
Bachelor’s thesis in Media Technology, Department
of Technology and Aesthetics, spring semester 2023

Attributes of Tool Development

Proceduralism for the Environment Artist

Author: Karl Andersson
Supervisor: Annika Olofsdotter Bergström

Examinator: Siamak Khatibi

1



Digital Games
Blekinge Institute of Technology

Karl Andersson

1 Abstract

This paper explores what attributes are important for the creation of environment art tools. The
purpose of this is to make sure that when a tool is to be developed, it will be done properly within a
given time frame. This is important since the cost of tool development is high in both time and capital
spent. Being able to make sure that when those resources are spent, that the resulting tool is of high
quality and solving the problem which the development team set out to do. Through interviews, forms
and the creation of our own tool I hope to find these attributes and to be able to provide insights into
how a studio or team might apply them for their own purposes.

2 Introduction

Creating stunning digital 3D environments is a true art form with immense depth. Relying on not
only the artistic vision and creativity, but also the development of technology in order to support
the creation of said vision. For instance, to be used in the creation of environments for video games,
movies, advertisements or similar. The term Environment Art is quite self explanatory. Being the art
explicitly designed to be used for environments. I’ll be touching upon the visuals of digital levels or
spaces in which an experience takes place. This paper will make attempts to reveal the attributes that
make the creation of these environments possible and why they’re important in achieving the artists
final vision. This through applying the discovered attributes and values that have been found to be of
utmost importance into tools that make the development process for environment artists faster. This
through automation of repetitive tasks. But why is this important? The profession of environment
art traditionally has a high cost in terms of time and money spent as stated by (Stavridis, 1969). But
through utilizing these procedural workflows I can quickly iterate on art further down the pipeline.
This is possible since procedural systems can automate certain processes. How ever there is still some
tasks that are left to human creation. Not to mention the creative energy required that could’ve been
spent elsewhere. Though full automation of environment creation, which is usually done through some
sort of procedural generation, is not what this paper seeks to shed light upon. Rather to make tools
of automation by creating individual tools that use procedural generation at a smaller scale. Allowing
the artist to adapt the tools to fit their creative vision. Tools that create roads on a landscape. Place
trees in a natural way without the artist needing to place them by hand or maybe create a fence along
a spline.

Tools such as these assist the artist greatly in creating believable and beautiful worlds and this pa-
per intends to provide the ground structure and present the attributes which make these tools great.
Attributes will refer to values which a tool inhabits. This may include attributes such as ease of use,
creation speed, variation or similar. Through applying the attributes found during the development
of our own environment design tools I’ll be able to provide research about how to directly apply said
attributes. This will be a cliff generation tool which utilizes procedural workflows to generate 3D
geometry from height map data. I’ll also be able to display what they can accomplish. This in an
attempt to create an underlying set of attributes which make environment design tools better, and
there by aiding the industry in creating bigger and better games with less resources spent. This might
simply boil down to a single question with the possibility for a lot of answers. What attributes are
important for the development of environment art tools?

3 Literature

There’s a lot of literature touching upon aspects that lay close to what this paper will explore. How
ever this paper make the distinction in applying that knowledge in relation to specifically environment
art. But also building upon knowledge accumulated by others and try to solve some problems which
their papers discovered. For instance in (Smelik, Tutenel, Bidarra, & Benes, 2014, p. 32) quite deeply
explore the subject of procedural content generation for virtual worlds and acknowledges the difficulty
of creating tools with good control. I’ll be talking about procedural models which will be referred to
as (PM) from here on out. Procedural content generation (PCG) is the act of using automation to
generate digital content. Creating levels automatically or with greater ease, using tools or materials
adapted for a workflow that incorporates PCG. (Smelik et al., 2014, p. 32) Expresses the following

2



Digital Games
Blekinge Institute of Technology

Karl Andersson

concerns

...most current PM methods still do not offer a suitable alternative to manual modelling. The main reason is
the poor controllability of most procedural models. They require users to manipulate complicated PM rules and

parameters whose effects on the output can hardly be predicted.

which is something that now with the passage of time and further development in the area, there might
be solutions to. This immediately presents Control as a candidate for an essential attribute to the
environment design toolkit. Making the artists control of a procedural tool paramount might be what
makes their usability worth the development time and costs that come along with it. But what does
it mean that the costs are high? Well, for each project that the urge to create a tool that automates
a boring or repetitive task arise in, the question of whether or not the tool creates enough value to
justify its creation is also presented. Since some tools might take teams months to create, that tool
needs to regain months of work and the money spent on a task that could have been done manually.
And so the weighing of pros and cons will have to go for each tool. Does money and time spent result
in a profitable outcome.

