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Abstract: Rainfall–runoff modeling has been the core of hydrological research studies for decades. To
comprehend this phenomenon, many machine learning algorithms have been widely used. Never-
theless, a thorough comparison of machine learning algorithms and the effect of pre-processing on
their performance is still lacking in the literature. Therefore, the major objective of this research is to
simulate rainfall runoff using nine standalone and hybrid machine learning models. The conventional
models include artificial neural networks, least squares support vector machines (LSSVMs), K-nearest
neighbor (KNN), M5 model trees, random forests, multiple adaptive regression splines, and multi-
variate nonlinear regression. In contrast, the hybrid models comprise LSSVM and KNN coupled with
a gorilla troop optimizer (GTO). Moreover, the present study introduces a new combination of the
feature selection method, principal component analysis (PCA), and empirical mode decomposition
(EMD). Mean absolute error (MAE), root mean squared error (RMSE), relative RMSE (RRMSE), person
correlation coefficient (R), Nash–Sutcliffe efficiency (NSE), and Kling Gupta efficiency (KGE) metrics
are used for assessing the performance of the developed models. The proposed models are applied
to rainfall and runoff data collected in the Wadi Ouahrane basin, Algeria. According to the results,
the KNN–GTO model exhibits the best performance (MAE = 0.1640, RMSE = 0.4741, RRMSE = 0.2979,
R = 0.9607, NSE = 0.9088, and KGE = 0.7141). These statistical criteria outperform other developed
models by 80%, 70%, 72%, 77%, 112%, and 136%, respectively. The LSSVM model provides the worst
results without pre-processing the data. Moreover, the findings indicate that using feature selection,
PCA, and EMD significantly improves the accuracy of rainfall–runoff modeling.

Keywords: water resources engineering; rainfall–runoff modeling; machine learning techniques;
hybrid models

1. Introduction

Accurate rainfall–runoff modeling has been one of the most popular subjects for
hydrology researchers because of its importance for water resources planning and manage-
ment, including dam design, reservoir operation planning, and flood mitigation manage-
ment [1,2]. In addition, the development of these models enhances comprehension of the
ongoing hydrological processes in the watersheds [3]. This topic has gained paramount
attention in recent years because of the world’s declining water supply, which necessi-
tates the development of accurate modeling techniques [4]. The intricate link between
rainfall and runoff makes it difficult to estimate runoff accurately [5]. This can be attributed
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to the heterogeneous distribution and the spatial-temporal fluctuations of hydrological
components [6]. In addition to rainfall, wind speed, temperature, solar radiation, evapo-
transpiration, and other meteorological factors, catchment-specific characteristics (e.g., land
cover, topography, soil type, and slope) affect river runoff changes. As a result, developing
accurate models to capture this dynamic and nonlinear natural phenomenon is challenging
because these interrelated factors take place at many temporal and geographical scales [7].
Additionally, it is challenging to gather predictor variables from a catchment system using
large samples. The difficulties of accurate and quantitative representation of the available
data provide the key problems in the modeling process.

In general, there are two categories of hydrological models: (a) conceptual and physical-
based models and (b) empirical or data-driven models. The former models need a lot of
input parameters and a lot of hydro-meteorological information. The applicability of these
models to represent hydrological processes is frequently limited by these constraints [8].
Also, in the absence of accurate data on meteorological and site-specific parameters, the
data-driven models are suitable for modeling the rainfall–runoff process due to their
minimal input dataset requirements [9]. Machine learning and data-driven models have
been effectively used in recent years to simulate the nonlinear and nonstationary runoff
phenomenon [10–12]. These approaches can be used to simulate hydrological processes
due to various physical phenomena, such as the periodicity, pattern, or randomness of
model input and target data [13,14].

Tikhamarine et al. [15] introduced the combination of Harris Hawks optimization
(HHO) with a multi-layer perceptron neural network and least squares support vector
machine (LSSVM) to predict the rainfall–runoff. Based on the autocorrelation function
(ACF), partial ACF (PACF), and cross-correlation function, five alternative situations were
explored. The performance of the suggested models was compared with data-driven
methodologies integrated with particle swarm optimization (PSO). The findings showed
that hybrid models trained using HHO exhibited better performance in forecasting runoff
compared with integrated models with PSO. Additionally, coupling LSSVM with HHO
resulted in a high degree of runoff prediction accuracy. Adnan et al. [16] examined the
application of four machine learning techniques to estimate rainfall–runoff at an hourly
timeframe in the Italian Samoggia River basin. The models included a multi-model simple
averaging ensemble approach, multiple adaptive regression splines (MARS), an M5 model
tree, as well as an adaptive neuro-fuzzy inference system (ANFIS) with fuzzy c-means
(FCM) and the PSO algorithm. The outcomes of the developed models were compared
with the theoretical EBA4SUB model using five statistics: mean absolute error (MAE), root
mean squared error (RMSE), Nash–Sutcliffe efficiency (NSE), modified index of agreement,
and scatter index. The MARS, ANFIS-FCM, and ANFIS-PSO offered equal accuracy, which
was better than the M5 model. The machine approaches often outperformed the EBA4SUB
when compared to the conceptual event-based method; however, in some instances, the
latter method provided higher accuracy than the M5 model and MARS.

Mohammadi [11] reviewed the application of machine learning approaches (e.g., sup-
port vector machine (SVM), artificial neural network (ANN), and ANFIS) for hydrological
subjects, including streamflow, rainfall–runoff, surface hydrology, and flood modeling. Fur-
thermore, the benefits and drawbacks of popular machine learning models were critically
examined in the field of runoff modeling. Okkan et al. [17] integrated ANN and support vec-
tor regression (SVR) into a conceptual rainfall–runoff model for monthly runoff simulation
in the Gediz River Basin, Turkey. The nested hybrid models’ parameters were all calibrated
at once. The nested hybrid models outperformed the standalone models and linked model
versions in terms of mean and high flows, according to the performance metrics. Thus, the
research affirmed the credibility of a modeling approach that combined a conceptual model
and several machine learning approaches. Roy et al. [18] applied a deep neural network
(DNN) and EO-ELM model that integrated an equilibrium optimizer (EO) and an extreme
learning machine (ELM) for rainfall–runoff modeling in the UK’s River Fal at Tregony
and the Teifi in Glanteifi. In order to deploy the suggested models, an ideal amount of
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lag inputs was determined using PACF. The proposed models were validated in terms of
prediction accuracy using ELM, kernel ELM, PSO-based ELM, SVR, ANN, and gradient
boosting machines. Additionally, the research applied a discrete wavelet-based dataset pre-
processing approach to improve the performance of the suggested models. This research
demonstrated how well EO-ELM and DNN may be used for rainfall–runoff modeling.

