
SoftwareX 18 (2022) 101089

Y
a

b

c

d

e

a
a
l
(
w

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

The Contiki-NG open source operating system for next generation IoT
devices
George Oikonomou a,∗, Simon Duquennoy b,c, Atis Elsts d, Joakim Eriksson b,
asuyuki Tanaka e, Nicolas Tsiftes b

Electrical and Electronic Engineering, University of Bristol, Bristol, UK
RISE Research Institutes of Sweden, Kista, Sweden
Inria Lille - Nord Europe, France
Institute of Electronics and Computer Science (EDI), Riga, Latvia
Corporate Research and Development Center, Toshiba, Kawasaki, Japan

a r t i c l e i n f o

Article history:
Received 12 August 2021
Received in revised form 23 February 2022
Accepted 13 April 2022

Keywords:
Contiki-NG
Internet of Things
Resource-Constrained Devices

a b s t r a c t

Contiki-NG (Next Generation) is an open source, cross-platform operating system for severely con-
strained wireless embedded devices. It focuses on dependable (reliable and secure) low-power
communications and standardised protocols, such as 6LoWPAN, IPv6, 6TiSCH, RPL, and CoAP. Its
primary aims are to (i) facilitate rapid prototyping and evaluation of Internet of Things research ideas,
(ii) reduce time-to-market for Internet of Things applications, and (iii) provide an easy-to-use platform
for teaching embedded systems-related courses in higher education. Contiki-NG started as a fork of the
Contiki OS and retains many of its original features. In this paper, we discuss the motivation behind the
creation of Contiki-NG, present the most recent version (v4.7), and highlight the impact of Contiki-NG
through specific examples.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v4.7
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00149
Code Ocean compute capsule N/A
Legal Code License 3-Clause BSD
Code versioning system used git
Software code languages, tools, and services used C, Java (Cooja Simulator), Python (Multiple ecosystem tools)
Compilation requirements, operating environments & dependencies Linux, macOS, Windows (partial support)
If available Link to developer documentation/manual Guides and Tutorials: https://github.com/contiki-ng/contiki-ng/wiki

API Documentation: https://contiki-ng.readthedocs.io
Support email for questions Gitter: https://gitter.im/contiki-ng

GitHub Discussions: https://github.com/contiki-ng/contiki-ng/discussions
Stack overflow: https://stackoverflow.com/questions/tagged/contiki-ng

1. Motivation and significance

Research in the field of Wireless Sensor Networks started
lmost two decades ago [1]. During the initial years, research
ctivities targeted extremely resource-constrained devices (kB or
ess of RAM, bit-level radio Application Programming Interface
API)), and utilising highly specialised application-specific soft-
are was the norm. As an example of this approach, the TinyOS

∗ Corresponding author.
E-mail address: g.oikonomou@bristol.ac.uk (George Oikonomou).

operating system [2] used a purely event-based execution model
and a custom programming language called nesC.

1.1. Historical background — The original Contiki OS

The original Contiki Operating System (OS) [3] was open
sourced in 2006, but development had started as early as 2003.
It was designed for resource-constrained wireless sensor devices
with code memory in the order of 100kB and less than 10kB
of volatile memory. Contiki was a major step in the evolution of
modern IoT operating systems, with its main strengths being:
ttps://doi.org/10.1016/j.softx.2022.101089
352-7110/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101089
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101089&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00149
https://github.com/contiki-ng/contiki-ng/wiki
https://contiki-ng.readthedocs.io
https://gitter.im/contiki-ng
https://github.com/contiki-ng/contiki-ng/discussions
https://stackoverflow.com/questions/tagged/contiki-ng
mailto:g.oikonomou@bristol.ac.uk
https://doi.org/10.1016/j.softx.2022.101089
http://creativecommons.org/licenses/by/4.0/


George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089

t
f
t
r
i
f
‘
t
a
d

1

e

n
p

t
m
o

w
t
s

• Use of the standard C programming language1; application
developers no longer needed to learn a bespoke language
such as nesC.

• Event-based kernel. In conjunction with tickless, platform-
specific main loop code (implemented for some platforms)
it allowed for fast reaction time to external events and
energy-efficient execution.

• Cooperative multi-threading based process API [4]. It greatly
simplified application programming, reducing the need for
both explicit state machines and locks (compared to event-
based API and preemptive thread API, respectively).

• Early, standards-compliant support for network protocols
such as the Internet Protocol (IP) and IPv6 protocols through
the uIP [5] stack. It also featured some of the very early open
implementations of IPv6 over Low Power Wireless Personal
Area Networks (6LoWPAN) and of the Routing Protocol for
Low-Power and Lossy Networks (RPL).

The official Contiki distribution also included Cooja, a simula-
or for IEEE 802.15.4 networks of devices running Contiki-based
irmware. Alongside Cooja and other tools of its ecosystem, Con-
iki went on to become an extensively-used tool for academic
esearch in the Wireless Sensor Network (WSN) field. As an
ndicator of Contiki’s impact, the authors of this paper identi-
ied in excess of 2000 peer-reviewed publications by using the
‘Contiki AND OS’’ search string on the Scopus database. Among
hose papers, approximately 350 have been published in 2018
lone. Moreover, according to Scopus one of the first publications
ocumenting Contiki [3] has been cited in excess of 1300 times.

.2. From Contiki to Contiki-NG

As the Contiki OS gained traction and started being used
xtensively, some limitations began to emerge:

• Large legacy of old, extremely resource-constrained plat-
forms. The 8-bit and 16-bit low-power microcontrollers
which Contiki was originally designed for became obsolete
over time; 32-bit ARM Cortex-M based devices with more
sophisticated low-power modes are the new norm [6].

