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A B S T R A C T

In the Industry 4.0 era, advanced analytical tools are essential for progressing with digital transformation,
especially within complex socio-technical systems. However, the growing complexity of these systems in manu-
facturing impedes system improvement, and traditional analytical methods focusing solely on the technological
aspect often fall short. To overcome this problem, this paper introduces an integrated methodology combining
Discrete-Event Simulation, Functional Resonance Analysis Method, and Work Domain Analysis for analysing
and enhancing manufacturing systems by considering factors like operator skill levels, demand changes, and
production constraints. Implemented in two industrial case studies, this methodology effectively identifies
system limitations and aids in structured data analysis, positioning it as a vital decision support system in the
digital transformation of Industry 4.0.
. Introduction

Manufacturing system’s evolution is reinforcing the importance of
ocio-technical systems, enhancing the coexistence of human systems,
achine or automated systems, and human–machine systems to maxi-
ize productivity. Researchers worldwide are putting the main efforts

o model manufacturing systems that have quick responsiveness when
ew products are introduced, demand increases or decreases, or ex-
ernal conditions change [1]. For that purpose, the need for data
nd digitalization have been established as a necessary basic step for
owadays complex system analysis and improvement. System and con-
inuous improvement have been critical for the evolution and success of
ndustry. One such example is the automotive sector, which has made
ignificant advances in waste reduction, cost reduction, and increased
fficiency and resource utilization over the past few decades world-
ide. Several system improvement tools, such as Lean Production,
oyota Production System, and now the paradigm of Industry 4.0 have
een developed for this purpose [2].

Common problems in nowadays manufacturing are related to the
rend of going from mass production to mass customization, which
s commonly translated into an increased number of products and
ariants, and decreased production volumes. To address these prob-
ems two main considerations should be priorities in manufacturing
ystems: first, how to predict and deal with uncertainties, and second,
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how to manage schedule or production plans, because the systems
are so closely connected that the behaviours of the system could be
intractable. That is the reason why the analysis of this kind of system
is required from a socio-technical perspective. An example of the
fragility of the new mass-customization manufacturing has been seen
during the recent Covid-19 pandemic and international supply chain
disruptions, highlighting the importance of national or regional backup
production, safety or emergency buffers, supply chains, and suppliers,
and capacity to adapt to sudden changes in production, demand, and
system constraints. A cornerstone when working with system analysis
and improvement considering all these factors is the availability of
digital data.

Digitalization and the Internet of Things (IoT) are driving a great
deal of the industrial digital transformation providing significant ben-
efits to manufacturers of different industries to analyse systems in
real-time and to try to adapt to changes in production [3]. This is usu-
ally not possible without digital data, which is becoming a requirement
for nowadays manufacturing systems. Reasons for this requirement
commonly are the size and complexity of the systems and the mix
of socio-technical systems combining automated and manual processes
and their environment; making it difficult to manage this data with
traditional tools such as pen-and-paper approaches and spreadsheets.
Computerized modelling tools, in this context, are usually able to
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handle this complexity, commonly translated into interrelations with
a high number of processes and variables associated with the different
parts of the system.

Specifically, Discrete-Event Simulation (DES) has usually been a
great support for this kind of operational research projects in in-
dustry. However, the integration of manual and automated processes
(in some cases with a lack of digital data availability) as well as
the variability of the surrounding entities, highlight a need for more
qualitative approaches in combination with quantitative ones. This re-
search project, therefore, focuses on the improvement of manufacturing
systems integrating quantitative system improvement methods such
as DES and more qualitative system improvement methods such as
WDA and FRAM. A methodology is proposed integrating these system
improvement tools considering human–machine systems in a more
human-centric approach to facilitate the implementation of Industry
4.0 by integrating DES, WDA, and FRAM. The initial idea of the
methodology was first introduced in a conference paper with a work-
in-progress case study presented by the authors [4]. The continuation
of the development of the initial case study and its application in an
additional case study is presented in this paper.