Waqas et al. [19] developed radial basis function (RBF)-SVM and M5 models to model
the rainfall–runoff process in the Jhelum River Basin, Pakistan. The models were trained
and tested using various combinations of datasets. Modeled and observed data were
assessed using the coefficient of determination (R2), normalized RMSE, MSE, and coef-
ficient of efficiency for the training and testing phases. According to the findings, gene
expression programming was found to be the most precise and highly effective technique.
Xiao et al. [20] developed a backpropagation neural network, a generalized regression neu-
ral network (GRNN), an ELM, and a wavelet neural network (WNN) for runoff forecasting
in the Xijiang River. The GRNN model performed better in runoff forecasting by consider-
ing flood propagation time. The WNN model exhibited the highest accuracy in the 7-day
lead time for water level. This study suggested a machine learning-based runoff forecasting
model would enhance flood and drought early warning systems. Singh et al. [21] used
MARS, SVM, multiple linear regression (MLR), and random forest (RF) for rainfall–runoff
prediction in the Gola watershed, Uttarakhand. The performance of models was assessed
using numerical indices (i.e., R2, RMSE, NSE, and percent bias) along with graphical
charting (i.e., scatter plots, relative error plots, violin plots, line diagrams, and Taylor
diagrams). In all case studies, the RF outperformed the other models in terms of daily
runoff forecasting in both the training and testing phases.

After reviewing the literature, it is observed that many machine learning algorithms
have been employed to mimic rainfall–runoff simulation. However, there is a lack of
a comprehensive comparison of machine learning algorithms. In this regard, the main
goal of this research is to simulate the rainfall–runoff phenomenon using standalone and
hybrid machine learning models. ANN, LSSVM, K-nearest neighbor (KNN), M5 model,
RF, MARS, and multivariate nonlinear regression (MNLR) are examples of conventional
models. Meanwhile, hybrid models refer to LSSVM and KNN coupled with gorilla troop
optimizer (GTO). Additionally, this study introduces a new combination of the feature
selection method, principal component analysis (PCA), and empirical mode decomposition
(EMD). The developed models are evaluated using MAE, RMSE, relative RMSE (RRMSE),
person correlation coefficient (R), NSE, and Kling Gupta efficiency (KGE). The proposed
models are applied to rainfall and runoff dataset records in Wadi Ouahrane, Algeria,
because of the complex and nonlinear nature of runoff precipitation in this basin.

2. Materials and Methods
2.1. Multivariate Empirical Mode Decomposition (EMD)

EMD was introduced to decompose a signal of original data into finite and small
oscillating modes. The oscillating methods are known as intrinsic mode functions (IMFs)
and should meet the following criteria [22]:

1. Over the entire signal length, the number of zero-crossings and the number of local
maxima and minima are either equal to or at least differ by one.

2. The average upper and lower envelopes calculated by local maxima and minima
should be equal to zero.

EMD does not need to select the base function, and it is an alternative to signal
decomposition methods such as the Fourier transform and the wavelet transform. In this
process, the IMFs are obtained from the signal until they satisfy the above-mentioned
criteria. The sifting method for extracting IMFs includes the following steps:

Step 1: Determine all the extreme points of the given signal.
Step 2: Use a cubic spline to fit the upper and lower envelopes of the signal.
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Step 3: Calculate the average upper and lower envelopes using Equation (1) [23].

M(t) =
eupper(t)− elower(t)

2
(1)

Step 4: Subtract the average from the data to create the IMF candidate using Equation (2).

h(t) = y(t)−M(t) (2)

Step 5: If h(t) satisfies the two criteria for IMFs, it is considered the first IMF; otherwise,
y(t) is replaced with h(t), and we go to step 1.

Step 6: The residual is regarded as new data, and steps 1–5 are applied. This process
continues until the number of residues is constant or their trend is obtained. EMD is a simple
and efficient method for the decomposition of signals. It is appropriate for identifying
immediate frequency changes, especially for nonstationary signals.

2.2. Principle Component Analysis (PCA)

PCA is used for data pre-processing to identify the correlation among candidate
factors. It converts the input variables into uncorrelated derived variables called principal
components (PCs). Sums of PC variances are equal for the original and uncorrelated
derived variables. PCs can be obtained using a linear function in Equation (3):

PCi =
N

∑
j=1

ai,jXj (3)

where Xj is the original variable, j is the index of the input variable, and i is the index of
PC; ai,j and PCi are the eigenvalues and eigenvectors of the covariance matrix, respectively.
The present study employs PCA because of the large size of the input dataset.

2.3. Multivariate Nonlinear Regression (MNLR)

MNLR is a nonlinear regression that estimates the nonlinear relationship between
multiple inputs and output data. Equation (4) can be used for estimating the target variable.

ROutput =
N

∑
i=1

WiX2
i +

N

∑
i=1

WiXi + b (4)

where W and b are the weight and bias parameters, respectively.

2.4. Artificial Neural Networks (ANNs)

ANN is a machine learning algorithm that solves linear or nonlinear regression and
classification problems. It processes input and output data in a multi-layer network to
find the relationship between variables. It consists of one input layer, one or multiple
hidden layers, and one output layer, in which each layer comprises one or several neurons.
Neurons are simple mathematical models of biological neurons. In the hidden layer, the
weighted summation of back layer neurons is imposed on one stimulation function, and
the stimulation function generates one output signal, which is the input of the subsequent
layer neurons.

