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Abstract—The standard Constrained Application Protocol
(CoAP) is a lightweight, web-transfer protocol based on the REST
paradigm and specifically suitable for constrained devices and
the Internet-of-Things. Object Security for Constrained RESTful
Environment (OSCORE) is a standard, lightweight security
protocol that provides end-to-end protection of CoAP messages.
A number of methods exist for managing keying material for
OSCORE, as to its establishment and update. This paper provides
a detailed comparison of such methods, in terms of their features,
limitations and security properties. Also, it especially considers
the new key update protocol KUDOS, for which it provides a
more extended discussion about its features and mechanics, as
well as a formal verification of its security properties.

Index Terms—IoT, key update, key establishment, lightweight,
OSCORE, CoAP, secure communication, end-to-end, IETF

I. INTRODUCTION

In the Internet-of-Things (IoT) vision, a multitude of devices
(including sensors, actuators, and everyday-life objects) have
communication capabilities and are Internet-enabled. These
are continuously increasing in number, are predicted to ap-
proach 60 billion by 2025 [1], and many of them are different
from conventional, general-purpose computers.

It is crucial that such devices implement and correctly use
appropriate and high-level security solutions, thus practically
avoiding being a target and vector of cybersecurity attacks.
This is particularly challenging in the IoT, as most of such
connected devices are expected to be constrained in terms of
memory availability, computing power, access to the commu-
nication medium, and energy budget (e.g., if battery-powered).

The standard Constrained Application Protocol (CoAP) [2]
is a lightweight, web-transfer protocol based on the REST
paradigm, that a client and a server peers can use to commu-
nicate at the application layer. CoAP was specifically designed
to be suitable for constrained devices and the IoT, as conducive
to lightweight message processing and low communication
overhead. CoAP can be transported over several transports,
including UDP as the default option, and supports the use of
transport intermediaries such as proxies. As for communica-
tion security, CoAP originally indicated the use of DTLS [3]
for protecting exchanged messages at the transport layer.

Object Security for Constrained RESTful Environments
(OSCORE) [4] is a lightweight security protocol that protects
CoAP messages end-to-end at the application layer. OSCORE
protects CoAP messages all the way from the original message
producer to the final message consumer, also in the presence
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of intermediaries. OSCORE provides confidentiality, integrity,
source authentication and replay protection of CoAP messages.

To protect communications with OSCORE, two peers rely
on a shared OSCORE Security Context, including parameters
and keying material used for message protection. As it focuses
on message protection and secure communication, OSCORE
considers the establishment and update of the OSCORE Se-
curity Context to be addressed separately, while providing an
optional method for key update in its specification [4].

However, the availability of an effective and efficient proce-
dure to update the OSCORE keying material is vital in order
to ensure long-term, secure communication. In particular, the
current keying material eventually becomes invalid and has to
be renewed. This is the case, for instance, when it reaches
its expiration time, or when approaching well-known limits of
the used cryptographic algorithms. Furthermore, in order to
ensure good performance and address the constrained nature
of most IoT devices and IoT-based network environments, it is
of great importance that an update procedure displays limited
complexity and communication overhead, and that it does not
resort to a full-fledged re-establishment of the keying material.

This paper overviews and compares the following methods
to perform key establishment and key update for OSCORE,
with special focus on the novel KUDOS procedure [5].

• Keying material (re-)provisioning from a device operator.
• The authenticated, key establishment protocol Ephemeral

Diffie-Hellman Over COSE (EDHOC) [6], under stan-
dardization in the IETF LAKE Working Group.

• The ”OSCORE” [7] and ”EDHOC and OSCORE” [8]
profiles of the standard ACE framework for access control
in the IoT [9], leveraging a trusted Authorization Server.

• The OSCORE-based device bootstrapping procedure pro-
vided by the standard management framework OMA
Lightweight Machine-to-Machine (LwM2M) [10], lever-
aging a Bootstrap Server and a Device Manager Server.

• The peer-to-peer update procedure originally defined in
the OSCORE specification [4], in its Appendix B.2.

• The peer-to-peer update procedure KUDOS [5], under
standardization in the IETF CoRE Working Group.

We compare the different methods as to their functioning,
security properties, and performance in terms of communi-
cation overhead and required message round-trips. Also, we
provide a detailed, functional description of the novel key
update procedure KUDOS, focusing on its rationale and design
choices. Furthermore, we present a formal verification of
KUDOS, using the tool Tamarin Prover [11]. The formal ver-
ification confirms that KUDOS satisfies its important security



properties, including keying material convergence and keying
material confidentiality, also in the presence of an adversary.