I’ll be using a few different methods for generating the final outputs of the tools. One of these will be
PRNG, which (Hendrikx, Meijer, Van Der Velden, & Iosup, 2013, p. 2) explain as being one of the
simplest and first ways to implement PCG for games. PRNG is an abbreviation of Psuedo Random
Number Generation. This is the act of generating numbers that are ”pseudo random”. Meaning that
the randomly generated number is dependent on some outside variables, there by if those variables are
identical, the number will be as well. For the purpose of making games, this is often used to control
map generation. A very famous example of this is Minecraft(Mojang, 2023) that uses a random ”seed”
which is a number or letter sequence as the outside variable that controls the PRNG system responsible
for generating their maps. In this project PRNG will be used to create variation in the tool I’ll create
to illustrate the usage of the attributes found in this paper. Specifically in this case to create variation
in the cliff surfaces. Essentially faking the look of the cliffs being a natural landscape, and not just
the result of a procedural generation tool.
The use overlay design methodology to stack desired layers of attributes onto a final world or level will
be used in order to arrange the projects attributes and data in a manageable manner. Which (Kim,
Hong, Lee, & Bazin, 2018, p. 462) explains the purpose of quite well

Because of the variety of digital games, developing a universal design methodology has been considered a
challenge. However, if the structure of the design methodology is a combination of layers, by utilizing proper

layers, a developer can adopt a customized design methodology that fits the virtual environment being
developed. With a classification system, developers will be able to adopt the design methodology selectively

within the classified types of virtual environments and defined a customized design methodology that fits their
digital game.

This adaptive way of using a methodology and tailoring it to fit a specific project will hopefully provide
needed structure into the workflow but also be changeable enough to stay in line with the creative
profession that is environment design. This project will apply this by creating modular pieces of gen-
eration functionality that combines in order to achieve the full scope of the intended environment.
Whilst also keeping said environment easily changeable through each of these generation functionality
pieces. Pieces in this instance being referred to as segmented pieces of code.

In this paper I’ll be utilizing Houdini as our 3D digital content creator, together with pairing this
with a game engine to visualize our results. So what is Houdini? This program structures creation
of art in a top down hierarchical node network. Meaning that I can place one node at the top, and
changing that node will change the result of the connected nodes beneath it. Figure 1 node creates a
sphere. I’ll then proceed to pair it with another node. In this case the Mountaind node. In Houdini
this means that I apply some sort of noise to the node plugged in at the top of the Mountain node.
In figure 2 I can see how the Mountain node distorts the shape of the sphere. I can the increase the
amount of nodes in the network once more to further alter the output. In these figures 3 you can see
the final output of the node network with a few more nodes tacked on. I can also change the noise
node and directly alter the shape of the final result. The same could have been done with the color or
the tubes on the surface of the object. Here in lies the value of the network. To regard Houdini and

3



Digital Games
Blekinge Institute of Technology

Karl Andersson

the hierarchical structure as the value in it self, rather than value of the output of polygons which it
achieves. The Value is in the Recipe as proclaimed by (Xu & Campeanuy, 2014, p. 16) echos this. It
proposes that the true output of the Houdini should not be a model, but rather the node network. This
because it encapsulates the procedural niche which Houdini inhabits. Luckily, Houdini also provides
functionality for just this purpose. In packaging the node network in a Houdini Digital Asset (HDA),
which is a file format that can execute the functionality of the node network. The HDA might very
well be the Sine qua non of PCG in regards to the creation of this paper, or more specifically the
tools which it relies upon. Meaning that the functionality and flexibility in creating procedural digital
assets with ease and with great adaptability would be immensely more difficult without the usage of
such a network. Potentially leading to this paper needing more time or less focus on what it seeks to
uncover, being the essential attributes for environment art tools.

4 Method

4.1 Interviews

The interviews consist of a few questions that have been answered by technical artist and environment
artists working in the video game industry. The value that is sought to be obtained through this is in
the form of actual application of attributes that professionals find valuable in their work. Gathering
this knowledge gives us a insight into the current circumstances in tool development for environment
art. Also knowledge about how a development team leverage their time used for development of tools
in comparison to ”brute forcing” environment building. There are a few things that can make this
knowledge somewhat unreliable or at the very least not applicable for everyone. For instance the
variety in games and products that companies utilizing such tools might have drastically different
needs. Therefore giving us data that might be skewed one way or the other. To combat this problem
we have to make sure that we interview professionals working on different sorts of products but within
the same sphere of technological needs, that in the form of tools development for environment artists.
Two interviews where held, including one individual who worked as the designated technical artist at
their studio Mana Brigade. They where working on a virtual reality game. The second was a tools
developer from the company Something We Made who launched their debut title Toem in 2021.

Mana Brigade

The interview with the technical artist at Mana Brigade started off with us discussing their current
project (as of march 2023), a virtual reality game in which the player can dynamically alter 3D ge-
ometry of objects in the game world. Though they didn’t utilize a lot of tools for their environment
design, they still had a few run-time (programs or functions that happen during the game) shaders
and other tech-art functionality which fall within the same area that this paper work with.

We also spoke about their process. Starting off with the need for some sort of tool or functional-
ity, creating a basic implementation. Testing the functionality and taking notes behaviour in the tool
that might not work as intended or some other problem that might occur during development. After
testing they take the notes and iterate on the functionality to address concerns and fix bugs. They
then proceed with repeating these two steps until the tool is finished

Find need for tool → Implement → Test → Recursive Iteration → Finished

The reason for this might seem quite obvious. Essentially boiling down to coming up with an idea
and iterating on it until it works properly. However they focus on some particular attributes during
the testing and iteration part. One attribute being the fast prototyping of the final product which the
tool is to assist in creating. The representative from Mana Brigade specifically mentioned a shader
which they developed. Here the focus on artist control and iteration on the output of the shader was
of utmost importance. Therefore exposing parameters for the artist to manipulate which control the
behaviour of the tool was a simple way to change the output of that shader. Making sure that the
artist could easily test new looks when texturing using the shader. But also having the parameters act
predictably, essentially minimizing the amount of randomness in favor of control. An example of this
would be if I change a parameter called ”stone crack amount”, then the amount of cracks in the shader

4



Digital Games
Blekinge Institute of Technology

Karl Andersson

or material would increase. Allowing the artist to achieve their vision in regards to that material and
for the project they’re working on.
Presented by the tech artist at Mana Brigade where two distinct attributes that I’ve gone through.
Control and Iteration . The value of enabling the artist to achieve their desired design and be able
to iterate quickly upon it to reach the result as quickly as possible or to explore new ideas.