2.5. K-Nearest Neighbor (KNN)

KNN is a nonparametric machine learning algorithm that solves regression and classifi-
cation problems without presuppositions about training data distribution. In this algorithm,
training data are considered neighbor points. The inverse Euclidean distance between the
testing data and neighbor points is regarded as the weight of these points. The shorter the
Euclidean distance, the greater the weight. The neighbor points are sorted based on their
weights, and the K neighbor points with the highest weights are selected. Then, the KNN
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computes the output of each input dataset using the weighted average of the K neighbor
(Equation (5)) [24]:

ROutput,i =

K
∑

j=1
WjRj

N
∑

j=1
Wj

(5)

where Rj is the jth observed runoff in the training period, Routput,i is the ith estimated
runoff, and Wj is the jth weight of the neighbor that can be calculated in Equation (6):

Wj =
1∥∥X− Xj

∥∥ (6)

where X and Xj are the testing and training input data, respectively. Figure 1 shows the
KNN scheme for modeling runoff.
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2.6. Multivariate Adaptive Regression Spline (MARS)

MARS is a nonparametric and nonlinear machine learning algorithm for solving
various regression and classification problems. MARS divides the original dataset into
multiple sub-datasets. Then, for each sub-dataset, the target variable is fit using a spline
regression. The formulation for this process is given by:

ROutput,i = b +
N

∑
j=1

β jhj(Xi) (7)

where b is the bias parameter, β is a constant coefficient, h is the basis function, and N is
the number of basis functions [25].

2.7. M5 Model Tree (M5)

M5 is one of the tree-based machine learning algorithms used for modeling continuous
variables. Its structure resembles a tree that consists of nodes, branches, and leaves. It splits
the feature space into subsets, and a linear regression is fitted to the target variables of
each subset. This process includes two steps: (1) growing the tree using input data and
establishing linear regression at the end of each leaf, and (2) pruning extra branches to
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avoid overfitting. The splitting criterion is the maximum reduction in standard deviation,
and it is calculated as follows [26]:

SDR = sd(S) +
N

∑
i=1

Si
S

sd(Si) (8)

where S is a subset in the parent node, Si is a subset in the child node, and sd is the standard
deviation for the input data.

2.8. Least Square Support Vector Machine (LSSVM)

The LSSVM is a modified version of the standard SVM. Unlike SVM, LSSVM employs
linear equations instead of quadric programming and modifies SVM’s computation time
efficiency and accuracy. LSSVM uses the following equation to estimate the output:

ROutput,i =
N

∑
i=1

H(Xi, X)αi + b (9)

where α and b are lagrangian coefficients and bias, respectively. H is a kernel function
that maps the nonlinear relation between input and output variables in low and high-
dimensional feature space. This helps LSSVM solve the nonlinear problems in linear form.
The linear, polynomial, sigmoid, and RBF are different types of kernel functions. However,
the RBF is the most accurate kernel function that has been used in many studies. The RBF
kernel functions are estimated as follows [27]:

H(X, Xi) = exp

(
−‖X− Xi‖2

2σ2

)
(10)

where σ represents the width of the kernel function. The main parameters of LSSVM are
the penalty coefficient (gamma) and σ, in which gamma is used for computing α and b.
The LSSVM scheme, including one input, hidden input, and final output, is demonstrated
in Figure 2.
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2.9. Random Forest Regression (RF)

RF is one of the ensemble machine learning algorithms that solves decision trees’
overfitting and instability problems. First, n random subsample from the original data is
created. Then, for each subsample, one tree model is fitted, and RF integrates the generated
results of all n trees into the outcome. In the present study, the M5 is considered an RF tree.
For more information about RF, please see [28].
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2.10. Gorilla Troop Optimizer (GTO)

GTO is based on the collaborative behavior of gorillas. This algorithm mimics five
strategies of gorillas, including migration to unknown regions, migration to other gorillas,
migration to other known locations, following the silverback, and competition for adult
females [29]. The first three strategies are for exploration, and the remaining ones are for
exploitation. Each artificial gorilla is considered one optimization problem solution, and the
best gorilla in each iteration is regarded as a silverback. When rand < p, the first strategy
of moving to an unknown region is selected. However, rand < 0.5 implies that the gorilla
moves toward other gorillas, and if rand > 0.5, the gorilla shall migrate to known locations.
The three exploration strategies are given by [30]:

GXiter+1
i =


lb + rand1 × (ub− lb), rand < p

(rand2 − C)× Xr + L× H rand ≥ 0.5
Xiter

i − L×
(

L×
(
Xiter

i − GXiter−1
r

)
+ rand3 ×

(
Xt − GXiter−1

r
))

, rand < 0.5
(11)

In this context, GXiter+1
i is a new candidate position vector of gorilla, Xiter

i is the current
position of gorilla, rand1, rand2, and rand3 are random numbers in the range between 0 and
1. The p variable represents the probability of migration to unknown regions. Xr and GTr
are members of artificial gorillas that are randomly selected from the whole population. ub
and lb are the upper and lower bounds of decision variables. C, L, and H can be calculated
in Equations (12) and (13):

C = F×
(

1− iter
Max_Iter

)
(12)

F = cos(2× rand4) + 1 (13)

L = C× l (14)

H = Z× Xiter (15)

Z = [−C, C] (16)

where iter refers to the current iteration, Max_Iter is the maximum number of iterations, F
is computed using Equation (8), cos is a cosine function, and rand4 is a random number in
the range of [0, 1]. L is calculated using Equation (9), l is a random number ranging from 0
to 1, H is computed using Equation (11), and Z is a random value in the range between –C
and C. The fitness function of all GX is evaluated at the end of an exploration phase, and if
the fitness function of GXiter is less than Xiter, the GXiter is used as Xiter. The best solution
at this stage is the silverback gorilla.

GTO uses the silverback and competition for adult female strategies in the exploitation
phase. Silverback is the head of the group that makes decisions and guides other gorillas to
food sources. The young gorillas become mature and compete with other gorillas to select
adult female gorillas. As per the below equation, these two strategies are mathematically
modeled. If C ≥W, the first strategy is followed; otherwise, the second strategy is selected.
W can be set before running GTO in Equation (17).

