to the subjects is reduced to only 
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0.245  mSv on average making the image acquisition protocol very attractive for large 
scale studies including healthy volunteers.

The aim of this study is to develop and evaluate fully automated segmentation tech-
niques of various tissues and organs included in the SCAPIS and IGT cohort studies 
using the 3-slice (liver, abdomen, and thigh) CT imaging protocol. In order to achieve 
this goal, we propose four different deep learning architectures: ResUNET, UNET++, 
Ghost-UNET, and the novel Ghost-UNET++.

Our proposed method significantly reduces the need for manual annotation and ena-
bles efficient analysis of large-scale cohort studies of SCAPIS and IGT datasets, contrib-
uting to the field of medical image analysis by providing a robust and automated tool for 
accurate segmentation of complex anatomical structures in CT imaging. We conducted 
extensive experiments on a large, two cohort dataset of CT images and achieved remark-
able performance in terms of segmentation accuracy.

Overall, the contributions of this study are twofold. First, we propose a novel deep 
learning architecture, Ghost-UNET++, and compare its performance with three 
existing architectures, ResUNET, UNET++, and Ghost-UNET, on the SCAPIS and 
IGT datasets. Second, we provide fully automated segmentation methods for a large 
number of targets of importance for body composition research that can be applied to 
large-scale studies of diverse patient populations, reducing the time and cost required 
for manual annotation.

Material and methods
Subjects

The study comprises two large-scale cohorts, SCAPIS and IGT. SCAPIS is a population-
based CVD and chronic obstructive pulmonary disease (COPD) study (www. scapis. org) 
in which approximately 30,154 men and women aged between 50 and 64 years were ran-
domly selected for a wide range of tests, including CT imaging for body composition 
analysis [15]. The image data were collected at six different university hospitals in Swe-
den between 2013 and 2018 (Uppsala, Stockholm, Malmö/Lund, Umeå, Linköping, and 
Gothenburg). The images used in the current study were chosen at random from the 
population recruited in Gothenburg. An initial random subset of this data was obtained 
to facilitate method development and evaluation. The complete multi-center SCAPIS 
data is being collected, compiled, and quality controlled and has yet not been shared 
with any research groups.

IGT [16] is a mirror cohort to SCAPIS, targeting subjects at risk of developing T2D 
and primarily aiming to understand how the gut microbiota affects glucose dysregu-
lation and CVD development. The study includes about 1965 subjects with different 
forms of glucose dysregulation. The CT body composition imaging is identical to that of 
SCAPIS.

This present study was approved by the Swedish Ethical Review Authority (Dnr 2021-
05856-01, Gothenburg, section  2, medicine), and all participants provided written, 
informed consent. The study was performed in accordance with relevant guidelines and 
regulations, including the Declaration of Helsinki.

http://www.scapis.org
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CT Protocol

Subjects in both SCAPIS and IGT were scanned with a non-contrast enhanced 3-slice 
CT imaging protocol for the liver, abdomen, and thighs, see (Fig. 1). The SCAPIS study 
and the CT protocol used have previously been thoroughly described [15]. Data acqui-
sition was performed with the same CT scanner for all the subjects and procedures 
(Somatom Definition Flash with a Stellar detector, Siemens Healthcare, Forchheim, Ger-
many) with slice thickness 5 mm, reconstruction kernel B31 medium smooth. For dose 
optimization, Care Dose 4D was employed.

Reference segmentation

An overview of the reference segmentations used in the work is given in Table 1. The ref-
erence segmentations were created using different approaches and software.

Most reference segmentations were generated based on manual corrections of results 
from an automated segmentation pipeline [3]. These were performed at Antaros Medical 
(AM) on the first batch of images from both SCAPIS and IGT for the purpose of quan-
tification of the basic body composition parameters, i.e., liver fat, areas of VAT and SAT, 
as well as thigh muscle, SAT, and IMAT. An in-house constructed user interface was 
developed and used for efficient quality control and correction of all automated segmen-
tations. The resulting segmentations were output as binary masks that were used in this 
study. The segmentation denoted “liver crude” was performed for the purpose of quanti-
fying average liver attenuation. Therefore, a rapid delineation of the majority of the liver 
tissue was performed, not aiming for a detailed delineation of the entire liver area.