To the best of our knowledge, this is the first contribution
providing a comprehensive overview of the key establishment
and key update methods for the OSCORE protocol, and a
formal verification of the novel key update procedure KUDOS.

The paper is organized as follows. Section II provides the
background. Section III discusses what motivates key update.
Section IV presents key update and key establishment methods
for OSCORE. Section V provides a detailed and reasoned
presentation of the novel key update procedure KUDOS. Sec-
tion VI compares the different methods. Section VII presents
our formal verification of KUDOS. Section VIII, presents the
relevant related work. Section IX provides our conclusions.

II. BACKGROUND

The following presents relevant technologies and concepts.

A. CoAP

The Constrained Application Protocol (CoAP) [2] is an
application-layer, web-transfer protocol suitable for con-
strained devices and networks, especially in terms of
lightweight message processing and low communication over-
head. Like the widely used HTTP protocol, CoAP relies on the
same REST paradigm, thus enabling a client peer to retrieve
and manipulate the representation of resources at a server peer.

CoAP relies on a request/response message model with
optional reliability, and is typically transported over UDP, but
also supports other transports such as TCP. Furthermore, CoAP
supports communication via intermediaries (e.g., proxies),
caching of response messages, one-to-many group communi-
cation (e.g., over IP multicast), and translation to/from HTTP.

A CoAP message includes a header with mandatory fields
(e.g., a request or response code, and a Message ID for
message deduplication) and a Token field to enforce request-
response correlation. The header can also include CoAP op-
tions that signal protocol features or extensions applied to the
message. A notable example is the Observe option that allows
a CoAP client to ”subscribe” to a resource at a server, which
will unsolicitedly send back a notification response when the
resource representation changes. Finally, a CoAP message can
include a payload conveying application data.

CoAP originally indicated the DTLS suite [3] for providing
secure communication at the transport layer. Recently, the
OSCORE security protocol has enabled end-to-end protection
of CoAP messages at the application layer (see Section II-C).

B. CBOR and COSE

Concise Binary Object Representation (CBOR) [12] is a
data format for compact, binary encoding. It is based on the
JavaScript Object Notation (JSON) data model, but uses binary
encoding for compactness, and is designed for small code size,
extensibility, and lightweight encoding and decoding.

CBOR Object Signing and Encryption (COSE) [13] defines
the creation and processing of representations for crypto-
graphic keys, key exchange, signatures, message authentica-
tion codes, and ciphertexts. COSE is based on JSON Object

Signing and Encryption, but it yields a more compact repre-
sentation by using CBOR for serialization.

C. OSCORE

The standard Object Security for Constrained RESTful
Environments (OSCORE) [4] is a security protocol providing
end-to-end protection of CoAP messages at the application
layer. Even in the presence of (untrusted) intermediaries,
OSCORE protects a CoAP message all the way from the
original message producer to the final message consumer. In
particular, OSCORE ensures confidentiality, integrity, source
authentication and replay protection of CoAP messages.

OSCORE relies on CBOR and COSE as its main building
blocks, thus resulting in lightweight message processing and
small communication overhead. Specifically, OSCORE takes a
CoAP message as input, selectively protects different message
parts by encrypting as much information as possible (while
allowing intermediaries to read fields necessary for message
forwarding), and produces as outcome a new, OSCORE-
protected CoAP message. The latter includes the produced,
authenticated ciphertext as payload, as well as an OSCORE
CoAP option, which signals that the message is protected with
OSCORE and enables the recipient to correctly decrypt and
verify it, thus retrieving the original CoAP message.

Therefore, OSCORE can be used wherever CoAP works,
irrespective of the underlying transport protocol. Also, OS-
CORE preserves features and extensions of CoAP (e.g., Ob-
serve) as well as the possible use of intermediaries, which are
not required or expected to be OSCORE-aware.

To use OSCORE, two peers need a shared OSCORE Se-
curity Context, which can be established in many ways (see
Section IV), e.g., through (re-)provisioning. However, OS-
CORE considers the establishment and update of the OSCORE
Security Context to be addressed separately, while providing
an optional method for key update in its specification [4].

The OSCORE Security Context of one peer specifies: the
cryptographic algorithms; a Master Secret and Master Salt;
the Sender ID (Recipient ID) of this peer corresponding to
the Recipient ID (Sender ID) of the other peer; an optional ID
Context to disambiguate different OSCORE Security Contexts;
a Sender Sequence Number used for outgoing messages and
incremented at each use; a Sender Key and a Recipient Key,
which this peer derives from the material above, and uses to
encrypt outgoing messages addressed to the other peer and to
decrypt incoming messages from the other peer.