GXiter+1
i =

{
L×M×

(
Xt

i − Xsilverback
)
, C ≥W

Xsilverback −
(
Xsilverback ×Q− Xt

i ×Q
)
× A C < W

(17)

where Xsilverback is the position vector of the silverback, Q is the impact force, and A is the
degree of violence in case of conflicts. Meanwhile, M, Q, and A are computed using the
following Equations:

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXt
i

∣∣∣∣∣
g) 1

g

(18)
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Q = 2rand5 − 1 (19)

A = β× E (20)

where GXiter
i is the current position of the candidate gorilla’s vector, N is the number of

gorillas, rand5 represents a random number between 0 and 1, and E simulates the violence
effect on the solution’s dimensions. The values of g and E are calculated as follows:

g = 2L (21)

E =

{
N1, rand ≥ 0.5
N2 rand < 0.5

(22)

where N1 is a normal value with a normal distribution in the problem’s dimensions and N2
is a random number with a normal distribution.

2.11. Hybrid of LSSVM and KNN with Gorilla Troop Optimizer

Both LSSVM and KNN have essential parameters that should be selected before
maneuvering them. However, choosing these parameters is still challenging for scientific
societies. Using nature-based optimization algorithms can be an excellent solution to this
challenge. Hence, in the present study, the GTO algorithm, as an efficient optimization
algorithm, is used to determine the optimal LSSVM and GTO values. In this regard, the
two-hybrid algorithms called KNN–GTO and LSSVM–GTO are defined. In KNN–GTO, the
numbers of neighbors and input weight vectors are considered decision variables, whereas
in LSSVM–GTO, penalty coefficients (gamma) and σ are decision variables. For finding
the optimal parameters of KNN and LSSVM, GTO solves the following fitness function
(Equation (23)) in a pre-defined maximum number of iterations:

f itness f unction =

N
∑

i=1

(
Routput,i − Robserved,i

)2

N
(23)

where Robserved, i is the observed runoff. The pseudocodes of KNN–GTO and LSSVM–GTO
are presented in Algorithm 1.

Algorithm 1. KNN–GTO and LSSVM–GTO

1: Initialize parameters of GTO
2: Load inputs and target variables dataset
3: Generate the initial population of GTO
4: Train and test KNN and LSSVM for each artificial gorilla
5: Calculate the fitness function (MSE) for each artificial gorilla
6: iter: =1
7: while iter < Max_Iter do
8: Update the position of an artificial gorilla using Equations (10)–(19)
9: iter: = iter + 1
10: end while
11: Return the best solution (optimal W and K for KNN, and gamma and σ for LSSVM)

2.12. Assessment Criteria

In this study, MAE, RMSE, RRMSE, R, NSE, and KGE metrics are used for assessing
the performance of rainfall–runoff models using the following Equations [31,32]:

MAE =

N
∑

i=1

∣∣Routput,i − Robserved,i
∣∣

N
(24)
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RMSE =

√√√√√ N
∑

i=1

(
Routput,i − Robserved,i

)2

N
(25)

RRMSE =

√√√√√√
N
∑

i=1

(
Routput,i − Robserved,i

)2

N ∗ std(Robserved)
2 (26)

R =

N
∑

i=1

(
Routput,i − Routput,i

)(
Robserve,i − Robserve,i

)
N
∑

i=1

(
Routput,i − Routput,i

)2 N
∑

i=1

(
Robserve,i − Robserve,i

)2
(27)

NSE = 1−

N
∑

i=1

(
Robserve,i − Routput,i

)2

N
∑

i=1

(
Robserve,i − Robserve,i

)2 (28)

KGE = 1−

√√√√(R− 1)2 +

(
Robserve

Routput
− 1

)2

+

(
std(Robserve)

std
(

Routput
) − 1

)2

(29)

where Routput,i, Robserve,i, Routput, Robserve, std
(

Routput
)
, std(Robserve), and N are the output

runoff, observed runoff, average output runoff, average observed runoff, standard deviation
of output runoff, standard deviation of observed runoff, and number of data, respectively.
The desired values of MAE and RMSE are zeros, and their undesired values are +∞. The
desired values of RRMSE are in the range of [0, 0.5]. The R-value lies between −1 and 1,
and R values close to 1 indicate good model performance. NSE = 1 denotes a perfect fit
between the model and the data. KGE values range between −∞ and 1, and values close to
one indicate better model performance.

3. Case Study and Data Description

The study area is the Wadi Ouahrane basin in northern Algeria, which is located
between 36◦00′ N–36◦24′ N and 01◦00′ E–01◦3′ E. This 270 km2 region is a section of the
Wadi Cheliff basin (Figure 3). The research area was mapped using a digital elevation
model (12.5 m horizontal resolution), which displays a maximum altitude of 991 m and
a minimum altitude of 165 m. A little, few kilometers long tributary of Wadi Cheliff is
called Wadi Ouahrane. The flow of water in this basin is controlled by six pluviometric
stations. The Wadi Ouahrane basin is constrained by the Wadi Allala basin to the north,
the Wadi Sly basin to the south, the Wadi Fodda basin to the east, and the Wadi Ras
basin to the west. With an average interannual rainfall of 333 mm from 1972 to 2018,
evapotranspiration (ET) is 1050 mm, and the mean annual flow is equal to 0.472 m3/s;
this basin has a Mediterranean climate. The yearly average temperature is 18 Celsius. The
monthly rainfall datasets were obtained at six stations between 1972 and 2018, and these
dataset records are used in this study. The meteorological information was given by the
National Meteorological Organization and the National Water Resources Agency of Algeria.

The correlation plot for the input and target variables is shown in Figure 4. In this
figure, positive correlation shows a direct relationship between inputs and targets, negative
correlation shows the inverse relationship, and close to zero correlation indicates no relation
between inputs and targets. The maximum and minimum correlation between input and
target variables in Figure 4 are related to R_S1 and Tmean, respectively. However, the
correlation between inputs and targets is not close to 1 or −1. Also, the statistical criteria
for input and target variables are presented in Table 1. According to this table, although
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the coefficient of variation in runoff data is lower than the inputs, its skewness coefficient
is significantly higher than the inputs. Therefore, the runoff data studied do not follow
the normal distribution and have high dispersion. These observations prove the nonlinear
runoff production in this basin. Consequently, powerful nonlinear methods are expected to
be needed for rainfall–runoff modeling in this basin.