• Support for non-standard protocols. As the field of wireless
sensor network research evolved to become one of the core
enabling technologies of the IoT, interoperability and stan-
dards became increasingly important. Alongside standards-
compliant protocol implementations, the Contiki code-base
also featured older, experimental, non-standard protocols
initially contributed as research artefacts. One such example
is the Rime stack.

This combination of legacy platform code and support for
on-standard networking protocols increased maintenance com-
lexity and impeded code evolution.
Contiki-NG was first released in November 2017. Its aim was

o eliminate some of Contiki’s limitations in order to enable easier
aintenance and quicker evolution. The main vision is to focus
n:

• Standard protocols. Some of the standards supported by
Contiki-NG are IEEE 802.15.4 TSCH, 6LoWPAN, 6TiSCH, RPL,
CoAP, MQTT, and LWM2M.

• Support for modern hardware platforms.

1 Developers should not use C switch statements inside protothreads. This
as a limitation of the original Contiki OS and has been carried over
o Contiki-NG. With the exception of this limitation, Contiki-NG is fully C
tandards-compliant.

• Dependability (reliability and security) through modern de-
velopment practices, continuous integration using simula-
tions and a physical testbed, and security testing techniques.

The first release (v4.0) was a fork of the Contiki OS. Besides
the aforementioned changes in the high-level focus of the OS,
Contiki-NG added a new configuration and logging system, a new
lightweight and reliable RPL implementation (RPL-Lite), and a
network administration shell. It also brought with it an exten-
sive cleanup of the codebase, with legacy platforms, protocols
and services removed, so as to eliminate constraints on future
developments. All Contiki-NG releases and their changelogs are
available at https://github.com/contiki-ng/contiki-ng/releases.

2. The Contiki-NG project

Contiki-NG introduces many new features, but it also re-uses –
with or without modification – many of the features of the origi-
nal Contiki OS, such as the scheduler, the event-based kernel, data
structure manipulation libraries and storage. Contiki-NG also uses
with minor modifications multiple networking-related software
components, such as the original implementations of 6LoWPAN
and RPL (henceforth called ‘‘RPL-Classic’’).

Contiki-NG primarily targets Arm Cortex-M platforms. The
official repository includes support for hardware by Nordic Semi-
conductor, NXP, OpenMote, Texas Instruments, and Zolertia. All
those platforms are powered by Cortex-M3 or -M4 chips. Out-
side the main repository exist numerous Contiki-NG forks that
have added support for other hardware, for example platforms
powered by ST Microelectronics chips such as those used at the
FIT IoT-Lab testbed. To the best of our knowledge, there is no
reason why Contiki-NG would not run on Cortex-M0. Lastly, the
official repository also includes support for the 16-bit MSP430
architecture, which is mainly used inside the Cooja simulator
(Section 1.2). In terms of adding support for more hardware, most
of the effort revolves around the implementation of support for
new Micro-controller (MCU) architectures and on-chip periph-
erals, including radio transceivers. Once this support has been
added, porting Contiki-NG to a new board is much less onerous.
Documentation of the steps required to port Contiki-NG to a new
hardware platform can be found on the wiki.2

Contiki-NG positions itself within the same landscape as other
operating systems for embedded devices (Table 1), such as RIOT
[7], Zephyr,3 Arm Mbed,4 Apache Mynewt,5 TinyOS and FreeR-
TOS. With its implementation of TSCH, RPL-Classic and RPL-Lite,
the authors of this paper feel that Contiki-NG fills the niche of
low-power, IEEE 801.15.4 wireless mesh networks. For compre-
hensive quantitative or qualitative comparisons of IoT operating
systems, we refer the reader to already extensive literature, such
as [8,9].

In the interest of brevity, the remainder of this section focuses
on describing technical as well as non-technical aspects of the
project that are either entirely new, or that have undergone
significant changes since the launch of the Contiki-NG project.
Describing the operating system in full detail is considered by the
authors to be out of scope of this paper.

2.1. The Contiki-NG architecture and features

Broadly speaking, the Contiki-NG source base can be concep-
tually broken down into two parts: (i) hardware-independent and

2 https://github.com/contiki-ng/contiki-ng/wiki/Porting-Contiki%E2%80%
90NG-to-new-platforms
3 https://www.zephyrproject.org/
4 https://os.mbed.com/
5 https://mynewt.apache.org/
2

https://github.com/contiki-ng/contiki-ng/releases
https://github.com/contiki-ng/contiki-ng/wiki/Porting-Contiki%E2%80%90NG-to-new-platforms
https://github.com/contiki-ng/contiki-ng/wiki/Porting-Contiki%E2%80%90NG-to-new-platforms
https://www.zephyrproject.org/
https://os.mbed.com/
https://mynewt.apache.org/


George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089
Table 1
Feature overview of embedded OSs.
Project Networking Licence Language Threading

Contiki-NG TSCH, 6LoWPAN, RPL BSD C, C++ Cooperative
Contiki TSCH, 6LoWPAN, RPL BSD C Cooperative
Apache Mynewt BLE, LoRa, TCP/IP Apache 2.0 C, C++ Preemptive
Arm Mbed BLE, LoRa, lwIP Apache 2.0 C++ Preemptive
FreeRTOS TCP/IP MIT C, C++ Preemptive
RIOT 6LoWPAN, BLE GNU LGPL C, C++ Preemptive
TinyOS 6LoWPAN BSD nesC Optional preemptive
Zephyr BLE, Thread, 6LoWPAN Apache 2.0 C, C++ Optional preemptive

Fig. 1. Contiki-NG directory structure.