A client protects an outgoing request by using the OSCORE
Security Context associated with the target resource at the
server. A server protects an outgoing response by using the
same OSCORE Security Context used for decrypting the
corresponding request.

D. ACE framework

The standard ACE framework [9] enforces fine-grained
access control in constrained, IoT environments. ACE builds
on the widely used OAuth 2.0 [14], while using CoAP for



message transport, and CBOR and COSE for compact encod-
ing. The ACE workflow considers the three entities Client,
Resource Server (RS), and Authorization Server (AS).

In particular, a Client that wants to access a protected
resource at an RS must first request an Access Token from
the AS in a trust relation with the RS. Consistent with the
access policies to enforce, the AS can issue an Access Token
to the Client, specifying the granted permissions. Then, the
Client uploads the Access Token to the RS, after which the
Client can accordingly access protected resources at the RS.

The ACE framework entrusts profile documents to specify
how the parties securely communicate. The profiles especially
define how a Client and an RS securely communicate with one
another, and how they establish their secure association based
on security material facilitated by the AS and specified in the
Access Token. For example, existing ACE profiles indicates
DTLS or OSCORE as the security protocol to use.

E. LwM2M

OMA Lightweight Machine-to-Machine (LwM2M) [10] is
a framework for management of IoT devices. It defines how to
perform provisioning of credentials, and how to transfer data
between a managed and a managing device. It also defines
several data models that devices can use to expose information
for remote access. This can be, for example, the definition of
which resources a temperature meter should make available.

LwM2M relies on defined roles including a Client (i.e., an
IoT device to deploy and manage), a Bootstrap Server and a
Management Server. The registration workflow consists of the
Client securely connecting to the Bootstrap server (possibly
using pre-configured security material), from which the Client
receives the security material to use for securely connecting
to the Management Server. In turn the Management server is
provided with the same security material out-of-band.

Once a secure association is established, the Client registers
at the Management Server, after which the two peers can
securely exchange protected messages. LwM2M supports a
number of protocols, including CoAP for message exchange,
and DTLS and OSCORE for message protection.

F. Forward secrecy

Forward secrecy is a property of key management and key
derivation protocols, where compromising long-term keys or
current session keys does not compromise past session keys.
For example, compromising a long-term, private authentication
key used to establish a secure session does not compromise
session keys previously established from the same private key.

Forward secrecy ensures that communications occurred in
the past between two peers cannot later be revealed or tam-
pered with due to a compromise of long-term keys. Without
forward secrecy, an adversary can access the content of old,
saved communications if long-term keys get compromised.

III. MOTIVATION FOR DOING KEY UPDATE

Figure 1 shows a common scenario for deployment of
devices communicating with OSCORE. That is, two peers are

Fig. 1. Scenario with manual provisioning of keying material.

pre-provisioned by the device manufacturer with static keying
material in read-only memory. To ensure secure communi-
cation, devices may not want to begin exchanging protected
application data until they have performed a key update, as the
current keying material is known to the manufacturer. Thus,
the peers can first perform a secure key update to transition
from the bootstrap keying material, and agree on new keying
material to use. In this manner, the peers avoid communicating
using the keying material initially provided to them.

More generally, two OSCORE peers may need to update
their OSCORE keying material for different reasons. These
include, for instance: enforcing local application policies that
mandate periodic key update; or getting close to exhausting the
OSCORE Sender Sequence Number space; or the expiration
of the currently used OSCORE Security Context.

Another reason to perform key update is approaching limits
for the number of times the keying material can be safely
used. Cryptographic analysis has shown that, for Authenticated
Encryption with Associated Data (AEAD) algorithms such as
the different variants of AES, excessive key usage endangers
certain security properties of the algorithms and/or reduces the
security level of secure communication [15].

Since OSCORE uses AEAD algorithms for message in-
tegrity and confidentiality, it is critical to follow the recom-
mended, specific limits. These concern the number of encryp-
tions performed using the same Sender Key, and the number of
failed decryptions using the same Recipient Key. Specifically,
no more than 220 encryptions or failed decryptions should
occur with a specific key. If that happens, the peers should
perform a key update or cease communication.

When using OSCORE, performing a key update is primarily
about updating the OSCORE Master Secret and Master Salt,
which in turn are used to derive new Sender and Recipient
keys. After that, the peers share new keying material for which
the maximum number of uses is safely available again, per the
algorithm limits. Furthermore, since a new OSCORE Security
Context is derived, the OSCORE Sender Sequence Number
will be reset, hence the peers can continue communicating
with the full sequence number space available again.