Table 1. Statistical criteria for runoff modeling.

Statistics
Q

(m3/s)

S1 S2 S3 S4 S5 S6 Tmin
(◦C)

Tmean
(◦C)

Tmax
(◦C)

RHmean
(%)

WS
(m/s)Rainfall (mm/Month)

Mean 0.47 30.29 40.57 27.81 32.48 35.44 33.96 12.34 25.8 28.01 50.38 2.58

Standard
deviation 1.54 32.15 48.01 30.3 34.2 38.44 34.63 6.09 7.07 9.2 26.63 0.71

Minimum 0 0 0 0 0 0 0 −1.5 0 0 0 0.6

Maximum 18.1 167.6 336.4 156.3 175.05 265.2 172.3 24.7 51.83 96.27 82.5 4.9

Coefficient
of variation 0.31 0.94 0.85 0.92 0.95 0.92 0.98 2.03 2.69 2.8 1.89 3.63

Skewness
coefficient 6.82 1.28 1.81 1.42 1.29 1.72 1.23 0.17 0.36 0.92 −1.09 −0.12

Figure 3. Map of the study area.
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4. Presented Framework for Modeling Rainfall–Runoff

The present study introduces a framework based on a combination of the feature
selection method, PCA, EMD, and hybrids of KNN and LSSVM with GTO. In this frame-
work, the most important inputs are selected using feature selection, and then the dataset is
randomly divided into training and testing periods. The pseudocode of the applied feature
selection method is illustrated in Algorithm 2. This feature selection method selects lagged
inputs with a higher correlation with the target data.

Algorithm 2 feature selection

1: Load input data and target data
2: Apply lag times to input data
3: while i < number of input features do
4: Calculate the Pearson correlation coefficient (R) between the feature and target data.
5: If R < threshold of R
6: Remove feature from the input data
7: end if
8: i: = i + 1
9: end while
10: Apply PCA to the remaining input data
11: Return the final inputs list

After feature selection, the size of the selected feature can be considerable; therefore,
the PCA is used for dimension reduction. Then, the prepared dataset is used to apply
the KNN–GTO and LSSVM–GTO models to simulate the rainfall–runoff phenomenon.
Finally, the best of the results are selected according to different evaluation criteria. Further-
more, the results of the presented framework are compared with those of other machine
learning algorithms, including MLR, KNN, ANN, M5, MARS, LSSVM, and RF, to val-
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idate the performance of the introduced framework. Figure 5 shows the scheme of the
employed framework.
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5. Results and Discussion

This study defines five scenarios for rainfall–runoff modeling (Table 2). In the first
scenario, rainfall in six sections (Tmin, Tmean, Tmax, Rh_mean, and SW) is considered an
input. The second scenario resembles the first scenario, with the difference that a 0 to
24-month lag time is imposed on input data and the R threshold is equal to 0.05. The third
to fifth scenarios are the same as the second scenario in input data; however, the main
difference is the application of IMF and the R threshold value of 0.1. The MaxNumIMF in
the third to fifth scenarios equals 3, 4, and 5, respectively. Since the size of the input dataset
in the third to fifth scenarios is large, the PCA is employed for dimension reduction.

Table 2. Characteristics of scenarios.

Scenarios Inputs Threshold of R Pre-Processing Post-Processing

1 R_1, R_2, R_3, R_4, R_5, R_6, Tmin,
Tmean, Tmax, Rh_mean, SW - - -

2
R_1, R_2, R_3, R_4, R_5, R_6, Tmin,
Tmean, Tmax, Rh_mean, SW
Lag = 0:24 month

0.05 - -

3
R_1, R_2, R_3, R_4, R_5, R_6, Tmin,
Tmean, Tmax, Rh_mean, SW
Lag = 0:24 month

0.1 IMF (MaxNumIMF = 3) PCA

4
R_1, R_2, R_3, R_4, R_5, R_6, Tmin,
Tmean, Tmax, Rh_mean, SW
Lag = 0:24 month

0.1 IMF (MaxNumIMF = 4) PCA

5
R_1, R_2, R_3, R_4, R_5, R_6, Tmin,
Tmean, Tmax, Rh_mean, SW
Lag = 0:24 month

0.1 IMF (MaxNumIMF = 5) PCA
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The best parameters of the investigated algorithms are listed in Table 3. The grid
search method estimates the parameters of ANN, LSSVM, M5, MARS, and RF. It is worth
mentioning that MNLR does not have any parameters for implementation. The essential
parameters of ANN are the number of neurons in the first and second layers. LSSVM
and LSSVM–GTO can be implemented by defining gamma and sigma. The main essential
parameters of M5 are min leaf size (minLSize) and split threshold (sThreshold), while
MARS is developed by determining the maximum base function and model parameter (C).
RF resembles the M5 tree, but it has another parameter called the number of trees (Num
Tree). KNN and KNN–GTO are executed by selecting the K number of neighbors (K), but
KNN–GTO has another main parameter, namely the weight of inputs (W).

Table 3. Optimal parameters of the investigated algorithms.

