

Degree Programme in Computer Engineering

First Cycle 15 credits

Migration from Manual to Automatic
Regression Testing
Best practices for Salesforce Test Automation

REDVE AHMED

Migration from Manual to Automatic
Regression Testing

Migration från manuell till automatisk
regression testning

Best Practices for Salesforce Test Automation

Bästa praxis för Salesforce test automation

Redve Ahmed

Examensarbete inom Datateknik
Grundnivå, 15 hp
Handledare på KTH: Olof Forsberg
Examinator: Ibrahim Orhan
TRITA-CBH-GRU-2023:100
KTH
Skolan för kemi, bioteknologi och hälsa
141 52 Huddinge, Sverige

Sammanfattning

Målet med denna avhandling är att undersöka om det går att automatisera regression

testning för en SaaS-applikation med hjälp av ett serverlöst tillvägagångsätt. Avhandlingen

täcker grunderna inom molnkoncept, mjukvaruutveckling, olika typer av testramverk och

SaaS-applikationer. Avhandlingen går även igenom gamla arbeten som har gjorts inom

området. Rapporten behandlar val av verktyg med åtanke på vad företaget Polestar har för

behov. Testramverket ska kunna utföra automatiska regressionstester på SaaS-applikationen

Salesforce. Resultatet är ett testramverk som kan köra ett antal utvalda tester på Salesforce.

Systemet driftsattes med hjälp av serverlösa Docker containrar på Amazon Web Services.

Avhandlingen täcker även alternativa verktyg som kan användas för testautomation och

även potentiella förbättringsmöjligheter.

Nyckelord
CI/CD, Selenium, Test Automation, Salesforce, SaaS

Abstract

The goal of this thesis is to explore the possibility on if it is possible to automate
regression testing for a SaaS application with a serverless approach. The thesis
covers the fundamentals of the software development lifecycle, cloud concepts,
different types of testing frameworks, and SaaS applications. The report researches
various testing tools that can be used in accordance with Polestar’s needs. The testing
framework must run the existing tests and deliver the results of the tests. The system
must be able to coexist with the testing strategy that is in place today. The result is a
testing framework that can run a number of selected tests on the SaaS application
Salesforce. The system was deployed with serverless docker containers through
Amazon Web Services. The report also covers what a future implementation can look
like and potential improvements.

Keywords
CI/CD, Selenium, Test Automation, Salesforce, SaaS

Acknowledgment

I want to express my sincere thanks to Polestar for giving me the opportunity to
conduct this study. I'm particularly grateful to Axel Sundqvist for supplying the
necessary tools for this thesis.

My gratitude also extends to my colleagues who have been incredibly supportive,
providing constructive feedback throughout this process.

I'd also like to extend my thanks to my supervisor at KTH, Olof Forsberg. His
patience and assistance have been invaluable during this journey.

Redve Ahmed

Stockholm, May 2023

Table of contents

1 Introduction.. 1

1.1 Problem description ... 1

1.2 Goals ... 1

1.3 Boundaries and delimitations .. 1

1.4 Method .. 2

1.5 The author’s contribution to the thesis .. 2

2 Theory and background.. 3

2.1 Software as a service ... 3

2.1.1 SaaS infrastructure ... 3

2.1.2 SaaS security ... 3

2.1.3 SaaS limitations .. 3

2.1.4 Salesforce .. 4

2.2 Software development life cycle ... 4

2.2.1 Testing ... 4

2.2.2 Development operations ... 4

2.3 Cloud concepts.. 5

2.3.1 Infrastructure as a service .. 5

2.3.2 Platform as a service ... 6

2.3.3 Software as a service ... 6

2.3.4 Serverless .. 6

2.3.5 Deploying to the cloud .. 6

2.4 Testing frameworks .. 7

2.4.1 Testing frameworks with Java .. 7

2.4.2 Testing within Salesforce .. 7

2.4.3 Selenium web driver ... 8

2.4.4 Test automation .. 8

2.5 Related works ... 9

2.5.1 A journey from manual testing to automated test generation in an

industry project .. 9

2.5.2 Testing using selenium web driver ... 9

2.5.3 Analysis and design of Selenium webdriver automation testing

framework .. 9

2.5.4 A survey of the Selenium ecosystem ... 10

3 Methods and results .. 11

3.1 Preliminary studies ... 11

3.2 Requirements from the company ... 11

3.3 Assessment of current testing strategy ... 11

3.4 Selection of tools ...12

3.4.1 The use of Selenium ..12

3.4.2 The use of Selenide ..13

3.4.3 Comparison between Selenide and Selenium13

3.4.4 Choosing between Selenide and Selenium ..13

3.4.5 Choosing of TestNG and Jenkins ... 14

3.5 Assessment of cloud providers.. 15

3.6 Testing environment architecture ... 16

3.7 Writing tests .. 17

3.8 Building and deployment of system... 20

3.8.1 Deployment .. 20

3.9 Results ...21

3.9.1 Implementation of framework ..21

3.9.2 Serverless implementation ... 23

3.9.3 Evaluation of test framework ... 23

4 Analysis and discussion ... 25

4.1 Analysis of test framework ... 25

4.2 Analysis of chosen tools and cloud provider.. 27

4.3 Environmental impact ... 28

4.4 Social and ethical impact ... 28

4.5 Economic impact .. 29

4.6 Alternative approaches .. 29

5 Conclusion ...31

5.1 Validation of goals ...31

5.2 Future work ...31

Bibliography .. 35

Appendix ... 39

Appendix A – login page code ... 39

Appendix B – test case #1 .. 39

Appendix C – test case #2.. 41

1 | INTRODUCTION

1 Introduction

As software continues to grow so does the scope of testing for the software. Testing
can be done in many ways to suit the needs of the developers. A form of testing is
regression testing. Regression testing aims to test all code changes in order to ensure
that the existing functionality of the application works as intended. However, this
approach to testing can be demanding and time-consuming due to the need to test
all changes.

1.1 Problem description
Testing is a vital part of any Software Development Life cycle (SDLC). Testing is
conducted to ensure that the software works as intended and to find potential bugs.
Testing of software can be achieved in two ways and that is manual testing and
automated tests. A big problem that many companies face is that Software as a
Service (SaaS) applications do not come with adequate testing tools. This makes
developing in-house solutions for testing SaaS applications a necessity for
accomplishing efficiency and streamlined testing.

The company Polestar has already begun an investigation on which framework will
be the most optimal for use with the SaaS application Salesforce. This thesis aims to
make use of the chosen tools by the company to implement and demonstrate a
testing framework that can be integrated with today’s testing strategy.

1.2 Goals
The goals are the following:

• Examine which cloud providers offer serverless container solutions
• Establish if automatic regression testing can replace manual

regression testing
• Examine whether a serverless approach is suitable for a SaaS application

testing framework
• Determine which test automation tool fits Salesforce best according to

Polestar’s needs
• Develop and write tests with the chosen test automation tool in accordance

with the provided scripts

1.3 Boundaries and delimitations
This thesis will be limited to only regression testing. Another boundary is the current
testing strategy that is in place as this report aims to see if a new testing environment
can be integrated with the current testing strategy. The thesis will only automate two
test cases as most cases are similar when it comes to automating them. The thesis
will only cover Selenium and Selenide thoroughly as these two test automation tools
are within the scope of the company when it comes to test automation tools.

2 | INTRODUCTION

1.4 Method
The method used in this thesis is to do a literature study first in order to gain
knowledge on the best practices for test automation. The literature study will also
include what a SaaS application is and how the cloud works fundamentally. The
approach will then be determined based on the findings made in the literature study.
An implementation will be done with the selected tools and architecture. An
evaluation will be done after the implementation.

1.5 The author’s contribution to the thesis
The investigation, analysis, conclusion, and implementation of the system were done
by the author of the thesis. All the resources such as software and guidance from
Salesforce were provided by Polestar. This thesis is a collaboration between the
author of the thesis and Polestar.

3 | THEORY AND BACKGROUND

2 Theory and background

This chapter includes the necessary theory and background so that the reader can
grasp the research topic. Section 2.1 chapter lays the foundation for what a SaaS
application is and how they work. Section 2.2 will include the history of software
testing and what software testing is while section 2.3 introduces different cloud
concepts. Section 2.4 covers testing thoroughly and different kinds of testing, lastly
section 2.5 covers related work that has been done within the topic.

2.1 Software as a service
Software as a Service (SaaS) has become a very attractive offering for many
companies as it eliminates many blocks from traditional software development [1].
SaaS applications are provided through the internet. SaaS applications are
maintained and updated by the vendor. SaaS applications are delivered through the
internet and therefore only require a functioning internet connection and a web
browser. The applications are accessed through a web browser. This frees users of
complex software installations. SaaS applications are often subscription-based
services as compared to traditional software.

2.1.1 SaaS infrastructure
Vendors handle the underlying infrastructure for instance the database and the
servers [1]. This eliminates the need to constantly update and manage the underlying
IT infrastructure. This allows the companies that adopt a SaaS application to focus
solely on configuring the software to their preference. SaaS applications also
eliminate the need to manage backups, as these features are included within the
different license forms. Scalability is a crucial factor in modern software and SaaS
vendors manage this aspect as the software operates on their infrastructure.

2.1.2 SaaS security
As the internet has gotten bigger and bigger so has the demand for security. Security
is a crucial part of any software and can often be one of the most difficult parts to
develop and maintain [2]. This is also another key area that the vendors take care of
[1]. The vendors take care of the complex security such as hosting the application
securely and making sure that the application follows today’s standards regarding
web application security. With that being said this does not eliminate every aspect of
security from the customer as they are still responsible for customizing the right user
privileges.

2.1.3 SaaS limitations
SaaS applications can still pose some limitations to organisations who are willing to
adopt SaaS applications instead of developing in-house solutions. The main
limitations are the vendors themselves as they are the ones who are in charge of what
functions get implemented [3]. This is also one of the main boundaries to why some
companies are not willing to adopt a SaaS approach as there can be missing
functionality that can be critical to the business. The adaptation of a SaaS application
involves giving up some control. Although this can streamline operations however,
it also means relying on the SaaS provider to keep and provide the right functionality.

4 | THEORY AND BACKGROUND

2.1.4 Salesforce
Salesforce has become one of the leading Customer relationship management (CRM)
systems boasting over 19% in the CRM market share according to Forbes [4]. A CRM
is somewhat of a business strategy that companies can adopt to keep track of
customer interactions and establish new potential customers [5]. A CRM can be
adopted by many different businesses as it helps streamline everything from
marketing and sales. Companies choose to implement a CRM into their business
plan as it is a perfect tool for combining technology and with sales.

2.2 Software development life cycle
The Software development life cycle (SDLC) is a process that is used by developers
to define a systematic approach to software development [6]. This section will cover
how testing is a vital part of the SDLC (section 2.2.1) and how development
operations is a part of the SDLC (section 2.2.2).

2.2.1 Testing
Testing is a vital part of the SDLC and can arguably be one of the most import ones
in the SDLC [7]. The primary goal of testing is to ensure quality and that the software
works as intended. The scope of testing increases alongside the software, this means
that testing can become very complex as the software evolves. This is due to needing
to test more features that gets added to the software.