IV. KEY MANAGEMENT METHODS FOR OSCORE

Several methods exist for performing key establishment or
key update (hereafter, ”key management”) for OSCORE.

A key management protocol should not only enable se-
cure establishment or update of keying material, but also
be lightweight in terms of computing and communication



overhead. As CoAP and OSCORE are designed with the IoT
and resource-constrained devices in mind, a key management
protocol for OSCORE should follow this design philosophy,
and ideally result in lightweight message processing, low
communication overhead, and few round-trips.

The threat model considered for a key management protocol
should take into account an on-path adversary that can capture,
delete, or change any message exchanged between the peers
running that protocol. This adversary can also replay previ-
ously captured messages and inject newly crafted ones. It is
also assumed that the used cryptographic functions are secure,
and that the adversary does not hold the keying material used
for establishing the actual secure communication associations.

A. Manual (re-)provisioning from device operator

A basic method for key management consists in a device op-
erator that hard-codes an OSCORE Security Context on both
peers. This allows for both key establishment and key update.
When the set of peers is well-known and not dynamically
changing, this can be a feasible method.

However, it lacks flexibility and adds manual work for con-
figuring the system. If the peers need to perform a key update
regularly and do not support other key update methods, this
method is not suitable as it entails another manual setup phase
before communication can continue. This may be infeasible
when IoT devices are deployed in hard to reach locations.

Thus, if a peer often needs to communicate with new
network peers or exchanges a high number of messages, a
manual re-provisioning of keying material is not suitable.

B. EDHOC Key establishment protocol

The EDHOC protocol [6], being defined within the LAKE
IETF working group, is a lightweight key establishment pro-
tocol that can be used for deriving keys for OSCORE.

It is based on the SIGMA-I protocol and relies on an authen-
ticated Diffie-Hellman key exchange using ephemeral keys.
For peer authentication, it can use Message Authentication
Codes or signatures. When used for OSCORE, an EDHOC
execution yields an OSCORE Security Context with keying
material and Sender/Recipient IDs for the two peers.

One benefit of EDHOC is the use of public peer authentica-
tion credentials (e.g., certificates) as starting point, from which
symmetric keys are ultimately derived. EDHOC provides
security properties such as forward secrecy, peer aliveness,
mutual authentication, and secure algorithm negotiation.

EDHOC supports both key establishment and key update,
although performing key establishment requires using asym-
metric cryptographic operations, at least for Diffie-Hellman
secret derivation. To perform key update, EDHOC defines
the EDHOC-KeyUpdate function. However, how to practically
use the EDHOC-KeyUpdate function in a synchronized way
between two peers is not defined in the EDHOC specification.

C. OSCORE profile of the ACE framework

The OSCORE profile [7] of the ACE framework [9] (see
Section II-D) can be used, with the ACE Client and RS acting

as OSCORE peers. After the Client has obtained an Access
Token from the AS, the Client uploads it to the RS, and at the
same time exchanges two nonces with the RS. Then, both the
Client and the RS use the two nonces and information specified
in the Access Token as input for deriving the OSCORE
Security Context. This OSCORE Security Context can be used
by the Client and RS for subsequent communication.

To perform a key update, the Client can upload the Access
Token again, while also exchanging two new nonces with the
RS, and use them to derive new keying material. Thus, the
ACE OSCORE profile can be used for both key establishment
and key update. However, it requires the AS acting as trusted
third party and it does not provide forward secrecy.

D. EDHOC and OSCORE profile of the ACE framework

The EDHOC and OSCORE profile [8] of the ACE frame-
work is under development in the IETF ACE Working Group
and can also be used, with the ACE Client and RS acting as
EDHOC and OSCORE peers. After the Client has obtained an
Access Token from the AS, the Client uploads it to the RS.

After that, the Client and the RS run EDHOC, using the
peer authentication credentials facilitated by the AS. Based
on the result of the EDHOC execution, the two peers derive
an OSCORE Security Context. This method provides the full
security properties of EDHOC, including forward secrecy, also
when using the ACE framework. To perform a key update, the
two peers can rely on the EDHOC-KeyUpdate function.

E. LwM2M bootstrapping procedure

When relying on OSCORE for secure communication, the
OMA LwM2M framework [10] overviewed in II-E can also
be used to perform key management. This occurs during the
bootstrapping procedure, where the Bootstrap Server provides
the LwM2M Client with the OSCORE Security Context to use
with the Management Server. The Management Server will be
provided out-of-band with the OSCORE Security Context to
use for communicating with the Client.