Scenarios Algorithm N1/N2 γ/σ minLSize/sThreshold mF/C NumTree K

1

ANN 1/5 - - - - -
LSSVM - 4.90/6.00 - - - -
M5 - - 64/0.01 - - -
MARS - - - 5/4 - -
RF - - 4/0.05 - 100 -
LSSVM–GTO - 5.23/6.19 - - - -
KNN - - - - - 13
KNN–GTO - - - - - 4

2

ANN 15/4 - - - - -
LSSVM - 10/5 - - - -
M5 - - 64/0.01 - - -
MARS - - - 5/4 - -
RF - - 8/0.01 - 100 -
LSSVM–GTO - 100/8.16 - - - -
KNN - - - - - 2
KNN–GTO - - - - - 2

3

ANN 10/7 - - - - -
LSSVM - 10/5 - - - -
M5 - - 64/0.01 - - -
MARS - - - 5/4 - -
RF - - 32/0.1 - 100 -
LSSVM–GTO - 100/7.43 - - - -
KNN - - - - - 3
KNN–GTO - - - - - 1

4

ANN 12/4 - - - - -
LSSVM - 10/5 - - - -
M5 - - 64/0.1 - - -
MARS - - - 30/6 - -
RF - - 32/0.01 - 100 -
LSSVM–GTO - 1.38/2.33 - - - -
KNN - - - - - 4
KNN–GTO - - - - - 1

5

ANN 7/7 - - - - -
LSSVM - 10/5 - - - -
M5 - - 64/0.1 - - -
MARS - - - 30/4 - -
RF - - 8/0.01 - 100 -
LSSVM–GTO - 100/8.35 - - - -
KNN - - - - - 5
KNN–GTO - - - - - 4

Figure 6 shows the weight of inputs (W) obtained by KNN–GTO. As seen, the impor-
tance of inputs is between 0 and 1, according to the base assumptions of KNN. The W in
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each scenario is different from that in another scenario, owing to the various amounts of
input data in each scenario. Furthermore, the number of inputs in the first scenario is less
than that in other scenarios. Therefore, it is expected that the accuracy of modeling rainfall–
runoff will be lower in this scenario compared to other scenarios. Also, in the third, fourth,
and fifth scenarios, the values of W are higher than in other scenarios, showing a greater
correlation between these data and runoff data. The greater W value in the mentioned
scenarios can lead to the high precision of KNN and KNN–GTO.
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Figure 6. W values of input data for (a) scenario1, (b) scenario2, (c) scenario3, (d) scenario4.

Table 4 compares the accuracy of machine learning algorithms for rainfall–runoff
modeling for the training period. According to this table, all algorithms have weak per-
formance in the first scenario. This issue indicates the importance of selecting appropriate
inputs and dataset processing. However, in other scenarios, other algorithms, such as ANN,
LSSVM, KNN, LSSVM–GTO, and KNN–GTO, are trained with comparable accuracy. The
best performance is associated with ANN in the third scenario and KNN–GTO in the fourth
and fifth scenarios. For ANN, the MAE, RMSE, and RRMSE are equal to 0.000, while R,
NSE, and KGE are equal to 1.0000. In addition, the metrics for KNN–GTO are specified to
be 0.0001, 0.0016, 0.0011, 1.0000, 1.0000, and 0.9998, respectively.
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Table 4. Results of rainfall–runoff modeling using machine learning algorithms for the training period.

Scenarios Algorithm MAE RMSE RRMSE R NSE KGE

1

ANN 0.4540 1.3057 0.9052 0.4608 0.1786 −0.1042
LSSVM 0.3175 0.7779 0.7240 0.7135 0.4745 0.3187
M5 0.5356 1.4645 0.8855 0.4625 0.2139 0.0477
MARS 0.5679 1.4487 0.8759 0.4804 0.2308 0.0717
RF 0.3314 1.0234 0.6188 0.8354 0.6161 0.4567
MNLR 0.4304 0.8965 0.8343 0.5497 0.3022 0.1695
LSSVM–GTO 0.3174 0.7776 0.7237 0.7138 0.4749 0.3192
KNN 0.5667 1.6160 0.9238 0.4109 0.1444 −0.1271
KNN–GTO 0.5364 1.6365 0.9355 0.4277 0.1226 −0.1896

2

ANN 0.0209 0.0446 0.0345 0.9996 0.9988 0.9749
LSSVM 0.1582 0.4317 0.3266 0.9827 0.8931 0.7108
M5 0.4137 0.9160 0.7525 0.6574 0.4322 0.3368
MARS 0.3545 0.8260 0.6380 0.7693 0.5918 0.5312
RF 0.1968 0.7060 0.4956 0.9085 0.7537 0.6003
MNLR 0.4526 0.6950 0.5709 0.8205 0.6731 0.6271
LSSVM–GTO 0.0703 0.1859 0.1406 0.9972 0.9802 0.8773
KNN 0.2498 0.8191 0.5750 0.8207 0.6685 0.5678
KNN–GTO 0.0013 0.0127 0.0089 1.0000 0.9999 0.9969

3

ANN 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
LSSVM 0.1268 0.3296 0.2015 0.9941 0.9593 0.8232
M5 0.1856 0.7773 0.4796 0.8771 0.7694 0.7387
MARS 0.4922 1.0055 0.8394 0.5418 0.2935 0.1580
RF 0.2838 0.8688 0.5312 0.9236 0.7171 0.5305
MNLR 0.4343 0.6578 0.5491 0.8353 0.6977 0.6557
LSSVM–GTO 0.0529 0.1304 0.0797 0.9989 0.9936 0.9344
KNN 0.3353 0.9785 0.5865 0.8206 0.6551 0.5454
KNN–GTO 0.2839 0.8923 0.5348 0.8631 0.7132 0.5837

4

ANN 0.0277 0.0440 0.0300 0.9996 0.9991 0.9892
LSSVM 0.1688 0.4213 0.2811 0.9874 0.9208 0.7525
M5 0.3262 0.9896 0.6500 0.7592 0.5764 0.5127
MARS 0.4541 0.7097 0.4662 0.8844 0.7821 0.7533
RF 0.2547 0.8613 0.5068 0.9040 0.7424 0.5878
MNLR 0.5617 0.9386 0.6262 0.7790 0.6068 0.5489
LSSVM–GTO 0.0628 0.1525 0.1001 0.9981 0.9899 0.9184
KNN 0.3389 0.9946 0.6533 0.7579 0.5721 0.4838
KNN–GTO 0.0001 0.0016 0.0011 1.0000 1.0000 0.9998

5

ANN 0.0405 0.0693 0.0403 0.9994 0.9984 0.9498
LSSVM 0.1523 0.3627 0.2499 0.9908 0.9374 0.7790
M5 0.0795 0.4670 0.3217 0.9467 0.8962 0.8833
MARS 0.5338 1.1197 0.6983 0.7149 0.5111 0.4340
RF 0.2694 0.8038 0.4673 0.9604 0.7810 0.5769
MNLR 0.4770 0.7890 0.5436 0.8389 0.7037 0.6627
LSSVM–GTO 0.0588 0.1302 0.0897 0.9986 0.9919 0.9252
KNN 0.2279 0.8323 0.4819 0.8875 0.7671 0.6455
KNN–GTO 0.0001 0.0021 0.0012 1.0000 1.0000 0.9998