A Swedish leisure boat manufacturer has been utilized as a test bed
for the validation of the applicability of the proposed methodology
in manufacturing systems; the additional industrial case study has fol-
lowed the proposed methodology in a Japanese steel plate production
line. Going through these two industrial case studies, this methodol-
ogy considers quantitative and qualitative data as well as knowledge
of expert and novice human resources of the system to analyse the
human, machine or automated, and human–machine systems involved
in production.

In the following section, a frame of reference including the main
methods used in the proposed methodology is presented. The proposed
methodology is presented and explained in Section 3. Section 4 presents
both industrial studies and main results and Section 5 summarizes the
conclusion of the research and future work

2. Complexity of Industry 4.0-based socio-technical manufactur-
ing

Industry 4.0, commonly referred as the Fourth Industrial Revolu-
tion, pursues the integration of advanced technologies and digitization
in the manufacturing and industrial sectors; the term was first intro-
duced in Germany in 2011 and has been widely adopted worldwide
[5]. The growing paradigm of Industry 4.0 (nowadays being called In-
dustry 5.0 by including sustainability objectives), supports this required
base of digitalization and self-adaptation of manufacturing systems
[6,7]. In this paper, this is referred to as Industry 4.0, which involves
the utilization of cutting-edge technologies such as the IoT, Artificial
Intelligence (AI), machine learning, big data analytics, and Cyber–
Physical Systems (CPS), aiming to establish a more interconnected and
automated environment [8–11]. This can lead to enhanced flexibil-
ity, efficiency, and productivity in the production process, along with
improved quality control and customization, having the potential to
revolutionize the way products are manufactured and distributed [12].
For the purpose of that, researchers worldwide are putting their main
efforts to model manufacturing systems that have quick responsiveness
when new products are introduced, demand increase or decrease, or
external conditions change [1].

The term Industry 4.0 is accelerating this enhanced flexibility,
efficiency, and productivity process among managers and stakeholders,
as well as facilitating data generation, collection, and management.
However, even though the definitions and possible implications of
Industry 4.0 might be clear at management levels, implementations at
the shop-floor level can be considered a young and growing field, and
commonly are non-existent in small and mid-size companies, having
tremendous potential in robotic applications [13]. System improve-

ment implications nowadays can be considered as still quite abstract
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in general, being the term used more as marketing of a system im-
provement paradigm to increase the sales of enhanced connectivity
industrial equipment [6,12]. Additionally, the analysis and modelling
of those processes as socio-technical systems (systems considering the
interaction and interdependence between people, technology, and the
organization of work) are not straightforward to achieve with tradi-
tional system improvement tools due to the nature and availability of
digital data [4,14].

Socio-technical systems are complex systems that comprise human
agents and machine agents considering the surrounding entities; they
are characterized by the interaction and interdependence between
people, technology, and the organization of work [15]. The social
component is constituted by the individuals who operate the system,
whereas the technical component includes the tools, equipment, and
technology that are required to perform work tasks. The objective
of socio-technical systems design is to optimize the interaction be-
tween people, technology, and the organization of work, to enhance
workplace performance, safety, and well-being [16].

Computer simulation and optimization tools have conventionally
been employed to facilitate the design and improvement of complex
manufacturing systems to increase performance. Simulation tools, such
as DES, can provide extensive support to managers and stakeholders
by analysing various possible ‘‘what-if scenarios [17]’’. These scenarios
usually analyse the performance to find bottlenecks in the system based
on Key Performance Indicators (KPIs) of the simulation model [18,19].
These KPIs depend on a set of defined variables (input parameters) of
the system, such as the number and type of products to be produced
at every moment, the number of processes, machines, robots, opera-
tors, and transports in an assembly line. These simulation tools are
typically based on quantitative data that measure resources and system
performance using numeric values. However, many parameters of these
complex systems cannot be measured or quantified by numbers. These
parameters may include more abstract characteristics of products, pro-
cesses, systems, or resources. For example, how operators with different
skill levels handle unplanned situations, or how the lack of materials
or personnel is addressed in the event of a logistic disruption or a
pandemic situation, as recently observed. Nevertheless, for the analysis
and improvement of systems with DES, available and updated digital
data is required at a large scale.