LwM2M mandates the use of the key update procedure
from Appendix B.2 of the OSCORE specification (see Section
IV-F), for the Client and the Management Server to update
their OSCORE Security Context (e.g., after a reboot).

Another way to update the keying material when using
LwM2M is to simply perform the bootstrapping procedure
again, assuming that the Bootstrap Server has updated OS-
CORE keying material to provide to the Client.

F. Appendix B.2 of the OSCORE specification

Appendix B.2 of the OSCORE specification [4] defines a
method for performing key update.

The peers perform two exchanges of nonces, which are
taken as input to derive a new OSCORE Security Context.
Specifically, the two peers derive two temporary OSCORE
Security Contexts for protecting the key update messages.
Finally, they derive the new OSCORE Security Context to
use for secure communication, by relying on the exchanged
nonces for the key derivation. The different OSCORE Security
Contexts also use different ID Contexts.



Since this method cannot perform key establishment, the
peers must start from an already established OSCORE Security
Context, which can be established through any method above.

G. KUDOS

KUDOS is a novel procedure for OSCORE key update,
under development in the IETF CoRE Working Group. Com-
pared to the method in Section IV-F, KUDOS is more
lightweight, has better security properties, and allows to main-
tain CoAP observations beyond a key update.

Two peers executing KUDOS perform one exchange of
nonces, which are then taken as input to derive a new
OSCORE Security Context. KUDOS derives only a single
temporary OSCORE Security Context during its execution,
and does not change the used ID Context.

KUDOS is specifically designed to perform key update. If
key establishment is desired, another method has to be used
first. More details on KUDOS are presented in V.

V. KUDOS KEY UPDATE FOR OSCORE

KUDOS is a novel, efficient and lightweight method for
key update for OSCORE. It displays a low communication
overhead and completes the key update after only a single
round trip, i.e., after only two KUDOS messages. When using
KUDOS, the two peers exchange two nonces from which,
together with the old keying material, they derive new keying
material using one-way key derivation functions. KUDOS
requires the existence of a shared OSCORE Security Context
between the communicating peers before it can be initiated.

In order to derive a new OSCORE Security Context, KU-
DOS relies on the internal function updateCtx(). This takes as
input the exchanged nonce values and the current, immediately
previously derived OSCORE Security Context. The input
material is further passed to the internal function KUDOS-
Expand(), which generates a new OSCORE Master Secret.
The new OSCORE Master Salt is simply the concatenation
of the exchanged nonces. Finally, the new OSCORE Security
Context is derived from this Master Secret and Master Salt.

KUDOS supports two modes of operation. In stateful mode,
KUDOS achieves forward secrecy as it uses one-way key
derivation functions, and takes as input to the key derivation
the current, immediately previously derived keying material.

The stateless mode of operation is intended for constrained
devices that are unable to dynamically store information to
persistent memory. That is, they cannot permanently store the
current, immediately previously derived keying material for
retrieval after a loss of state, e.g., due to a device reboot.
This means that, after every loss of state, a peer will use the
same long-term, bootstrap keying material (e.g., as provided
at manufacturing time) as the old keying material to update.
Thus, the stateless mode does not provide forward secrecy.

KUDOS also displays the following properties: i) it can
be initiated by either a client or server taking the role of
”Initiator”, with the other peer acting as ”Responder”; ii) it is
secure even if case a peer reboots and loses state information
not stored in persistent memory; iii) only a single intermediate

OSCORE Security context is derived throughout the KUDOS
execution; iv) it does not change OSCORE identifiers; v)
it allows preserving ongoing CoAP observations; vi) it is
extensible to use algorithms defined for OSCORE in the future.

A. Message Exchange

The exchange of KUDOS messages is protected with OS-
CORE, thus inheriting the OSCORE security properties. Both
the value and the length of the exchanged nonces are integrity
protected by design, since they are input to the key derivation.

In order to enable a KUDOS execution, the OSCORE CoAP
option has been extended as follows. The newly defined bit
’d’ is set to indicate that an OSCORE message is a KUDOS
message. Also, the newly defined ’x’ byte specifies the length
of the exchanged nonce value, and additional bits signaling
how the present KUDOS execution should work (e.g., if in
stateless or stateful mode, and if CoAP observations should
be preserved). Finally, a new field specifies the nonce value
conveyed in the present KUDOS message.

Fig. 2. KUDOS message flow.