Table 5 compares the results of rainfall–runoff modeling by machine learning during
the testing period. As seen in the first and second scenarios, machine learning algorithms
produce low accuracy owing to poor training practices. Moreover, in the third scenario, the
testing results are not as good as the training outcomes for ANN because of the overfitting
problem of this algorithm. In contrast, KNN and KNN–GTO in the third, fourth, and fifth
scenarios perform significantly better than the other algorithms. It can be noted that the
best algorithm is KNN–GTO in the fourth scenario. The MAE, RMSE, RRMSE, R, NSE,
and KGE for KNN–GTO are equal to 0.1640, 0.4741, 0.2978, 0.9607, 0.9108, and 0.7141,
respectively. At the same time, MNLR in the first scenario is the worst algorithm, with
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MAE, RMSE, RRMSE, R, NSE, and KGE equal to 0.8219, 2.2490, 0.9840, 0.2186, 0.0257, and
−0.2600, respectively. On the contrary, KNN–GTO minimizes MAE, RMSE, and RRMSE by
80%, 79%, and 72% and maximizes R, NSE, and KGE by 77%, 112%, and 136% compared to
the other algorithms. Moreover, Friedman test results show that KNN–GTO in the fourth,
fifth, and third scenarios and KNN in the fourth and third scenarios are placed in the first
to fifth ranking. However, MNLR and LSSVM in the first scenario have the worst ranking.
Hence, in the following paragraphs, the accuracy of KNN and KNN–GTO is investigated.

Table 5. Results of rainfall–runoff modeling using machine learning algorithms for the testing period.

Scenarios Algorithm MAE RMSE RRMSE R NSE KGE Friedman Ranking

1

ANN 0.4827 1.5902 0.9017 0.4684 0.1820 −0.1069 35.3333
LSSVM 0.7111 2.1998 0.9625 0.2941 0.0679 −0.2475 45.3333
M5 0.5516 1.1938 0.9569 0.4099 0.0787 0.0760 35.6667
MARS 0.5333 1.1759 0.9426 0.4172 0.1061 0.1119 33.3333
RF 0.5239 1.2307 0.9865 0.3974 0.0208 0.1007 36.6667
MNLR 0.8219 2.2490 0.9840 0.2186 0.0257 −0.2600 48.8333
LSSVM–GTO 0.7111 2.1998 0.9625 0.2940 0.0679 −0.2474 45.3333
KNN 0.3545 0.7886 0.9072 0.4470 0.1720 0.0744 27.6667
KNN–GTO 0.3156 0.7537 0.8671 0.5006 0.2435 0.0502 24.8333

2

ANN 0.6039 1.8606 0.9227 0.4193 0.1432 0.0838 39.3333
LSSVM 0.5587 1.6312 0.8277 0.6487 0.3105 0.0923 29.6667
M5 0.4699 1.6769 0.7885 0.6787 0.3743 0.1388 23.3333
MARS 0.4682 1.5109 0.7493 0.6625 0.4350 0.3069 17.8333
RF 0.4893 1.5880 0.8834 0.4788 0.2147 −0.0066 34.0000
MNLR 0.7810 1.7083 0.8033 0.5944 0.3507 0.1959 31.0000
LSSVM–GTO 0.5491 1.5716 0.7975 0.6690 0.3599 0.1570 24.3333
KNN 0.4925 1.6548 0.9205 0.4460 0.1472 −0.2137 37.5000
KNN–GTO 0.3823 1.5340 0.8534 0.5365 0.2671 0.0273 29.6667

3

ANN 0.5885 1.1976 0.6946 0.7428 0.5144 0.5419 13.1667
LSSVM 0.4661 0.9855 0.7543 0.6998 0.4274 0.2388 14.8333
M5 0.4572 1.2876 0.9547 0.3579 0.0827 −0.1658 35.1667
MARS 0.5875 1.6682 0.7769 0.6411 0.3925 0.3570 22.6667
RF 0.5245 1.1745 0.8989 0.4489 0.1869 −0.0441 33.0000
MNLR 0.7334 1.6685 0.7771 0.6350 0.3922 0.2339 26.3333
LSSVM–GTO 0.4675 0.9404 0.7197 0.7167 0.4787 0.2911 13.0000
KNN 0.2897 0.7242 0.6031 0.8053 0.6340 0.5264 5.0000
KNN–GTO 0.2354 0.6521 0.5431 0.8746 0.7032 0.5316 3.1667

4

ANN 0.4257 1.2139 0.7069 0.7414 0.4971 0.5129 10.5000
LSSVM 0.4576 1.3281 0.8070 0.6323 0.3446 0.1247 23.0000
M5 0.5240 1.5408 0.9678 0.3241 0.0574 −0.0401 40.1667
MARS 0.5581 1.0767 0.6763 0.7356 0.5397 0.4471 12.5000
RF 0.4124 0.8672 0.7951 0.6471 0.3638 0.1145 17.8333
MNLR 0.6971 1.1739 0.7133 0.7004 0.4880 0.4188 16.0000
LSSVM–GTO 0.5097 1.2447 0.7818 0.6646 0.3849 0.0786 22.5000
KNN 0.3052 0.9475 0.5951 0.8469 0.6436 0.4863 6.1667
KNN–GTO 0.1640 0.4741 0.2978 0.9607 0.9108 0.7141 1.3333

