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Warmer temperatures favor slower-growing bacteria in
natural marine communities
Clare I. Abreu1,2*†, Martina Dal Bello1*†, Carina Bunse3, Jarone Pinhassi4, Jeff Gore1*

Earth’s life-sustaining oceans harbor diverse bacterial communities that display varying composition across
time and space. While particular patterns of variation have been linked to a range of factors, unifying rules
are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-
growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater tem-
peratures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-
dependent growth rates differentially modulate the impact of mortality on species abundances. Changes in
bacterial community structure promoted by temperature are independent of variations in nutrients along
spatial and temporal gradients. Our results help explain why slow growers dominate at the ocean surface,
during summer, and near the tropics and provide a framework to understand how bacterial communities will
change in a warmer world.
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INTRODUCTION
Oceans cover 70% of the surface of our planet and are home to
myriad bacterial species that are responsible for many of Earth’s
crucial biogeochemical functions (1, 2), including fixing carbon
and nitrogen, recycling nutrients and dissolved organic matter,
and degrading biomass. Surveys of the ocean microbiome over
broad spatial and temporal scales have revealed repeatable patterns
across seasons (3–6), latitude (7), and depth (8), which have been
linked to a variety of environmental factors, including temperature
(3, 4, 8, 9), water mixing (10, 11), nutrient availability (12), light
(13), and the occurrence of phytoplankton blooms (6). Neverthe-
less, general principles underlying the compositional turnover of
vital marine bacterial communities are lacking, impairing our
ability to predict the response of ocean systems to future environ-
mental changes.
The distribution of fast- and slow-growing taxa is a powerful

trait-based description of the structure of a bacterial community
(14, 15), just as it is for multicellular organisms ranging from
plants (16) to corals (17, 18). Maximum growth rates are a key com-
ponent of the diverse life history strategies exhibited by micro- and
macro-organisms (19–23) and determine the ability of a species to
survive and compete in a given environment (24). In aquatic bacte-
ria, maximum growth rate differentiates fast-growing copiotrophs,
found in nutrient-rich waters, from slow-growing but efficient oli-
gotrophs, which can grow in nutrient-poor environments (25–29).
While the role of nutrients in the distribution of fast- and slow-
growing bacteria is an area of active study (12, 30–32), the effects
of temperature have been comparatively less explored, despite
ample evidence that temperature is a fundamental driver of
marine communities (3, 4, 8, 33).

Here, we analyze marine datasets of free-living bacteria from
around theworld, where temperature varies across seasons, latitude,
and depth.We show that higher temperatures are associated with an
increase in the relative abundance of slower-growing taxa, with ri-
bosomal RNA (rRNA) gene operon copy number used as a proxy
for maximum growth rate. We show that temperature, more than
other environmental variables such as nutrients, exerts an overrid-
ing effect on community structure and that this effect is robust when
controlling for the effects of other variables. The result that slower-
growing bacteria are favored by warmer temperatures agrees with
predictions that we derive from simple ecological models incorpo-
rating bacterial growth as a function of temperature, competition,
and mortality. These models show that differences in growth rates
matter the most in cold temperatures, where mortality is a greater
burden for slower-growing taxa. In warmer temperatures, increased
growth rates of all bacteria reduce the differences in the impact of
mortality, allowing slower-growing taxa to become more abundant.
This concept, which we term mortality burden, illuminates a prin-
ciple for how temperature determines not only individual microbial
niches but also structures multispecies communities.

RESULTS
To explore the distribution of fast- and slow-growing bacteria along
principal axes of temperature variation in the ocean, we gathered
seven 16S rRNA gene amplicon sequencing datasets of marine bac-
terial communities encompassing wide seasonal, latitudinal, and
depth gradients. Given that the maximum growth rate of a bacterial
species is approximately proportional to its rRNA operon copy
number (34, 35), we inferred the distribution of growth rates of bac-
terial communities in these datasets by matching observed taxa to
the rRNA operon copy number database (rrnDB) (36). rRNA copy
number is a proxy for maximum attainable growth rate and may
differ from realized growth rate in a given environment or in the
presence of other species. Our analyses and models assign
maximum growth rate as the defining characteristic of fast- and
slow-growing bacteria. We summarized the distribution of fast
and slow growers in a community with its abundance-weighted
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mean copy number (MCN), which represents the expected rRNA
copy number of a randomly sampled cell (see Materials and
Methods). A large MCN indicates greater relative abundances of
fast-growing bacteria, while more abundant slow-growing bacteria
drive the MCN to smaller values. In Fig. 1, we focus on three data-
sets of free-living bacteria (the fraction of the biomass that passes
through a 3-μm filter and is deposited onto a 0.2-μm filter) in
which temperature changes either seasonally [Linnaeus Microbial
Observatory (LMO) in the Baltic Sea, green dot in Fig. 1A],
across ~100 degrees of latitude [ANT 28-5 cruise (37–39), yellow
dots], or across a depth of 1000 m [TARA Oceans project (8),
purple dots].
We found notable and consistent changes in the distribution of