We denote as CTX OLD the OSCORE Security Context
shared before the key update starts, and as Xi the content
of the byte ’x’ of the OSCORE option in the i-th KUDOS
message. We focus on the client-initiated version of KUDOS
as shown in Figure 2, which consists of the following steps.

First, the client prepares a CoAP Request #1 as first
KUDOS message, and generates a nonce N1 and the value
X1. Then, the client takes N1, X1 and CTX OLD as input
to updateCtx(), and derives a temporary OSCORE Security
Context CTX 1. The client protects Request #1 using CTX 1,
and specifies N1 and X1 in the OSCORE option. Finally, the
client sends Request #1 to the server, and stores N1 and X1.

The server extracts N1 and X1 from Request #1, takes
those and CTX OLD as input to updateCtx(), and derives the



temporary OSCORE Security Context CTX 1. After that, the
server decrypts and verifies Request #1 using CTX 1.

The server prepares a CoAP Response #1 as second KU-
DOS message, and generates a nonce N2 and the value X2.
Then, it takes X1, X2 N1, N2 and CTX OLD as input
to updateCtx(), and derives the OSCORE Security Context
CTX NEW. Next, it protects Response #1 using CTX NEW,
and specifies N2 and X2 in the OSCORE option. The server
sends Response #1 to the client, and uses CTX NEW for
protecting its following communications with the client.

The client extracts N2 and X2 from Response #1, takes
those and N1, X1, and CTX OLD as input to updateCtx(),
and derives the OSCORE Security Context CTX NEW. Then,
the client decrypts and verifies Response #1 using CTX NEW.

Hereafter, the two peers communicate using the newly
established OSCORE Security Context CTX NEW.

B. Preserving CoAP observations

KUDOS allows retaining the ongoing CoAP observations
that the two peers have with each other. To this end, the peers
can set a specific bit of the ’x’ byte in the KUDOS message, to
indicate that they wish to preserve those observations beyond
the key update. If both peers express that wish, then all those
observations are preserved, otherwise they are all terminated.

Securely preserving observations is challenging, as it re-
quires preventing an incoming OSCORE response from cryp-
tographically matching multiple, different OSCORE requests.

This is due to the fact that, when a client derives a new
OSCORE Security Context, it resets its Sender Sequence
Number (SSN) to 0. If the client uses the same SSN value
both in a request that started a CoAP observation and was
protected with CTX OLD, as well as in a request protected
with CTX NEW, then a response to either request would
cryptographically match both requests.

KUDOS prevents this as follows. After having derived
CTX NEW and reset its SSN to 0, a peer determines SSN∗

as the highest SSN value of previously sent requests associated
with ongoing observations, for which this peer acts as client.
Then, this peer updates its current SSN value, setting it to
the value SSN∗ + 1. By construction this prevents a later
OSCORE response from the other peer cryptographically
matching two OSCORE requests sent by this peer.

C. Stateless mode of operation

The stateful mode is the main mode of operation in KU-
DOS, as it retains forward secrecy for the peers’ keying
material. At the price of sacrificing forward secrecy, the
stateless mode is intended for very constrained devices that
cannot store information to persistent memory.

If a peer supports storing information to persistent memory,
it must attempt running KUDOS in stateful mode. If the
other peer also supports the stateful mode, then KUDOS will
run to completion accordingly. Otherwise, KUDOS will not
complete, and the peers can run KUDOS again using the
stateless mode. If a peer does not support storing information

to persistent memory or is aware that the other peer does not,
then this peer runs KUDOS in stateless mode.

To indicate the wish to run KUDOS in stateless mode, a
peer sets a specific bit of the ’x’ byte in its outgoing KUDOS
message. KUDOS can correctly complete if both exchanged
KUDOS messages indicate either the use of the stateful mode
(if both peers can use it), or the use of the stateless mode.

Since the mode to use is indicated in the integrity-protected
’x’ byte, it is practically infeasible to perform a downgrade at-
tack against a KUDOS execution. Therefore, it is ensured that
the security properties of the newly derived OSCORE Security
Context CTX NEW are as high as both peers can afford, given
their capabilities. That is, forward secrecy is preserved unless
it is fundamentally not possible to do otherwise.

VI. COMPARISON OF KEY MANAGEMENT METHODS

This section provides a discussion and detailed comparison
of the key management methods for OSCORE presented in
Section IV. We compare the methods with respect to the
following aspects: usage of asymmetric cryptography; support,
approach and required maximum round-trips for key estab-
lishment (KE) and key update (KU); preservation of CoAP
observations and OSCORE identifiers in case of key update.
Usage of asymmetric cryptography and maximum round-trips
are specifically considered as they have a performance impact.