(ii) hardware-specific. The former hosts portable, cross-platform
implementations of all hardware-agnostic components of the OS,
including the kernel, software timers, data structure libraries, and
networking protocols.

The latter provides the code required to make the OS work on
specific devices. It consists of drivers for hardware components
including timers, radio interfaces and other on-chip and off-
chip peripherals, such as Universal Asynchronous Receiver/Trans-
mitter (UART), Serial Peripheral Interface (SPI), Inter-Integrated
Circuit (I2C), LEDs, user buttons and sensing elements. In order
to make the addition of support for more devices as effortless
as possible and in order to increase code portability, Contiki-NG
defines Hardware Abstraction Layers (HALs) for common inter-
faces, including General Purpose Input/Output (GPIO) and SPI. A
Hardware Abstraction Layer (HAL) for I2C is part of the short-term
roadmap. Those HALs include declarations of hardware-specific
functions that need to be implemented by the developer of a
new hardware port. This allows new platform developers to fo-
cus their effort on implementing the hardware-specific parts of
well-defined APIs without having to devise new programming
interfaces. Once chip-specific implementations have been devel-
oped, adding support for different platforms based on the same
chip merely requires trivial configuration. Where possible, within
the HALs Contiki-NG provides platform-independent functions
that can be used to access hardware elements. Those functions
will work on all supported platforms without any further effort.
For example, a developer can use spi_transfer() to send a
sequence of bytes to an SPI peripheral; this function has well-
defined behaviour on all hardware platforms that implement the
hardware-specific parts of the SPI HAL.

2.1.1. Repository structure
Fig. 1 illustrates the directory structure of the Contiki-NG

codebase. All platform-independent code can be found under ‘os/’
and all hardware-specific drivers can be found under ‘arch/’. The
‘tests/’ directory hosts the automated Continuous Integration
testing suite (see Section 2.5), whereas ‘tools/’ contains helper
utilities, such as scripts used to upload firmware to supported
devices, and to generate documentation.

Fig. 2. Contiki-NG network stack.

2.2. Networking support

As discussed in Section 1.2, among Contiki-NG’s main goals is
to provide standards-compliant, dependable low-power network-
ing for severely resource-constrained wireless embedded devices.
Fig. 2 illustrates an overview of the Contiki-NG network stack. In
the remainder of this subsection we provide an overview of the
Contiki-NG implementation of selected supported protocols and
specifications.

2.2.1. TSCH and 6TiSCH
Time Slottted Channel Hopping (TSCH) is a Medium Access

Control (MAC) layer defined in the IEEE 802.15.4-2015 standard
3



George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089

[
u
c
s
n
t
c
p
o
e
i

O
O
n
o
s

2

o
m
i
(
O
b
t
C
v

s
s
i
m
A
s
t
e
o
u
m

2

6
m
c
P
p
[
f
i

2

t
m
i
B
c
i
r
r
T

10]. It is aimed towards Industrial Internet of Things and other
se cases that require high reliability, low latency, and low energy
onsumption. 6TiSCH [11] is a set of existing and upcoming IETF
tandards that aim to describe a complete TSCH-enabled IPv6
etwork stack for these use cases. Contiki-NG supports TSCH [10],
he IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) minimal
onfiguration [12], the 6top Protocol (6P) [13], RPL [14], and other
rotocols for 6TiSCH. The TSCH and 6TiSCH implementations [15]
f Contiki-NG have been validated in a number of IETF interop-
rability events and were shown to be interoperable with other
mplementations, including OpenWSN.

Two 6TiSCH scheduling functions are available on Contiki-NG:
rchestra [16] and the Minimal Scheduling Function (MSF) [17].
rchestra is a fully autonomous scheduling function which does
ot need any signalling traffic to configure TSCH links. On the
ther hand, MSF uses 6P for TSCH link allocations, and adapts its
chedule to traffic changes.

.2.2. RPL-Classic and RPL-lite
RPL is a protocol defined by the IETF RFC6550 [14] for routing

ver low-power and lossy networks. In a nutshell, nodes build a
ulti-hop Directed Acyclic Graph (DAG) topology, enabling rout-

ng towards a root (along a gradient) or towards any other node
following either routing tables or via source routing). The Contiki
S provided one of the earliest open RPL implementations already
ack in 2010 (‘‘RPL-Classic’’), which was evidenced as being in-
eroperable with the version of RPL distributed with TinyOS [18].
ontiki-NG adopted this implementation and contributed a new
ersion, called ‘‘RPL-Lite’’.
RPL-Lite achieves two things: (i) It retains only a selected

ubset of relevant modes of operation from the very flexible
tandard, based on years of experience from RPL-Classic, and (ii)
t offers a complete re-factoring of a code-base that had accu-
ulated a substantial amount of technical debt over the years.
s such, RPL-Lite only supports one single DAG at a time, one
ingle ‘‘RPL instance’’, and only the non-storing mode of opera-
ion. These choices minimise the amount of state maintained at
ach constrained node in the network, allowing for more robust
peration. RPL-Lite was implemented in parallel with research on
ltra-reliable RPL [19], and benefits from many of the reliability
echanisms devised as part of this research.