fast- and slow-growing taxa associated with temperature variation

over seasons, latitude, and depth. TheMCN of LMO free-living bac-
terial communities showed recurring seasonal fluctuations, with the
lowest values observed during summer when temperatures were
highest (Fig. 1B). The MCN of free-living communities along the
Atlantic transect was higher at higher latitudes and decreased
toward the equator, mirroring the latitudinal variations in temper-
ature (Fig. 1C). In the TARA Ocean data, we focused on samples
between the equator and 40°S to minimize latitudinal variation
and assess how the distribution of growth rates would change
with depth. We found that MCN increased as depth increased
and temperature decreased (Fig. 1D). In all three cases, higher tem-
peratures were associated with an increase in the relative abundance
of slow-growing taxa with low copy number.

Fig. 1. Slower-growing taxa dominate during summer, at low latitudes, and at the surface of the ocean. (A) Sampling locations of the LMO (green), the ANT 28-5
cruise (yellow), and the TARAOcean Project (purple) span several seasons, latitudes, and depths. (B) Temporal trajectories of temperature and weighted MCN values for
the LMO station (8 years, with denser sampling in the first 3 years andmonthly sampling starting in 2014). Each point in the MCN panel is the rolling average ± SE (shaded
gray ribbon) with span = 7 observations. Same for temperature but only the trajectory is shown. (C) Latitudinal variation in temperature and MCN in the ANT cruise. Each
point in theMCNpanel is the average across five sampling depths (0 to 25, 25 to 50, 50 to 80, 85 to 120, and 120 to 200m) ± SE (shaded gray ribbon). Same for temperature
but only the trajectory is shown. (D) Variation in depth of temperature andMCN in the samples collected between 0° and 40°S of the TARAOcean project. Each point in the
MCN panel is the rolling average ± SE (shaded gray ribbon) with span = 19 observations. Same for temperature but only the trajectory is shown. (E) MCN is significantly
negatively correlatedwith temperature across the three datasets. The colored dashed lines are linear regressors. In the inset, we report temperature sensitivities estimated
for each dataset: green, LMO = −0.025 ± 0.003 ∆MCN/°C (P = 3.78 × 10−15); yellow, ANT = −0.023 ± 0.002 ∆MCN/°C (P = 6.83 × 10−15); purple, TARA = −0.021 ± 0.002
∆MCN/°C (P < 2 × 10−16).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Abreu et al., Sci. Adv. 9, eade8352 (2023) 10 May 2023 2 of 10

D
ow

nloaded from
 https://w

w
w

.science.org at U
m

ea U
niversity on A

ugust 16, 2023



Temperature sensitivity, i.e., the slope of the regression between
MCN and temperature, is consistent across the three datasets, re-
vealing a significant decrease of the MCN within the community
by ~0.5 over the range of temperature observed in each dataset
[LMO temperature sensitivity = −0.025 ± 0.003 ∆MCN/°C (P =
3.78 × 10−15), ANT = −0.023 ± 0.002 ∆MCN/°C (P = 6.83 ×
10−15), TARA = −0.021 ± 0.002 ∆MCN/°C (P < 2 × 10−16);
Fig. 1E]. For example, the MCN of the LMO dataset spans
between ~2.5 at the lowest temperature and ~2 at the highest
(Fig. 1E). Our study suggests that slow growers are relatively more
abundant where and when temperatures are higher, i.e., at the
surface of the ocean, during boreal summer, and around equatorial
and tropical regions, and that this direct effect of temperature is a
general feature of the ocean microbiome.
We previously demonstrated that in a two-species laboratory

community of soil-derived heterotrophic bacteria, the slower-
growing species usually increases in relative abundance at higher
temperatures (40). In these experiments, species pairs were grown
in coculture at three different temperatures (16°, 25°, and 30°C)—
with temperature increasing the growth rate of both the faster and
the slower growers—and were subjected to daily dilutions imposing
a global mortality rate. The result that the slower growers are favored
by increasing temperatures can be explained with a concept we term
mortality burden, which describes the impact of mortality on the
net growth rates of both species and is quantified by the ratio of
mortality to growth rate (δr). Mortality burden harms the slower-
growing taxa more than the faster-growing ones in communities,
but increasing temperature, which increases all species’ growth
rates (Fig. 2A and fig. S1A), decreases the mortality burden more