DES has been frequently utilized in analysing complex manufactur-
ing systems, especially when the complexity of the systems is consider-
able [20,21]. DES is usually utilized due to its ability to represent the
complexity of the system over time; nevertheless, when the number of
manual processes is high, the collection of data becomes more critical
and tedious [22–24]. Several aspects have to be considered, such as
wearable devices, sensors and cameras connected to AI systems, at
the same time as sensitive issues such as the privacy of operators
and workers as well as unions have to also be considered [25]. This
can improve data availability and collection, however, the quality of
the data might be lower due to human-related behaviours, industrial
environments, and circumstances that could not often happen to a
machine or robot, such as forgetting to wear or switch on a wearable
device, remove it due to lack of comfort, malfunction due to lack
of industrial certifications, and higher exposure to damage. The use
of DES is sometimes insufficient due to the difficulty of capturing
socio-technical aspects of complex systems due to the uncertainty of
human behaviour [26]. Common challenges considering socio-technical
systems commonly are the absence of digital and quantitative data,
as well as limited data collection methods to consider safety aspects
and well-being. If the systems to consider are not newly designed or
adequately adapted for Industry 4.0 (considering the digital industrial
transformation of human interactions), they can fail to provide digital-
ized performance data of resources, processes, and products even with
the help of simulation and optimization tools [21].

Therefore, other methods than purely quantitative tools (such as
DES tools) are required. In this study, a system improvement method-

ology is proposed combining DES, Work Domain Analysis (WDA),
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Fig. 1. Proposed system improvement DES, WDA, and FRAM methodology.
and Functional Resonance Analysis Methods (FRAM). The WDA is a
method utilized for assessing human work, which aids in identifying the
functional structure of independent controlled systems and interfaces
[27–29]. WDA has been used in manufacturing applications for logistics
and predictive maintenance design involving human factors [30–32].
WDA has also been implemented in manufacturing for system design
and development in manufacturing considering human factors and
safety standards [33–36]. This technique enables the identification and
analysis of functions, variables, and interrelations that are associated
with the performance of a system, with a focus on the human-centric
approach [37]. WDA involves identifying the goals, tasks, and activities
that are required to achieve the system’s objectives, as well as the
constraints and resources that impact the work domain. It is used to
understand the cognitive or manual task designs of systems that are
compatible with the characteristics of the work domain and to identify
potential sources of variability and risk within the system [28,30,38].
FRAM and WDA are both methods commonly used in the field of
Human Factors and Ergonomics to analyse complex socio-technical
systems and interactions with the work environment [39,40].

On the other hand, FRAM is a method employed for analysing
complex socio-technical systems. It was developed by Hollnagel and
colleagues to address the limitations of conventional risk assessment
methods that primarily concentrate on identifying and mitigating indi-
vidual failures or errors [41]. FRAM involves identifying the system
functions and their interrelationships, as well as the variability and
performance conditions that affect the system’s overall behaviour [42,
43]. The technique employs an abstract representation of the system,
which facilitates the analysis of system functioning. FRAM should not
be considered as a model itself, it should be considered as a prospective
risk assessment method. It is based on a non-linear, dynamic systems
approach, and it is particularly useful for understanding the behaviour
of complex systems that are subject to variability and uncertainty [43,
44]. FRAM considers the role of human operators and their interactions
with the system and it can be used to identify potential areas of risk
mainly related to variability and human factors [45–47].

Both FRAM and WDA are qualitative methods that rely on expert
judgment and analysis to understand the behaviour and characteristics
of complex socio-technical systems and they have been usually used
for safety and risk analysis applications [37,48–50]. The closest appli-
cations combining WDA and FRAM have been analysed [37,42,50,51].
Its integration with DES has not been further found in the literature,
hence, the proposed methodology is presented in the following section.

3. Methodology

This project proposes a system improvement methodology combin-
ing quantitate and qualitative methods including simulation tools. The
3

proposed methodology, shown in Fig. 1, considers systems with a high
number of interrelations including human–machine interactions. The
methodology is based on the mentioned DES, WDA, and FRAM and
the main objective is its application for complex manufacturing system
design, analysis, and improvement.