ImageJ (IJ) [17], was used for manual reference segmentation of the entire liver area 
and for creating the reference delineations of the outer contours of the DSAT and 
RPAT depots, hereafter denoted as the raw DSAT and the raw RPAT segmentations, 
respectively.

Fig. 1 Illustration of the 3-slice CT images collected and the segmentation targets. The positioning of the 
three slices is shown on the CT scout to the left. Left column of axial images shows the tree slices in-plane 
(liver, abdomen, thigh). Middle and right column of axial images show resulting segmentation of liver, spleen 
and crude liver (top row), SAT/IPAT, skeleton, SSAT, VAT, DSAT, RPAT, spine bone marrow (middle row), SAT, 
muscle, IMAT, cortical bone, and bone marrow (bottom row)
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Deep Paint (DP) is a deep learning based 2D semi-automated segmentation tool, 
developed at Uppsala University and Antaros Medical, which can be used for efficient 
creation of reference segmentations. A built-in segmentation model (UNET) is used 
to generate a segmentation proposal. This proposal is then corrected by an expert and 
thereafter saved and used for re-training the segmentation model. Deep Paint was used 
to generate reference segmentations of the spleen, skeleton muscles, and spine bone 
marrow.

The generation of the reference segmentation masks for IPAT, RPAT, SSAT, DSAT, 
thigh bone marrow, and cortical bone is described below.

For IPAT, RPAT, SSAT, and DSAT, the available raw RPAT and raw DSAT segmenta-
tions were combined, using basic mathematical operations, with segmentations of the 
entire VAT and SAT depots, respectively; see Fig. 2, Sections A and B.

The VAT and SAT segmentations were automatically generated by using a Ghost-
UNET++ model trained on a large, non-overlapping dataset (n = 2677) of available 
 VATAM and  SATAM segmentations, respectively.

To segment the cortical bone and bone marrow in the thigh slices, an automatic seg-
mentation pipeline was developed with traditional image analysis techniques without 
the use of deep learning. First the cortical bone region is segmented. This is done by 

Table 1 Overview of the images and reference segmentations used in the different experiments

Total total number of images with references segmentation used, CV cross validation, Test test set used—the test split was 
only used when the total number samples were above 100
AM Reference segmentations generated at Antaros Medical, see “Methods” section
IJ Reference segmentations generated at Uppsala University using the software Image J, see “Methods” section
DP Reference segmentations generated at Uppsala University using the software Deep Paint, see “Methods” section
a Automatic segmentation pipeline developed with traditional image analysis techniques, without the use of deep learning, 
which is also evaluated separately

Segmentation target SCAPIS IGT

Total CV Test Total CV Test

Liver slice
Liver  accurateIJ 51 51 – – – –

Liver  crudeAM 2681 2413 268 1951 1756 195

SpleenDP 51 51 – – – –

Abdomen slice
SATAM 2677 2410 267 1951 1756 195

VATAM 2677 2410 267 1951 1756 195

IPAT 1017 916 101 – – –

RPATIJ 1017 916 101 – – –

DSATIJ 529 477 52 – – –

SSAT 529 477 52 – – –

Spine bone  marrowDP 208 188 20 – – –

Skeleton  muscleDP 200 180 20 – – –

Thigh slice
SATAM 2682 2414 268 1951 1756 195

MuscleAM 2682 2414 268 1951 1756 195

IMATAM 2682 2414 268 1951 1756 195

Bone  marrowa 2683 – – 1951 – –

Cortical  bonea 2683 – – 1951 – –



Page 6 of 21Ahmad et al. BMC Bioinformatics          (2023) 24:346 

applying a threshold on the voxel intensities > 400 Hounsfield Units (HU) [3] resulting 
in a binary image where cortical bone is segmented. Small segmented objects, from for 
example calcifications, were removed by filtering, and small holes inside the cortical 
region were filled.

The bone marrow segmentation was done by applying morphological operation on 
cortical segmented image to fill remaining two large holes containing bone marrow.