.2.3. Multicast support
The Contiki-NG kernel supports IPv6 multicast forwarding in

LoWPANs through an API that allows the easy addition of new
ulticast forwarding engines. Contiki-NG contributes a standards-
ompliant implementation of the Multicast Protocol for Low-
ower and Lossy Networks (MPL): A multicast forwarding
rotocol proposed by the Internet Engineering Task Force (IETF)
20]. MPL support accompanies the two multicast engines adopted
rom the original Contiki OS: (i) Stateless Multicast RPL Forward-
ng (SMRF) [21,22] and (ii) Enhanced SMRF (ESMRF) [23].

.2.4. CoAP and LWM2M
The Constrained Application Protocol (CoAP) [24] is an applica-

ion layer protocol similar to HTTP, but it has been designed to be
ore suitable for constrained environments. Contiki-NG’s CoAP

mplementation supports many key CoAP features including: (i)
lock-wise transfers [25] for transporting large blocks of data that
annot fit in a single packet, and (ii) CoAP observations [26]. The
mplementation and respective API make it easy to add new CoAP
esources registered on a specific path, as well as more complex
esource handlers that can be invoked on all CoAP requests.
he CoAP implementation is interoperable with the libcoap.6

6 https://libcoap.net/

command line tools, as well as with node-coap7 Interoperability
with the former is tested automatically as part of our GitHub
actions CI workflow (Section 2.5) to prevent regressions. The
implementation is also interoperable with the ‘‘Copper (Cu)’’8 and
‘‘Copper for Chrome (Cu4Cr)’’9 browser addons.

Contiki-NG also supports version 1.0 of the Open Mobile
Alliance (OMA) Lightweight M2M (LWM2M) specification with
plain text, JavaScript Object Notation (JSON) and Type-Length-
Value (TLV) data formats. The implementation supports the
LWM2M security mode with pre-shared keys and the server and
security objects for configuring security. The LWM2M engine
implementation is accompanied by an implementation of the
LWM2M ‘‘IP for Smart Objects’’ (IPSO) objects, which be used
as an example starting point by developers wishing to adopt
LWM2M for their work. The implementation is interoperable with
Eclipse Leshan10 as well as with Eclipse Wakama11. Interoper-
ability with Leshan is also tested as part of our CI workflow
(Section 2.5).

The original Contiki OS supports CoAP as well as LWM2M, but
both implementations have been reworked and evolved exten-
sively by the Contiki-NG project.

2.2.5. MQTT
Contiki-NG features a lightweight client implementation of

Message Queuing Telemetry Transport (MQTT), an open publish/-
subscribe protocol. The implementation supports MQTT versions
3.1 (adopted from Contiki OS) and v3.1.1 (contributed by Contiki-
NG). Support for MQTT version 5 has already been merged into
the development branch and will be included in the next release.
Contiki-NG also provides a platform-independent MQTT client
example that is interoperable with the Eclipse Mosquitto MQTT
broker, as well as with the IBM Watson IoT Platform.12 Inter-
operability with Mosquitto is tested as part of our CI workflow
(Section 2.5) to prevent regressions.

2.2.6. Limitations
Currently, Contiki-NG does not officially support: (i) The Co-

ordinated Sampled Listening (CSL) mode of IEEE 802.15.4; (ii)
6LoWPAN Neighbor Discovery; (iii) 6LoWPAN ‘‘Mesh-Under’’ op-
eration (only ‘‘Route-Over’’ is supported); and (iv) secure mes-
sages in RPL. Open source implementations for Contiki-NG do
exist in mirror repositories and adding official support is among
the project’s long-term ambitions.

2.3. Responsible disclosure and security advisories

Contiki-NG places increased focus on software security through
fuzz testing and other methods. The project has a dedicated
email address that can be used for responsible disclosure of
security vulnerabilities. As a result of internal testing processes
and community reports, the project recently released its first
security advisories.

2.4. Documentation

Contiki-NG is documented in a GitHub-hosted wiki13 that
contains an extensive list of guides and tutorials for beginners as
well as for more advanced users.

Moreover, the Contiki-NG source codebase is annotated with
Doxygen14 comments that are used to generate an HTML-based

7 https://www.npmjs.com/package/coap
8 https://github.com/mkovatsc/Copper
9 https://github.com/mkovatsc/Copper4Cr

10 https://www.eclipse.org/leshan/
11 https://github.com/eclipse/wakaama
12 https://quickstart.internetofthings.ibmcloud.com
13 https://github.com/contiki-ng/contiki-ng/wiki
14 http://www.doxygen.nl/
4

https://libcoap.net/
https://www.npmjs.com/package/coap
https://github.com/mkovatsc/Copper
https://github.com/mkovatsc/Copper4Cr
https://www.eclipse.org/leshan/
https://github.com/eclipse/wakaama
https://quickstart.internetofthings.ibmcloud.com
https://github.com/contiki-ng/contiki-ng/wiki
http://www.doxygen.nl/


George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089

A
b
o
h
N
w

2

g
t
o
t
g
u
b
s
i
m
f
i

j
c

w
f
v
c

2

p
b
s
(
g
e
n
r
e
1
o
t
r
n
a
m

v
t
b
n
t

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22

23

24

25
26
27
28
29
30

31
32
33

34

35

36
37
38
39
40
41
PI documentation. The API documents can be built and viewed
y users locally on their computers, but are also hosted online
n ‘‘Read the Docs’’15. This automatically-updated online space
osts multiple versions of the API documents: One per Contiki-
G release (since v4.2 when the feature was first introduced), as
ell as one for the latest version of the develop branch.