Something We Made

The interview with the tools developer from Something We Made (SWM) occurred during a phase
in which the company where trying new ideas for a game to develop. This resulted in a lot of rapid
prototyping of ideas and required the tools developed to be small but flexible to be used between
various projects.

A lot of focus had been put into developing procedural tools for level generation which was used
between various prototypes. The representative from SWM explained that they had to leverage Con-
trol and ”Randomness” to easily but predictably create a final level. Meaning that the overall
gameplay and player behaviour should be under full control of the level designer. Enabling them to
steer level in the right direction using the level design tool without having the ”Randomness” impact
the way a player would behave in that space. There for the randomness was used to simply alter the
visuals of the level, rather than the layout of the level itself. This is really quite similar to the role
which Iteration fills for Mana Brigade. Allowing for variety with little effort between iterations.

4.2 Data Collection

During the data collection stage I went to the public to gather data using forms. This is important
to acquire perspectives that might not be traditionally important for tool development. But through
the recent democratization of knowledge in the game development space (simply by the ease of access
to technology) there might be reasons to use other attributes that escape the professionals or simply
never gets used because a specific product in need of such attributes hasn’t been developed. However,
the same thing that makes this information important is also what might make it worthless. Using
information from unverified developers might simply be the act of utilizing bad information. Even
though there is a possibility for some gems of knowledge and attributes which hasn’t been seen before,
I cant be sure before the usage of such attributes has been applied.

4.3 Attribute Evaluation

Three tools where created to evaluate different attributes and to draw a conclusion about their use-
fulness in a few distinct areas. These being Adaptiveness, Control and how easy iteration is. Through
the implementation of these attributes in tools I will determine their usability in tools for environment
art.

4.3.1 Cable - Adaptive

The cable tool focuses on adaptation. Specifically in relation to the environment in our 3D space. The
tool generates cables following a space curve (a curve in 3D space). Observe how the tool in this 4
figure interacts with itself and its environment. Wrapping around itself and the floor with accurate
collisions. This demonstrates the result of manipulating a curve drastically before a tube is swept
around the curve to achieve that result. To accomplish this a vellum physics simulation was utilized,
which is a simulation tool set found within Houdini, to make it fall to the ground in a physically
accurate manner. This also includes the interaction of the cables within the tool itself, making sure
that the various cables don’t overlap (not to much at least). You can see in figure 4 , how the cables
interacts with the floor and each other in a believable enough manner. Meaning that the result looks
believable in the context of the medium. This provides the artist with a tool that can create cables
easily through just modifying a curve. But also allowing the artist to ignore making the tools output
seem suitable in the context of the world as the tool takes care of that by it self. This is because the
tool takes into account the world which it inhabits and adapts the tools output to that world. This
allows the artist to spend more time on the rest of the environment or at least not requiring of them
to fidget a bunch with the tool just to make it look like the cables actually lay on the floor.

5



Digital Games
Blekinge Institute of Technology

Karl Andersson

4.3.2 Railing - Control

The second tool also utilizes a space curve as input. However this tool manipulates already existing
3D geometry models to fit the shape of a space curve. Through that generating a railing or fence that
perfectly fits the curve and allows for lots of control. Being able to change the width and height of
each individual 3D model allows for great flexibility. As can be seen in figure 5, the railing adapts to
the curve. Here the corners uses the same mesh as the straight railing pieces. How ever each vertex
is dynamically moved and rotated to create a corner piece which fits this exact layout. It works on
flat surfaces as well as with non-flat ones as you can see further along the curve where it goes down
a ramp but keeps the geometry intact and only manipulates the rail/model pieces that it needs to. I
accomplish this geometry alteration by determining all data that needs to be altered ahead of time,
then applying that data to each of the pieces/3D model I use for the railing. By doing it this way I
can batch bake each part of the system. Essentially doing all the data generation at the same time,
and then applying the generated data to the meshes in another step. By doing it this way I save a lot
of computing time which lets us achieve a faster ”snappier” tool. Meaning that it responds faster to
updates made by the artist.

4.3.3 Antenna Tower - Iterative

As for the third tool which can be seen in figure 6. It creates an antenna tower and places parabolic
antennas in different colors and sizes onto it. Essentially using what ever assets the artist wishes to
place upon the antenna tower as input and distributing them in accordance with the parameters defined
by the artist. This means that each antenna tower can be manipulated in the amount of parabolic
antennas present, height, supports, width and so on. Allowing the artist to create many different
versions in a short amount of time. Potentially what makes this a great attribute for environment art
tools is that it is be able to create objects within the same art style and settings, but still creating
something different and unique for each instance of the object.