Finally, the cortical bone segmented image is subtracted from the morphological seg-
mented image to obtain the target bone marrow segmentation. Representative example 
results are shown in Fig. 2 Section C.

The accuracy of the cortical bone and bone marrow segmentations was assessed 
through a visual examination of 210 randomly chosen thigh slices from the SCAPIS 
study and 185 thigh slices from the IGT study. Any discrepancies in the segmentation, 
such as errors, anatomical deviations, or outliers, were recorded.

Data pre‑processing

All CT image data underwent three pre-processing steps prior to being used to train 
and evaluate a deep learning model. HU windowing was used to limit the voxel intensity 
range for each slice of liver, abdomen, and thigh. Different fix ranges were tested and 
evaluated for the different segmentation targets. The final HU ranges for image slices 
used were liver [− 25, 125], abdomen [− 219, 190], thigh [− 198, 189], skeletal muscle 
and spine bone marrow segmentation were [− 181, 216]. An adaptive median filtering 

Fig. 2 Section A: Illustration of IPAT mask generation, A (Abdomen CT slice), B (VAT) model output, C (RPAT) 
model output, D (IPAT). Section B: Illustration of DSAT and SSAT mask generation. A (Abdomen CT Slice), B 
(SAT) model output, C (Raw mask for DSAT), D (SSAT and DSAT). Section C: Illustration of segmentation of 
cortical bone and bone marrow. A (Thigh CT slice), B (Cortical bone), C (Bone marrow), D (segmented output 
overlayed on CT image)
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algorithm [18] was applied to reduce noise without significantly blurring important 
structures. Image intensities were normalized image-wise using z-score normalization 
[19].

Proposed deep learning models

To perform segmentation tasks, several deep learning models based on convolutional 
neural network (CNN) have been proposed. The majority of these techniques were 
based on pretrained architectures that required a specific weight file. In this study, we 
proposed a novel deep learning architecture, Ghost-UNET++, based on the nested 
UNET model by substituting convolutional layers with the so-called Ghost module, with 
the aim of getting more feature maps with cheaper operations. We also compared the 
proposed network with three other deep learning architectures: ResUNET, UNET++, 
and Ghost-UNET.

The ResUNET network is a widely used network consisting of a convolution layer fol-
lowed by Relu, max pooling, and batch normalization, along with a skip connection (see 
detailed description in section ResUNET).

The UNET++ architecture is made up of nested architectures with redesigned skip 
connections to reduce the semantic gap between encoder and decoder feature maps. 
UNET++ consists of convolution layers followed by Relu and batch normalization. 
Each convolutional layer is connected with other layers in the nested block (see detailed 
description in section UNET++).

In 2021, authors proposed a Ghost-UNET [20], based on an asymmetry encoder-
decoder architecture with the combination of UNET and Ghost-modules. This study 
presents the Ghost-UNET++ network, which combines UNET++ with the recently 
proposed Ghost module. In this approach, the convolutional blocks of the UNET++ 
architecture are replaced with Ghost-modules.

ResUNET

UNET is a deep learning-based fully convolution neural network for fast and accurate 
medical image segmentation [21]. To enhance the performance of the UNET architec-
ture, a ResUNET model [22] was proposed, in which the traditional convolutional blocks 
are substituted with residual blocks. The residual block has identity mapping to add the 
output feature map of the previous layer to the next layer.

Equation 1, shows the building block of ResUNET, where F(x) feature map and x iden-
tity mapping are multiplied by a linear project W to expand the channels of shortcut to 
match the residual. The ResUNET architecture used in this study is illustrated in (Fig. 3).

UNET++
The authors [23] proposed a UNET++ architecture to ameliorate the UNET model. 
In the UNET++ network, a series of nested blocks are linked together to reduce the 
semantic gap between the contraction and expansion paths.

The entire network consists of nested blocks that are connected in a series, with 
each block of the network consisting of two convolution layers followed by batch 

(1)z = F(x, {Wa})+Wsx.
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normalization and Relu, with the purpose of generalizing model performance. The max 
pooling and upsampling layers are adopted in a way to extract prime features and remap 
features to generate segmentation maps. Finally, a convolution layer followed by a sig-
moid activation map is added to predict the final outcomes. The UNET++ architecture 
used in this work is illustrated in (Fig. 4).

