

Linnæus University

Sweden

Making the invisible visible

The role of undergraduate textbooks in the teaching and learning of physics and chemistry

John Airey

Susanne Wikman

Emelie Patron

Overview

The wider study

Development of specialized semiotic resources

Disciplinary and pedagogical affordance

Unpacking

Semiotic audit

An example

Future directions

The study

Four-year Swedish Research Council project.

Interested in the ways undergraduate students come to understand invisible phenomena through the specialized resources used in their disciplines.

Two areas of interest:

- Electromagnetic fields
- Chemical bonding

Research questions

In these two areas:

- 1. What discipline-specific semiotic resources are made available to students?
- 2. How might these be unpacked for students?

Professional vision

Goodwin (1994) explains the development of professional vision—coming to see things in a particular, disciplinary way

We frame the development of professional vision in terms of coming to understand how to interpret and use disciplinary-specific resources

Airey (2006, 2009)

Tracking the development

An example of the development of specialized disciplinary meaning-making:

Building on O'Halloran (2007)

- SLIDE 9: DRAWING NEWTON'S DISCOVERY OF COLOUR REFRACTION (NEWTON AND ASSISTANT PRESENT)
- SLIDE 10: 3D SKETCH BY NEWTON (NO PEOPLE MUCH LESS DETAIL)
- SLIDE 11: 2D PRESENTATION TO ROYAL SOCIETY (STANDARDIZED LEFT TO RIGHT, BUT MANY MORE RAYS THAN WE WOULD DRAW TODAY
- SLIDE 12: 2D PRESENTATION TODAY (SINGLE RAYS, BUT ADDITION OF COLOUR)

The curse of knowledge

- There are a number of reasons why students don't understand disciplinary-specific resources
- Omission
 Experts leave things out
- Overloading
 Experts give too much information
- History
 Disciplinary resources are idiosyncratic
- Expectations
 Students' everyday misconceptions
 Airey & Eriksson (2019)

Affordance

What has happened?

Removed information that is "irrelevant" for the discipline.

Higher Disciplinary Affordance

BUT:

Lower Pedagogical Affordance

Pedagogical affordance

Waves of affordance

Semiotic audit

Semiotic audit—what is it?

Audit of semiotic resources made available to students and their affordances

Airey & Eriksson (2019)

Visual resources in chemistry

- Mathematical formulas
- Chemical formulas
- Tables
- Diagrams
- Photos
- Graphs
- Physical objects
- Animations
- Simulations

Frequency – chapter in chemistry book

- 1. Diagrams 64%
- 2. Chemical formulas -20%
- 3. Mathematical formulas 6%
- 4. Photos 5%
- 5. Tables 3%

Examples of diagrams

Chemistry 2e. Provided by: OpenStax. Located at: https://openstax.org/. License: CC BY: Attribution.

Conclusion - Frequency

Large number of diagrams

High disciplinary affordance

Low pedagogical affordance

Need to be unpacked for students

Why chemical bonding?

Only 94 naturally occurring elements

How do these 94 elements combine to make everything around us ?

Chemical bonding

Why chemical bonding?

Simplest chemical bonding

Two hydrogen atoms join to form a hydrogen molecule

Important model (Molecular Orbital Diagram)

Models nature, but it is only a model

Molecular Orbital Diagram

$$H + H \rightarrow H_2$$

How is the diagram introduced in the textbook?

Interpreting the diagram

Semiotic aspects students need to notice

It's an energy diagram

Energy increases "up the page"

Diagram is read from the outside inwards

Interpreting the diagram

Chemistry aspects students need to understand

Bonding depends on sharing electrons Change in energy Lowest energy "preferred"

Bonding depends on sharing electrons

Bonding depends on sharing electrons

Bonding depends on sharing electrons

How is this shown in the diagram?

Bonding depends on change in energy

H H

What's wrong with this picture?

Going forward

How do students experience disciplinary-specific resources across a range of settings

Analyse the disciplinary-specific resources presented in lectures

Multimodal orchestration

Interview lecturers and students about what they "see"

Going forward

Unpacking and repacking strategies

Removing "unnecessary" information

Possibility that transduction across resources is needed for disciplinary learning

References

- Airey, J. (2006). Physics students' experiences of the disciplinary discourse encountered in lectures in English and Swedish (Licentiate dissertation, Department of Physics, Uppsala University).
- Airey, J. (2009). Science, language, and literacy: Case studies of learning in Swedish university physics (Doctoral dissertation, Acta Universitatis Upsaliensis).
- Airey, J. (2015). Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics. In *In: SACF Singapore-Sweden Excellence Seminars, Swedish Foundation for International Cooperation in Research in Higher Education (STINT)*, 2015 (pp. 103).
- Airey, J., & Eriksson, U. (2019). Unpacking the Hertzsprung-Russell diagram: A social semiotic analysis of the disciplinary and pedagogical affordances of a central resource in astronomy. *Designs for Learning*, *11*(1), 99-107.
- Goodwin, C. (2015). Professional vision. In *Aufmerksamkeit: Geschichte-Theorie-Empirie* (pp. 387-425). Wiesbaden: Springer Fachmedien Wiesbaden.
- O'Halloran, K. (2007). Mathematical and scientific forms of knowledge: A systemic functional multimodal grammatical approach. *language, Knowledge and pedagogy: functional linguistic and sociological perspective*, 205-236.
- Patron, E. (2022). Exploring the role that visual representations play when teaching and learning chemical bonding: An approach built on social semiotics and phenomenography(Doctoral dissertation, Linnaeus University Press).