Software testing can be conducted in two ways and that is manual testing and
automated testing. Manual software testing is when a human manually executes
different test cases and interact with the software [8]. The tester follows predefined
test scenarios to validate that the software works as intended. All the test scenarios
have an expected outcome so that the tester can verify if the feature works as
intended. Manual testing is labour-intensive as it requires a human to perform
repetitive tasks. Automated testing involves using automation software to test
software. Automated testing executes predefined test cases and is meant to replace
manual testing.

2.2.1.1 Regression testing
Regression testing is conducted to verify that newly implemented features does not
disrupt existing features [9]. Regression tests are designed to grow alongside the
program, therefore modifications and iterations are essential to maintaining good
software testing. This form of testing can be seen as one of the last steps before
deployment, as regression testing tries to achieve as much code coverage as possible.
This can make regression testing vital to some companies as this is what ensures
them that their product works as intended. Regression testing can take a lot of time
as the tests themselves can grow very large alongside the software that is being
developed.

2.2.2 Development operations
Development Operations (DevOps) has gained very good momentum within the
software engineering world [10]. DevOps aims to integrate Development and
Operations into one continuous loop while still maintaining an agile workflow.
DevOps also improves continuous delivery and continuous integrations this due to

5 | THEORY AND BACKGROUND

always trying to keep everything within a closed working loop. The DevOps principle
makes use of existing tools and software to achieve the desired workflow.

2.2.2.1 Jenkins
Jenkins is an open-source automation software that can be used to build, test, or
deploy software [11]. Jenkins can be installed in various ways such as using the
systems package manage and through Docker. Jenkins is a tool that allows for
seamless integration with other services through remote triggers such as webhooks.

2.3 Cloud concepts
Understanding cloud concepts and what the cloud can provide has become a very
important aspect of IT in general [12].

The cloud introduces three key services to the users as depicted in figure 2.4. These
three services are Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). There are a handful of more services that has been
introduced alongside the cloud such as Serverless, but these services are mainly a
hybrid of the aforementioned services. All the services are charged accordingly to a
pay-as-you-go model that is provided by the chosen cloud provider.

2.3.1 Infrastructure as a service
IaaS is the service that offers the most customization and control as depicted in figure
2.4. IaaS essentially replaces the need to buy IT hardware and makes the payment
go to a pay-as-go [13]. This means that the people who are using the services are
responsible for configuring the operating system and everything above. IaaS also
helps the companies to scale their infrastructure accordingly as they can just scale
down the unwanted resources.

Figure 2.1 Illustration of as a Service offering (Microsoft, 2023)

6 | THEORY AND BACKGROUND

2.3.2 Platform as a service
PaaS sits in between IaaS and SaaS and allows the users to get a preconfigured
machine with OS and selected middleware installed [14]. A good example of a PaaS
is a database management system as this is preconfigured from the vendors with the
right configure for deployment. PaaS eliminates having to make the choice about
which hardware to use, this can be seen a win compared to IaaS [13,14].

2.3.3 Software as a service
SaaS is mentioned previously in this report (See section 2.1) but this part will cover
on where SaaS places in compared to the rest of three key services [15]. SaaS is the
service that offers users the least amount of control and customization as depicted in
figure 2.4. This service provides users with applications over internet. All the
underlying aspects of this service is handled by the chosen provider.

2.3.4 Serverless
Serverless is a cloud service that was born from the cloud for the cloud [16]. A
serverless approach allows the user to completely disregard the underlying hardware
and infrastructure. This makes serverless a hybrid between PaaS and SaaS.
Serverless does not offer any software it only offers runtime environments. Function
as a Service (FaaS) is one of the more commonly known serverless approaches and
is often the one that is referred to when mentioning Serverless. FaaS allows the
developer to write code in selected language and deploy to the chosen cloud provider.
This code is then managed by the cloud provider [17]. Containers can also be
deployed serverless (see section 2.3.5.3).

2.3.5 Deploying to the cloud
Deployment of applications can be done in many ways with each public cloud
provider offering their similar ways of deployment. Virtual machines and containers
are the most used when deploying to the cloud.

2.3.5.1 Virtual machines
Virtual Machines (VM) are perhaps one of the most traditional ways of deploying
applications besides barebone [18]. A VM is one of the more demanding forms of
virtualization as it requires much more to be virtualized for each running instance of
a virtual machine. A VM requires a hypervisor, followed by an installation of a guest
operating system.

2.3.5.2 Container
A container on the other hand can be easily compared to a VM as the virtualization
looks very similar for both the methods [18]. A container can be seen as a more
lightweight option to a Virtual Machine as it doesn’t require as much resources as a
virtual machine. The container runtime engine is more lightweight when compared
to a hypervisor. A container engine can intelligently distribute resources needed to
each container and each container can be ran on the same engine [19]. Containers
are mainly run as Linux containers, this allows the engine to have a shared operating
system across each container. This makes containers more lightweight as they do not
need to have a separate guest operating system for each container. The container
engine only needs to have the right dependencies for the containerized application

7 | THEORY AND BACKGROUND

to run. A containerized application is in general smaller than an application deployed
on a virtual machine as the virtual machine needs to have a whole operating system
per application. Containers allows for more separation between applications as they
are so lightweight and can be managed very easily through applications such as
docker.

2.3.5.3 Serverless containers
Containers can also be deployed as serverless containers through different cloud
vendors such as Amazon Web Services (AWS), Google Cloud Platform (GCP) and
Azure. Serverless containers removes the need to manage a server which has the
container runtime engine [20]. The container runtime engine is handled by the
chosen cloud provider. The computing recourses are set by the user but can easily be
changed if needed. All the major cloud providers offer similar solutions to serverless
Containers [20,21].

2.4 Testing frameworks
This section will focus on different testing frameworks for different languages and
different applications this is to give context on why testing frameworks are needed
for any modern software or languages. This section will also cover on what test
automation is.

2.4.1 Testing frameworks with Java
Java is still one of the most used languages used according to a stack overflow survey
done in 2022 [22]. There are many different testing frameworks for Java and each
framework has different use cases. TestNG allows developers to have different
configuration files for different test suites and allows for parameterised tests [23].
Frameworks such as TestNG also allow the developer to produce automated reports
on how the various test cases executed.

JUnit is another popular testing framework within Java [24]. JUnit is a very simple
testing framework. JUnit is similar to TestNG in terms of features. The main
difference is that JUnit does not have as many annotations as TestNG does.
Annotations in Java is used to supply the compiler with predefined information.

Both JUnit and TestNG provide test suites but are achieved in different ways. Both
frameworks offer parameterised tests however, this is achieved very differently for
both frameworks. TestNG makes use of XML files as configuration files while JUnit
makes use of classes.

Assertion are often used when writing tests. An assertion is a sort of statement that
is believed to be true [25]. Assertions play a key role in testing as this is used in order
to make sure that the test that has been executed gets the desired outcome. The
assertion method will throw an exception if the desired outcome is not present at the
end of the execution thereby failing the test.

2.4.2 Testing within Salesforce
Salesforce includes a statically typed language which is called Apex, the language has
close resemblance to Java [26]. Apex is mainly used for writing business logic and

8 | THEORY AND BACKGROUND

database procedures. Test classes can be written with Apex however, this does not
allow the developer to write tests that cover the whole codebase. This is due to
Salesforce user interface being built by the vendor and not by the developer. The
HTML and the styling for the website gets generated by Salesforce. This makes
testing difficult as the developer has no control over how the site gets generated. This
has led to various companies creating their own testing frameworks for Salesforce
[27,28]. The main problem with the test frameworks that are on the market is that
they are very expensive. This makes adopting open-source alternatives such as
Selenium, Cypress and Playwright much desired [29].

2.4.3 Selenium web driver
Selenium was developed with the primary goal of automating web browser. Selenium
allows developers to run various kinds of web browsers through the Selenium API
[30,31]. Selenium can use various types of locators to find specific elements in the
document object model and this makes it very suitable for all kinds of web
application testing [27]. There are a variety of selectors in Selenium for instance the
id selector, class selector and XPath selectors. It is up to the developer on which kind
of selector to use. The selectors are very important as they are the one who locates
and interacts with elements with the HTML.

Selenium is supported on a variety of different languages such as Java, C#, Python
and JavaScript this makes it very accessible for any developer [27]. The web driver
additionally supports the ability to wait for a web page to load, thereby emulating
real usage as much as possible. This can be very important as some heavier web pages
tend to take much longer to load then others. Selenium can be used in conjunction
with other frameworks such as TestNG to create a fully-fledged testing framework.

2.4.3.1 Page object model pattern
Design patterns are very common within software engineering and test automation
is no different to that as there are also design patterns here. A very common pattern
is called Page Object Model (POM) and the goal of POM is to abstract different web
pages into classes [32]. This can be compared to objects in object-oriented
programming. POM allows for reusability of different methods across various tests.
This in turn makes the code non repetitive. An example of this can be a login page,
as the login page can be used in a variety of different tests.

2.4.4 Test automation
Test automation was briefly touched upon in this report, but this subsection will
cover on how to transition to test automation through previous done work. It is
important to establish how to make a smooth transition to automated tests.

Test automation is the practice of using automation tools in order to achieve testing
without humans performing them [33]. Test automation aims to replace manual
testing. Test automation can help improve testing speeds and reliability of tests.
However, test automation still requires good precision and good planning in order
to work properly. A poorly planned implementation of test automation can lead to
more maintenance and more costs in the end. This makes it crucial to plan and
implement test automation in the right way. It is important to do an assessment of

9 | THEORY AND BACKGROUND

the current testing strategy in order to see what can be carried over to the new test
automation framework. Test automation can be seen as very difficult in the
beginning of the implementation as this is where the most time is need for it to
function properly. Although this can in the end benefit a company greatly as it helps
decrease the amount of time needed for testing. The tests themselves do need
maintenance as they to evolve alongside the codebase.

Test automation can be seen as a must today as it helps companies to save time
during their workload. Test automation can be well incorporated with today’s scrum
standards.

2.5 Related works
This section will present previous done work that are used in this thesis.

2.5.1 A journey from manual testing to automated test generation in an industry
project

Claus Klammer and Rudolf Ramler [33] discusses on the challenges and difficulties
of migrating from manual testing to automated testing. The authors of the paper
makes an attempt at creating a test automation framework for a GUI application that
is written in Java which ends up working properly. The authors put a heavy
emphasize on that a proper plan is need in order to migrate over to test automation.
This paper also covers the best way to run tests.

2.5.2 Testing using selenium web driver
Paruchari Ramya, Vemuri Sindhura and P Vidya Sagar published a paper [30] on
how to automate web application testing with the help of Selenium. This paper goes
through which tools is to be selected in combination with Selenium in order to
achieve the best test automation framework. This paper discusses the key differences
between test automation and manual testing and why test automation if done right
can replace manual testing.

The implementation resulted in a transition to test automation. This was due to the
benefits that came with the implementation of test automation such as reports for
how tests went and a positive outcome in terms of accuracy for the tests.

2.5.3 Analysis and design of Selenium webdriver automation testing framework
Satish Gojare, Rahul Joshi and Dhanashree Gaigaware wrote a paper [31] that
extensively researched the design of Selenium Webdriver. The authors claim that
Selenium alone is a incomplete web testing tool and concluded that more features
needed to be added for it to become a complete web testing tool. Hence the report
investigated on which tools could be added for alongside Selenium in order to make
it the complete web testing tool. This resulted the authors using TestNG alongside
developing their own functions to make it complete. These tools were screenshot
generation upon failed test as the authors concluded that this would help the
developers to analyze why the test failed.