4.3.4 Data Collected

Cable Railing Antenna
0

2

4

6

4.8 4.8

4.4
4.2

4.4

4

4.8
5

4.6

R
a
ti
n
g

Speed Creativity Overall

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

2.652.65

Experience

To gather even more information into what attributes game developers find important and what kinds
of tools they find useful, a form was created. This form was filled out after the a participant had tested
the tools presented in the Cable 4.3.1, Railing 4.3.2 and Antenna 4.3.3 sections. In a public exhibition
the tools where presented to willing testers. They interacted with the tools in a pre-made digital
world inside Unreal Engine. Here the tools worked worked in tandem with each other and provide
an impression of the workflow the tools would provide in a real production environment. The users
where then be presented with a form that contained a few questions that evaluates certain attributes
of the tools. First I collect the experience level of the user. This data point is a little unreliable as

6



Digital Games
Blekinge Institute of Technology

Karl Andersson

there was no concrete variables that verified that experience level. I simply asked for their experience
level on a scale from 1-5 in regards to the environment art profession. With 1 representing no prior
knowledge, whilst 5 represented professional experience. I then continued with asking if the user felt
that the tool would increase their production speed of environment in comparison to doing such a
task manually. The following question was if the tool would increase or inhibit their creativity whilst
creating. The third one was an overall rating of the tool. This rating wasn’t dependent on anything,
but rather just the feeling that the user had towards a the specific tool. With the overall experience
of the participants being quite low. Averaging at 2.65 self determined proficiency in the environment
art profession. This was as a result of not verifying the participants experience and does not reflect
the data as a reliable but more importantly valuable source. Though by excluding the ones reported
as having no experience and using the answers provided by those who (reportedly) has professional
experience, I get data that is somewhat more valuable but not necessarily more reliable.

Cable Railing Antenna
0

2

4

6

4.5 4.5

3.5

4

4.5

4

5 5

4

R
a
ti
n
g

Speed Creativity Overall

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

4.54.5

Experience

The graph above shows the data from participants with who answered with an experience of 4 or
more. If I compare the two graphs I can see that the tools have a similar rating when I include the
participants with less experience. When I exclusively look at the data handed in from the participants
with greater experience I see that the antenna lacks behind with roughly a full point across all metrics.
Though the change is small it might indicate a difference of mind in regards to what is valuable to
professional in comparison to a non-professional. Specifically this data indicates that the iterative
attribute as implemented in the Antenna tool did not ”click” as well with professional. Looking
through the attached comments given in the forms where an anonymous participant expressed this

The possibility of creating random antennas feels obvious to streamline the level designer’s time

in regards to the Antenna tool. As the comment expresses, the ability to create variety through
randomization is an obvious perk for a tool to inhabit. This certainly presents Iterative as a potential
essential attribute for environment art tools.

4.4 Insight & Reflections

Applying the knowledge gained through research, the forms and interviews data gathering phases into
the development of my own tools will yielded insight into the true nature of these tools. Potentially
being a great way of truly understanding the knowledge provided through interviews and researching.
This by encountering issues in development that the data and research might not have exposed. Using
this as a method result in the subjective insights on an issue. Counter acting this could be done
by conducting more interviews and testing of the result of the paper. Meaning having focus groups
that evaluate the tool that was created in regards to the purpose of the paper, being this unveiling of
important attributes for environment art tools. Unfortunately no participants of verified competence
in the environment art or technical art professions where available at the time of this papers writing.

7



Digital Games
Blekinge Institute of Technology

Karl Andersson

As well as the amount of participants in partaking in the forms was 5. A very small sample size. As
such the paper might suffer in this regard and will have to be taken into account by readers.

4.5 Overlay design methodology

Overlay design methodology (ODM) as explained by (Kim et al., 2018) is a way of designing during
landscape architecture in a hierarchical way, saying

Landscape architecture in a real world is a field of study which involves designing outdoor spaces. To design
such spaces, landscape architects need to consider various characteristics a landscape contains.

and proceeds with explaining how designers can utilize multiple layers of sequential data. This data
can then be assembled into whats called a ”Master plan”. Taking inspiration from this in creating
the environment design tools for this paper. Making the tools themselves hierarchical on their own,
but also when combining them with other tools. Presenting figure 7 from within the same article as a
visualization of how modularity clarifies the content which is being generated. Here (Kim et al., 2018)
demonstrates using a representation of how using multiple layers or modules for different content on
the same landscape assists in the readability there of. Here I see how the water network, productive
green areas, wetlands and so on are stacked onto each other. Now imagine them being right on top
of each other rather than this spaced modular pieces. The data would be illegible. Attempting to
implement something similar in my own visualization yielded a result quite different in appearance.
Though this also provides the information in specified chunks for each data type. The great thing
about having the data in chunks like this is how it allows you manipulate that specific data to fit
your needs. Whilst doing this I still adhere to the hierarchical structure. Meaning that if the tool
changes how the road data chunk is managed. Then all data beneath that chunk of data which I
changed will be ”cooked” meaning that it will use the output of the data I changed and base its own
generation on it. Figure 8 presents the combined chunks of data that’s being used in the environment
design tool created for this paper. This uses the presented design pattern. Creating every piece of
data using the layering that pattern that (Kim et al., 2018) presents. This is visualized in my case as
coloring each of the pieces in distinct ways to differentiate them. You might notice the way in which
the road and the rest of the environment interact. Having no plants (the blue tubes) grow on the road,
no cliffs and no rocks (the black cubes) either. This is because the system communicates in a hier-
archical way, such as described through ODM. In this case the system adheres to the following structure

Generate base landscape → Apply the road → Mask the terrain → Generate cliffs → Place plants and rocks

and make sure to do all of this in relation to the layer above the one that was generated before. This is
an immensely powerful structure that allows a collection of tools to communicate and scale the content
creation pipeline to support a great number of tools, without becoming cluttered or difficult to work
with.