for slower growers than for faster growers (text S1 and fig. S1B), al-
lowing slower growers to increase their relative abundance in the
community [also see (40)]. Our prediction that increasing temper-
ature favors slow growers is true both in the Lotka-Volterra (LV)
interspecies competition model and a simple model of logistic
growth that lacks interspecies interactions (text S1). Moreover,
our model invokes no trade-offs between growth and efficiency or
competitive ability. Even weakly competing, slow-growing species
are predicted to benefit from an increase in temperature.
Here, we extend the two-species LV competition model (40) to a

simulated community of 100 species (Fig. 2A). In this generalized
Lotka-Volterra (GLV) competition model, all species’ growth rates
are proportional to their rRNA copy number and increasewith tem-
perature (Fig. 2A and fig. S1; see Materials and Methods and Sup-
plementary Text). When subjected to a global mortality rate
approximating the effect of grazing, viral lysis, and senescence in
the oceans (41–44), the mean simulated MCN decreases with tem-
perature (Fig. 2B and fig. S3), equivalent to amean reduction of ~0.7
per ~30° increase in temperature. This result suggests that a similar
mechanism to the one identified in the laboratory experiments
might be at play: Increasing temperature differentially reduces the
mortality burden experienced by slow growers, ultimately driving
their increase in relative abundance during summer, at the
tropics, and at the surface of the ocean.
The LV competition model is agnostic to the type of interactions

occurring among simulated species. To explicitly account for the
effect of nutrient availability on the outcome of interspecies compe-
tition and the distribution of fast- and slow-growing taxa, we imple-
mented a consumer-resource model, simulating the effect of

Fig. 2. Observed MCN is well-fit by an interspecies LV competition model. (A) The growth of a simulated species is proportional to its rRNA copy number and
temperature (in K) according to the Arrhenius model, which we plug into the LV competition model with a community-wide mortality rate, δ. rRNA copy numbers
are drawn from a geometric distribution, (1 − p)k−1p, where k is the copy number and the parameter p accounts for the fraction of simulated species with copy
number = 1 in the community starting distribution. (B) Five hundred trajectories of MCN of simulated 100-species communities as a function of temperature. (C) Observed
(colored dots, green LMO, yellow ANT, and purple TARA) and fitted (black lines) weighted MCN values across years (LMO), latitude (ANT), and depth (TARA; samples
between the equator and 40°S). (D) Temperature sensitivity (∆MCN/°C) calculated on fitted data (full circles, slope ± SE) compared to observed temperature sensitivities
(open triangles, slope ± SE).
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increasing temperature across a range of supplied concentrations of
limiting nutrients. We found that at all nutrient supply concentra-
tions, increasing temperature favored slower growers (fig. S4). This
suggests that the generic effect of temperature persists when
changes in nutrients are taken into account.
Having shown that nutrients do not alter the effect of tempera-

ture on interspecies competition and community structure in sim-
ulations, we then used the GLV model to fit observed temperature
data and assess the quantitative agreement between observed and
simulated MCN for each dataset. We found strong agreement
between observed and simulated MCN over the temperature
ranges reported in the three datasets (Fig. 2, C and D). Differences
in the fits to the three datasets reflect different fractions of taxa with
a single copy number in the starting distribution of the simulated
communities (see Materials and Methods and fig. S5), possibly
pointing at the existence of other environmental processes contrib-
uting to the distribution of fast and slow-growers in marine envi-
ronments. In the case of the LMO data, the observed MCN
appeared to lag behind the steady-state prediction of the model, a
result that can be seen in a continuous-time simulation with oscil-
lating temperature (fig. S6). Our theoretical analyses emphasize that
the generic effect of increased temperature favoring slower-growing
taxa may be a dominant force in structuring bacterial communities
in the oceans.
Nutrient concentrations and supply rates are important variables

that regulate plankton community productivity in the ocean over
time and space (6, 45), and the negative correlation between
MCN and temperature that we observe in the three datasets could
depend solely on nutrients (figs. S7 to S9). If the negative correla-
tions were spurious, then the inclusion of other environmental var-
iables in a multivariate regression model would result in a change in
either the sign or the statistical significance of the temperature co-
efficient. However, this analysis (see Materials and Methods) rein-
forced the result that the distribution of fast and slow growers of
LMO, ANT, and TARA free-living communities is overridingly af-
fected by temperature, which, in all three instances, exerts a statisti-
cally significant negative effect on MCN (Fig. 3 and table S1,
parametric coefficient γtemp = −0.031, P < 0.001 LMO, γtemp =
−0.011, P < 0.01 ANT, γtemp = −0.018, P < 0.001 TARA). The
effect of other environmental variables on MCN is less clear. In
the LMO dataset, increases in inorganic nitrogen favored slow
growers (Fig. 3 and table S1, parametric coefficients for ammonium
γNH4