The upper row of the figure, the analysis stage, focuses on establish-
ing the start-up of the project, defining the objectives, project planning,
understanding the system and doing a conceptual model of the main
processes of the system at different abstraction levels [52]. It can be
useful in this step to define several conceptual models, for example
going from the most strategical or abstract/wide perspective, to a more
tactical or even operational abstraction level, in which the level of
detail of different processes, subprocesses, and what happens between
process is also analysed.

Usually, two or three abstraction levels are enough to understand
the magnitude of the problem and the processes that should be in
focus, the required data, and therefore suitable data collection methods.
Black-coloured blocks represent trivial project steps focusing on gen-
eral start-up or wrap-up functions, while blue-coloured functions are
focused on the simulation part of the project, based on quantitative data
and capacity analysis. Green-coloured blocks represent the qualitative
approaches based on WDA and FRAM, usually with more focus on
quality, skills, and qualitative performance aspects.

The second part of the methodology, the core of the methodology,
(second row of blocks in Fig. 1), focuses first on the simulation ap-
proach, trying to identify bottlenecks and weaknesses of the system
if enough digital quantitative data are available or can be collected.
A deep analysis of required and available data should be done at
the beginning of the project to ensure there is enough time allocated
for the data collection process which might be time-consuming if too
detailed and diverse or collected manually. Once the main weaknesses
or bottlenecks of the system are found with simulation, a deeper
analysis of those identified processes can be done with WDA (an
example of this simulation analysis is presented in the first case study
in Fig. 4). For the WDA, the quantitative factors or variables related
to the bottleneck or weaknesses of the system have to be identified.
This can be done through interviews, documentation analysis, and
Gemba, paying attention to small details that are not usually written
in manuals or instructions of the processes in question but that might
affect the performance of the system, This can be the performance of
different people working with the same process (such as skills level,
qualification, expertise, age, and personality), personal and professional
relations between employees, malfunctioning of equipment, material
delivery delays, and interruptions. Then a WDA is built, usually follow-
ing a set of steps: Establish the purpose and use of the WDA, establish
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abstraction levels (abstraction–decomposition space) and boundaries,
identify the nature of constraints and potential sources of information,
iteratively work on the abstraction–decomposition space with several
iterations, and finally validate the abstraction–decomposition space and
WDA [28,29].

Usually, the different abstraction levels answer the question ‘‘how’’
going down in the WDA from their upper abstraction level, and ‘‘why’’,
going up from the lower abstraction levels [50]. The upper part of
the WDA is usually the ‘‘Functional Purpose’’, which commonly is
related to the aim, problem, or objectives of the study; for example,
to reduce quality defects, and the lower layer. On the other hand, the
lowest part of the WDA, ‘‘Physical Function’’, usually represents the
detailed steps that contribute to the process or its improvement. Some
authors recommend the use of nouns for abstraction levels and others
recommend the use of verbs; in this case, the verbs option could clarify
the nature of the tasks or processes represented in the WDA, hence,
verbs have commonly been predominant [28,53].

For the construction of the WDA, in these cases, visits to the
production sites, analysis of company documentation, meetings with
engineering teams and system responsible persons, as well as interviews
with expert and novice operators were performed to collect the data,
construct the WDA, and receive feedback to verify and validate it by
the company. The WDAs developed in this project are presented in
the following section. Once the WDA was defined, it was time to start
working with FRAM representations.

To build a FRAM representation, the WDA was analysed from
the perspective of the problem description of every case study. Then
the aim and objectives were double-checked and the main functions,
usually related to the same hierarchical level of the WDA, were se-
lected to be included in the FRAM [50]. The hierarchy levers often
used as reference are the generalized function, object-related function,
physical function, or a combination of them [50]. This process of
FRAM construction can become an iterative process. When analysing
the FRAM representation, it might be difficult to draw ideas or con-
clusions considering the objectives of the projects and data obtained
from documentation, meeting, and interviews. In some cases, some
additional processes or functions have to be added to the WDA, further
data collected, and then translated into the FRAM until it represents the
functions, key aspects or factors, and key interrelations of the system
being analysed [50].