.5. Continuous integration testing

Contiki-NG is automatically tested using a Continuous Inte-
ration (CI) workflow on GitHub Actions. This workflow replaced
he older test suite on the Travis-CI16 platform with the release
f version v4.6. The test suite is triggered automatically each
ime a code change gets merged into one of Contiki-NG’s main
it branches, as well as each time a pull request is opened or
pdated. All pull requests must pass all CI tests before they can
e considered for inclusion in the official source codebase. All
ource code changes must take place through a pull request,
ncluding code changes proposed by members of the Contiki-NG
aintainers team. This strategy enforces scrutiny by peers, there-

ore increasing overall code quality and reducing the likelihood of
ntroducing errors.

The Contiki-NG test suite comprises seventeen jobs, with each
ob executing multiple CI tests. The test suite covers the following
ode elements:

• Successful compilation of code examples for multiple hard-
ware platforms under multiple different configurations.

• Validation of the correct operation of various elements of
the networking subsystem through multiple Cooja simula-
tions and native code execution scenarios.

• Successful compilation of the doxygen API documentation
(Section 2.4).

Users who wish to exercise their code with Contiki-NG’s CI
orkflow can do so trivially by enabling GitHub Actions on their

ork repository. Alternatively, the Contiki-NG docker image pro-
ides all tools required to execute the test suite locally on their
omputers.

.6. Nightly builds

In addition to the per-contribution CI described above, we
erform automated nightly testbed runs on real hardware: a
espoke, 25-node testbed installed at RISE SICS. Each node con-
ists of both a control device (Raspberry PI) and a set of sensors
at the time of writing, a Zolertia Firefly and a JN516x don-
le). Every night, a cron job schedules four 2-hour experiments,
ach with a different configuration of the network stack. Control
odes deploy to all 25 Firefly devices a firmware that performs
esponse–request communication between the root node and
very other node in the network. Each experiment involves over
0k round-trip network packet exchanges over multiple hops
n power-saving devices. A log file post-processing script ex-
racts key metrics from each run: end-to-end round-trip delivery
atio, latency, radio duty cycle, hop counts, and frequency of
etwork topology changes. Raw log files and processed statistics
re pushed automatically to a public website for visualization and
onitoring.17
The benefits of nightly builds are twofold. Firstly, they pro-

ide automated testing on real hardware, as opposed to simula-
ion/emulation used in CI. Secondly, they give developers feed-
ack, and the ability to compare the performance of various
etwork stack configurations and to spot performance degrada-
ion.

15 https://contiki-ng.readthedocs.io
16 https://travis-ci.org/contiki-ng/contiki-ng
17 https://contiki-ng.github.io/testbed/

#include " contiki.h "
#include " net/ipv6/simple-udp.h "
#include " net/mac/tsch/tsch.h "
#include " lib/random.h "
#include " sys/node-id.h "

#define UDP_PORT 8765
#define SEND_INTERVAL (60 * CLOCK_SECOND)

PROCESS(node_process , " RPL Node " );
AUTOSTART_PROCESSES(&node_process);
simple_udp_callback rx_callback; /* Defined in the file

rx_callback.c */

PROCESS_THREAD(node_process , ev, data)
{

static struct simple_udp_connection udp_conn;
static struct etimer periodic_timer;
uip_ipaddr_t dst;

PROCESS_BEGIN();

/* Initialization; ‘rx_callback ‘ is the function for
packet reception */

simple_udp_register(&udp_conn, UDP_PORT , NULL, UDP_PORT
, rx_callback);

etimer_set(&periodic_timer , random_rand() if(node_id
== 1) { /* Running on the root? */
NETSTACK_ROUTING.root_start();

}

/* Main loop */
while(1) {

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&
periodic_timer));
if(NETSTACK_ROUTING.node_is_reachable()

&& NETSTACK_ROUTING.get_root_ipaddr(&dst)) {
/* Send network uptime timestamp to the network

root node */
uint64_t network_uptime =

tsch_get_network_uptime_ticks();
simple_udp_sendto(&udp_conn , &network_uptime ,

sizeof(uint64_t), &dst);
}
etimer_set(&periodic_timer , SEND_INTERVAL);

}

PROCESS_END();
}

Listing 1: Network-wide time synchronisation example

3. Illustrative example

As an indicative Contiki-NG user application example, we se-
lect the network-wide time synchronisation demo project.18 The
purpose of the example is to demonstrate how an application
developer can use the time synchronisation provided by TSCH
in order to determine the delay between the time of packet
origination by a source network node and the reception time on
the destination node, which also acts as the network time source.
This example was selected because the application code (Listing
1) remains simple while demonstrating multiple key interfaces:
Contiki-NG process initialisation (lines 23–27); waiting for timer
events (line 31); sending network packets (line 36); packet recep-
tion (present in the full source code, with the respective function
prototype shown in line 12 of the listing); and how to interact
with routing and TSCH protocols from the application layer.

The example hides a lot of the advanced Contiki-NG func-
tionality under the hood; some details of how the Contiki-NG
network stack handles it are shown in Fig. 3. From the perspec-
tive of transmitting and receiving traffic, the application only
has a direct interface with the transport layer (the UDP imple-
mentation in this particular example) through the simple_udp_
API. However, the application also has an indirect interface with

18 Found under examples/6tisch/timesync-demo of the source tree
5

https://contiki-ng.readthedocs.io
https://travis-ci.org/contiki-ng/contiki-ng
https://contiki-ng.github.io/testbed/


George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089

t

r
p
c
a
o
a
f
t
r
i
p
t
R
R
r
t
d
o
F
p
a

o
N
a
s
T
e
C
d
t
w

Fig. 3. Contiki-NG networking stack as used by the network-wide time
synchronisation example when executed in the Cooja simulator.