+ = −0.082, P < 0.05 and nitrate γNO3

− = −0.068, P < 0.1), while
phosphate and DOC (dissolved organic carbon) did not signifi-
cantly affect MCN temporal dynamics (Fig. 3 and table S1). In
the TARA Oceans dataset, more abundant phosphate and nitrate
at high latitudes and deeper in the water column favored fast
growers (Fig. 3 and table S1, parametric coefficient for phosphate
γPO4

3− = 0.094, P < 0.01), contributing to the observed latitudinal
trend in MCN, while oxygen did not have significant impacts
(Fig. 3 and table S1).While other factors may be important for com-
munity compositional turnover [see also the effect of chlorophyll a
concentration on heterotrophic communities (fig. S10 and table
S1)], overall, these results show that temperature, more consistently
than any other environmental variable, explains variations in the
spatial and temporal distribution of fast- and slow-growing free-
living marine bacteria.
Bacteria identified as oligotrophs (slower-growing, energy-effi-

cient taxa), including the cosmopolitan SAR11 clade (46), are

extremely abundant across the ocean, particularly in surface
waters and warm oligotrophic gyres (47). This observation raises
the question of whether the temperature trend in our study
simply mirrors the biogeography of SAR11 and other oligotrophs
(12). However, excluding taxa with copy number = 1 from the cal-
culation of MCN in the LMO, TARA, and ANT datasets did not
affect the negative relationship between temperature and MCN
(Fig. 3, table S1, and fig. S11). The robustness of the effect of tem-
perature when oligotrophs with copy number = 1 are excluded is
confirmed in two additional time series of free-living bacterial com-
munities: a 7-year survey at the Service d’Observation du Labora-
toire Arago (SOLA) sampling station in the North Western
Mediterranean Sea (48) and a 5-year study at the San Pedro
Ocean Time-series (SPOT) station, ~10 km off the coast of Los
Angeles, California (49) (Fig. 3 and figs. S11 and S12). These
results indicate that the trend of high temperatures favoring slow
growers is not dependent on the biogeography of oligotrophs. Al-
ternatively, the diversity of SAR11, the most abundant clade of oli-
gotrophs in our data, cannot be captured by the MCN: All SAR11
ecotypes (46) are categorized together for having a single rRNA
copy number, despite their ecological differences.

DISCUSSION
We discovered a macroecological pattern in the distribution of fast-
and slow-growing bacteria in natural marine communities along
environmental gradients of temperature. This pattern can be ex-
plained by increasing temperature favoring slower-growing taxa
when competing against faster-growing ones, regardless of
whether competition is for nutrients or through direct interference,
and independently of growth-efficiency or growth-competitive
ability trade-offs. In a system like the ocean where mortality
exerts a strong control over bacterial communities, increasing tem-
peratures, by increasing growth rates of all species when within their
thermal optima, have the effect of decreasing the mortality burden
more for the slower-growing taxa compared to the faster-growing
ones, ultimately reducing the competitive abilities of the latter.
This result shows that the concept of fast versus slow growth is a
powerful way to describe the structure of bacterial communities
and illuminates a unifying principle explaining the compositional
turnover of marine bacterial communities across seasons, latitude,
and depth.
Our proposed rule of higher temperatures favoring slower

growers is potentially applicable to any community subject to
growth and mortality and could underlie some previously observed
patterns. Among common cyanobacteria in the ocean, the slow-
growing Prochlorococcus dominates near the equator but decreases
in abundance toward the poles, where the comparatively fast-
growing Synechococcus persists (50) [see (13, 19, 51) for cyanobac-
teria growth rate estimates]. Similarly, in a 16-year time series of
observations of a phytoplankton community at a nearshore site
on the Northeast U.S. Shelf, picoeukaryotes with comparatively
faster growth rates were outnumbered by Synechococcus popula-
tions during warmer months (52). Last, in mid-latitude forest hab-
itats, a 20-year-long in situ soil warming experiment resulted in a
decrease in the MCN of bacterial communities that was attributed
to an assumed decline in nutrients (53, 54). Another study mea-
sured a massive reduction in RNA content after incubating a soil
bacterial community for 1 week at increased temperature compared
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to an ambient control, despite no difference in nutrients between
conditions (55). The authors attributed the decrease in RNA to
an intracellular reduction in ribosome concentration, but a reduc-
tion in MCN of the soil community is also consistent with these
results. In all of the above examples, we propose that the direct in-
fluence of temperature on ecological community composition pre-
sents a new interpretation for the observed patterns.
While this study has focused on free-living bacteria (as defined