10 | THEORY AND BACKGROUND

2.5.4 A survey of the Selenium ecosystem
Boni Garcia, Micael Gallego, Francisco Gortazar and Mario Munoz-Orgarnero
released an article [29] in which they did a survey on the Selenium ecosystem. This
survey covered popular tools that are used alongside Selenium such as Jenkins and
Selenide. This survey also covers the most popular languages that are being used for
Selenium, the most popular language according to the survey was Java. This paper
was used when deciding on which frameworks to use.

11 | METHODS AND RESULTS

3 Methods and results

This chapter of the report will cover the implementation of the testing environment
and an assessment of today’s testing strategies. The result will also be presented in
this chapter.

3.1 Preliminary studies
This thesis work started with outlining a plan for how to limit the thesis for it to fit
the time span of the project. This allowed the author to define clear goals for this
thesis project. The thesis work started with doing research around what a SaaS
application is, and what limitations there is with a SaaS product. The articles used to
find information was found through IEEE Xplore, ResearchGate, Google scholar,
Diva and ScienceDirect. Testing frameworks and understanding of how the Software
lifecycle was done in order to create an architecture of the testing environment that
fits the current testing strategy.

It was concluded through the literature study that a migration from manual testing
to test automation is possible [30,31,33].

3.2 Requirements from the company
Based on the requirements provided by the company Polestar, the corresponding
test automation framework that is to be developed should provide the following
features:

• Run automated tests in Salesforce
• Provide results upon completion of tests and send email notifications
• Be able to rerun the tests if desired
• Tests should be easy to maintain
• The test framework should be simple and easy to maintain
• Provide some sort of help to developers if a test case fails

The tests must be written in Java as it closely resembles the programming language
Apex. The tests must be written using the Selenium or a similar tool that is still within
the Java atmosphere. The testing framework should be able to run the current tests
which are being performed manually. The last criteria is that the testing framework
should complement the current working procedures which is scrum.

The implementation should be as cheap as possible as this framework aims to cut
costs as compared to the tools that are available (see section 2.4.2).

3.3 Assessment of current testing strategy
An assessment of the company’s current testing strategy is needed to decide which
tools are going to be used in the test automation. According to documentation
provided by the company, the testing strategy for today’s regression testing is that
they perform all the tests manually after each sprint. Each sprint lasts approximately
two weeks, which means that the regression tests get performed manually two times
a month if nothing goes wrong. The regression tests are performed again if

12 | METHODS AND RESULTS

something does go wrong, this is to ensure quality and that the final product meets
expectations. There are in total 15 different tests today and each test differ very much
in how long time it takes to execute the tests. However, all of the tests do involve the
same actions and these actions are to press certain elements in Salesforce and check
to see if the expected results are present. The test cases that exist today have a clear
expected outcome of every step in the test script. This makes the transition to
automated test scripts smooth as there is no need to make modifications to the
current test scripts.

It is important to outline the current testing procedures and how changes are
shipped to production. A developer first makes changes locally and tests them locally
in order to understand if the changes made gave the desired outcome. The updated
code then gets merged with a testing branch which everybody has access to. This is
where QA tests the changes to see if the changes does what they are supposed to do.
These tests are unit tests and are only meant to test each feature individually. All the
changes then gets merged into the staging branch, this is the last branch before the
production branch. This is where the regression testing is conducted before merging
all the changes into production.

However, the tests that exist today are somewhat limited as adding more tests that
are preformed manually would increase the time required for testing drastically. This
makes the desire to try and adopt test automation even more demanding.

3.4 Selection of tools
The available tools need to be assessed in order for them to be used in the
implementation. This assessment is done in this section of the chapter. The chosen
tools should fulfil the requirements outlined in section 3.2.

3.4.1 The use of Selenium
Selenium was developed for web automation, enabling developers to automate
interactions within a web browser. Actions such as filling out forms, clicking buttons
and extracting data are among numerous actions that can be done with Selenium
[26]. This has enabled developers to use Selenium for testing both static and dynamic
websites. Selenium is widely supported by most browsers making it one of the
industry standards when it comes to web automation. Selenium has a wide
community making it easy to find information regarding Selenium.

Advantages of using Selenium:

• Selenium supports all the programming languages. This allows developers to
write tests with the language they are comfortable with [26].

• Selenium has a large community of developers which are constantly
contributing to its improvement [26].

Drawbacks of using Selenium:

• Selenium requires complex setup as it is the developers who has to download
the browser driver [26].

13 | METHODS AND RESULTS

• No standardised way of waiting for an element to appear or disappear [26].

3.4.2 The use of Selenide
Selenide is a web automation tool that is built on top of Selenium. Selenide was
created in order to overcome the difficulties that come with using selenium. This can
be shown through the implementation of automatic waits in Selenide [34]. Selenide
makes code more readable as it is very concise.

Advantages of Selenide:

• Selenide has built in support for screenshots. Screenshots are taking upon a
test failing [34].

• Less code is required as the Selenide library abstracts away parts of the code
[34].

Drawbacks of Selenide:

• This tool only has support for Java and other languages that run on the Java
Virtual Machine (JVM) such as Kotlin [34].

• Developers choosing to opt for Selenide has less control as the library
abstracts parts away from the developer [34].

3.4.3 Comparison between Selenide and Selenium
Both Selenide and Selenium are great options for web automation. Hence making
them both very viable for any type of web automation project. But the tools do have
some key differences. Selenide in comparison to Selenium does not require the
developer to download browser binary as this is handled by the Selenide library the
first time a test is ran. Many of Selenium features still carry over to Selenide as
Selenide is a wrapper that is built on top of Selenium. Selenium offers very good
community engagement which makes it easier to find solutions to problems that may
occur when trying to write test script. Selenium offers a variety of languages
compared to Selenide which only offers Java and those languages that can on the
JVM.

3.4.4 Choosing between Selenide and Selenium
The choice of Selenide and Selenium ultimately comes down to the developer and
their needs. The company does have certain needs when it comes to the tools as
outlined in section 3.2. One of these being that the chosen tool for web test
automation must be in Java. This makes Selenide and Selenium still viable as both
have support for Java. There are two key outlining’s in section 3.2 that heavily
favours Selenide and these are that tests should be easily maintainable. Tests written
in Selenide requires less code than Selenium thus lowering the complexity of the
code [34]. This is due to Selenide having more built-in functions as suppose
Selenium. Developers are less prone to having to write their own methods, an
example of this is waiting for elements to load this is due to Selenide having built in
wait methods.

14 | METHODS AND RESULTS

The second is that the tool should have some sort of support for developers if the
tests fail. Selenide excels in this area since it has built-in support for screenshots if a
test fails. This can be a big help to developers who are debugging the code as they
can exactly where the test failed. A screenshot can also help when going through old
bugs and can help greatly with bugs that get detected in the future. Selenium’s lack
of a screenshot feature was highlighted in “Analysis and Design of Selenium
WebDriver Automation Testing Framework” [31]. This led the authors to develop
their own screenshot feature that works alongside Selenium. The result of the
implementation resulted developers needing less time to identify errors in the code
ultimately lowering maintenance cost.

A common issue with Selenium is the flakiness of the tests [29]. A flaky test case is
when a test gives inconsistent results despite having the same prerequisite. Flakiness
in Selenium is mainly caused by there being different wait strategies. This can be
mitigated by using a common wait strategy however, this is easier said than done. As
this can lead to more maintenance of the test code due to developers needing to check
each other’s test code. This is where Selenide has a big advantage as Selenide has
default wait methods. A lowered number of flaky tests can also lead to less time spent
on maintenance [34]. This will allow developers to continue develop new tests
instead of spending time on tests that are flaky. Selenide was chosen due to its
promise of reducing flaky tests.

3.4.5 Choosing of TestNG and Jenkins

Earlier work has concluded that TestNG can be great in order to create reports after
tests has been executed [31]. This was also one of the requirements outlined in
section 3.2. The work also concluded that TestNG was designed to overcome the
limitations of JUnit [31]. TestNG has support for parameterised testing which allows
the developer to run the same tests but with different parameters through xml files.
This can be of great use as this enables developers to define pre-set values using
different xml files. TestNG can cover all form of tests where JUnit only is meant to
cover unit tests.

Jenkins was used as it has great support for TestNG and the reports that it produces.
The test code does not need to be pushed to Jenkins, as Jenkins is able to get the
through Git and Github remotely. This makes it simpler as we do not need to
introduce yet another tool. Jenkins also has a feature which delivers the report that
gets generated by TestNG upon completion in the form of an email to selected
receivers. Jenkins is also the most used CI/CD platform for Selenium according to a
paper done 2020 [29].

An alternative solution would be to have tests run locally instead of having them run
in a separate Jenkins instance. This is the most popular choice among developers
who do not opt to run tests in a Jenkins instance [29]. This alternative will not fit
this sort of implementation. Because there is no way to integrate it with the current
DevOps solution which is one of the goals outlined in section 1.2.

15 | METHODS AND RESULTS

3.5 Assessment of cloud providers
It is important to choose the right cloud provider when deploying to the cloud.
Different cloud providers offer different services, and each cloud provider has
different payment plans. The maturity of cloud provider can play a huge role for
many companies as they want to opt for the more established cloud provider. AWS,
Google Cloud Platform and Azure has been researched in this report.

This is where it can be difficult to choose cloud provider as all the major providers
all offer very similar services only with different names. All the aforementioned cloud
providers also have servers in Sweden except for GCP. The closest servers to Sweden
are in Finland in GCP’s case.

The system needs to be easily maintainable as outlined in section 2.3. This greatly
enhances the appeal of selecting a serverless container. This is because serverless
containers abstract away the underlying infrastructure. The requirements for what
the cloud provider is supposed to offer is not that complex for this implementation.
The only service that is needed in this case are serverless containers. A more complex
implementation would have taken other services into consideration.

The offered services can differ from cloud provider to cloud provider. This makes it
crucial to understand what kind of services is needed [35]. Serverless containers was
looked at for this implementation as this would ultimately make development easier.
This is due to serverless containers not needing any provisioning of the underlying
infrastructure (See section 2.3). Serverless containers can be used for this particular
implementation as the main objective of this framework is to be able to do regression
tests on a SaaS application. The use of serverless containers fits perfectly into one of
the requirements from the company which was outlined in section 3.2. The
requirement is that the test framework should be easy to maintain. All the researched
cloud providers do offer a solution for serverless containers [20,21,36].

The security of a cloud provider plays a crucial role when selecting a cloud provider
as stated by the NCSC [37]. The NCSC highlights that it is important to check if the
considered cloud provider works against selected frameworks such as CSA star. All
the aforementioned cloud providers have achieved a level 2 CSA star [38]. A level 2
star indicates that the audit was done by a trusted third party. It is important to look
at what the specific use cases are. This implementation is aimed to towards testing a
SaaS application. It is because of this that the security of the application is not taken
into consideration as this is handled by the vendor. The tests are going to be executed
in a testing branch which is completely isolated from the production branch.