RPL and TSCH (dotted lines in Fig. 3). In the former case, the
NETSTACK_ROUTING API is used in order to determine whether
the device has successfully joined the network before it tries
to transmit. In the latter case, tsch_get_network_uptime_
icks() is used in order to retrieve accurate time information.
On the receive path and depending on network stack configu-

ation, frame reception is either handled through interrupts, or by
olling the radio driver inside TSCH RX timeslots. In the former
ase of interrupt-based operation, interrupts are processed in
rchitecture-specific handler functions. For radios that form part
f a System-on-Chip, a dedicated radio interrupt is asserted when
frame has been received in full without errors. For SPI radios,

rame reception triggers a GPIO interrupt. The corresponding in-
errupt handler typically polls the radio driver’s main process and
eturns immediately, thus limiting the time spent executing code
nstructions inside an interrupt context. The polled radio driver
rocess is subsequently called outside the interrupt context, reads
he frame from the radio hardware’s buffer and places it in main
AM, alongside relevant frame reception attributes such as the
eceived Signal Strength Indicator (RSSI). In the case of TSCH,
adio interrupts are disabled. Using the NETSTACK_RADIO API,
he platform-independent TSCH implementation polls the radio
river for received frames at the correct time during timeslot
peration, thus ensuring the timing accuracy required by TSCH.
rames get processed by the implementation of the respective
rotocol as they are handed upwards the network stack, and the
pplication code gets notified by way of a function callback.
Under the /examples directory, Contiki-NG provides numer-

us example projects that can be used as first steps with Contiki-
G, or as a starting point by users who wish to develop their own
pplication. These examples cover all elements of the network
tack described in this paper, as well as all hardware abstractions.
o try out the example in this section, or any of the other
xisting examples on the repository, we recommend using the
ontiki-NG Docker container image19 and accompanying wiki
ocumentation. This image provides all necessary compilers and
ools, including the Cooja simulator that allows experimentation
ithout access to Contiki-NG supported hardware.

19 https://hub.docker.com/r/contiker/contiki-ng

4. Impact

Since its open source release in 2006, the original Contiki OS
has been used by numerous research projects funded by a host
of organisations, for example: (i) The European Commission (EC)
under Horizon Europe, Horizon 2020 (H2020), as well as by previ-
ous framework programmes, (ii) Various national research fund-
ing bodies, such as the UK’s Engineering and Physical Sciences
Research Council (EPSRC) or the Swedish Knowledge Foundation.

The added value and benefits of Contiki-NG can be sum-
marised as:

• Simplified porting to new hardware platforms due to re-
moval of legacy code, and due to new, platform-independent
system initialisation, main loop code and HALs.

• Simplified development of new features due to improved
documentation and cleaner examples.

• Increased code quality due to modern development prac-
tices including the git-flow workflow, continuous integra-
tion, nightly testbed runs, and a script to test in excess of
1200 project builds for all platforms.

Due to these features, Contiki-NG is both an off-the-shelf tool
for building multihop, low-power, constrained wireless networks
with five-nines reliability [19], as well as a research platform
for innovation in low-power wireless embedded systems at all
levels of the networking stack, including for example 6TiSCH
scheduling, routing, security, and power-saving MAC layers.

Despite its relatively short history, Contiki-NG has already
facilitated the research published in a number of peer-reviewed
papers, including ones authored by teams not affiliated with the
project, for example [6,27–31].

Contiki-NG has been particularly successful in enabling novel
research in IEEE 802.15.4 TSCH and IETF 6TiSCH networks
[30–32]. Contiki / Contiki-NG offers one of only two open source
IEEE 802.15.4 TSCH implementations for real hardware, the other
one offered by OpenWSN [33]. The authors of this paper do not
consider OpenWSN as a direct competitor, as it is a network stack,
not a complete operating system.

Contiki-NG enables future research in many directions, in-
cluding but not limited to IoT security; energy harvesting; net-
work mobility; multi-protocol/multi-radio/multi-frequency band
IoT communications.

Beyond scientific publications, Contiki-NG is starting to make
an impact through getting used: (i) to support the work under-
taken as part of funded research projects in multiple disciplines
(e.g. Industrial IoT, digital health, smart cities), (ii) for teaching in
higher education.

Table 2 lists a small number of funded R&D projects that have
made extensive use of Contiki-NG. Presenting a comprehensive
list of such projects would be prohibitively long and is considered
out of scope of this paper.

Contiki-NG is used as the basis of multiple commercial prod-
ucts. This list includes consumer/home applications, for example
smart home heating systems and smart light bulbs. The list also
includes industrial applications, such as asset monitoring/track-
ing, and smart agriculture.

5. Conclusions

This paper has discussed the Contiki-NG operating system for
severely-constrained wireless embedded devices. It has provided
the reader with an overview of the project’s architecture and
some of its key non-technical features. It has highlighted the
value that Contiki-NG adds to the research community compared
to its predecessor. Lastly, it has provided some indicators about
its impact on research and higher education.
6

https://hub.docker.com/r/contiker/contiki-ng


George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089

r
l
t

D

c
t

A

C
p
v
o
h
v
p
c
d

e
a
i
o
m

S
p

R

l

Table 2
Funded research projects using Contiki-NG.
Project title Funder Ref.