Fig. 3 ResUNET architecture

Fig. 4 UNET++ architecture
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Ghost‑UNET++
The Ghost-Net architecture is described as extracting more intrinsic features from cheap 
operations. The aim of the Ghost-Net model is to design an efficient convolution neu-
ral network by reducing the redundancy in feature maps. However, simple convolutions 
are computationally expensive for generating feature maps. The Ghost-Net module uses 
cheaper operations to generate the feature maps. In the Ghost-Net architecture, each 
layer is made up of a bottleneck, which is made by stacking two Ghost modules [24].

The Ghost module is a feature in the Ghost-Net architecture that helps improve the 
network’s performance without adding too many parameters. It works by using ghost 
features, which are low-resolution versions of the input feature maps. Equation  2, the 
Ghost module:

where xhigh is the high-resolution feature map, xlow is the low-resolution ghost feature 
map, W is the weight tensor for the ghost convolution layer, γ and β are learnable scale 
and shift parameters, and GhostConv is the ghost convolution operation.

The ghost convolution operation is defined as follows Eq. 3:

where nghost is the number of ghost channels, s is the stride, and xlowx×s,j×s,l
 is the value at 

position i × s, j × s, l in the low-resolution feature map.
In this study, we designed a novel Ghost-UNET++ architecture by substituting con-

volution layers with Ghost bottleneck layers in the UNET++ model. The proposed 
network consists of 15 bottleneck layers connected in a series of nested architectures 
to build a Ghost-UNET++ model. The aim of the network is to reduce semantic gaps 
and redundancy in feature maps, hence improving network performance based on the 
UNET++ method. The proposed architecture is based on contraction and expansion 
paths to perform segmentation tasks. Each block in a path consists of a Ghost bottleneck 
layer stacked with two Ghost-Net models.

Here’s the UNET++ model with Ghost modules expressed in a mathematical form in 
Eq. 4:

where X  is the input tensor, y is the output tensor, and � represents the set of learnable 
parameters of the model.

Each level i of the UNET++ model with Ghost modules is defined by the following 
functions:

In Eq. 5, where xi−1 is the input feature map from the previous level, di is the down-
sampled feature map, ui−1 is the up-sampled feature map from the corresponding level 
of the down-sampling path, and yi is the output feature map of the current level.

(2)y = γ · xhigh + β · GhostConv(xlow ,W )

(3)GhostConv(xlow ,W )i,j,k =

nghost

l=1

Wi,j,k ,l .xlowi×s,j×s,l

(4)y = F(X ;�),

(5)xi = GhostDown(xi−1), di = Pool(xi), yi = GhostUp
(

di,ui−1

)

,ui = Upconv
(

yi
)

,
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The GhostDown,GhostUp,Pool, andUpconv functions represent the Ghost module, 
pooling operation, and up-convolutional operation, respectively.

The final output of the UNET++ model with Ghost modules is given by y = yn , where 
n is the number of levels in the model. The entire network is connected in a series of 
nested layers as illustrated in (Fig. 5).

Experimental settings

To allow fair comparison of the networks’ performance, all four networks were config-
ured uniformly. The following settings were used in the conducted experiments:

1. All the experiments were performed on a Linux platform and a Nvidia GeForce RTX 
2080Ti, 11 Gigabyte of GPU memory.

2. The Pytorch framework was used for each network implementation and experiment.
3. The batch size was set to 2 with an input dimension of 512 × 512 × 1.
4. The Adam [25] optimizer was used with the learning rate set to 0.0001, learning 

weight initialized with default settings.
5. All networks were trained for a maximum of 100 epochs. Early stopping was used to 

reduce overfitting.
6. A tenfold cross validation was used to train and evaluate the models.
7. All networks were trained from scratch, without the use of pre-training.
8. 10% of the images were set aside for testing. This was done for segmentation targets 

where the number of samples available was greater than 100. The best performing 
model from the tenfold cross validation was further tested.