All the aforementioned cloud providers do fit perfectly with this sort of
implementation as all of them do offer the right service for this implementation. All
the cloud providers do also work towards the same frameworks and have the same
certifications when it comes to security [38]. This makes the choice ultimately come
down to price. This is due to all the aforementioned cloud providers offering the
service needed for this implementation and follow the same security frameworks.
Cost does play a significant for this implementation as the goal is to develop an

16 | METHODS AND RESULTS

inhouse framework that has less maintenance cost than the existing ones (see
chapter 1).

 AWS GCP Azure

vCPU

per hour

0.0445 $ 0.0648 $ 0.04660 $

Gbit

per hour

0.0049 $ 0.0072 $ 0.00511 $

Figure 3.1 Serverless container cost for AWS, GCP and Azure in northern Europe
[21,22,39]

Figure 3.1 shows that AWS has the lowest cost for serverless containers. This makes
AWS the best choice for this implementation. It is important to keep in mind that
this choice is due to all the cloud providers satisfying the needs. So either one would
have worked for this implementation.

3.6 Testing environment architecture
The architecture of the system was made around Bitbucket webhooks as this was
going to play a vital role in the system. This meant that the system was going to need
some sort of way to handle an HTTP request to invoke the automatic tests.

This made going with a solution using containers the way to go as containers can still
be considered serverless if deployed in a certain way. AWS Fargate was the service
used to achieve a serverless workflow for the containers as it allows the developer to
completely disregard managing an external server.

The architecture was made to showcase how the system would work. The system
proposed is relatively simple, as this only covers the testing portion of the DevOps
cycle [11]. A workflow sketch was made to get an overview of the desired system.

The proposed flow:

1. Changes are pushed to the regression branch from the QA branch. A
branch is an separate version. This is due to the current testing strategy as
all changes need to go through unit tests before being merged in to the QA
org.

2. Bitbucket then picks up that there has been changes in the regression, this
in turn makes Bitbucket send a http request to trigger the tests.

3. The tests get pulled from a github repository.
4. The tests then gets executed.
5. An email notification gets sent to selected receivers with the results.

17 | METHODS AND RESULTS

The system proposed is depicted in Figure 3.2. This flow shows how the tests get
triggered and what happens when a test fails or succeeds. This flow aims to mirror
the manual process as much as possible was mentioned in section 3.3.

Figure 3.2 was inspired by a workflow that was depicted in “DevOps: A Historical
Review and Future Works” [11]. However, the workflow depicted in “DevOps: A
Historical Review and Future Works” was made for traditional web applications.
Traditional web applications involves stages such as deployment and building the
whole web application. Changes needed to made as SaaS applications do not need
any build or deployment this is due to how SaaS applications works.

The Jenkins instance was deployed as a container through AWS Fargate. Persistent
storage was not configured as this was used as a demo, to showcase how a complete
testing framework can look like for Salesforce with a serverless approach.
Configuring persistent storage is recommended for saving configs and saving files in
general if the container needs to be redeployed. The Jenkins instance will first be run
locally to build and run the tests. This is a crucial step as the tests need to behave in
the expected way.

3.7 Writing tests
The test scripts were provided by the company. Only two of the available tests were
chosen to showcase how the final implementation can look like. This is due to the
tests involving very similar steps. This made it more viable to only write two tests
instead all of them. This was also done in order to fit the timeframe of the project.
However, the choice of only writing two out of the available tests may lead to
inconclusive results.

The choice of web browser is important as highlighted in “A Survey of the Selenium
Ecosystem” [30]. Although this can be disregarded as it is the vendors that handle
all the underlying infrastructure for the web application, this includes web browser
compatibility.

The two chosen tests is among the 15 regression tests that get manually performed
every two weeks. Testcase #1 aims to test if support staff and admins can create client
accounts. As well as sending an invitation to the created account. The desired

Figure 3.2 Workflow for testing framework

18 | METHODS AND RESULTS

outcome is that the text “YOUR FLOW HAS FINISHED” should appear after sending
the invitation to the user. This test is deemed unsuccessful if the text “YOUR FLOW
HAS FINISHED” does not appear after sending an invite. Test case #2 aims to test if
two accounts can be merged. Test case #2 can be broken down into the following
steps:

1. Create two new accounts in the Salesforce environment.
2. Create one order that are related to each account.
3. Move one of the orders from one account to the other.
4. Merge the two accounts and check if both orders are found within the merged

accounts.

The expected outcome if this test case is that the new merged account should have
both the orders. This test is deemed unsuccessful if the merged account does not
have the two orders.

It is important to first perform the test script manually before developing automatic
scripts for them. The knowledge of which buttons that needs to be clicked is
important as this is the basis to automating the tests [27]. The developer console in
Google Chrome was utilized in order to find the right html elements to click on.

Figure 3.3 shows an example of how to use the developer console to find the right
HTML element. An XPath is one of the many locators that can be used when
searching for elements in an HTML document. The XPath locator is the most
complex locator that can be used with HTML [35]. This makes the use of other
locators much more desirable as they are not as complex as the XPath locator.
However, other locators such as ID and classes cannot be used for this
implementation. This is due to how Salesforce generates their HTML. The developer
of the platform does not have any control over how the HTML gets generated. This
raises the complexity of locators for Salesforce.

Figure 3.3 Example of XPath using Google Chrome

19 | METHODS AND RESULTS

Both test cases were performed manually first in order to understand what the tests
actually did and to identify which buttons to press. This also helped with identifying
common pages that both the test cases used. The login page to the Salesforce
platform was used by both test cases. Each induvial click needs a corresponding
XPath, it is therefore important to test the XPaths in the developer console while
developing the tests. It is therefore important to breakdown the test scripts into
different steps. A developer then writes the corresponding XPath in Selenide with
the help of the XPath locator function. It is then up to the developer on what action
to perform.

Figure 3.4 is an example of how the XPaths are used in Selenide. The writing of the
tests involves writing different XPaths. Figure 3.4 also showcases different actions
such as clicking on an element and setting a value in an input field. The different
XPaths are shown in Figure 3.4. Each line in Figure 3.4 is a separate click. Both the
test cases are written in a similar manner. The main problem with writing tests using
any sort of web automation tool is the time it takes to write the test [27]. This problem
also gets enlarged when trying to write tests for Salesforce due to the nature of how
Salesforce sites gets generated. The tests should be periodically executed, this is done
in order to assure that the tests do what the developer wants it to do.

The login page was made into a separate class following the POM design pattern.
This enhances the code’s reusability, as it can be used across various test cases [32].
The code for the login page can be found in appendix A. This code was used in both
test case #1 and #2.

The Selenide code for both test cases had to be constantly executed under
development. Claus Klammer and Rudolf Ramler highlighted the need to test the test
code during development this was to ensure the correct expected results [33].

The code for the two test cases can be found in appendix C and D. It is important to
highlight the frequent checks that are made within the test code. This is to
minimalize tests that fail due to inconsistencies such as browser timeouts. The test
lastly gets validated by inspecting if the desired element exists in the HTML. The test
is deemed unsuccessful if the element does not exist. It is important to note that the
test code only works with the company’s Salesforce platform. However, the test code
can be used as inspiration when trying to automate similar SaaS applications such
as Salesforce. The tests are ran with the command “mvn clean test” this starts the
chosen browser and run the test accordingly to the code.

A problem was encountered during the development of the chosen test cases. The
problem is that Salesforce forces multi factor authentication (MFA) when logging on

Figure 3.4 Example of XPath in Selenide

20 | METHODS AND RESULTS

from an unknown Ip address. Two solutions were established, one of them being to
access the email that has been sent through the automated test. However, this can
be somewhat complicated as email providers tends to also force MFA, meaning that
this outcome is not ideal for this situation. Another solution is to whitelist the IP
address in the Salesforce application before running the test. This is a much better
way to approach this as the docker container can be set a static Ip address. Although
this restriction does not allow for something like Github Actions or Circle CI unless
selfhosted runners are deployed. As it would be quite inefficient to whitelist all
Github or Circle CI’s public IP addresses, this also creates a security risk the IP
addresses sometimes changes, and this would also allow for unwanted users to
access the application.

3.8 Building and deployment of system
Docker was used to create an image that could be used when deploying to AWS.
Docker was also used to test the system locally before deployment.

The Dockerfile that was created for deployment is depicted in Figure 3.5. This base
image is pulled from Jenkins. After that Google Chrome gets installed as this is the
chosen web browser.

It is important to expose port 8080 when running the image as this is the port that
Jenkins is listening to when receiving requests. The test code was uploaded to Github
so that it could be accessed remotely with Jenkins.

An access token to Github was created as the repo was private. The access token only
needs read rights as Jenkins is not going to be performing any changes in the test
code. The docker container was ran in order to set everything up in Jenkins. Maven
was used to build and run the tests. The commands used were “mvn clean test” was
used for triggering the tests. A report is generated when the tests have been executed
which are then picked up by Jenkins to showcase how tests went.

3.8.1 Deployment
The deployment was made through AWS elastic container service (ECS) as deploying
the tests as a FaaS was not suitable for this type of implementation. The first part of
the deployment was to create a container repository in AWS so that the container
image could be uploaded to AWS. This could also be achieved using any other

Figure 3.5 Dockerfile for Jenkins with Google Chrome

21 | METHODS AND RESULTS

repository for hosting container images although this would require some sort of
authentication to that repository.

The container image was pushed to the container repository which was set up using
the AWS command line interface (CLI). Certain cloud providers have different
approaches on how to deploy containers serverless, this report will cover on how the
deployment is done through AWS.

A ECS cluster needs to be defined first, a cluster can be seen as a group that groups
together all services, tasks and configurations. This is also where the network is
defined. The default virtual private cloud (VPC) network was chosen as the AWS
account had no prior deployments. A task definition needs to be created. A task
definition is used as a template for configuration of the Fargate instance.

An elastic load balancer was created in order to capture all application traffic and
distributes them to the desired location. This is needed to send requests to the
container instance. This is also where HTTPS was setup, by creating a self signed
certificate. This means that elastic load balancer will listen to everything on port 443
and then redistribute them to port 8080 within our container instance. The elastic
load balancer gets a randomly generated CNAME which is the only point of internet
facing source. This makes it quite easy to achieve encrypted traffic as all traffic within
AWS does not need to be taken account for.

The container was deployed using the task definition that was created. The load
balancer was put on the cluster so that all traffic on port 443 gets redistributed to
port 8080 on the container. The Jenkins instance could then be accessed through a
web browser by going to the URL that was provided by the load balancer.

3.9 Results
This section will showcase the deployed framework as well assess if the goals outlined
in section 1.2 were fulfilled.

3.9.1 Implementation of framework
The deployed framework followed the architecture that was proposed in section 3.6.
Figure 3.2 was the workflow that was implemented. This workflow follows the exact
same steps as the workflow in section 3.6. Bitbuckets webhook function was used to
trigger the tests [40].

The implemented flow did as following:

1. Changes are pushed to the regression branch from the QA branch. A
branch is an separate version. This is due to the current testing strategy as
all changes need to go through unit tests before being merged into the QA
org.

2. Bitbucket then picks up that there has been changes in the regression, this
in turn makes Bitbucket send a http request to trigger the tests.