5 Results

5.1 Cliffs Tool

Working through the methodologies presented in the Methods segment resulted in the following tool
output. As seen in figure 10, the cliffs are generated depending on the angle of the under laying terrain
vertices. The tool loops through each of the vertices on the terrain and measure their normal angle.
If the angle is steep enough I cut that vertex away from the rest of the mesh. Combining all of the
vertices that meet this requirement, leaves us with planes where the cliffs are to be generated. To
accomplish this the mesh made from the vertices is split horizontally into 16x16 unit size grids, with
one unit being one meter in game. This way I can manipulate each chunk separately and increase
performance. Though as mentioned by (Hendrikx et al., 2013)

...the performance of PM methods is sometimes also a challenging obstacle for designers. Despite significant
improvements in recent years, procedural methods are often not fast enough to provide feedback at interactive

rates.

8



Digital Games
Blekinge Institute of Technology

Karl Andersson

which is something that had to be leveraged through out the project. But just to get this far I have
to jump through some hoops. Sending the data from the landscape back and forth between our game
engine and Houdini is done with through an API provided by the Houdini developers for purpose of
interacting with Houdini tools from outside their own program. By doing things through this API I
can make sure that all tasks happen in the correct order and nothing gets scrambled along the way.
Meaning that before I try to use the data that I generate, I must first make sure that it exists in all
the right places. This is where the API comes and and synchronizes all the data to match and allow
for manipulation of said data. So I am going to ignore the automatic UV mapping process of the
tool which cut the tools operation time by more than half, of course being dependant on the size of
the mesh that is generated. I can then export this to Unreal Engine using our tool pipeline and it
instantly appears in the editor. Once here I make sure to texture the cliffs in a automatic way which is
not dependant on any UV map. Therefore I utilize tri-planar texturing as described by (DowlingSoka,
n.d.). I use the same functionality to texture the landscape it self. Using tri-planar displacement
on the slope itself with the same parameters as that for the cliffs tool. In figure 9 where the cliffs
and landscape slope intersect, there will be a almost seamless transition between the cliffs and the
landscape. This is because the the tri-planar displacement used to texture both the underlying terrain
and the generated cliffs is dependant on world position. Resulting in pixels next to each other having

Attributes

Now that the tool is created, how did I work with implementing the discovered attributes? Starting
off with developing the actual functionality of the tool. Being the generation of the 3D cliffs from
detected slopes in a height map.
The implementation of Control as an attribute for the tool first seemed like a great opportunity for
allowing the artist themselves to modify parameters such as cliff extrusion length, vertex amount and
cliff noise pattern. Cliff extrusion length makes the cliff geometry thicker or stick out further from
the landscape from which it generates. Vertex amount determined the amount of polygons generated
and cliff noise pattern controls the look of the cliffs with noise. This noise is then used for changing
the geometry shape which would apply variety to the cliffs. But after promoting that attributes to
the tool and making them available inside the game engine. Having the user be in control of vertex
amount resulted in a lot of clutter in the 3D geometry of the cliffs. Whilst also making the result
of the tools procedural generation look like it was not the intended result. Directly contradicting the
purpose of the control attribute. This happened when the parameters where changed in certain ways.
Specifically when you changed the parameters to extremely high or low values. Certainly this could
have been avoided through implementing safe guards, but it would still make the tool interface quite
cluttered. This could have been improved with the usage of certain UI design methodologies, though
this was not in scope of the paper. After these realisations about how control must be done, it was
decided to focus on the things which I could control. Meaning that making sure that the result of the
tools output when generating works as expected. To accomplish this some limitations where put on
the tool. This results in a tool that can do one thing properly and is not usable for any other use cases
aside from generating cliffs. Leaving the environment artist to decide where the cliffs should appear,
rather than allowing the environment artist to influence the direct aesthetics of the cliffs.

The Adaptive attribute turned out to be implicit in the creation of our tool. Or at least in some
aspects. By which I mean that to generate a cliff from the landscapes height map data. The tool
will not only be dependant on the landscape data. But since the generation is also derived from the
landscape its also adapted to it from the start. This is because the tool (as I designed it) uses the
landscape data to generate the cliffs and takes into account the shape of the landscape. What this
means is that if I change the landscape and re-generate the output of the tool. The tool will take the
new changes in the landscape into account and change the cliff generation output accordingly. Now
this does not mean that because I put the correct data into the system that I’ll get a perfectly aligned
and extruded cliff face. Rather that I must create a system that takes that data and manipulates it in
a structured manner, so that I receive the desired result after using the tool.