9. Dice loss was used with a smoothing factor added to numerator and denominator. 
This is needed to handle for example non-overlapping predicted and ground truth 
segmentations and ensures numerical stability and prevents for example division by 
zero. The Dice loss between ground truth and prediction is presented below.

Fig. 5 Ghost-UNET++ architecture
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Equation 6, where A is the set of input voxels in the target reference (ground truth) 
and B is the set of voxels in the prediction segmentation and smoothing factor = 1.0.

To ensure that each target is captured optimally, we designed individual models for 
each one. The models were trained to recognize specific characteristics of each target by 
learning from a large number of input images. To enable a better capture of the relevant 
features, we designed the final convolution layer of the networks to produce an output 
tensor with a dimension of 512 × 512 × 1. We followed this by applying a sigmoid activa-
tion function to the output tensor. This function transformed the output into a probabil-
ity distribution, ranging from 0 to 1. By doing this, we were able to interpret the model’s 
output as the probability of the target being present in the input image. To avoid overfit-
ting and enhance the network’s performance and stability, a batch normalization layer 
was added [26] in each layer of the network before applying the nonlinear transforma-
tion (ReLU). Furthermore, zero padding was applied throughout the network to ensure 
that the output feature map generate same dimension as the input dimension.

Results
The experimental outcomes of the above-mentioned CNN models are presented in 
Table  2 and Fig.  6. Overall, the models exhibited good agreement with the ground 
truth for both cross validation and test sets. In cross validation outcomes, the Dice 
scores of our proposed Ghost-UNET++ network for spleen, liver, abdomen, and 
thigh slices were found to be between 0.910 and 0.994, respectively.

In general, results achieved by four models during cross validation on the SCAPIS 
cohort had mean Dice scores of 0.964 (min 0.909 and max 0.996) for ResUNET, 0.981 
(0.927–0.996) for UNET++, 0.961 (0.904–0.991) for Ghost-UNET, and 0.968 (0.910–
0.994) for Ghost-UNET++. Similarly, for the IGT cohort, the mean Dice scores for 
the ResUNET model were 0.968 (0.906–0.996), UNET++ 0.976 (0.914–0.996), Ghost-
UNET 0.969 (0.897–0.994), and Ghost-UNET++ 0.973 (0.905–0.995). These findings 
indicate that UNET++ obtained the highest nominal Dice score in 26 out of 28 com-
parisons for SCAPIS and in 10 out of 12 comparisons for IGT.

On a given set of test data, the ResUNET achieved a maximum Dice score of 0.993 
for abdominal SAT on SCAPIS and 0.996 for thigh muscle on IGT data. The UNET++ 
model, the maximum Dice score for abdominal SAT was 0.996 for SCAPIS and thigh 
muscle was 0.996 for IGT test data. Similarly, the Ghost-UNET model, the maximum 
Dice score for thigh muscle was 0.993 for both SCAPIS and IGT test data. The proposed 
Ghost-UNET++ achieved a maximum Dice score of 0.996 for SCAPIS thigh muscle on 
test data and 0.995 for IGT abdominal SAT and thigh muscle on the cross validation. 
However, for the thigh IMAT including both cross validation and test data, the networks 
performance was found to be comparatively lower, ranging between 0.895 and 0.931.

Based on our findings, the experimental outcomes indicate that UNET++ and Ghost-
UNET++ outperformed ResUNET and Ghost-UNET in terms of the average Dice 
score. UNET++ demonstrated slightly better performance for all segmentation tasks, 

(6)DiceLoss(A,B) = 1−
2X |A ∩ B| + smooth

|A| + |B| + smooth
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however the proposed Ghost-UNET++ model exhibited competitive performance with 
fewer trainable parameters. Table 3 presents a comparison of ResUNET, UNET++, and 
Ghost-UNET++ in terms of the trainable parameters and memory required by each 
network. The results of the comparison of models in terms of mean Dice score and aver-
age Dice score are shown in Fig. 6 for both the SCAPIS and IGT cohorts.