3. The tests get pulled from a github repository.
4. The tests then gets executed.

22 | METHODS AND RESULTS

5. An email notification gets sent to selected receivers with the results.

AWS was chosen as the cloud provider however, GCP and Azure could have been
used as well. The choice ultimately came down to pricing as all the aforementioned
provided a service for serverless containers. Although it is important to carefully
research on what services may be needed in the future. This specific implementation
only needed to utilize serverless containers, this is the reason as to why other services
were disregarded. Cost can be considered as one of the main reasons as to why
companies are not willing to adopt Salesforce automation tools that are already out
on the market. This makes AWS the best choice for this specific implementation as
it also follows the company’s needs outlined in section 3.2.

Two out of 15 tests were chosen for this implementation, this was due to all the tests
involving similar steps in terms of developing automized tests for them. The test code
can be found in the appendix section of the report. Selenide proved to be a very nice
tool for test automation as it had very good built-in support for waits. The tests were
very robust in terms of not failing due to browser timeout. A report gets generated
once every test has been executed. The report can be viewed in Jenkins, a separate
HTML report also gets generated. The report is generated with the help of TestNG,
parameters are also listed in the report. Figure 3.6 is a generated report for test case
#1.

Figure 3.6 shows an example of a report that is generated for a successful test. The
test report generated also shows which parameters were used for the different

Figure 3.6 Generated report for test case #1

23 | METHODS AND RESULTS

methods. The report generated shows that test case #1 takes approximately 30
seconds this is much faster as supposed to manual testing. Test case #1 takes
approximately 15 minutes to perform manually, this was discovered when
performing the tests. However, all the fifteen tests were not automated. This does
lead to an inconclusive result as all the tests were not automized. This was due to the
timeframe of the project. As it can take quite some time to write robust tests and
stable tests. This is ultimately why only two out of 15 tests were chosen for this thesis
project. The test coverage can also expand with the help of a testing framework, tests
are limited today due to how long time they to perform manually. Higher test
coverage can ultimately help the development team save money and time.

A stack trace gets shown every time a test fails however, the stack traces can be
somewhat difficult to understand. This is where screenshots upon failure come in as
this can help developers and staff to identify the error a lot quicker.

The testing framework achieves consistency across the two tests. The tests
themselves will always run in a similar manner most of the time. Selenide did not
eliminate flakiness of the tests completely. Tests do still fail from time to time, this
can be due to many different reasons. However, the two test cases takes about 30
seconds each to execute. So, a developer can rerun the tests quickly if a test fails due
to flakiness. This is one of the bottlenecks that was discovered after writing the tests.

3.9.2 Serverless implementation
The framework was deployed using a serverless approach. AWS Fargate was chosen
as it follows a serverless principle (see section 2.3.5.3). Salesforce as a website does
have some limitations when trying to access it from a new IP address. This can make
it quite difficult when trying to deploy a testing framework using a serverless
approach. However, this was fixed by deploying the serverless framework with use
of an static IP address. The service used for this is called Elastic Load Balancing. An
IP address can be whitelisted in the Salesforce platform. This will allow for incoming
traffic from that specific IP address without triggering the MFA.

3.9.3 Evaluation of test framework
The result of this implementation is a testing framework that can run two out 15 test
cases. The implementation takes a serverless approach as the framework was
deployed with Fargate through AWS. The tests themselves were written with
Selenide which gives the developer the ability to emulate human interactions with a
web browser. This testing framework can be used and integrated with the company’s
current testing strategy. However, all the current tests needs to be automized for it
to truly replace the current manual workflow. This implementation is a beginning to
fully automized regression tests for the company’s workflow.

The test framework allows developers and quality assurance personnel to quickly
identify bugs and unwanted features. This is made through the use of screenshots.
The tests themselves are performed much quicker when they are automized as
compared to manual testing.

24 | METHODS AND RESULTS

The framework can also be used to store historical data of the test results. Every
report can get saved within AWS. This can enable developers to quickly identify
solutions to errors that has occurred previously.

25 | ANALYSIS AND DISCUSSION

4 Analysis and discussion

This chapter evaluates the outcome and discusses if a serverless approach is best
suited for this type of implementation. Alternative methods of deployment will also
be discussed. Section 4.3 and 4.4 evaluates the social and ethical impact of the
implementation as well as the environmental impact.

4.1 Analysis of test framework
It is important to carefully plan and analyse which parts of the development process
that is going to be affected by changes when considering test automation. This is one
of the reasons as to why regression testing was explored. Regression testing gets
done every two weeks however, it is very time demanding due to it being of the most
crucial steps in the development process.

One of the biggest challenges that was discovered was the amount of time that
needed to be spent on writing the tests. Salesforce is a very difficult platform to write
tests for as it generates very complex HTML code. The use of tools for writing
locators was used however, it generated very unreadable code due to the complex
structure of the HTML. The outcome of this implementation shows that one of the
biggest drawbacks with test automation, is the amount of time and preparation is
needed to implement a proper test framework. One of the most demanding parts in
test automation is the actual writing of the test scripts. The automated tests can slow
down the development process if written they are written poorly. One of the
highlighted ways to write good tests is to enforce constant checks such as checking if
certain elements on the web page has disappeared.

The choice of only automating two out of the 15 available tests does however, leave
to an inconclusive result. The result could have been different if all 15 were
automized. However, this could have led to unstable tests as the tests themselves do
take very long time to write. This was ultimately done to fit the time span of the
project.

The biggest advantage of test automation is that if done correctly can save
tremendous amount of time in the long run. An example of this is test case #1 as it
takes 15 minutes to perform it manually and 30 seconds to run it with Selenide. The
results indicate that the workforce needs to shift towards maintenance of the test
code if test automation is desired. Although regression tests does not need to be
changed every iteration of the code as the main point of regression testing is to test
if existing functionalities works as intended (see section 2.2.1.1). This means that the
test code does not need to be updated often. This is one of the strong advantages of
adopting test automation for regression testing.

Another advantage is that automatic tests ensures the developers consistency across
the tests. The human factor gets taken away with automatic testing. However,
manual testing can still be preferred over automatic testing sometimes. Manual
testing is very useful for testing functionality that needs to get tested only once. It
takes more time to develop a automatized test rather than simply doing a single test

26 | ANALYSIS AND DISCUSSION

once. Test automation is useful when the developer wants to rerun the same tests
multiple time. However, manual testing does not get completely obsolete as manual
testing is still needed in order to develop automized tests.

Manual testing in compared to automatic testing does not need as much preparation.
Manual testing can be heavily favourable for applications that are not going to be so
long lived. It can also be preferable during early stages of development, as this will
allow the developers to develop that they want first.

The choice of test case #1 and #2 does set a good example that test automation can
be achieved within Salesforce. However, it also does showcase some poorly written
XPaths. Some of the XPaths could have been shorter and this would in turn have led
to more readable code. This is a result of inexperience as a developer does get better
over time and starts to develop their own style of writing tests.

The main problem with automating a SaaS application is that developers do not have
any control over how the HTML is generated. This makes for quite a challenge when
writing scripts for Salesforce. The use of id as locators is rendered useless as the ids
in the HTML get generated each time when accessing the sites. This can make for
quite complex XPath locators which are hard to read. This requires the developer to
write locators that are sustainable. Sustainable locators are locators that are not
susceptible to page changes. Locators mainly get affected by Salesforce updates that
change the underlying HTML code. A workaround for making the code more
readable is to follow the POM pattern. This allows for more readable code for
developers who are not used to reading web automation code. There are XPath
generators that a develop can use. This was tested in during implementation
however, the XPaths that were generated by the generator were very complex and
unreadable. This due to how complex the Salesforce HTML code is. XPath generators
can be used when the HTML is not that complex. The time needed to develop an
automized test would have gone down drastically if the generators would have
produced good XPath.

A potential improve that can be done to a similar project is not focusing on the
deployment of testing framework. Instead, only focusing on first writing all the tests
and potentially creating new ones. This can result in a more complete evaluation of
the current testing strategy that is in place today. This would also allow for a more
optimal testing strategi that is aimed towards test automation.

A serverless approach was still adopted, even though FaaS was not a suitable
candidate for this type of implementation. The results indicates that a serverless
approach using containers is very good as it reduces maintenance and labour of IT
hardware. In comparison to deploying the test framework via a VM as this need more
resources and configuration of a container runtime environment.

The serverless approach can be benefitable economically compared to a standard
approach. This is because the users get charged hourly and for time of use. The report
concludes that a serverless approach works perfectly for this sort of load balance.
This due to the fact that the tests will only need to be around 3 times a month.

27 | ANALYSIS AND DISCUSSION

Selenide does work well with Salesforce if the developer writes tests that are stable.
A drawback of Selenide or any other web automation tool for that matter is that
writing tests can be very time consuming. The tests themselves are also very
dependent on how the developer writes them as there no standardized way to write
tests.

Some key takeaways from this specific implementation is that planning is needed for
adaptation of test automation. Time and effort shift towards development of
automized tests instead of manual testing. This can be seen as one of the drawbacks
as testing framework introduces yet another code base to take care of, apart from the
application. The testing framework needs to be taken care as the application grows
larger. However, small changes are needed to be made to test code as regression tests
do not change drastically.

Implementing a testing framework can be challenging and complex due to how the
tests are written. This was showcased in the test code in the appendix, some of the
locators do tend to become quite complex. The testing framework does work well in
terms of being able to rerun tests on demand. This is one of the benefits of adopting
test automation. This allows the developers to fix errors that may occur during the
regression testing and then rerun the tests much faster than doing it manually.

4.2 Analysis of chosen tools and cloud provider
It is important to consider all tools of testing for the selected SaaS application. This
is because different SaaS applications have different testing frameworks that are
already on the market. Salesforce just happen to not have so many compelling ones
and this makes it more desired to build an inhouse solution for test automation. The
implementation used Selenide which is one of many options. An alternative strategy
may be to utilize dedicated testing software such as Provar, that is specifically
designed for Salesforce. Alternatively, the adoption of a JavaScript framework like
Cypress could also be a viable solution. Selenide fits in very well with the current
developers as it built with Java. This played a key role as Java is very similar to
Salesforce own language which is Apex. Java also allows for integration with testing
frameworks such as TestNG and Junit.

The use of Selenide helps us to write more concise tests. The tests tend to be more
readable when going with Selenide compared to Selenium. Selenide also provides
browser management, which makes it easier to maintain the tests. As it always runs
on the browser version that is installed on the machine. This in compared to
Selenium where you must supply a browser binary. Selenide also allows to set a
global timeout which is very useful instead of having to specify each time that a
method is called with Selenium. This makes for less repetitive code as well. Selenide
has built in support for screenshot which can be very useful when having to debug
what went wrong. This can be especially helpful as developers are not able to see tests
being performed.

Flakiness of the tests still remain a problem despite using Selenide. Flakiness cannot
be totally avoided when developing automized tests for web applications as there
many factors that can affect the tests. This is something to take consideration when

28 | ANALYSIS AND DISCUSSION

adopting test automation. However, flakiness was reduced after deploying the
testing framework to the cloud. Flakiness was most prevalent when developing the
tests locally this can be due to hardware being limited. This does make some tests a
bit more uncertain. The advantage with test automation is that it takes significantly
shorter time to run them, so the solution is to just rerun the test that failed again.
The difficult part about flakiness is that it can be difficult to find out if the test failed
due to flakiness. However, a developer can quickly identify this with the screenshots
that gets taken if a test failed.