Once the WDA and FRAM are built, some boundaries of the FRAM
can be added to limit the focus of the system improvement process, and
the variability of key functions affecting the performance or related to
the aim and objectives of the project is added. A workshop with brain-
storming and the collected data by hand can be useful to draw some
conclusions, to then be presented and discussed with the management
team of the system analysed. The methodology has been demonstrated
to serve as a guideline for managers and stakeholders and provide a
decision-support tool for system improvement in manufacturing sys-
tems. The explanation of the methodology and potential results are
summarized by going through two industrial application case studies
in the following section.

4. Industrial case studies

In this section, two industrial case studies are presented. In these
case studies, the steps of the methodology presented in Section 3 were
applied. The first case study, case study A, a capacity analysis of a
Swedish leisure-boat manufacturer, has a stronger focus on simulation
at the initial stage of the project to find the main bottleneck or lim-
itation of the system: the sensitive painting process mainly based on
manual tasks and experience. The second case study, case study B,
considering a Japanese manufacturer of steel plates, aims to identify
potential improvements of the key bottleneck process of the factory,
the coiling process of the metal plates, requiring expert skills for the

good development of the process.

4

4.1. Case study A

This industrial case study aimed to perform a production capacity
and reconfigurability assessment of a leisure-boat manufacturer. The
main objective was to increase the flexibility and resilience of the
production including different levels of abstraction (strategical, tactical,
and operational), two main stages of the manufacture (composite pro-
duction and assembly), and considering the main constraints of space,
operators skill levels, product moulds, and internal logistics transports.

Following the methodology, after having a clear definition of the
aim, objectives, scope and boundaries of the project, DES was consid-
ered one of the main tools for the initial improvement process, since
quantitative data were available for the different processing times,
buffers, product mix, and transports at a tactical level (considering just
processing times of main processes).

First, the required data were collected by analysing documentation
provided by engineers and team leaders of different departments and
processes to start defining a conceptual model of the system at a
strategic level. Working with simulation at a strategic level resulted in
what looked a bit useless due to the high level of abstraction and lack of
data at that level. For example, the processing times (of the entire de-
partment as a whole) had never been collected or analysed. Therefore,
the construction of the conceptual model focused on the tactical level,
collecting the data of the different processing times and main resources
needed for each process. The data regarding the different processing
times of automated processes and machining centres were available.
Nevertheless, when translating this conceptual model at a tactical level,
the information regarding times between processes was missing, such
as transport and waiting times and several manual processes. Hence,
a step down to the operational level was done and more detailed data
were collected to update the conceptual model and simulation model.

An operational level of abstraction included the level of detail of
different departments, transports, and processes required to manufac-
ture each family of products. Siemens Plant Simulation was chosen
as the simulation software tool due to its customization capabilities,
which allowed for the programming of predefined objects or processes
in the simulation model. This is useful for representing the complex
characteristics, behaviours, and interrelationships of the system. As can
be appreciated in Fig. 2, the layout of the factory is represented in
the DES model, the production or machining areas are represented in
the middle and right parts of the layout, while the assembly area is
represented on the left. Each grey squared object represents a process,
such as trimming, painting, engine connection, transport, or storage.

The majority of the entities represented in the model have quan-
titative data associated with them, such as capacity, delivery rate,
and fixed or variable processing times. Real stochastic behaviour is
represented using different statistical distributions. When building the
simulation model, for some of the processes additional data collection
and analysis may be required during the model-building process, and
assumptions can be made if necessary. For example, operators and
people in charge of the processes may be interviewed to develop
triangular statistical distributions including minimum, most common,
and maximum process times, when further data are not available. These
distributions must be validated before being programmed into the
simulation model by verifying them with the real system and discussing
them with the staff in charge of the processes.