by filter fractions between 0.2 and 3 μm), an important question is
how temperature affects the dynamics of particle-associated com-
munities (see fig. S13 and table S1), where spatial processes might
be important [see (56, 57) for theoretical predictions about the role
of nutrient concentrations in spatially extended settings]. Another
question is whether our conclusions depend on the method for es-
timating growth rates with rRNA copy number. This method is sup-
ported by a positive correlation between copy number and
maximum growth rate that has been vetted for many bacterial
taxa, including marine ones (34–36); however, the estimation of
16S rRNA gene operon copies is still limited to taxa for which the
full genome has been recovered. To test whether our results could
extend beyond this method, we used another method based on
codon usage bias (58), which yielded an overall negative relation-
ship between temperature and weighted mean growth rate (MGR;
fig. S14). 16S rRNA gene copy number and codon usage bias are
features encoded in genomes that do not change over ecological
time scales and therefore are not expected to change with

temperature across seasons or latitudinal gradient. Nevertheless,
both copy number and codon usage bias might be under selection
over evolutionary time scales, and their distribution across spatial
and temporal gradients might reflect evolutionary processes. To-
gether, our study does not exclude the role of other processes in
the spatial and temporal turnover of the ocean microbiome but
shows that the direct ecological effects of temperature on the distri-
bution of growth strategies have been generally overlooked.
Our prediction that increasing temperature favors slower-

growing bacteria does not depend on any trade-offs between
growth rate and competitive ability. In the terminology of
modern coexistence theory (59, 60), increasing temperature can
have an equalizing effect on species competition, because, as the
mortality burden decreases more for the slower grower than for
the faster grower, the fitness difference between the two species
can also decrease (Supplementary Text).While this result is robustly
supported by both the LV competitionmodel and a simple consum-
er resourcemodel (fig. S4), additional and potentially relevant mod-
eling complications could change our prediction. For example, we
assume that increasing temperature increases all species’ growth
rates, because we assume the optimum temperature for most
marine bacteria to be near 30°C or higher than most in situ temper-
atures. However, optimum temperature has been shown to decrease
in low-nutrient conditions, a result that has consequences for
nitrate-limited phytoplankton in a warming ocean with lower antic-
ipated nitrate levels (33). Whether a reduction in nitrate could have
cascading effects upon carbon-limited heterotrophic bacteria needs
investigation. As this study has shown, temperature can affect not
only individual species but also interactions and thereby entire
communities. If a combination of lower nutrients and warming
caused ambient ocean temperature to exceed the bacterial
optimum, our prediction would reverse, as faster-growing bacteria
would be expected to be favored under deteriorating condi-
tions (61).
Connecting unifying rules to biogeographical drivers of bacterial

community composition throughout the global ocean is an impor-
tant challenge, especially considering the effects of climate change
(62, 63). Many studies show that temperature sets the biogeography
of marine bacterial species by imposing constraints on their ability
to grow and thereby predict future compositional changes based on
the thermal limits of each species (33). Our study, comprising a
simple model and seven datasets, substantially expands upon
these predictions by highlighting that, over the broad thermal
range of the ocean, temperature has a generic effect on community
composition by determining the distribution of fast- and slow-
growing taxa. We have presented macroecological patterns in the
distribution of growth strategies in bacterial communities across
ocean temperature gradients, revealing that slow growers are consis-
tently more abundant around the tropics, during summer, and at
the surface of the ocean, in agreement with our theoretical predic-
tions. Overall, our results emphasize that temperature plays a direct
role in structuring bacterial community composition and global bi-
ogeography of marine bacteria and suggest that warming ocean
temperatures may lead to increases in the abundance of slower-
growing taxa.

Fig. 3. The negative correlation between MCN and temperature is robust to
the consideration of other environmental drivers and it is not affected by the
removal of oligotrophs. Heatmaps visualize the results of the statistical models
used to evaluate the effects of environmental predictors on MCN for the three
main datasets, LMO, ANT, and TARA, and two additional datasets, SOLA and
SPOT, all of which include free-living communities (left, all free-living bacteria
are considered in the calculation of MCN; right, taxa with rRNA copy number =
1 excluded). The color represents the value of the parametric coefficient multiplied
by the SD of the corresponding environmental predictor. (Significance codes: ***P
< 0.001; **P < 0.01; *P < 0.05; P < 0.1; •, not significant). The bar plot on the top right
shows the average proportion of oligotrophic bacteria (i.e., taxa with rRNA copy
number = 1) in each dataset listed below.
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MATERIALS AND METHODS
Datasets
To explore the distribution of bacterial life strategies along principal
axes of temperature variation in the ocean, we gathered 16S rRNA
gene amplicon sequencing datasets of marine bacterial communi-
ties encompassing wide seasonal, latitudinal, and depth gradients.
We focused on three particular datasets in Figs. 1 and 2 to rep-