The choice of cloud provider can be very critical and important to a company. This
thesis did not cover every aspect of how to choose the best cloud provider. The choice
of cloud provider can often lead to vendor lock in if the choice is not made right. A
good example of this if a company wants to adopt an Active Directory later down the
line. As Active Directory is a service that is only available on Azure [36]. This specific
implementation only needed a service for serverless containers. This makes all the
cloud providers very optimal for this sort of implementation. However, it is
important to look at what could be needed down the line in terms of services.

4.3 Environmental impact
The environmental impact can be significantly reduced when opting to go for a
serverless approach. The serverless approach allows the developers to opt for a more
dynamic allocation of resources instead of having to occupy an x number of resources
always. The resources can be dynamically scaled, meaning that the application or the
system will not suffer from insufficient amount of resources if maintained properly.
The developer can always choose to have a minimum number of cores and ram for
the application. The serverless approach also helps us to disregard the need to take
care of servers. This means that the maintenance is handled by the cloud providers
such as GCP, Azure and AWS. Adopting a serverless approach is more
environmentally sustainable compared to the traditional methods. The cloud
providers have centralized management for their own server meaning that they are
the ones who are responsible for disposing their servers. Servers still become e-waste
by the end of their lifespan, so e-waste does not necessarily go away just because
serverless was the chosen method of deployment. But the larger companies do have
the resources and recycling tactics to dispose of the e-waste correctly. Compared to
individuals and smaller companies who does not have the adequate resources. It was
concluded that deploying to the cloud is more environmentally friendly through the
findings in the report.

4.4 Social and ethical impact
The implementation of test automation can vastly increase productivity and put end
to repetitive tasks regarding testing. There are various amount of tests that are
performed manually with these being the regression tests. This leaves much to be
desired in terms of automation as these tests do not get changed all too often. The
implementation of automated tests can help ensure the developer that the tests are
performed as intended. The human factor does not come in to play when opting to
adopt automated tests. A big factor to consider here is that the tests need to be

29 | ANALYSIS AND DISCUSSION

written properly to get the desired outcome. Automated tests can help with detecting
issues with releases much faster than manual testing as it takes less time to test. This
in term can lead to less mistakes happening when deploying and reducing the level
of stress when trying to complete a deadline. The scope of quality assurance generally
goes up if the test automation is implemented correctly.

Although one question still surfaces when doing any sort of automation
implementation and that is who is to blame if anything goes wrong? With the help of
the report and through studies it can concluded that this depends on the situation.
It is important to set up routines for when a test fails for example. The key point is
to identify why the test failed. The test can fail due to flakiness, or changes made in
the system that breaks the test. Some failures can be related to the test developer and
some failures can relate the system developer. Establishing comprehensive
guidelines in advance is imperative to effectively address any issues that may arise
with the implementation.

4.5 Economic impact
Test automation as supposed to manual testing does have some changes when it
comes to the economical aspect. Perhaps the biggest change is that test automation
requires more upfront costs compared to manual testing. This is due to the need to
develop a new testing strategy that is aimed towards test automation and developing
the tests themselves. Test automation does require some time before being able to
properly utilize it. The upfront costs are mostly the development and
implementation of the testing framework. Infrastructure costs can vary depending
on how the company implements the testing framework. An on-premises
implementation requires more upfront cost as there will be a need to buy the
hardware. Manual testing only requires test scripts and personnel to perform the
tests scripts. Manual testing shifts the cost towards personnel costs as it requires
personnel to perform the manual tests. Whereas test automation requires the
company to hire personnel who put the testing framework in place and maintain it.
Maintenance is needed for the test automation framework to work overtime.
However, maintenance of the testing framework is rather low once the test code is in
place. This is due to the nature of regression testing as regression tests alter slightly
from release to release. Test automation can in the long run help companies
financially if they are willing to adopt test automation. The testing scope of the
software can easily become much larger thus ensuring that no bugs are found in
production. This results in developers being able to focus on new features instead of
fixing broken features. This also allows quality assurance personnel to work with
other tasks rather than testing.

4.6 Alternative approaches
An alternative approach to automatic regression testing can be to automate unit
testing. This sort of implementation can have varied outcome depending on who is
implementing it. This is because unit tests are often smaller and do not require as
much line of code. Although unit testing with Selenium or Selenide can be achieved.
However, this is not recommended as unit tests tends to be performed 2 times at
most. This is not the same for regression testing as the same tests gets used over and
over with small iterations [31].

30 | ANALYSIS AND DISCUSSION

Another approach can be to use a JavaScript framework aimed for web testing
instead of a tool that is based on Selenium. Although the major JavaScript
frameworks tends to suffer browser compatibility issues according the authors who
did a survey 2020 [29]. Although this would not be a problem for Salesforce test
automation as it is the vendors who are doing the browser compatibility tests and
not the users. The JavaScript frameworks works very similar to Selenium and
Selenide. Both frameworks use the same sort of locators. The use of JavaScript
frameworks does not eliminate the hassle of writing good locators in Salesforce.

31 | CONCLUSION

5 Conclusion

As the SaaS industry continues to grow so does the implementations of SaaS
products. This makes testing a vital part of any SaaS product implementation. This
thesis aim was to research the best practices for doing test automation within a
specific SaaS application. The thesis furthermore covers if a serverless approach is
viable for a testing framework that is designed for SaaS applications.

5.1 Validation of goals
This section covers if the goals presented in section 1.2 were met. The goals were the
following:

• Examine on which cloud providers offers good serverless solutions
• Establish if automatic regression testing can replace manual

regression testing.
• Come to a conclusion on if a serverless approach is suitable for a SaaS

application testing framework.
• Determine which test automation tool fits Salesforce best according to

Polestar’s needs.
• Develop and write tests with the chosen test automation in accordance with

provided scripts.

All the goals were met except “Establish if automatic regression testing can replace
manual regression testing”. This is because only two of 15 tests were chosen. This is
because of the time frame for the project and that there was only one author who did
this thesis work. However, the tests for Salesforce are very much alike this is because
they mainly involve triggering buttons on the website and waiting for a result.
Although all the tests should be automated in order to get a more accurate result.
However, the code that was developed for this implementation can be used as
inspiration for other test automation projects.

5.2 Future work
Due to there not being any testing strategy for automation testing, the project could
not gather how much time was going to be saved with implementing a test
automation framework. This can be quite interesting as getting data on how the
testing time affects the current development procedures today. The project could
have greatly benefited from a testing strategy that was aimed towards automation
testing. A testing strategy should be in place for future projects to succeed. Another
great point is to discover the SaaS applications API more and try to integrate it with
the testing framework. This would allow for database queries which could help
reduce the time needed for tests.

FaaS is still not completely ruled out for this sort of implementation although it
would look very different. Openfaas can be seen as a good way for this sort of
implementation. As Openfaas allows for complete control on how long the functions

32 | CONCLUSION

can run. This in turn can help to solve the biggest hurdle with FaaS for this type of
implementation. Openfaas would although require significantly more configuration
and it would look completely different to the project that was covered in this thesis.
This solution would also allow the functions to bind to a specific IP address.

34 | BIBLIOGRAPHY

BIBLIOGRAPHY

Bibliography

[1] S. Aleem, F. Ahmed, R. Batool and A. Khattak, Empirical Investigation of Key
Factors for SaaS Architecture, in IEEE Transactions on Cloud Computing, vol. 9, no.
3, pp. 1037-1049, 1 July-Sept. 2021, doi: 10.1109/TCC.2019.2906299.

[2] T. Yacob, Securing Sensitive Data in the Cloud: A New Era of Security Through
Zero Trust Principles, Diva-portal.org, 2023. Available from: https://kth.diva-
portal.org/smash/get/diva2:1739157/FULLTEXT01.pdf

[3] S. Bibi, D. Katsaros and P. Bozanis, Business Application Acquisition: On-
Premise or SaaS-Based Solutions?, in IEEE Software, vol. 29, no. 3, pp. 86-93,
May-June 2012, doi: 10.1109/MS.2011.119.

[4] Columbus L. “Salesforce now has over 19% of the CRM market [Internet]”.
Forbes. Forbes Magazine; 2019 Available from:
https://www.forbes.com/sites/louiscolumbus/2019/06/22/salesforce-now-has-
over-19-of-the-crm-market/?sh=5ab874fe333a
[cited 2023 Mar 24].

[5] Anshari, Muhammad & Almunawar, Mohammad Nabil & Lim, Syamimi & Al-
Mudimigh, Abdullah. (2018). Customer Relationship Management and Big Data
Enabled: Personalization & Customization of Services. Applied Computing and
Informatics. 15. 10.1016/j.aci.2018.05.004.

[6] R. Kneuper, Sixty Years of Software Development Life Cycle Models, in IEEE
Annals of the History of Computing, vol. 39, no. 3, pp. 41-54, 2017, doi:
10.1109/MAHC.2017.3481346.

[7] R. Silva, P. Perera, I. Perera and K. Samarasinghe, Effective use of test types for
software development, 2017 Seventeenth International Conference on Advances in
ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 2017, pp. 1-6, doi:
10.1109/ICTER.2017.8257795.

[8] C. Klammer and R. Ramler, A Journey from Manual Testing to Automated Test
Generation in an Industry Project, 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), Prague, Czech
Republic, 2017, pp. 591-592, doi: 10.1109/QRS-C.2017.108.

[9] W. E. Wong, J. R. Horgan, S. London and H. Agrawal, A study of effective
regression testing in practice, Proceedings The Eighth International Symposium
on Software Reliability Engineering, Albuquerque, NM, USA, 1997, pp. 264-274,
doi: 10.1109/ISSRE.1997.630875.

[10] M. Gokarna and R. Singh, DevOps: A Historical Review and Future Works,
2021 International Conference on Computing, Communication, and Intelligent
Systems (ICCCIS), Greater Noida, India, 2021, pp. 366-371, doi:
10.1109/ICCCIS51004.2021.9397235.

https://www.forbes.com/sites/louiscolumbus/2019/06/22/salesforce-now-has-over-19-of-the-crm-market/?sh=5ab874fe333a
https://www.forbes.com/sites/louiscolumbus/2019/06/22/salesforce-now-has-over-19-of-the-crm-market/?sh=5ab874fe333a

36 | BIBLIOGRAPHY

[11] Jenkins Documentation [Internet]. Jenkins. [cited 2023 Mar 30] Available
from: https://www.jenkins.io/doc/.

[12] What is Cloud Computing? Cloud Computing Dictionary [Internet]. Microsoft
Azure; [cited 2023 Mar 30].Available from: https://azure.microsoft.com/en-
us/resources/cloud-computing-dictionary/what-is-cloud-computing#cloud-
computing-models

[13] What is IaaS? Cloud Computing Dictionary [Internet]. Microsoft Azure; [cited
2023 Mar 30]. Available from: https://azure.microsoft.com/en-
ca/resources/cloud-computing-dictionary/what-is-iaas/

[14] What is PaaS? [Internet]. Microsoft Azure; [cited 2023 April 2]. Available
from: https://azure.microsoft.com/en-ca/resources/cloud-computing-
dictionary/what-is-paas/

[15] What is SaaS? [Internet]. Microsoft Azure; [cited 2023 May 24]. Available
from:
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-
is-saas/

[16] What is serverless? [Internet]. Red Hat; [cited 2023 April 2]. Available from:
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless

[17] AWS Lambda. [Internet]. Amazon Web Services; [cited 2023 April 4].