The Iterative attribute represents the iterative work that is necessary in a production environment
and is of high importance. I needed to make sure that this tool executed quickly once the functions
where called upon. Exporting the height maps to disk and then working with that data inside our

9



Digital Games
Blekinge Institute of Technology

Karl Andersson

HDAs. Here the difficulties lay in structuring the tools ”workflow” so that things are executed in order
and that when they happen its gotta happen fast. Luckily I managed to achieve just this. Allowing
the artist to modify the landscape in inside the game engine of their choice. Once the artist is satisfied,
they can click a button and export the height maps to Houdini. Once here the tool uses the adaptively
generated cliff mesh and applies some randomisation. I do this with a noise type called Worley noise
that’s unsurprisingly made by (Worley, 1996). This is a widely used noise in texture creation through
procedural texturing tools. Here I use the black and white noise map and transfer it onto the cliff
face. I then move vertices on the mesh depending on if they are colored white or black from the noise.
Hooking this up to a PRNG system so that the noise changes with the changing of a single variable.
This way I can achieve variety in the cliff faces and with quick iteration possibilities for the artist.
Where the data they contain is manipulated and turned into a 3D mesh, which is then sent back to
the game engine.

6 Discussion

6.1 Cliffs Tool

Implementing the attributes has given some insights which are useful. Starting of with Control, which
previous to this paper was thought of as a incredibly important attribute. While I still hold this view,
there has been some enlightening thoughts in regards to it. The importance of allowing for control in a
artistic profession is immense. Giving to much control over a tool might also result in making the tool
itself a burden to use. Meaning that menu’s turn into cluttered messes. Parameter changes that have
not been reined in (for instance in settings a minimum and maximum value) can turn into distorted
forms of generation when working with PCG. For instance, some artefacts in the 3D mesh generates
if I increase one attribute which affect a part of the generation algorithm, which is also touched upon
by other parameters. Then the artist would need to make that connection and manually change those
values so that the result can generate properly. Meaning that the artist will have to manually make
sure that the tool doesn’t generate artefacts. Certainly this is one approach. Though in enabling
the environment artist to create with only the art itself in mind, rather than also working with the
technical aspects make their process faster. That’s why I decided that Controlled Control would be
essential for tool creation. Meaning that the technical artist which develop the tools only present
certain necessary attributes for the artist to change. Leaving the majority available hidden. Through
this, the artist gains large amounts of control over the result of the tool, but do not risk having to
change various parameters in order to remove artefacts coming from the generation algorithm.

Working with Adaptive turned out to be quite interesting. Though as mentioned in the control
6.1 section, when I talk about enabling a tool to be adaptive for a environment artist to use. I must
also make sure the room for error is minimal. Not allowing the changing of parameters that will make
artefacts in the tool or having the tool behave in an unexpected way. The same goes for the Adaptive
attribute. I want the tool to be great at what it does. In this instance, generating cliffs from height
map data. Since I already use height map data as a basis for the tools PCG, it turns out to be inher-
ently adaptive in that regard. For this specific tool, it turns into a task that rather depends on how
the technical artist that is creating the tool utilizes the data from the height maps. Making sure that
the data gathered is used in such a way that the cliffs are generated without fault and independent of
the data which was fetched from the height map to be used as input.

With the Iterative attribute I started off with the perceived usage as expressed by the participants
in if form 4.3.3 during the data collection phase. Where the tool seemed to have a higher value for
those with less experience in working with environment art creation. Whilst those with professional
experience rated it lower in comparison with the rest of the tools. With one of the participants in
the form expressed that the functionality is a given and should be an expected behaviour rather to be
considered something innovative. That comment I believe carries a lot of weight behind it. Where if
I make sure that all tools uses such functionality, meaning that the tools are capable of being able to
generate various different versions to fit a specific look. Then it will be easier to create environments
that fit together whilst not feeling monotonous or samey. The way I did this in the Cliff tool was
through applying Worley noise (Worley, 1996) to create variations in the cliff faces as discussed in

10



Digital Games
Blekinge Institute of Technology

Karl Andersson

the results 5 section. If I were to continue the development of this attribute in regards to the cliff
generation tool, using more noises for more variation and exposing them to the artist potentially yield
great results, both in terms of creating more content quickly but also keeping the look consistent
through out the project in tandem with not having it look exactly the same. One could also have used
noises to add colors to the vertex points and use that color data to render a different texture when I
go through the tri-planar texturing in the game engine. This way even more variation would could be
implemented.

6.2 Overlay Design Methodology - In retrospect

The cliffs tool proved a trying task to accomplish but was eventually finished. Making sure that during
the development of the tool to structure the project in distinct pieces of data, and visualising it in
accordance with ODM certainly aided this project. I laid the foundations for quite a few different data
points including, cliffs, roads, trees and rock scattering. Focusing on simply one aspect, which in this
case was the cliff generation tool, helped in pointing this paper in the right direction. Making sure the
effects of the attributes are as clear as possible. This as I eliminate confusion between the various data
points. So using ODM to distinguish the masks and terrain certainly helped to find the right data at
the right time. Implementing such a workflow is probably increasingly useful in a larger projects which
take more data points into account. As mentioned in (Kim et al., 2018), the methodology (ODM)
is mainly used for landscape architectural planning. As such there are more attributes involved in
regards to the landscape. A few mentioned in that paper are Water Network, Productive Green Areas,
Infrastructure Corridors and more. Data points such as these simply where not needed to be taken
into account in this project. Resulting in ODM serving a smaller purpose in differentiating the various
data points. It was still used to implement the masks needed for generation of such infrastructure but
simply was not necessary for the goal of this paper. Had I continued along the path of generating roads,
plants and rocks whilst also generating the cliffs. Using those masks and the data that the implemen-
tation of the ODM system provide, potentially makes working with that many data points much easier.