resent the three principal axes of temperature variation in free-
living bacterial communities (Fig. 1A). First, to analyze seasonal
data, we used an 8-year pelagic microbial time series from the
LMO in the Baltic Sea, 11 km off the northeast coast of Öland (N
56°55.8540′, E 17°3.6420′) (green dot in Fig. 1A). Seawater samples
have been collected since 2011 on a monthly to weekly basis (5, 6),
together with environmental variables like temperature, inorganic
nutrients (nitrate, phosphate, and ammonium), DOC, and chloro-
phyll a concentrations (fig. S7) (64). The LMOdataset includes free-
living (<3 and >0.2 μm) as well as particle-attached (>3 μm) and
nonfractionated (>0.2 μm) filter fractions. DNA was extracted
from filters according to (65) and modified after (66). We then am-
plified the V3V4 region of the 16S rRNA gene with the primers
341f-805r (67). Amplicon sequencing for LMO data was undertak-
en at the Science for Life Laboratory, Sweden on the IlluminaMiSeq
platform (2 × 300-bp paired-end reads). Subsequently, the Ampli-
seq pipeline (https://github.com/nf-core/ampliseq) (68) was
applied with DADA2 to infer amplicon sequence variants (ASVs)
(69). The used bioinformatic software versions were as follows:
nf-core/ampliseq = v1.2.0dev; Nextflow = v20.10.0; FastQC =
v0.11.8; MultiQC = v1.9; Cutadapt = v2.8; QIIME2 = v2019.10.0.
Taxonomic annotation of LMO ASVs derives from the SILVA da-
tabase (version 132) (70).
To assess bacterial growth distributions across latitude and

depth, we used datasets from two published cruise reports. In
2012, the 5-week cruise ANT 28-5 collected seawater samples in
the epipelagic zone (20 to 200 m) of 27 stations in the Atlantic
Ocean along a transect spanning ~100 degrees of latitude: from
the polar regions of South America to the waters off the coast of
England (yellow dots in Fig. 1A) (37–39). The ANT dataset does
not contain publicly available environmental data other than tem-
perature measurements (fig. S8) but does include small (<8 and >3
μm) and large (>8 μm) particle-attached in addition to free-living
(<3 and >0.2 μm) filter fractions. The TARAOceans project was an
ambitious 4-year expedition (2009–2013) conducted in a modified
sailboat, taking samples from 210 globally distributed sites (purple
dots in Fig. 1A) at depths from the surface down to 1000 m (71, 72).
All TARA samples are free-living filter fractions (<3 or <1.6 and
>0.2 μm), and metadata on phosphates, nitrates, and oxygen is in-
cluded (fig. S9).
In addition to these three datasets, we analyzed three other time

series: a 3-year study at the Pivers Island Coastal Observatory
(PICO) site (34.7181°N, 76.6707°W) near the Beaufort Inlet (U.S.
East Coast) (4), a 7-year survey at the SOLA sampling station (42°
31′N, 03°11′E) in the Bay of Banyuls-sur-Mer, NorthWesternMed-
iterranean Sea, France (48), and a 5-year study at the University of
Southern California Microbial Observatory at the SPOT station in
the San Pedro Channel (33.55°N, 118.4°W) (49). Last, we analyzed
the effects of depth and latitude in the latitudinal P15S GO-SHIP
transect, a 7000-km decadally repeated transect from the ice edge
(∼66°S) to the equator (0°S) in the South Pacific Ocean (fig. S10)

(73). Both SOLA and SPOT samples are free-living filter fractions
(<3 and >0.2 μm SOLA, <1 and >0.2 μm SPOT), while PICO and
P15S GO-SHIP samples are nonfractionated (>0.2 μm).
Available environmental variables for PICO include tempera-

ture, insolation, nitrate + nitrite, phosphate, ammonium, dissolved
inorganic carbon, and chlorophyll a concentrations; for SOLA: tem-
perature, length of the day in hours, nitrate, phosphate, ammonium,
and chlorophyll a concentrations. Bacterial samples of SPOT were
taken at five depths [5, 150, 500, 890 m, and at the depth corre-
sponding to the deep chlorophyll maximum (DCM)], but only tem-
perature and oxygen measurements were available for all the
sampled depths. Particulate organic carbon and chlorophyll a con-
centration could be obtained only for the 5-m samples, while phos-
phate and nitrate for 5m and DCM samples. Microbial
communities along the P15S GO-SHIP transect have been
sampled in 80 stations from the surface to 6000 m. Temperature,
phosphate, nitrate + nitrite, ammonium, oxygen, and chlorophyll
a concentration measurements are available from the surface to
the mixed layer depth (MLD, around 150 m). For samples below
the MLD, ammonium and chlorophyll a concentration were not
available. Following (73), we analyzed the data above and below
the MLD separately: We used the data within the MLD to explore
community growth relationship with environmental variables along
the latitudinal gradient and data below theMLD to explore commu-
nity growth relationship with environmental variables
across depths.