Available from: https://aws.amazon.com/lambda/

[18] H. Eslahi-Kelorazi, F. Movahedi, and H. Eslahi-Kelorazi, Identification of
some factors affecting the adoption of cloud computing in the construction
industry, 2016 3rd International Conference on Knowledge-Based Engineering and
Innovation (KBEI), Tehran, 2016, pp. 127-132. doi: 10.1109/KBEI.2016.7899408.

[19] What is a Container? [Internet]. Docker; [cited 2023 Apr 10].Available from:
https://www.docker.com/resources/what-container/

[20] AWS Fargate [Internet]. AWS; [cited 2023 May 24]. Available from:
https://aws.amazon.com/fargate/

[21] Container Instance [Internet]. Azure; [cited 2023 May 24]. Available from:
https://azure.microsoft.com/en-us/products/container-instances/

[22] Developer Survey 2022 [Internet]. Stackoverflow; [cited 2023 Apr 27].
Available from: https://survey.stackoverflow.co/2022/#technology

[23] TestNG Documentation [Internet]. TestNG; [cited 2023 Apr 27]. Available
from: https://testng.org/doc/

https://www.jenkins.io/doc/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#cloud-computing-models
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#cloud-computing-models
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#cloud-computing-models
https://azure.microsoft.com/en-ca/resources/cloud-computing-dictionary/what-is-iaas/
https://azure.microsoft.com/en-ca/resources/cloud-computing-dictionary/what-is-iaas/
https://azure.microsoft.com/en-ca/resources/cloud-computing-dictionary/what-is-paas/
https://azure.microsoft.com/en-ca/resources/cloud-computing-dictionary/what-is-paas/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas/
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://aws.amazon.com/lambda/
https://www.docker.com/resources/what-container/
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-us/products/container-instances/
https://survey.stackoverflow.co/2022/#technology
https://testng.org/doc/

BIBLIOGRAPHY

[24] JUnit – Overview [Internet]. Tutorialspoint; [cited 2023 May 24]. Available
from: https://www.tutorialspoint.com/junit/junit_overview.htm/

[25] Assertions in Java [Internet]. Geeksforgeeks; [cited 2023 May 24]. Available
from: https://www.geeksforgeeks.org/assertions-in-java/

[26] Apex Developer Guide - Introduction to Apex [Internet]. Salesforce; [cited
2023 Apr 27]. Available from: https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_intro_what_is_apex.html

[27] Copado - The #1 Native DevOps Platform for Salesforce [Internet]. Copado;
[cited 2023 Apr 27]. Available from: https://copado.com/

[28] Provar Testing [Internet]. Provar Testing; [cited 2023 Apr 27]. Available from:
https://www.provartesting.com/

[29] García B, Gallego M, Gortázar F, Munoz-Organero M. A Survey of the
Selenium Ecosystem. Electronics. 2020; 9(7):1067. Available from:
https://doi.org/10.3390/electronics9071067

 [30] Ramya, P., Sindhura, V., & Sagar, P. V. (2017). Testing using selenium web
driver. In 2017 Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT) (pp. 1-7). Coimbatore, India. doi:
10.1109/ICECCT.2017.8117878.

[31] Gojare S, Joshi R, Gaigaware D. Analysis and Design of Selenium WebDriver
Automation Testing Framework. Procedia Computer Science. 2015;50:341-346.
doi: 10.1016/j.procs.2015.04.038.

[32] M. Leotta, D. Clerissi, F. Ricca and C. Spadaro, Improving Test Suites
Maintainability with the Page Object Pattern: An Industrial Case Study, 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation
Workshops, Luxembourg, Luxembourg, 2013, pp. 108-113, doi:
10.1109/ICSTW.2013.19.

[33] C. Klammer and R. Ramler, A Journey from Manual Testing to Automated
Test Generation in an Industry Project, 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), Prague, Czech
Republic, 2017, pp. 591-592, doi: 10.1109/QRS-C.2017.108.

[34] Davit Danelia, Selenium or Selenide [Internet]. Medium; [Cited 15/08/2023]
Available from: https://medium.com/tbc-engineering/selenium-or-selenide-
f0cf8221cb61/

[35] Choosing a cloud a provider [Internet]. NCSC; [Cited 17/08/2023] Available
from: https://www.ncsc.gov.uk/collection/cloud/choosing-a-cloud-provider

[36] CSA Star Registry [Internet]. Cloud Security Alliance; [Cited 17/08/2023]
Available from: https://cloudsecurityalliance.org/star/registry/

https://www.tutorialspoint.com/junit/junit_overview.htm/
https://www.geeksforgeeks.org/assertions-in-java/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.html
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.html
https://copado.com/
https://www.provartesting.com/
https://doi.org/10.3390/electronics9071067
https://medium.com/tbc-engineering/selenium-or-selenide-f0cf8221cb61/
https://medium.com/tbc-engineering/selenium-or-selenide-f0cf8221cb61/
https://www.ncsc.gov.uk/collection/cloud/choosing-a-cloud-provider
https://cloudsecurityalliance.org/star/registry/

38 | BIBLIOGRAPHY

[37] Advantages and Disadvantages of Cloud Computing [Internet]. Google Cloud
Platform; [Cited 17/08/2023] Available from:
https://cloud.google.com/learn/advantages-of-cloud-computing

[38] Cloud Run [Internet]. Google Cloud Platform; [Cited 17/08/2023] Available
from: https://cloud.google.com/run

[39] Manage Webhooks [Internet]. Atlassian; [Cited 18/08/2023] Available from:
https://support.atlassian.com/bitbucket-cloud/docs/manage-webhooks

https://cloud.google.com/learn/advantages-of-cloud-computing
https://cloud.google.com/run
https://support.atlassian.com/bitbucket-cloud/docs/manage-webhooks

Appendix

Appendix A – login page code

package Pages;

import com.codeborne.selenide.Configuration;

import com.codeborne.selenide.Selenide;

import static com.codeborne.selenide.Condition.disappear;

import static com.codeborne.selenide.Selenide.$x;

public class LoginPage {

 private final static String url = "";

 public LoginPage(){

 Configuration.timeout = 20000;

 }

 public static void open() {

 Selenide.open(url);

 }

 public static void setUsername(String username) {

 $x("/html//input[@id='username']").click();

 $x("/html//input[@id='username']").setValue(username);

 }

 public static void setPassword(String password) {

 $x("/html//input[@id='password']").click();

 $x("/html//input[@id='password']").setValue(password);

 }

 public static void clickLogin() {

 $x("/html//input[@id='Login']").click();

 $x("/html//input[@id='Login']").should(disappear);

 }

 public static boolean isLoginSuccessful(String SandboxName) {

 return $x("//header[@id='oneHeader']/div[1]/div/span[.=' Sandbox:

”+SandboxName+"']").exists();

 }

}

Appendix B – test case #1
package Tests;

import Pages.CreateAccount;

import Pages.LoginPage;

import com.codeborne.selenide.Configuration;

import com.codeborne.selenide.WebDriverRunner;

import com.codeborne.selenide.testng.TextReport;

import org.testng.Assert;

import org.testng.Reporter;

import org.testng.annotations.*;

import static com.codeborne.selenide.Condition.disappear;

import static com.codeborne.selenide.Condition.exist;

import static com.codeborne.selenide.Configuration.baseUrl;

import static com.codeborne.selenide.Configuration.timeout;

import static com.codeborne.selenide.Selenide.*;

@Listeners({ TextReport.class})

@Test

public class psidInvite {

 String accountLink;

 @BeforeClass

 public static void setup() throws InterruptedException {

 Configuration.headless = false;

 Configuration.browser = "chrome";

 Configuration.reportsFolder = "reports/Build#" +

System.getenv("BUILD_NUMBER");

 timeout = 20000;

 baseUrl = "";

 open("/");

 }

 @AfterClass

 public static void logout() {

 closeWebDriver();

 }

 @Parameters({"userName", "password"})

 @Test

 public static void Login(String userName, String password) throws

InterruptedException {

 Reporter.log("Logging In");

 LoginPage.open();

 LoginPage.setUsername(userName);

 LoginPage.setPassword(password);

 LoginPage.clickLogin();

 Assert.assertTrue(LoginPage.isLoginSuccessful("Redve"));

 Reporter.log("Logged In");

 }

 @Parameters({"lastName", "country"})

 @Test(dependsOnMethods = "Login")

 public void createAccount(String lastName,String country) throws

InterruptedException {

 Reporter.log("Creating Account");

 CreateAccount.open();

 CreateAccount.clickNew();

 CreateAccount.setLastName(lastName);

 CreateAccount.setCountry(country);

 boolean check = CreateAccount.clickSave();

 Reporter.log("Created Account");

 accountLink = WebDriverRunner.getWebDriver().getCurrentUrl();

 Assert.assertFalse(check);

 }

 @Test(dependsOnMethods = "createAccount")

 public void sendInviteAdmin() throws InterruptedException{

 Reporter.log("Sending Invite");

 $x("//body[@class='desktop']/div[4]//lightning-formatted-

name[.='Test']").should(exist);

 $x("//lightning-button-menu[@data-target-

reveals='sfdc:QuickAction.Account.Submit_PSID_Invite,sfdc:StandardButton.

Account.Share,sfdc:StandardButton.Account.Delete,sfdc:StandardButton.Acco

unt.PrintableView,sfdc:QuickAction.Account.Clean_Old_Document_Versions,sf

dc:QuickAction.Account.Suggest_Duplicate_Acount']/button").should(exist);

 $x("//lightning-button-menu[@data-target-

reveals='sfdc:QuickAction.Account.Submit_PSID_Invite,sfdc:StandardButton.

Account.Share,sfdc:StandardButton.Account.Delete,sfdc:StandardButton.Acco

unt.PrintableView,sfdc:QuickAction.Account.Clean_Old_Document_Versions,sf

dc:QuickAction.Account.Suggest_Duplicate_Acount']/button").click();

 $x("//runtime_platform_actions-action-

renderer[@apiname='Account.Submit_PSID_Invite']//a").click();

 $x("//span[.='YOUR FLOW FINISHED']").should(exist);

 Reporter.log("Sent Invite");

 }

 @Test(dependsOnMethods = "sendInviteAdmin")

 public void loginAsTest() throws InterruptedException {

 Reporter.log("Logging In as Test");

 open("");

 $x("//span[text()='Logged in as RegTestAutoPSIDInvite

(regtestpsid@regtest.com) | Sandbox: Redve | ']").should(exist);

 Reporter.log("Logged In as Test");

 }

 @Test(dependsOnMethods = "loginAsTest")

 public void testInviteAsTest() throws InterruptedException {

 open(accountLink);

 Reporter.log("Testing Invite as Test User");

 $x("//body/div[4]//slot[@name='primaryField']/lightning-

formatted-name[.='Test']").should(exist);

 $x("//div[@class='viewport'//button/lightning-primitive-

icon").click();

 $x("//runtime_platform_actions-action-

renderer[@apiname='Account.Submit_PSID_Invite']//a").click();

 $x("//span[.='YOUR FLOW FINISHED']").should(exist);

 Assert.assertEquals($x("//span[.='YOUR FLOW

FINISHED']").getText(), "YOUR FLOW FINISHED");

 Reporter.log("Tested Invite as Test User");