5

ANN 0.2895 0.7241 0.7124 0.7193 0.4892 0.3207 7.8333
LSSVM 0.4999 1.4501 0.8313 0.5962 0.3046 0.0991 28.1667
M5 0.4582 1.4096 0.8080 0.5973 0.3429 0.1317 23.8333
MARS 0.7892 1.4660 1.0491 0.2993 −0.1077 0.0406 43.8333
RF 0.4198 0.8954 0.8810 0.4904 0.2190 −0.0040 27.3333
MNLR 0.7695 1.4628 0.8385 0.5659 0.2924 0.2631 30.3333
LSSVM–GTO 0.4979 1.4151 0.8112 0.6039 0.3378 0.1526 25.1667
KNN 0.3212 0.7952 0.8114 0.5972 0.3374 0.3034 18.3333
KNN–GTO 0.1728 0.4016 0.4098 0.9162 0.8310 0.7187 1.6667
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The time series of rainfall–runoff modeling by KNN and KNN–GTO in the third,
fourth, and fifth scenarios are compared in Figure 7. In the third and fifth scenarios, KNN
and KNN–GTO have weaknesses in estimating peak runoff data. However, in the fourth
scenario, KNN performs reasonably, and KNN–GTO is significantly better than the others.
Additionally, KNN–GTO has higher accuracy than KNN, proving the capability of GTO to
optimize and improve the precision of KNN.
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Figures 8 and 9 show the scatter plot representing the observed and modeled runoff
with the line of a perfect fit at 45◦ during the training and testing periods. The results closer
to the 45◦ line indicate more accurate machine learning algorithms.

KNN and KNN–GTO in the third, fourth, and fifth scenarios have closed results to
the perfect fit line. In the testing period, KNN and KNN–GTO underestimated the runoff.
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At the same time, the predicted outcomes by KNN–GTO in scenario 4 were close to the
perfect line.
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Model bias refers to the presence of systematic errors in a model that can cause it
to consistently make incorrect predictions. Therefore, in this study, a PBias criterion is
employed to analyze the bias of modeling in the best scenario, which means the fourth
scenario. The estimated values for PBias are listed in Table 6. According to the results of
this table, in the training period, M5, MARS, MNLR, and KNN_GTO had lower PBias.
KNN and ANN have underestimated results. In contrast, LSSVM and LSSVM–GTO have
overestimated results. During the testing period, the bias of all investigated algorithms
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increased. This is for using new data during the testing period. In this period, the less PBias
is related to the MARS, and the maximum value of PBias is related to the RF. Considering all
periods, MARS has fewer PBias, and LSSVM–GTO has more PBias. Moreover, KNN_GTO
has reasonable PBias compared to other investigated algorithms. According to the study
conducted by [33], the performance of the model for the PBias less than 10, between 10 and
15, and between 15 and 25 is very good, good, and fair, respectively. Hence, in terms of
bias, according to all periods, it is very good.
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Table 6. Bias analysis in rainfall–runoff modeling using machine learning algorithms over training,
testing, and all periods.

ANN LSSVM M5 MARS RF MNLR LSSVM–GTO KNN KNN–GTO

Training −0.49 2.26 0.00 0.00 0.03 0.00 1.25 −4.68 0.02
Testing 18.23 22.21 25.41 9.00 36.54 −11.28 48.66 −6.36 −23.90

All 4.97 7.20 5.94 2.10 8.12 −2.79 12.33 −5.07 −5.57

Figure 10 shows the cumulative distribution function (CDF) for observed and modeled
runoff under different scenarios. In this figure, the smaller the difference between observed
and modeled CDF, the greater the accuracy. As seen, the maximum runoff modeling
accuracy is related to the scenario3. In addition, in the mentioned scenario, the higher the
accuracy is for KNN–GTO.

The convergence of GTO in optimizing KNN in the first to fourth scenarios is illus-
trated in Figure 11. In the fourth scenario, the minimum value of MSE is less than that in
the other scenarios. The convergence speed in the fourth scenario is higher than that in the
other scenarios. Therefore, using IMF improves the accuracy of rainfall–runoff modeling,
and the optimal value of MaxNumIMF is equal to 4. The significant impact of using pre-
processing and post-processing dataset methods and the use of time-lagged data show the
effectiveness of input selection in modeling accuracy, which is accepted by the results of
the third, fourth, and fifth scenarios in Tables 4 and 5. The role of dataset pre-processing
and post-processing methods has been confirmed in other studies [34–36].
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Nevertheless, even in these scenarios, algorithms like LSSVM, M5, MARS, RF, and
MNLR do not perform well, and ANN and LSSVM–GTO algorithms have moderate
performance. The better accuracy of KNN and KNN–GTO algorithms is due to the kernel
function, considering K nearest neighbor inputs. Also, the higher accuracy of KNN–GTO
compared to KNN indicates the success of the GTO in finding the optimal parameters of
the KNN algorithm.

6. Conclusions

In the present study, a new methodology was introduced for rainfall–runoff modeling.
This methodology comprised dataset decomposition, feature selection, dataset reduction,
and modeling by nine standalone and hybrid machine learning algorithms. The employed
machine learning algorithms included neural network-based algorithms (ANNs), kernel-
based algorithms (LSSVM and KNN), tree-based algorithms (M5 and RF), regression-based
algorithms (MARS and MNLR), and hybrid algorithms (LSSVM–GTO and KNN–GTO). The
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reason for using this wide range of methods was the complex and nonlinear nature of runoff
precipitation in Wadi Ouahrane, Algeria. Five scenarios were defined for selecting the input
data. Results indicated that using EMD, feature selection, and PCA significantly improved
the accuracy of rainfall–runoff modeling. KNN–GTO exhibited the best performance as it
was associated with MAE, RMSE, RRMSE, R, NSE, and KGE of 0.1640, 0.4741, 0.2978, 0.9607,
0.9108, and 0.7141, respectively. It minimized MAE, RMSE, and RRMSE by 80%, 79%, and
72% and maximized R, NSE, and KGE by 77%, 112%, and 136% compared to the other
algorithms. The worst algorithm was LSSVM without pre-processing data. A combination
of data-processing methods and KNN–GTO performed accurately in estimating peak data.
Comparing different scenarios showed that the machine learning algorithm had better
performance when the maximum number of IMFs was equal to 4. Moreover, inputs with
a correlation of greater than 0.1 were selected for rainfall–runoff modeling. In general, if
high-quality data are available, there is no limitation to using the presented method (i.e., a
combination of EMD, feature selection, PCA, and KNN–GTO) for predicting runoff and
other hydrological parameters in other basins.
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