MCN calculation
We used the rrnDB (36) to infer maximum growth rates of bacterial
community members in all datasets, because the maximum growth
rate of a bacterial species is approximately proportional to its rRNA
operon copy number (34, 35). The weighted MCN of a community
represents the expected rRNA copy number of a randomly sampled
cell in the community and hence is a proxy for the distribution of
fast- and slow-growing taxa in a bacterial community. To calculate
it, we downloaded the pan-taxa statistics from the rrnDB (version
5.6, https://rrndb.umms.med.umich.edu/) and matched classified
ASVs from each dataset to the listed mean rRNA copy number cor-
responding to the lowest available rank (for example, if a family-
level match was available in the absence of a species- or genus-
level match). For each sample in each dataset, we calculated the
MCN as an average rRNA copy number of the sample weighted
by the relative abundances of each ASV, as explained in fig. S1

MCN ¼
X

iRiγi ð1Þ

where γi and Ri are the relative abundance and assigned copy
number of ASV i. Since the true relative abundances are obscured
by differences in copy number, however, we first divided the se-
quenced abundances of each ASV, Xi, by their copy numbers, Ri,
and normalized to get the true relative abundances

γi ¼

Xi
RiP
i
Xi
Ri

ð2Þ
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Plugging Eq. 1 into Eq. 2 gives the MCN in terms of sequenced
abundances and assigned copy numbers

MCN ¼
P

i Xi
P

i
Xi
Ri

ð3Þ

Models and simulations
In this study, we used two types of models to describe bacterial com-
munity dynamics: generalized LV equations and a linear consumer-
resource model.
In both types of equations, we modeled maximum growth rate as

a function of temperature with the Arrhenius model, as shown in
Fig. 2A and described in fig. S1

r ¼ aRe�
E

kBT ð4Þ

Maximum growth rate r of all species increases uniformly with
temperature and is proportional to rRNA copy number R, which is
an integer ranging from 1 to 10. We drew the copy numbers of sim-
ulated species from a geometric distribution, (1 − p)k−1p, where k is
the copy number and the parameter p represents the fraction of taxa
with copy number =1 in the starting distribution of the community.
We set the spectrum of growth by bounding the maximum possible
rate at the highest temperature to known limits [minimal doubling
time of ~10 min (58)], including the prefactor a (set to 1.7 × 105 in
the fig. S1 simulation). T is temperature in Kelvin (range: 278 to
298), and E represents the activation energy (set to 0.33 eV in fig.
S1). In the traditional Arrhenius equation, r represents the frequen-
cy of collisions resulting in a reaction and has units of 1/time. Here,
both growth rate and therefore the prefactor, a, have units of 1/hour.
Activation energy E has units of eV, the same units as kBT (temper-
ature multiplied by the Boltzmann constant kB).
The generalized LV competitive equations are the primary

model used in the main text. In this model, all species are subject
to an added mortality rate δ, across a range of temperatures. The
model contains one equation for each species

1
Xi

dXi

dt
¼ rið1 � Xi �

XN

j¼1
αijXjÞ � δ ð5Þ

The analytical solution to the two-species model, showing that
increasing temperature favors the slower grower, is available in Sup-
plementary Text. In the two-species example shown in fig. S1, we set
δ = 0.1/hour, α12= 0.6, and α21 = 1.3.
In Fig. 2, we simulated 100 interacting species in Python, with

competition coefficients αij drawn from a normal distribution and
rRNA copy numbers drawn from a geometric distribution. In fig.
S4, we show that the variance in the MCN-temperature correlation
is similar when comparing two cases: (i) if the characteristic param-
eters of these distributions are randomly drawn for each simulation
and (ii) if the characteristic parameters of these distributions are the
same for all simulations. Figure 2B shows the results of case (i),
where the mean of the normal distribution of αij was set to 0.5
(<1 allows for coexistence—see Supplementary Text; we also note
that the outcome is independent of mean interaction in the two-
species solution—see fig. S2) and the SD set to half the mean, or
0.25, the geometric distribution parameter p of the rRNA copy
numbers was set to 0.8 (in the geometric distribution, (1 −
p)k−1p, k is the copy number and p represents the fraction of the

starting community with copy number = 1), the mortality rate δ
was set to 0.07, the activation energy E was set to 0.33 eV, and the
prefactor a was set to 170,000. In case (ii), the mean of the normal
distribution of αij was randomly drawn from a uniform distribution
[0.1, 1] and the SD was set to half the mean, the geometric distribu-
tion parameter p of the rRNA copy numbers was drawn from a
uniform distribution [0.6, 0.9], the mortality rate δ was drawn
from a uniform distribution [0.03, 0.2] (42), and the activation
energy E was drawn from a uniform distribution [0.1, 0.6 eV] (74,
75), with the prefactor a set to the mean of 0.46eE/(kB * 300) and
0.05eE/(kB * 278) (ensuring that growth rates with the highest copy
number at high temperature did not exceed realistic rates and that
the growth rate of species with copy number = 1 exceeded most
mortality rates at the lowest temperatures).
In the consumer resource model, a species’ overall maximum

growth rate is additively composed of its maximum growth rates
rij on individual resources Cj