In the following, support for ”key update” refers to the
ability to perform a lightweight renewing of the current
keying material, without undergoing a new, full-fledged key
establishment. Table I provides a comparison at-a-glance.

Manual (re-)provisioning of keying material on a device
can be used for key establishment, without in-band commu-
nication. This procedure being radical and invasive, CoAP
observations cannot be preserved. Preserving or changing the
OSCORE identifiers is at the discretion of the device operator.

EDHOC can do key establishment and key update, and uses
asymmetric cryptographic operations at least for the Diffie-
Hellman secret derivation. An EDHOC key establishment
consists of exchanging at least 3 messages, followed by a
fourth optional message or an application message for key
confirmation. Hence, EDHOC requires 2 round trips before
the new OSCORE Security Context can be used. Key update
is possible by using the EDHOC-KeyUpdate function, but the
EDHOC specification does not define exactly how two peers
should use it. Preserving observations is not possible.

The OSCORE profile of ACE can do key establishment
and key update. Key establishment takes 2 round trips: 1 for
the Client to retrieve an Access Token from the AS, and 1
for uploading the Access Token to the RS together with the
exchange of nonces. Key update takes 1 round trip, for re-
uploading the Access Token and exchanging the nonces to
derive a new OSCORE Security Context, while preserving the
OSCORE identifiers. Preserving observations is not possible.

The EDHOC and OSCORE profile of ACE can do key es-
tablishment and key update. It uses asymmetric cryptographic
operations at least for the Diffie-Hellman secret derivation.
Key establishment takes 4 round trips: 1 for the Client to
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retrieve an Access Token from the AS, 1 for uploading the
Access Token to the RS, and 2 to run EDHOC with the RS.
Key update takes 1 round trip, for re-uploading the Access
Token and exchanging the nonces to derive a new OSCORE
Security Context, while preserving the OSCORE identifiers.
Preserving observations is not possible.

The LwM2M framework can do key establishment and key
update. Key establishment takes 3 round trips between the
Client and the Bootstrap server, of which 2 are for performing
the procedure defined in Appendix B.2 of the OSCORE
specification, and 1 is for the Client to retrieve the keying
material to use with the Management Server. For performing
key update, the Client can perform the procedure defined in
Appendix B.2 of the OSCORE specification directly with the
Management Server, which takes 2 round trips. Preserving
observations and OSCORE identifiers is not possible.

The procedure in Appendix B.2 of the OSCORE specifi-
cation only does key update. It takes 2 round trips for the
OSCORE peers to exchange the necessary nonces, while it
creates two temporary OSCORE Security Contexts. Preserving
observations and OSCORE identifiers is not possible.

KUDOS only does key update, which takes only 1 round
trip for the OSCORE peers to exchange the necessary nonces,
while creating only one temporary OSCORE Security Context.
Preserving observations is possible at the discretion of the two
peers, and OSCORE identifiers are preserved.

VII. FORMAL VERIFICATION OF KUDOS

We performed a formal verification of KUDOS using the
tool Tamarin Prover [11]. As a symbolic modeling tool,
neither concrete values nor any computation is involved in the
verification. Instead, it relies solely on abstract relationships
between parameters, building its formal proofs as output.

In our verification, we considered the Dolev-Yao adversary
model used by default in Tamarin. That is, the adversary has
full control of the network and can stop, delay, modify and

inject messages, but cannot break cryptographic functions.
This is consistent with the threat model in Section IV.

To perform our verification, we produced a Tamarin model
of the KUDOS procedure1. The model includes the tran-
sition rules between states, and lemmas defining the se-
curity properties. In addition, we have designed and im-
plemented a custom equation that represents the OSCORE
message integrity protection mechanism. This is similar
to the built-in signing mechanism of Tamarin, but uses
a symmetric key instead of an asymmetric key pair, i.e.:
check(m, prot(m,k), k) = true, where m is the
protected message, and k is the key used to protect it.

The one-way function f(secret, nonces) models the
derivation of a new OSCORE Security Context in KUDOS.
The one-way function g(secret, salt, ID, label)
models the derivation of the OSCORE Sender and Recipient
Key. As Tamarin works in the symbolic model, these functions
do not perform concrete operations, but merely represent the
relationship between the input parameters and the output keys.

The Tamarin model considers the two roles ”Initiator” and
”Responder”, and abstracts away from the two peers being
CoAP client or server, as not relevant for proving security
properties. Also, the model consists of 4 rules: 1 for initializing
the system, and 3 for the protocol execution (see Section V).