The predicted outcomes of the UNET++ network is illustrated in (Fig.  7a, b). The 
results from the ResUNET, Ghost-UNET, and Ghost-UNET++ networks are in addi-
tion illustrated in Additional file 1 (Fig. S2(a), S2(b)), (Fig. S3(a), S3(b)), and (Fig. S4(a), 
S4(b)). The figures demonstrate that the network’s predictions are well generalized and 

Fig. 6 Illustration of Dice scores and average Dice scores for SCAPIS (A, C, E, G) and IGT (B, D, F, H). A, B, C, D 
plots represent the cross validation results and E, F, G, H plots represents the test set results
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Table 3 Parameters and model size comparison of models

Network Trainable parameters (M) Model 
size 
(MB)

ResUNET 0.81 3.3

UNET++ 2.29 9.3

Ghost-UNET++ 0.35 1.7

Fig. 7 a Illustration of UNET++ model predictions and comparison to reference segmentations for 
randomly selected CT image examples, from top to bottom (Spleen to SAT) images: from left to right, CT 
image, ground truth, models predicted output, mask difference between ground truth and prediction, 
predicted mask overlayed on the original CT image, highlighted segmented region (contour) with mark 
boundaries. b Illustration of UNET++ model predictions and comparison to reference segmentations for 
randomly selected CT image examples, from top to bottom (DSAT to Thigh SAT) images: from left to right, 
CT image, ground truth, models output prediction, mask difference between ground truth and prediction, 
predicted mask overlayed on the original CT image, highlighted segmented region (contour) with mark 
boundaries
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can accurately predict the organs and fat regions for each segmentation task. The results 
further indicate that the models have learned important anatomical features to enable 
accurate predictions for highly ambiguous regions. In summary, the network’s predic-
tions are highly accurate and demonstrate a robust ability to generalize the results to a 
range of anatomical features.

During the visual assessment of the cortical bone and bone marrow segmentations 
obtained from the SCAPIS and IGT studies, only one participant from each study was 
identified to have quality issues. The cause of these issues was attributed to anatomical 
anomalies in the images, specifically, the absence of cortical bone structure in one image, 
and the presence of a probable metal implant in the other. Additional file 1, specifically 
(Fig. S1), depict the anomalous images.

Discussion
Deep learning techniques for segmentation of numerous tissues and organs have been 
developed and evaluated, allowing for detailed analysis of body composition from 
a 3-slice CT imaging protocol. These techniques can reduce analysis time and give 

Fig. 7 continued
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objective results, with significant benefits, especially in large-scale studies. CT-slice 
images from more than 4000 subjects at the level of the liver, abdomen, and thigh 
were from the SCAPIS and IGT cohort studies were utilized. The study comprised 
four fully convolutional architectures; ResUNET, UNET++, Ghost-UNET, and the 
proposed Ghost-UNET++, which were trained, validated, and compared using simi-
lar configurations.

Based on our experiments, we found that all four fully convolutional architectures—
ResUNET, UNET++, Ghost-UNET, and Ghost-UNET++—had good overall perfor-
mance for segmentation of multiple tissues and organs. The Dice scores achieved by 
the networks ranged from 0.895 to 0.996, with the thigh muscle segmentation obtaining 
the highest score and the IMAT segmentation obtaining the lowest score. This is likely 
because IMAT has a relatively small target area and high inter-subject variability.

UNET++ architecture outperformed ResUNET, Ghost-UNET, and Ghost-
UNET++ in terms of overall segmentation performance. Specifically, it achieved the 
highest mean Dice scores in 26 out of 28 comparisons in the SCAPIS cohort and in 10 
out of 12 comparisons in the IGT cohort. ResUNET had a comparatively lower seg-
mentation Dice score for crude liver segmentation in the SCAPIS cohort, which may 
be because the model was unable to generalize the complex nature of the data.

The experimental results showed that all four fully convolutional architectures had 
remarkable performance for segmentation without requiring any further correction. 
However, the UNET++ model had slightly better overall performance compared to 
the other three models, as demonstrated in (Fig. 7a, b).