1
Xi

dXi

dt
¼
XM

j¼1
rijCj � δ ð6Þ

In addition, resources are depleted by species consuming them,
as well as by the mortality/outgoing dilution rate (as in a chemostat)
δ. Fresh resources of supply concentration Cjo are also supplied at
the same rate

dCj

dt
¼ δðCjo � CjÞ �

XN

i¼1
XirijCj ð7Þ

To test whether increasing temperature favors slower-growing
species in this model, we simulated 15 species and 10 resources
across a range of nutrient supply concentrations (fig. S3). The
growth rates of each species on each resource are equal to ae�

E
kBT ,

as in Eq. 4 abovewith R = 1 (this is necessary to generate coexistence
of multiple species). We set activation energy E = 0.33 eV for all
species on all resources, and a was randomly drawn from a
uniform distribution, [5*104,3*105]. Mortality/dilution rate δ was
set to 0.1/hour. The average weighted MGR of the community
over 250 simulations for 1000 hours in each temperature/nutrient
supply combination is shown in fig. S3A. The MGR describes the
distribution of fast and slow growers in the community. To
compute the MGR, the maximum growth rate for each species, as
defined by the maximum growth rate at a fixed temperature, was
summed across all resources (the incoming resource concentration
Co was set to 1 for all resources, so no weighting over resources was
necessary, but we also checked the case of imbalanced resource
supply to confirm the same result), and the relative abundances
of species after 1000 hours of simulation were used to weight the
mean maximum growth rate.

Fitting model to datasets
To fit the model to the datasets, we simulated the 100-species LV
competition equations for 800 hours, 300 times, across the full tem-
perature range spanned by the threemain text datasets ([−1, 30.5] in
0.1° increments). To mimic natural communities, rRNA copy
numbers ranged from 1 to 10 and were drawn from a geometric dis-
tribution, (1 − p)k−1p, where k is the copy number and the param-
eter p represents the fraction of taxa with copy number =1 in the
starting distribution of the community. We sampled a range of
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values of the parameter p ([0.6, 0.95] in increments of 0.0025). We
set most parameters to values midway through the ranges described
above [activation energy E = 0.33 eV, prefactor a = 170,000, mean
interaction αij = 0.5 (with SD = 0.25)]. To include temperatures
between 0.1° increments, we then used a three-degree polynomial
fit. To fit a value of p for each dataset, we first selected a death
rate that produced the minimum root mean square error across
all datasets. We simulated the model at multiple death rates (span-
ning between 0.03/hour and 0.09/hour) and found that 0.04/hour
produced the best fit. To find the best fit, we bootstrapped 1000
trials per dataset, sampled randomly with replacement with
sample size equal to that of the dataset. For each sampled data
point, we calculated the square of the difference between the ob-
served and the temperature-dependent simulated MCN across all
values of P and selected the value of P for each trial that minimized
the root mean square error. We averaged the values of P selected for
the 1000 trials to obtain the best fit of P for each dataset (LMO: P =
0.6955 ± 0.003, mean minimum error = 0.2546; ANT: P = 0.7389 ±
0.0054, meanminimum error = 0.1656; TARA: P = 0.8055 ± 0.0095,
mean minimum error = 0.1998).

Statistical analyses
We used generalized additive models (GAMs) (76) to assess the
effect of environmental variables on MCN, due to their ability of
fitting both linear and nonlinear effects and their suitability for
modeling large-scale trends (77). We used the R library “mgcv”
(78) to construct and fit all GAMs. Smooth terms, “s,” were
modeled as a thin plate regression splines (79). In the case of
TARA ocean GAMs, we used the analog of thin plate splines for
the sphere (two-dimensional splines) to model latitude and longi-
tude (80). The other parameters were set on default mode. In all in-
stances, we first fitted a full GAM model including the parametric
effects of all available environmental variables and the proxy for the
environmental gradient (either month, latitude, or depth) as a
smooth term. The performance of the full model was then
checked by inspecting the distribution of residuals generated via
the gam.check function in the “performance” package (81), and
the collinearity among variables was estimated using the check_col-
linearity function. Variables with variance inflation factor larger
than 10 were excluded from the final model. Note that this does
not mean that the predictor has no effect on the response variable
but rather that its effect is already captured by another predictor in-
cluded in the model (82). For datasets including multiple sampling
depths or stations (ANT, SPOT, P15 GO-SHIP, and TARA), we
fitted generalized additive mixed models (76), which allow to
specify random effects. The sampling depth or station was, in
these cases, included as a random effect to account for related
changes in the intercept of the model (76).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S14
Table S1
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