Verification involves checking that the system accurately represents
reality, while validation ensures that the behaviour and performance
of the simulation model accurately represent the real system [54].
This is typically done in coordination with experts and managers from
the different areas of the system represented in the simulation model.
The validation process involves comparing the output variables of the
simulation model with the main parameters of the real system, such as
throughput, lead time, and work-in-progress. Fine-tuning of the input
parameters of the simulation model is done until the comparison is

accurate enough for the purpose of the study. A verified and validated
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Fig. 2. Shop-floor layout represented in the DES model.
Fig. 3. Bottleneck analysis of the main manufacturing processes of the production site.
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ES simulation model of the system can then be used to test different
cenarios for system improvement and to perform a bottleneck analysis,
ne of the main strengths of DES. An example is shown in the following
ig. 3:

This chart shows the different processes to produce the main parts
f the boat, the deck and the hull represented, in the X axis. The Y
xis represents the occupation of the time they are working. Ideally, a
alanced production should have similar occupation levels so there is
ot much waiting time and buffers between processes. However, in this
hart, it is possible to appreciate the highlight of the occupation of the
ainting hall. After double-checking this information with the managers
nd stakeholders of the factory to ensure the results obtained from the
ES model were in line with reality, it was decided to focus this study

n the painting hall as indicated by the bottleneck analysis. Additional
xperiments of ‘‘what-if scenarios’’ were defined to evaluate changes
n the design or performance of the system. The scenarios contributed
o the investigation of different product mix margins and bottleneck
nalyses to identify the primary limitations of the system.
 (

5

When examining the painting hall, it became apparent that the bot-
leneck was not in the painting processes themselves. Quantitative data
ere unavailable, and performance was influenced by several factors

hat were not directly related to the painting process. Furthermore,
ue to the strict quality standards required for painting, processing
imes could not be reduced, and adding another painting cabin was
ot feasible due to space limitations. As a result, the focus shifted from
uantitative analysis of the painting process to qualitative analyses
sing FRAM and WDA. The WDA obtained by documentation analysis,
eetings with managers and production responsible persons, as well as

nterviews with novice operators is presented in Fig. 4.
This WDA is represented in five abstraction levels, starting with

he ‘‘Functional Purpose’’, wider and more abstract, and finishing at
he ‘‘Physical Function’’, usually determined by more specific tasks.
ome key functions that could have a significant impact limiting the
erformance of the system were identified by first adding the upper
nd lower layers, and then by asking ‘‘why’’ (upstream) and ‘‘how’’

downstream), the layers in between were built. After an analysis of
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Fig. 4. Work Domain Analysis of the painting process.
Fig. 5. FRAM representation of the bottleneck found in the system.
the implication of the functions in the physical processes and limiting
the performance of the system, key functions, mostly represented in
the ‘‘Object Related Function’’, were considered. These functions are
the prioritization or scheduling of the products in the cue for the
painting hall, the maintenance and preparation of the moulds, the
control of the thickness and imperfections of the paint, the availability
of instructions to novice operators, and the interruptions of expert
operators. Therefore, these were the functions to be represented with
FRAM, as presented in Fig. 5.

The figure shows the FRAM representation of the bottleneck iden-
tified in the previous DES model. The human-centric approach of
the socio-technical system is represented using functions in the form
of hexagons. These functions represent key processes, variables, and
preconditions necessary for improving performance in the bottlenecked
environment. Qualitative data obtained from the WDA, further obser-
vations, system analysis, and expert and novice operator interviews are
6

reflected in these functions. This representation offers the advantage of
variability analysis to identify which functions can constrain the system
under different performance or demand circumstances.

In this FRAM representation, it is possible to appreciate the pro-
cesses with higher variability and potential cause of delays (purple
and blue hexagons in addition to the key red processes of ‘‘priori-
tize/schedule products in cue’’, ‘‘Monitor and plan mould wax and
maintenance’’, and ‘‘Instruction available for novice operators’’ (key
processes due to high impact in the performance of the system due to
their number of interdependences with other processes in the system
and relation to human processes.