Although the proposed Ghost-UNET++ architecture had good performance with 
a small number of trainable network parameters and was capable of generating more 
feature maps with cheaper operations, that conclude the network was computation-
ally inexpensive [24]. Specifically, it achieved high segmentation accuracy with a 
lower computational cost compared to the other models. These results suggest that 
the Ghost-UNET++ architecture may be a useful option for scenarios where com-
putational resources are limited. Notably, the performance difference between the 
Ghost-UNET++ and UNET++ models was very small. In cross validation, the 
Ghost-UNET++ model achieved on average only 0.013 and 0.003 lower Dice scores 
for SCAPIS and IGT, respectively, which in some settings might be acceptable. We 
also compared the segmentation performance of Ghost-UNET++ with Ghost-UNET, 
on both SCAPIS and IGT data. Ghost-UNET++ showed higher mean Dice scores for 
all targets on both cross validation and test set.

The experiments for each network were conducted on the same configuration set-
tings, where the number of kernels was set to [16,32,64,128,256] from top to bottom 
layers. The trainable parameters and memory utilization of each network under these 
settings were significantly different, as shown in Table  3. Our experiments revealed 
that the Ghost-UNET++ achieved a relatively high Dice score despite having fewer 
trainable parameters, indicating that it is computationally cost-effective and memory-
efficient. In spite of network comparison, these four architectures also allowed the 
separation of VAT into IPAT and RPAT, as well as SAT into DSAT and SSAT, respec-
tively. These four fat depots are relevant to quantifying as they manifest distinct bio-
logical and morphological characteristics, respectively [3, 14].



Page 17 of 21Ahmad et al. BMC Bioinformatics          (2023) 24:346  

This study’s findings indicate that development and evaluation of fully automated 
segmentation techniques applicable to a 3-slice CT imaging protocol demonstrates 
the potential clinical effectiveness of reducing analysis time and providing objective 
results in large-scale studies of body composition, potentially contributing to a better 
understanding of the relationship between body composition and disease risk.

We conducted a comparison of our findings with prior literature by identifying 
17 studies with comparable imaging protocols and segmentation targets (listed in 
Table 4). These studies encompassed liver, abdomen, and thigh CT and MR imaging 
data, as well as investigations that assessed different segmentation targets, typically 
with fewer measurements than our study.

In our analysis, we found that the Dice scores for liver (mean Dice score 0.963/max 
0.965, from n = 2 papers), spleen (Dice score 0.95, from n = 1 paper), VAT(mean Dice 
score 0.963/max 0.997, from n = 13 papers), SAT(mean Dice score 0.972/max 0.998, 
from n = 12 papers), DSAT (mean Dice score 0.869/max 0.909, from n = 3 papers), 
SSAT(mean Dice score 0.920/max 0.960, from n = 3 papers), spine bone marrow(Dice 
score 0.920, from n = 1 papers), skeleton muscle(mean Dice score 0.957/max 0.970, from 
n = 3 papers), and thigh IMAT (mean Dice score 0.870/max 0.910, from n = 2 papers), 
respectively. This comparison shows that we present the top scoring performance in 
mean Dice scores for all targets but two (VAT and SAT) of the target measures. These 
targets also have the most previous studies found. The scores presented in this work are 
however above the means of the reported scores for both these targets.

Table 4 Literature review references for included segmentation targets

In certain articles, multiple scores were obtained for each segmentation target. However, only the highest score value for 
each target reported. The performance is given in terms of Dice/Jaccard score. The Dice score from the best performing 
model from this work is also included for simplified comparison

*Represents the cross validation performance on SCAPIS achieved in the present study

Target Architecture (performance)

Liver 2D EfficientNet based UNET [27] (0.960); PADLL [28] (0.965); *UNET++ (0.994)

Spleen 2D EfficientNet based UNET [27] (0.950); *UNET++ (0.993)

VAT UNET [11] (0.940); FCN-based Segmentation [12] (0.970); UNET (pretrain VGG-16 encoder) 
[14] (0.960); 3D(RGA-UNET) and Standard 3D UNET [29] (0.90)
Automatic segmentation method [30] (0.955); CNN (encoder and decoder) [31] (0.970); 
FatSegNet [32] (0.990); UNET [33] (0.968); Fast graph-based algorithm [34] (0.996); UNET [35] 
(0.997); UNET [36] (0.9746); Fully automatic segmentation algorithm [37] (0.920); UNET [38] 
(0.970); *UNET++ (0.973)