I would like to present an idea for further development of using this for environment creation, specifi-
cally in game development. For instance, ODM could be used to define and structure the masks that
some gameplay features rely on. So that when ODM declares an area of the environment as a swamp,
I could have another system using that data to create swamp monsters in that area or populate the
area with appropriate foliage for a swamp.

7 Conclusion

Discovering these attributes (Control, Iterative, Adaptive) and implementing them has left us with
some interesting insights. If I start of with control, which was very important to the people at Mana
Brigade when creating their tools and shaders. This was because they needed to allow the artist to
achieve their vision without having to worry about some parts of the tool not being accessible enough
for them to change. Using the information from Mana Brigade as the development of the cliff tool was
being done. When allowing the artist to have full control I had some issues with parameters. When
a parameter was changed to a value high or low enough, the generated cliffs would often turn out to
have a bunch of artefacts. The simple solution to this issue is first of all to make the tools code iron
clad. Meaning that the code should not generate these artefacts at all because the system is so stable.
This sound easier than it is. Specifically since the complexity of the code increases with the size of
the project. In the context of this project we noticed this when trying to implement roads early on in
the project. We realised that the complexity of all the working parts was immense and that did not
have enough time to develop a stable tool with all those features. You can also limit the parameters
value range. This way you could never have extreme numbers that ”break” the mesh generated. This
works most of the time and very rarely creates artefacts. We decided to have preset values for the
various parameters that can not be changed, which allowed the tool to work 100% of the time. Or at
least the tool never generated any artefacts during testing. The part we did allow for total control is
in the way that the artist ”paint” the landscape or height field. Coming to the conclusion that the
control attribute is certainly an important one that should to be incorporated in some way in most
tool. Though there might be some issues arising because of it.

11



Digital Games
Blekinge Institute of Technology

Karl Andersson

Continuing with the adaptive attribute. This attribute inhabits functionality that allows the envi-
ronment art tools output to adapt to the surroundings or to some data. Investigation was done
through the creation of a cable tool which adapted its shape in accordance with physics, whilst also
taking into account the surroundings. Meaning that if you generated a cable in the air it would fall to
the ground. During the interviews this tool received a high rating from the experienced participants.
With one individual commenting the following.

This tool has potential as many designers can use it and benefit greatly from it.

Taking into account that the tool’s purpose, which is to be adaptive, this presents that attribute as a
worthwhile attribute for tools to inhabit. Proceeding with implementing this attribute into the cliff
generation tool was simpler than that of the control and iterative attributes. This is because the
purpose of the cliff generation tool is inherently adaptive to the landscape which the tool generates the
cliffs from. Since I import the data from the game engine into Houdini in shape of height maps I can
use that height map to create a landscape in Houdini and generate the cliffs from that landscape. This
way the tool is adaptive by default. How ever the tool can done much more with further development
but with the same data input. As discussed earlier in the ODM method section, you can combine this
with other data points to achieve a deeper adaptive system. Such as having rocks and trees placed, but
never placing them on cliffs or roads. There is much potential for creating adaptive tools and all that
is required is that the technical artist that’s developing the tools make time to evaluate the potential
of making a tool adaptive. Truly this is a great attribute which a lot of tools will have use of.

Next up is the iterative attribute. Representing the way in which a artist can iterate on their art. If a
tool possesses this attribute there is a few various ways in which I believe it can manifest. The first one
being the speed at which you can iterate on an environment. Meaning that if the conceptual design
of the environment changes sometime in the project, you’ll be able to use the tool to quickly update
the current output to fit the new aesthetic or level design that’s been presented. The second way is
to enable the creation of variety inside a single sort of tool output. For instance if I have a pine tree
tool. I can generate trees with various amounts of branches and such. The tool that was developed
for this paper uses both of these ways. I enable for fast iteration in creation of cliffs for the landscape.
These cliffs are also using iterative systems to create variety through out the cliffs. I enable for fast
iteration through presenting a ”cook” button which initializes the generation after the landscape has
been altered in the desired way. And I use Worley (Worley, 1996) noise to create variation in the
cliffs shape. So is this important for environment art tools? Well when interviewing the participant
at Mana Brigade they mentioned control and fast iteration as focuses for creating their own tools and
shaders. This was to enable their artists to quickly alter 3D models and textures which are already in
use or which need some refining/revamping. I can also combine this with the comment left for use in
the forms by one of the experienced participants. Expressing

The possibility of creating random antennas feels obvious to streamline the level designer’s time

in regards to the Antenna tool which was focusing on the iterative attribute. This definitely shows
the importance of being able to iterate and create variation with a tool. Even naming it as obvious in
the comment. So while this is with out a doubt an important attribute. It is also already an expected
part of tool development for environment art tools.

Lets continue with how you can implement these attributes in your own tools. The absolutely most
important thing to do when starting production is to have a clear vision of what problem you want
to solve with the tool you’re creating. Why is control important? What does having a adaptive tool
provide to the result? Does this particular tool require the potential for create large variations in the
result or is it very specific in what it achieves? These are all important questions which you need
to ask yourself at the very start. Once that’s been done you can continue with developing the tool
whilst always making sure you have the artists best in mind. Allowing for them to fulfill their creative
vision. This was a struggle to achieve in the creation of the cliff tool for this paper. Making sure that
it’s intuitive to use and actually provides greater value than what would be achieved whilst doing the
placing of cliffs manually.