Considering these key processes after identifying the bottleneck
area or department with DES and collecting and analysing the socio-
technical data with WDA, the study has highlighted the importance
of several key constraints affecting the performance of the system,
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ncluding the main production bottleneck, lack of space at the painting
abin (especially for novice operators), and a limited number of trans-
orts, moulds, and expert personnel, especially during lower production
eriods (such as summer, Christmas, or pandemic times). Additionally,
he study identified several key variables, such as thickness quality
ontrol, room and humidity parameters, and lack of specific process
nstructions for novice operators which are potential sources of delays
ue to creating interruptions for expert skill persons assigned to other
asks. Future work considers the construction of a DES model of the
mproved system to analyse the metrics improvement of the KPI of
hroughput, work-in-progress, and lead time of the system.

.2. Case study B

The focus of this study was on the production process of flat steel
lates from coiled steel plates. The centring operation, which ensures
ccurate cutting of the steel plate, was the target of the study. An
perator near the uncoiling machine must control the position of the
teel plate during processing, while another worker occasionally carries
new coil into the process. This requires multitasking and a high level
f skill. The study compared the attention allocation features between
xpert and mid-level workers during single-task and multitasking situa-
ions. The study used eye-tracking experiments and interviews to collect
nd compare gaze behaviours and responses between the two groups.

Data collection methods were based on interviews with expert and
ovice operators, as well as eye tracking devices to record where the
perators pay more attention performing different tasks and comparing
he data with expert and novice operators. Eye-tracking experiments
ere conducted during the operation using ‘‘Tobii Pro Glasses 2’’,
nd interviews were conducted afterwards, where the worker could
ecognize where they were looking. The interviews included the same
uestions for both participants and gaze behaviours and responses were
ollected and compared between the expert and mid-level workers. In a
imilar way to case study A, after defining the objectives of the project,
esigning a conceptual system to understand the system and guide the
ata collection, processing data was collected together with interviews
nd eye-tracking methods. In this case, the bottleneck of the system was
efined from the beginning, therefore, even if quantitative data of most
f the process was available, a DES model was not necessary to identify
he bottleneck, the centring operation of steel plates [50]. Then, once
he data were collected and the system understood, the project focused
n a WDA diagram at different abstraction levels and its translation to
RAM. This WDA diagram is shown in the following Fig. 6.
7

This WDA diagram represents five levels of abstraction visualizing
he functional structure of the system and links representing means-
urpose relationships of different processes of the system obtained from
he interviews of expert and mid-level workers. This facilitated the
nderstanding of the system and performance of different operators in
ifferent situations as well as facilitated the construction of a FRAM
epresentation to analyse the variability if the of the systems and
ultitasking potential performance of operators with different skill

evels.
FRAM enables the analysis of variabilities that impact the system,

ausing unexpected situations. Variability is defined as factors that
ffect the system’s state, such as fluctuations in the performance of
uman workers or automated machines. Again, the hexagon represents
ach function with six aspects in FRAM, including input, output, pre-
ondition, resource, control, and time. The FRAM representation so
resented in the following figure (see Fig. 7).

This FRAM represents the monitoring processes performed by op-
rators (hexagons in blue), the processes to estimate the state of the
teel plate and evaluate own operation of the operator (hexagons in
reen), and the responding actions to centre the coil and operate a new
oil (hexagons in red). Hirose et al. developed a simulation method
ased on FRAM that quantitatively supports the analysis process by
alculating the propagation of variabilities. Common Performance Con-
itions (CPCs) are proposed in the Cognitive Reliability and Error
nalysis Method (CREAM), which defines factors that affect the perfor-
ance of human workers or automated machines [15]. The simulation
ethod allows the investigation of the propagation of variabilities and

heir impact on the entire system. Variabilities such as ‘‘Availability
f resources’’ or ‘‘Number of goals’’ can be assumed in the target
peration. The simulation study envisioned the effect of operators’
ttention allocation characteristics represented by the FRAM model
n the propagation of these variabilities, which can be numerically
epresented by the CPC score or Probability of Action Failure (PAF).