F-Interop H2020
5G-CORAL H2020 [34]
SPHERE UK EPSRC
EurValve H2020 [32]
Vessedia H2020 [35]
E-care@home Swedish Knowledge Foundation [36]
aSSIsT Swedish Foundation for Strategic Research
SYNERGIA Innovate UK

Contiki-NG comes with a roadmap that can be accessed di-
ectly on GitHub. Updates that are currently in the pipeline are
abelled with ‘‘roadmap’’, while features in the project’s longer-
erm wish list are labelled with ‘‘roadmap/long-term’’20

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

The authors are the individuals among the current group of
ontiki-NG maintainers who were available to contribute to the
reparation of this manuscript. While the authors have written a
ery significant proportion of the source code, we do not claim
wnership of the entire codebase. Over the years, source code
as been developed and contributed by in excess of 250 indi-
iduals, including hobbyists, students, researchers and industry
rofessionals. The GitHub ‘‘contributors’’ page21 provides a list of
ontributors within the last 10 years, but the full code history
ates back to 2006.
With that in mind, first and foremost we gratefully acknowl-

dge individuals who have contributed their work to Contiki-NG
nd the original Contiki OS since its first open source release
n 2006. We acknowledge Adam Dunkels – the inventor of the
riginal Contiki OS – and all individuals who have acted as project
aintainers over the years.
This work has been partially supported by VINNOVA and the

wedish Foundation for Strategic Research through the aSSIsT
roject.

eferences

[1] Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor
networks: a survey. Comput Netw 2002;38(4):393–422.

[2] Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, et al.
TinyOS: An operating system for sensor networks. In: Ambient intelligence.
Springer; 2005, p. 115–48.

[3] Dunkels A, Gronvall B, Voigt T. Contiki - a lightweight and flexible operat-
ing system for tiny networked sensors. In: 29th Annual IEEE international
conference on local computer networks. 2004, p. 455–62.

[4] Dunkels A, Schmidt O, Voigt T, Ali M. Protothreads: Simplifying event-
driven programming of memory-constrained embedded systems. In:
Proceedings of the 4th international conference on embedded networked
sensor systems. New York, NY, USA: ACM; 2006, p. 29–42.

[5] Dunkels A. Full TCP/IP for 8-bit architectures. In: Proceedings of the 1st
international conference on mobile systems, applications and services.
MobiSys ’03, New York, NY, USA: ACM; 2003, p. 85–98.

[6] Kim H-S, Andersen MP, Chen K, Kumar S, Zhao WJ, Ma K, et al. System
architecture directions for post-soc/32-bit networked sensors. In: Proceed-
ings of the 16th ACM conference on embedded networked sensor systems.
ACM; 2018, p. 264–77.

20 https://github.com/contiki-ng/contiki-ng/issues?q=is%3Aopen+is%3Aissue+
abel%3Aroadmap
21 https://github.com/contiki-ng/contiki-ng/graphs/contributors

[7] Baccelli E, Hahm O, Günes M, Wählisch M, Schmidt TC. RIOT OS: TOwards
an OS for the internet of things. In: 2013 IEEE conference on computer
communications workshops. IEEE; 2013, p. 79–80.

[8] Javed F, Afzal MK, Sharif M, Kim B-S. Internet of things (IoT) operating
systems support, networking technologies, applications, and challenges: A
comparative review. IEEE Commun Surv Tutor 2018;20(3):2062–100.

[9] Silva M, Cerdeira D, Pinto S, Gomes T. Operating systems for internet of
things low-end devices: Analysis and benchmarking. IEEE Internet Things
J 2019;6(6):10375–83.

[10] IEEE. 802.15.4-2015 - IEEE Standard for low-rate wireless networks. 2016,
IEEE Std 802.15.4-2015.

[11] Thubert P. An architecture for IPv6 over the time-slotted channel hopping
mode of IEEE 802.15.4 (6tisch). 2021, RFC 9030.

[12] Vilajosana X, Pister K, Watteyne T. Minimal IPv6 over the TSCH mode of
IEEE 802.15.4e (6tisch) configuration. 2017, RFC 8180.

[13] Wang Q, Vilajosana X, Watteyne T. 6TiSCH operation sublayer (6top)
protocol (6P). 2018, RFC 8480.

[14] Alexander R, Brandt A, Vasseur J, Hui J, Pister K, Thubert P, et al. RPL: IPV6
routing protocol for low-power and lossy networks. 2012, RFC 6550.

[15] Duquennoy S, Elsts A, Al Nahas B, Oikonomou G. TSCH And 6tisch for
contiki: challenges, design and evaluation. In: Proc. IEEE DCOSS. IEEE; 2017,
p. 11–3.

[16] Duquennoy S, Nahas BA, Landsiedel O, Watteyne T. Orchestra: Robust mesh
networks through autonomously scheduled TSCH. In: Proceedings of the
international conference on embedded networked sensor systems. Seoul,
South Korea; 2015.

[17] Chang T, Vučinić M, Vilajosana X, Duquennoy S, Dujovne D. 6TiSCH
minimal scheduling function (MSF). 2021, RFC 9033.

[18] Ko J, Eriksson J, Tsiftes N, Dawson-Haggerty S, Terzis A, Dunkels A, et al.
ContikiRPL and TinyRPL: Happy together. In: Workshop on extending the
internet to low power and lossy networks (IP+ SN). Vol. 570. Citeseer;
2011.