SAT UNET [11] (0.940); FCN-based Segmentation [12] (0.970); Automatic segmentation method 
[30] (0.972); CNN (encoder and decoder) [31] (0.980); FatSegNet [32] (0.990); UNET [33] 
(0.968); Fast graph-based algorithm [34] (0.996); UNET [35] (0.998); UNET [36] (0.943); UNET 
[38] (0.960); UNET [39] (0.970); UNET [40] (0.976); *Ghost-UNET++ (0.994)

DSAT/SSAT UNET (pretrain VGG-16 encoder) [14] (0.909/0.960); 3D(RGA-UNET) and Standard 3D UNET 
[29] (0.880/0.920); Fully automatic segmentation algorithm [37] (0.820/0.880); *UNET++ 
(0.972/0.968)

Spine bone marrow UNET [39] (0.920); *UNET++ (0.993)

Skeleton muscle FCN-based segmentation [12] (0.970); automatic segmentation method [30] (0.952); UNET 
[39] (0.950); *UNET++ (0.988)

IMAT CNN (encoder and decoder) [31] (0.830); UNET [39] (0.910); *UNET++ (0.927)
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Prior to the application of deep learning algorithms in our study, we conducted pre-
liminary experiments to evaluate the effectiveness of various pre-processing techniques. 
These techniques included Gaussian filters, median filters, and data augmentation meth-
ods such as rotation, scaling, translation, flip, and volumetric deformations. However, 
we found that none of these methods resulted in improved outcomes compared to the 
pre-processing method we ultimately adopted, which involved the use of an adaptive 
median filter and intensity scaling.

Cortical bone and bone marrow segmentation in thigh could be achieved with simple 
hand-crafted methods including  intensity thresholding and morphological operations. 
These methods were able to accurately segment the region, except for a few samples that 
required manual correction. This finding suggests that simple methods can be effective 
in cases where deep learning algorithms may not be necessary or practical. These results 
may have implications for the development of simpler and more efficient segmentation 
techniques that are accessible and widely applicable.

Limitations

In spite of the aforementioned, there are a set of limitations to our study. Firstly, the 
3-slice CT images used in our study was collected in Gothenburg, whereas the full 
SCAPIS cohort dataset was collected in six university hospitals throughout Sweden. 
Although the imaging was performed using standardized equipment and protocols. We 
therefore expect similar performance in SCAPIS, CT images from other centres.

Secondly, in our imaging protocol, the fascia of Scarpa, which separates DSAT and 
SSAT depots, is not visible in all abdomen CT scans. Consequently, reference seg-
mentations were performed only in scans where the entire fascia was identifiable and 
delineated, which amounted to 61.29% of the total subjects. The performance of the seg-
mentation algorithm in scans where the fascia is not visible is therefore not known and 
cannot be evaluated using the image data collected. Future applications will require an 
initial classification step where CT images with visible fascia are first identified before 
applying the segmentation tasks.

Thirdly, for the segmentations of IPAT, RPAT, SSAT and DSAT, Ghost-UNET++ was 
used for creation of the VAT and SAT masks needed for the creation of the reference 
masks. This has likely benefitted the evaluations of Ghost-UNET++ over other net-
works for these four target measurements.

Lastly, for segmenting spleen and liver accurate, there were a limited number of sub-
jects along with ground truth were available. Therefore, we decided to use all the data to 
train the model for cross validation and did not use a separate 10% for the test set.

Conclusion
In conclusion, the study has demonstrated the successful development and evalua-
tion of deep learning techniques for 3-slice CT image segmentation, enabling detailed 
analysis of numerous tissues and organs related to body composition. The four models 
evaluated showed relatively good results during cross validation and testing, which can 
reduce analysis time and provide objective results. These findings highlight the potential 
for automated segmentation results to be used in detailed studies on the relationship 
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between body composition and present and future health data collected in studies using 
the described 3-slice CT protocol. The results of this study have significant implica-
tions for the field of body composition analysis, paving the way for further research and 
advancements in this area.
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