The results of this study suggest that the expert worker possesses
uperior attention allocation features; the expert can effectively iden-
ify where to look and allocate attention, even during multitasking,
ighlighting that the expert has a deep understanding of the abstract re-
ationships between components of the working environment [50]. This
onclusion of how the expert operator’s attention management affects
ork performance was derived from the FRAM simulation results.

Based on these findings, it is hypothesized that the expert can
dapt to multitasking situations by predicting where attention should
e directed based on the relationships among elements. In contrast,
id-level worker appears to struggle with multitasking, as they tend

o focus only on individual elements. However, since this conclusion
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Fig. 7. FRAM representation of the coiling process [50].
is based on data from only one person in each group, the study
examined whether this is a universal feature of experts using a model-
constructive approach. The most representative operator of each group
was selected to represent the sample. Utilizing the WDA and FRAM
this hypothesis has been demonstrated and extended to expert and mid-
level operators. The simulation results, further detailed in the related
conference publication, showed that the expert’s attention management
represented by the FRAM model structure contributed to maintaining
the work performance against the variability of the CPC ‘‘Number of
goals’’ [50].

5. Results and conclusions

This paper proposes a decision-support methodology combining
DES, WDA, and FRAM for socio-technical systems in manufacturing
systems when quantitative data system improvement methods are not
enough to fully support decision-making. The main objective has been
the improvement of complex manufacturing systems considering a mix
of human and automated processes, different abstraction levels of the
systems, and different skill levels of operators involved in the manu-
facturing processes. The project uses DES, WDA, and FRAM to develop
a methodology for system design, verification, and improvement. The
methodology focuses on a human-centric approach to improve human–
machine systems, using DES to identify the bottleneck or limitations of
the system when quantitative data is available, WDA to structure the
data collection of qualitative data of the identified limiting areas of the
system, and FRAM to represent and analyse key processes and factors
as well as their interrelations limiting performance.
8

As it can be appreciated going through both case studies, first the
identification of the key or bottleneck process is the starting point for
the improvement of the entire system applying the proposed method-
ology. In both cases, the behaviour of the operators was analysed
and summarized with a set of interviews and additional data col-
lection methods such as observations, documentation analysis, and
eye-tracking experiments. In case study A, DES play a vital role here,
while in case study B, the focus from the beginning was on the bottle-
necked process, therefore the use of simulation for the identification of
the bottleneck process was not relevant in this case. On the other hand,
for the analysis of the main limiting processes, the painting and the coil
rolling, the WDA was a key approach to understanding and analysing
the requirement of the human and automated workforce in every step
of the process. Going through the interviews with operations in both
cases, it was crucial to identify the needs of expert skills in specific
tasks, analyse performance, and the implication that interruptions or
lack of expert skills can have in the system. In both cases, WDA and
FRAM have facilitated to capture socio-technical aspects of complex
systems considering human behaviour uncertainty.

Considering machine or automated process performance, digital
data through the digital industrial transformation is facilitating the use
of advanced analytical tools. Nevertheless, even if data from automated
processes are starting to be generated, collected, and analysed, there
is significant room for the increase of concrete applications and their
integration with manual operations and human factors. There is still a
need for complex system improvement in systems with large numbers
of interrelated entities combining automated and manual processes as
well as quantitative and qualitative data. In particular, socio-technical
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systems can be challenging to analyse and model due to the nature of
the data, the impossibility to collect it, or the lack of it.

It has been demonstrated that a combination of WDA, FRAM, and
DES is an appropriate approach for identifying system weaknesses
and bottlenecks. This combination enables a more in-depth analysis of
the system’s interrelationships at various abstraction levels, facilitating
the identification of potential solutions from both quantitative and
qualitative perspectives. The results of the study have contributed to a
better understanding capacity increase of the industrial partners. As fu-
ture work, further data collection, additional interviews with operators
and different skill levels, and further case studies are being analysed.
Additional simulation models of the presented case studies are being
considered to quantitatively analyse and compare the performance of
the improved scenarios with KPI. Furthermore, the application of the
methodology outside manufacturing, for example in healthcare sys-
tems, could generate an interesting discussion about handling similar
problems in different sectors.
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