[19] Duquennoy S, Eriksson J, Voigt T. Five-nines reliable downward routing in
RPL. 2017, arXiv.

[20] Hui JW, Kelsey R. Multicast protocol for low-power and lossy networks
(MPL). 2016, RFC 7731.

[21] Oikonomou G, Phillips I. Stateless multicast forwarding with RPL in 6low-
pan sensor networks. In: Proc. IEEE international conference on pervasive
computing and communications workshops. Lugano, Switzerland: IEEE;
2012, p. 272–7.

[22] Oikonomou G, Phillips I, Tryfonas T. IPV6 multicast forwarding in RPL-
based wireless sensor networks. Wirel Pers Commun 2013;73(3):1089–
116.

[23] Abdel Fadeel KQ, El Sayed K. ESMRF: Enhanced stateless multicast RPL
forwarding for IPv6-based low-power and lossy networks. In: Proc. 2015
workshop on IoT challenges in mobile and industrial systems. IoT-Sys ’15,
New York, NY, USA: ACM; 2015, p. 19–24.

[24] Shelby Z, Hartke K, Bormann C. The constrained application protocol
(CoAP). 2014, RFC 7252.

[25] Bormann C, Shelby Z. Block-wise transfers in the constrained application
protocol (CoAP). 2016, RFC 7959.

[26] Hartke K. Observing resources in the constrained application protocol
(CoAP). 2015, RFC 7641.

[27] Tomasic I, Khosraviani K, Rosengren P, Jörntén-Karlsson M, Lindén M.
Enabling IoT based monitoring of patients’ environmental parameters:
Experiences from using OpenMote with openwsn and contiki-NG. In:
2018 41st International convention on information and communication
technology, electronics and microelectronics. IEEE; 2018, p. 0330–4.

[28] Algora CMG, Reguera VA, Fernández EMG, Steenhaut K. Parallel
rendezvous-based association for IEEE 802.15.4 tsch networks. IEEE Sens J
2018;18(21):9005–20.

[29] Yang G, Urke AR, Øvsthus K. Mobility support of IoT solution in home
care wireless sensor network. In: 2018 Ubiquitous positioning, indoor
navigation and location-based services. IEEE; 2018, p. 475–80.

[30] Cheng X, Sha M. Cracking the TSCH channel hopping in IEEE 802.15.4e.
In: Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. ACM; 2018, p. 2210–2.
7

http://refhub.elsevier.com/S2352-7110(22)00062-0/sb1
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb1
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb1
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb2
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb2
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb2
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb2
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb2
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb6
https://github.com/contiki-ng/contiki-ng/issues?q=is%3Aopen+is%3Aissue+label%3Aroadmap
https://github.com/contiki-ng/contiki-ng/issues?q=is%3Aopen+is%3Aissue+label%3Aroadmap
https://github.com/contiki-ng/contiki-ng/graphs/contributors
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb8
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb8
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb8
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb8
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb8
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb10
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb10
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb10
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb13
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb13
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb13
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb14
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb14
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb14
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb17
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb17
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb17
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb19
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb19
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb19
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb20
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb20
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb20
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb25
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb25
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb25
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb26
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb26
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb26
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb27
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb28
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb28
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb28
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb28
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb28
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb29
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb29
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb29
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb29
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb29
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb30


George Oikonomou, Simon Duquennoy, Atis Elsts et al. SoftwareX 18 (2022) 101089
[31] Lee S-B, Kim E-J, Lim Y. Contiki-NG-based IEEE 802.15.4 TSCH throughput
evaluation. In: Proceedings of the Korean institute of information and
commucation sciences conference. The Korea Institute of Information and
Commucation Engineering; 2018, p. 577–8.

[32] Elsts A, Pope J, Fafoutis X, Piechocki R, Oikonomou G. Instant: A TSCH
schedule for data collection from mobile nodes. In: Proc. 2019 international
conference on embedded wireless systems and networks. EWSN, 2019.

[33] Watteyne T, Vilajosana X, Kerkez B, Chraim F, Weekly K, Wang Q,
et al. OpenWSN: a standards-based low-power wireless development
environment. Trans Emerg Telecommun Technol 2012;23(5):480–93.

[34] Li C-Y, Chien H-T, editors. Communication, dissemination, standardisation
and exploitation achievements of Y1 and plans for Y2. 2018, 5G-CORAL
Deliverable D5.1.

[35] Peyrard A, Kosmatov N, Duquennoy S, Raza S. Towards formal verification
of contiki: Analysis of the AES–ccm* modules with frama-c. In: Proc.
workshop on recent advances in secure management of data and resources
in the IoT. RED-IOT, Madrid, Spain; 2018.

[36] Alirezaie M, Renoux J, Köckemann U, Kristoffersson A, Karlsson L,
Blomqvist E, et al. An ontology-based context-aware system for smart
homes: E-care@home. Sensors 2017;17(7):1586.
8

http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb32
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb32
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb32
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb32
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb32
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb34
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb34
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb34
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb34
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb34
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb35
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00062-0/sb36

	The Contiki-NG open source operating system for next generation IoT devices
	Motivation and significance
	Historical background — The original Contiki OS
	From Contiki to Contiki-NG

	The Contiki-NG project
	The Contiki-NG architecture and features
	Repository structure

	Networking support
	TSCH and 6TiSCH
	RPL-Classic and RPL-lite
	Multicast support
	CoAP and LWM2M
	MQTT
	Limitations

	Responsible disclosure and security advisories
	Documentation
	Continuous integration testing
	Nightly builds

	Illustrative example
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgements
	References