 }

}

Appendix C – test case #2

package Tests;

import com.codeborne.selenide.Configuration;

import com.codeborne.selenide.WebDriverRunner;

import com.codeborne.selenide.testng.TextReport;

import org.openqa.selenium.Keys;

import org.openqa.selenium.WebElement;

import org.testng.annotations.*;

import java.security.Key;

import java.util.List;

import java.util.UUID;

import static com.codeborne.selenide.Condition.disappear;

import static com.codeborne.selenide.Condition.exist;

import static com.codeborne.selenide.Configuration.*;

import static com.codeborne.selenide.Selenide.*;

@Listeners({ TextReport.class})

@Test

public class ReAssign {

 String random1;

 String random2;

 String Order1;

 String Order2;

 String Account2;

 @BeforeClass

 public void setup() throws InterruptedException {

 Configuration.headless = true;

 timeout = 20000;

 baseUrl = "";

 Configuration.reportsFolder = "reports/" +

System.getenv("BUILD_NUMBER");

 browser = "chrome";

 random1 = UUID.randomUUID()

 .toString()

 .substring(0,10);

 random2 = UUID.randomUUID()

 .toString()

 .substring(0,10);

 open("/");

 }

 @AfterClass

 public static void logout() {

 closeWebDriver();

 }

 @Parameters({"userName", "password"})

 @Test

 public static void Login(String userName, String password) throws

InterruptedException {

 $x("/html//input[@id='username']").setValue(userName);

 $x("/html//input[@id='password']").setValue(password);

 $x("/html//input[@id='Login']").click();

 $x("/html//input[@id='Login']").should(disappear);

 $x("//header[@id='oneHeader']/div[1]/div/span[.=' Sandbox:

Redve']").should(exist);

 }

 @Test(dependsOnMethods = "Login")

 public void createOrder1AndAccount1() throws InterruptedException{

 open("");

 executeJavaScript("arguments[0].click();", $x("//li[@data-target-

selection-name='sfdc:StandardButton.Order.New']/child::a/child::div"));

 executeJavaScript("arguments[0].click();",

$x("//span//span[text()='Order Type']//parent::span//following-

sibling::div//a"));

 $x("//a[@title='remarketed']").should(exist);

 executeJavaScript("arguments[0].click();",

$x("//a[@title='remarketed']"));

 $x("//span[text()='Account Name']//parent::label//following-

sibling::div//input").click();

 $x("//span[@title='New Account']").click();

 $x("//span[text()='Next']").click();

 $x("//input[@placeholder='Last Name']").setValue(random1);

 $x("//span[text()='Person Country']//parent::span//following-

sibling::div//div[@class='uiPopupTrigger']").click();

 $x("//a[@title='Sweden']").click();

$x("//div[2]/div[@role='dialog']//button[@title='Save']").click();

$x("//div[2]/div[@role='dialog']//button[@title='Save']").should(disappea

r);

 $x("//span[text()='Driver']//parent::label//following-

sibling::div//input").sendKeys(random1);

 $x("//div[@title='"+random1+"']").click();

 $x("//span[text()='Accepted Handover

Date']//parent::legend//following-sibling::div//div/a[@class='datePicker-

openIcon display']").sendKeys("2025-01-01");

 $x("//span//span[text()='Status']//parent::span//following-

sibling::div//a").click();

 $x("//a[@title='Delivery Planning']").click();

 $x("//span[text()='Master Order Id']//parent::label//following-

sibling::input").setValue(UUID.randomUUID().toString().substring(0,10));

 $x("//span[text()='Order Start Date']//parent::label//following-

sibling::div/input").setValue("2025-01-01");

 $x("//div[@class='modal-body scrollable slds-modal__content slds-

p-around--medium']//button[@title='Save']/span[.='Save']").click();

$x("//div[2]/div[2]/div/div[2]/span/div/a[text()='"+random1+"']").should(

exist);

 Order1 = WebDriverRunner.getWebDriver().getCurrentUrl();

 System.out.println(Order1);

 open(Order1);

 }

 @Test(dependsOnMethods = "createOrder1AndAccount1")

 public void createOrder2() throws InterruptedException{

 open("");

 executeJavaScript("arguments[0].click();", $x("//li[@data-target-

selection-name='sfdc:StandardButton.Order.New']/child::a/child::div"));

 executeJavaScript("arguments[0].click();",

$x("//span//span[text()='Order Type']//parent::span//following-

sibling::div//a"));

 $x("//a[@title='remarketed']").should(exist);

 executeJavaScript("arguments[0].click();",

$x("//a[@title='remarketed']"));

 $x("//span[text()='Account Name']//parent::label//following-

sibling::div//input").click();

 $x("//span[@title='New Account']").click();

 $x("//span[text()='Next']").click();

 $x("//input[@placeholder='Last Name']").setValue(random2);

 $x("//span[text()='Person Country']//parent::span//following-

sibling::div//div[@class='uiPopupTrigger']").click();

 $x("//a[@title='Sweden']").click();

$x("//div[2]/div[@role='dialog']//button[@title='Save']").click();

$x("//div[2]/div[@role='dialog']//button[@title='Save']").should(disappea

r);

 $x("//span[text()='Accepted Handover

Date']//parent::legend//following-sibling::div//div/a[@class='datePicker-

openIcon display']").sendKeys("2025-01-01");

 $x("//span//span[text()='Status']//parent::span//following-

sibling::div//a").click();

 $x("//a[@title='Delivery Planning']").click();

 $x("//span[text()='Driver']//parent::label//following-

sibling::div//input").sendKeys(random2);

 $x("//div[@title='"+random2+"']").click();

 $x("//span[text()='Master Order Id']//parent::label//following-

sibling::input").setValue(UUID.randomUUID().toString().substring(0,10));

 $x("//span[text()='Order Start Date']//parent::label//following-

sibling::div/input").setValue("2025-01-01");

 $x("//div[@class='modal-body scrollable slds-modal__content slds-

p-around--medium']//button[@title='Save']/span[.='Save']").click();

$x("//div[2]/div[2]/div/div[2]/span/div/a[text()='"+random2+"']").should(

exist);

 Order2 = WebDriverRunner.getWebDriver().getCurrentUrl();

 System.out.println(Order2);

 open(Order2);

 }

 @Test(dependsOnMethods = "createOrder2")

 public void moveOrder() throws InterruptedException{

 open(Order1);

$x("//div[@role='group']/ul/li[4]//div[@class='uiPopupTrigger']//a[@role=

'button']").click();

 $x("//a[@data-target-selection-

name='sfdc:StandardButton.Order.Edit']").click();

 var deleteButtons = $$x("//span[@class='deleteIcon']");

 deleteButtons.get(0).click();

 $x("//span[text()='Account Name']//parent::label//following-

sibling::div//input[@title='Search Accounts']").sendKeys(random2);

 $x("//div[@title='"+random2+"']").click();

 $x("//div[@class='modal-body scrollable slds-modal__content slds-

p-around--medium']//button[@title='Save']/span[.='Save']").click();

$x("//div[2]/div[2]/div/div[2]/span/div/a[text()='"+random2+"']").should(

exist);

$x("//div[2]/div[2]/div/div[2]/span/div/a[text()='"+random2+"']").click()

;

 $x("//lightning-formatted-

name[text()='"+random2+"'][@slot='primaryField']").should(exist);

 Account2 = WebDriverRunner.getWebDriver().getCurrentUrl();

 System.out.println(Account2);

 }

 @Test(dependsOnMethods = "moveOrder")

 public void checkIfMoved() throws InterruptedException{

 open(Account2);

 $x("//lightning-formatted-

name[text()='"+random2+"'][@slot='primaryField']").should(exist);

 $x("//span[text()='Orders']//following-

sibling::span[text()='(2)']").should(exist);

 $x("//lightning-button-menu[@class='menu-button-item slds-

dropdown-trigger slds-dropdown-trigger_click']").click();

 $x("//a[@name='Account.Suggest_Duplicate_Acount']").click();

 var inputs = $$x("//lightning-base-combobox[@class='slds-

combobox_container']//input[@role='combobox']");

 inputs.get(0).sendKeys(random1);

 inputs.get(0).sendKeys(Keys.BACK_SPACE);

 $x("//lightning-base-combobox-formatted-

text[@title='"+random1+"']").should(exist);

 $x("//lightning-base-combobox-formatted-

text[@title='"+random1+"']").click();

 $x("//button[@class='slds-button slds-button_brand']").click();

 $x("//button[@class='slds-button slds-button_brand']").click();

 open(Account2);

 $x("//div[@title='View Duplicates']").click();

 $x("//span[text()='Select Item 2']//parent::label[@class='slds-

checkbox__label']").click();

 $x("//button[@type='button'][text()='Next']").click();

 $x("//span[text()='"+random2+"']").should(exist);

 $x("//button[@type='button'][text()='Next']").click();

 $x("//button[@type='button'][text()='Merge']").click();

 Assert.assertTrue($x("//span[text()='Orders']//following-

sibling::span[text()='(2)']").exists());

 }

}

	1 Introduction
	1.1 Problem description
	1.2 Goals
	1.3 Boundaries and delimitations
	1.4 Method
	1.5 The author’s contribution to the thesis

	2 Theory and background
	2.1 Software as a service
	2.1.1 SaaS infrastructure
	2.1.2 SaaS security
	2.1.3 SaaS limitations
	2.1.4 Salesforce

	2.2 Software development life cycle
	2.2.1 Testing
	2.2.1.1 Regression testing

	2.2.2 Development operations
	2.2.2.1 Jenkins

	2.3 Cloud concepts
	2.3.1 Infrastructure as a service
	2.3.2 Platform as a service
	2.3.3 Software as a service
	2.3.4 Serverless
	2.3.5 Deploying to the cloud
	2.3.5.1 Virtual machines
	2.3.5.2 Container
	2.3.5.3 Serverless containers

	2.4 Testing frameworks
	2.4.1 Testing frameworks with Java
	2.4.2 Testing within Salesforce
	2.4.3 Selenium web driver
	2.4.3.1 Page object model pattern

	2.4.4 Test automation

	2.5 Related works
	2.5.1 A journey from manual testing to automated test generation in an industry project
	2.5.2 Testing using selenium web driver
	2.5.3 Analysis and design of Selenium webdriver automation testing framework
	2.5.4 A survey of the Selenium ecosystem

	3 Methods and results
	3.1 Preliminary studies
	3.2 Requirements from the company
	3.3 Assessment of current testing strategy
	3.4 Selection of tools
	3.4.1 The use of Selenium
	3.4.2 The use of Selenide
	3.4.3 Comparison between Selenide and Selenium
	3.4.4 Choosing between Selenide and Selenium
	3.4.5 Choosing of TestNG and Jenkins

	3.5 Assessment of cloud providers
	3.6 Testing environment architecture
	3.7 Writing tests
	3.8 Building and deployment of system
	3.8.1 Deployment

	3.9 Results
	3.9.1 Implementation of framework
	3.9.2 Serverless implementation
	3.9.3 Evaluation of test framework

	4 Analysis and discussion
	4.1 Analysis of test framework
	4.2 Analysis of chosen tools and cloud provider
	4.3 Environmental impact
	4.4 Social and ethical impact
	4.5 Economic impact
	4.6 Alternative approaches

	5 Conclusion
	5.1 Validation of goals
	5.2 Future work

	Bibliography
	Appendix
	Appendix A – login page code
	Appendix B – test case #1
	Appendix C – test case #2