We defined the following two lemmas related to our model.
The secrecy lemma, if proved, ensures the confidentiality of
the newly derived keying material (keying material confiden-
tiality). That is, even in the presence of an on-path active
adversary, only the peers executing the KUDOS procedure can
derive the new keying material.

lemma secrecy: "All s #i.
Secret(s) @i ==> not Ex #j. K(s) @j"

The authenticity lemma, if proved, ensures that, if the
Initiator properly concludes the protocol (i.e., ”Commit”), then
the Responder did in fact perform a corresponding execution
on its side (i.e., ”Running”), and thus both sides agree on the
relevant data for that execution. This, in turn, ensures absolute
convergence on the same new keying material now shared be-
tween Initiator and Responder (keying material convergence).

lemma noninjective_agreement:
"All I R t #i. Commit(I,R,t) @i
==> (Ex #j. Running(R,I,t) @j)"

The built-in solver managed to automatically prove both
lemmas in a few minutes, using the default heuristic. Thus, the
corresponding properties are guaranteed to hold in all possible
executions of the KUDOS procedure in the model.

VIII. RELATED WORK

The TLS suite [16] provides a Handshake protocol to
establish keying material for protecting communication at the
transport layer. Authentication of the server peer acting as
responder is mandatory, while authentication of the client peer
is not. Most authentication methods provide forward secrecy.

1Tamarin model code: https://github.com/rikard-sics/kudos-tamarin-model



A peer can locally update the current TLS traffic secrets,
derive its new sending keys from those, and notify the other
peer about this update by sending a KeyUpdate Handshake
message. The other peer updates the TLS traffic secrets and
its receiving keys accordingly, and may follow-up in the same
way and send a KeyUpdate Handshake message. That is, this
key update method is uni-directional, i.e., keys can be updated
in a single direction, if desired. After deriving new sending
keys, a peer must use those to protect its outgoing messages.

IKEv2 [17] allows the establishment of keying material for
protecting communication at the network layer with IPsec [18].

Specifically, IKEv2 allows two peers to establish and update
Security Associations (SAs). The peers first exchange two
messages to establish an IKE SA, which is used to protect
further IKEv2 communications. Next, the peers exchange two
further, secured IKEv2 messages and authenticate each other
by means of either pre-shared symmetric keys or certificates.

As a result, the peers create a Child SA used to protect
subsequent traffic with IPsec. This can provide either integrity-
protection of the entire IP packet, and/or encryption, authen-
tication and integrity-protection of the IP packet payload.

IKEv2 optionally supports key update, which the peers
perform by exchanging two messages including nonces, as
protected with the current IKE SA. To perform key update of
the IKE SA, the peers derive a Diffie-Hellman secret to take as
input to key derivation. A newly derived IKE SA replaces the
current one, and inherits the current one’s Child SAs. Instead,
to perform key update of a Child SA, the peers optionally
derive a Diffie-Hellman secret taken as input to key derivation.
A newly derived Child SA replaces the current one.

IX. CONCLUSION

We have presented an overview and a detailed comparison
of different methods to perform key establishment and key
update for the standard security protocol OSCORE, which
provides end-to-end message protection for the standard, web-
transfer protocol CoAP especially intended for IoT devices.

The methods are: i) manual (re-)provisioning of keying
material; ii) the key establishment protocol EDHOC; iii) the
ACE framework for access control, through its ”OSCORE”
and ”EDHOC and OSCORE” profiles; iv) the OSCORE-
based device bootstrapping of the framework LwM2M; v) the
key update procedure from Appendix B.2 of the OSCORE
specification; and v) the key update procedure KUDOS.

We have also provided an extensive functional description
of KUDOS, including its rationale and design choices. Com-
pared to the procedure from Appendix B.2 of the OSCORE
specification as its most similar contender, KUDOS displays
better security properties and performance, while requiring
fewer message exchanges. KUDOS does not change OSCORE
identifiers, allows preserving CoAP observations, and can be
used also by devices that cannot write to persistent memory.

Finally, we have performed a formal verification of KUDOS
using the Tamarin Prover. Our proof confirms that KUDOS
satisfies its claimed security properties, including keying ma-

terial convergence and keying material confidentiality, also in
the presence of an adversary targeting a KUDOS execution.

Future work will experimentally evaluate and compare the
performance of different key update methods for OSCORE
when running on resource-constrained IoT devices, with par-
ticular reference to the procedure from Appendix B.2 of the
OSCORE specification and the novel KUDOS procedure.
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