12



Digital Games
Blekinge Institute of Technology

Karl Andersson

There is a few more things to take into account when building a tool such as the one for this pa-
per. The Cliff tool rely heavily on 3rd party software (Houdini) that processes the height field data
into a final result that is used inside a game engine. The problem with this is that it requires the artist
to use 3rd party software as well. Which in the case of this paper resulted in some issues when trying
to have participants test the cliff tool as they did not have access to that specific software. If you’re
in a production environment for a company this is less of a concern, but none the less an important
thing to keep in mind. Same goes for the usage of APIs which make the communication between game
engine and Houdini possible. You’ll be reliant on that API when building tools for a game engine and
through that not having full control of how you can initialize and use the tools built in the 3rd party
software. This is something which you have to accept. But if possible and with enough resources,
building a tool from scratch with the express purpose of being used inside the game engine would
exclude extra headaches resulting from the 3rd party software.

Now to finally answer What attributes are important for the development of environment art tools?
All three attributes mentioned above and through out this article are of high importance. But the
question rather boils down to What you use these attributes for? Meaning that the attributes are
with out a doubt of high importance but rather their application in specific tools is what dictates their
ultimate use fullness or lack there of. Some tools require a more adaptive workflow while some require
more control. Its the developers job to figure out which suits their specific tool the best.

13



Digital Games
Blekinge Institute of Technology

Karl Andersson

References

DowlingSoka, R. (n.d.). Triplanar, dithered triplanar, and biplanar mapping in unreal. https://

ryandowlingsoka.com/unreal/triplanar-dither-biplanar/. (Accessed: 2023-05-07)
Hendrikx, M., Meijer, S., Van Der Velden, J., & Iosup, A. (2013, feb). Procedural content gen-

eration for games: A survey. ACM Trans. Multimedia Comput. Commun. Appl., 9 (1). Re-
trieved from https://doi-org.miman.bib.bth.se/10.1145/2422956.2422957 doi: 10.1145/
2422956.2422957

Kim, I., Hong, S., Lee, J.-H., & Bazin, J.-C. (2018). Overlay design methodology for virtual
environment design within digital games. Advanced Engineering Informatics, 38 , 458-473.
Retrieved from https://www.sciencedirect.com/science/article/pii/S1474034617305864

doi: https://doi.org/10.1016/j.aei.2018.08.014
Mojang. (2023). Minecraft. (Accessed: 2023-07-13)
Smelik, R. M., Tutenel, T., Bidarra, R., & Benes, B. (2014). A survey on procedural modelling for vir-

tual worlds. Computer Graphics Forum, 33 (6), 31-50. Retrieved from https://onlinelibrary

.wiley.com/doi/abs/10.1111/cgf.12276 doi: https://doi.org/10.1111/cgf.12276
Stavridis, C. (1969). Proceduralism for games? short answer is yes. https://www.youtube.com/

watch?v=lb4yVPeWuwY. (Accessed: 2023-05-29)
Worley, S. (1996). A cellular texture basis function. In Proceedings of the 23rd annual conference on

computer graphics and interactive techniques (p. 291–294). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi-org.miman.bib.bth.se/10.1145/237170

.237267 doi: 10.1145/237170.237267
Xu, K., & Campeanuy, D. (2014). Houdini engine: Evolution towards a procedural pipeline. In

Proceedings of the fourth symposium on digital production (p. 13–18). New York, NY, USA:
Association for Computing Machinery. Retrieved from https://doi.org/10.1145/2633374

.2633378 doi: 10.1145/2633374.2633378

14



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 1: One Node
This image shows what happens when one sphere node is used inside Houdini and explains the basic
usage of Houdini.

Figure 2: Two Nodes
This image shows and example of what happens when two nodes are connected inside Houdini and
explains the basic flow of the hierarchical structure which the tool enables.

15



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 3: Node Variations
This image shows and example of what happens when more nodes are combined and how the hierar-
chical structure takes any variations of the nodes above the current one into account in creating the
final result.

Figure 4: Cable Tool
This image of the cable tool in action and demonstrates how the tool generates in an adaptive manner.
Taking it self and the environment into account.

16



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 5: Railing Tool
This image of the railing tool in action shows how the artist can manipulate the tool to create a specific
style. Where the color, shape of the railings and path of the railings are determined by the artist.

Figure 6: Antenna Tool
The antenna tool and this image there of explains how the iterative attribute is important in creating

variation in environments. This by placing parabolic antennas at various positions in a antenna
tower and changing their color.

17



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 7: ODM Methodology
This image shows how you can use the ODM methodology to differentiate various layers/masks in

architectural design. The image itself is from (Kim et al., 2018)

18



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 8: Implementation of ODM Methodology
An image showing how ODM can be implemented in terms of landscapes for video games. This uses
Houdini to show how I attempted to implement this ourselves during the development of the tool for

this article.

19



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 9: Cliff Transition
This image of a cliff surface shows how the 3D mesh generated from the tool intersects with the
terrain itself. Blending together using triplanar texturing of the meshes. While still allowing for a

proper cliff mesh to interact with.

20



Digital Games
Blekinge Institute of Technology

Karl Andersson

Figure 10: Cliff
This is a image of the cliff that displays how it blends with both the cliff textures underneath. As

well as the blending with the grass textures surrounding it.

21


