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ABSTRACT
◥

Colorectal cancer risk can be impacted by genetic, environ-
mental, and lifestyle factors, including diet and obesity. Gene-
environment interactions (G � E) can provide biological insights
into the effects of obesity on colorectal cancer risk. Here, we
assessed potential genome-wide G� E interactions between body
mass index (BMI) and common SNPs for colorectal cancer risk
using data from 36,415 colorectal cancer cases and 48,451 con-
trols from three international colorectal cancer consortia (CCFR,
CORECT, and GECCO). The G � E tests included the conven-
tional logistic regression using multiplicative terms (one degree
of freedom, 1DF test), the two-step EDGE method, and the joint
3DF test, each of which is powerful for detecting G � E inter-
actions under specific conditions. BMI was associated with higher
colorectal cancer risk. The two-step approach revealed a statis-
tically significant G�BMI interaction located within the Formin
1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This

SNP was also identified by the 3DF test, with a suggestive stati-
stical significance in the 1DF test. Among participants with the
CC genotype of rs58349661, overweight and obesity categories
were associated with higher colorectal cancer risk, whereas null
associations were observed across BMI categories in those with
the TT genotype. Using data from three large international
consortia, this study discovered a locus in the FMN1/GREM1
gene region that interacts with BMI on the association with
colorectal cancer risk. Further studies should examine the poten-
tial mechanisms through which this locus modifies the etiologic
link between obesity and colorectal cancer.

Significance: This gene-environment interaction analysis
revealed a genetic locus in FMN1/GREM1 that interacts with body
mass index in colorectal cancer risk, suggesting potential implica-
tions for precision prevention strategies.
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Introduction
Colorectal cancer is a multifactorial disease that results from many

genetic and behavioral/lifestyle risk factors, including diet and obesi-
ty (1, 2). General obesity, usually defined in adult populations as a body
mass index (BMI) equal to or above 30 kg/m2 has been consistently
associated with higher risk of colorectal cancer and is estimated to
account for 5% to 14% of all colorectal cancer diagnosed cases (3, 4).
Mechanistically, obesity affects colorectal cancer carcinogenesis
through different pathways, including adipose tissue-associated
inflammation, oxidative stress, impairment of lipid metabolism,
alterations of the microbiome, and through its causal association with
comorbidities such as type 2 diabetes (5). Obesity is a worldwide health
issue, mainly attributed to the ubiquitously expanded obesogenic

environment (6), with a worldwide prevalence that ranged from less
than 5% in the 1970s to over 13% in 2016 (i.e., more than 650 million
adults worldwide; ref. 7).

Understanding how inherited germline genetic variation can influ-
ence colorectal cancer risk according to obesity status is important for
developing better disease risk assessment tools. In recent years,
genome-wide association studies (GWAS) have identified over
200 genetic risk variants associated with colorectal cancer
development (8–12). Overall, the genetic heritability of colorectal
cancer is estimated to be up to 20% (13). Given the complexity of
colorectal carcinogenesis, gene-environment interactions (G�E) may
be particularly well suited for identifying novel susceptibility loci
and biologically plausible interactions that could further elucidate
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important carcinogenic mechanisms. To date, few studies have com-
prehensively investigated G�E interactions in the context of BMI and
colorectal cancer risk (14–16). Interactions have been observed
between BMI and known colorectal cancer GWAS loci on rs4779584
(secretogranin V, SCG5; ref. 15) and rs4939827 (SMAD7; ref. 14).

Because of the large risks for false discovery and ensuing penalties
for multiple comparisons, the discovery of new G�E interactions may
be limited by statistical power and sample size requirements (17, 18).
In this study, we assessed G�BMI interactions using combined data
from three large existing international colorectal cancer consortia
using GWAS and BMI data.

Materials and Methods
Study participants

Our study sample consisted of individual level genomic and epi-
demiological data from 34 studies (50% prospective cohort studies)
included in the Colorectal Cancer Family Registry (CCFR), Colorectal
Cancer Transdisciplinary Study (CORECT), and Genetics and
Epidemiology of Colorectal Cancer Consortium (GECCO). Control
participants were matched by age, sex, genetically defined ancestry,
and enrollment date/trial group, when applicable. Cases were defined
as invasive colon or rectal tumors and were confirmed via a combi-
nation of sources, including clinical records, oncopathologic reports,
state, or provincial cancer registries, and/or death certificates. A small
subset of cases included were advanced adenomas (n ¼ 4,623, 5.4%)
confirmed by sigmoidoscopy or colonoscopy. Each study was
approved by the relevant ethics committees or review boards pertain-
ing to their institutions. All participants provided written informed
consent during recruitment and all studies were conducted in accor-
dance with ethical guidelines relevant to their geographic location and
calendar year of enrollment (e.g., Declaration of Helsinki, CIOMS,
Belmont Report, U.S. Common Rule).

Data harmonization and BMI assessment
Data harmonization consisted of a multistep procedure performed

at theGECCO consortium coordinating center at the FredHutchinson
Cancer Center as previously described (19). In brief, common data
elements (CDE) were defined a priori for data harmonization. These
CDEs represent common variables such as age and sex, or similar
variables such as smoking or dietary intake. CDEs ensure that each
variable defined is similar and comparable across different studies,
hence allowing statistical analysis across a combined dataset. Study
questionnaires and data dictionaries were examined, and elements
were mapped to these CDEs through an iterative process of commu-
nication with data contributors. Definitions, permissible values, and
standardized coding were implemented in a single database via SAS
(RRID:SCR_008567) and T-SQL. The resulting data were checked for
errors and outliers within and between the studies.

Demographic, anthropometric, and lifestyle variables such as sex,
age, smoking, and self-reported or measured weight and height were
collected via in-person interviews or structured self-administered
questionnaires. In the cohort studies, standing height and body weight
were ascertained at the time of blood collection or buccal swabs. In
case–control studies, standing height was recalled at enrollment for
cases and controls, except in REACH, where height was recalled a year
prior to the time of interview in cases and controls, and in DACHS,
where it was recalled at the time of enrollment in controls and
diagnosis in cases. Body weight was recalled 1 to 2 years prior to
enrollment of controls or diagnosis of cases in most case–control
studies to avoid bias from illness-associated weight loss, except for

DACHS andDALS where prediagnostic (in cases) and pre-enrollment
(in controls) recall times were 5 to 14 years and 2 to 5 years,
respectively. In CRCGEN, weight was recalled at the age of 45 years
in cases and controls or 10 years before diagnosis in cases. BMI was
calculated as the weight (kg) of each participant divided by the square
of the height (m2).We scaled the BMI to reflect a 5 kg/m2 increment as
our main analytical variable. In addition, for categorical analyses, we
used the World Health Organization (WHO) predefined BMI cut-off
points for normalweight (18.5 to<25 kg/m2), overweight (≥25.0 to<30
kg/m2), and obesity (≥30 kg/m2). We excluded a small number of
participants with a BMI below 18.5 kg/m2 (n ¼ 677) because of
reported nonlinear associations between BMI and colorectal cancer
risk at this end of the BMI continuum (20).

Genotyping and imputation
DNA was extracted from blood or buccal samples. Genotype

data were generated from germline DNA on the Affymetrix Axiom
(CORECT), UK Biobank Axiom (UK Biobank), Illumina 1M, 1M-
Duo, or Omni1 (CCFR), Illumina 300 K, Illumina OmniExpress,
Illumina 550K/610 K, or Affymetrix 100K/500 K (GECCO), and
Illumina Omni 2.5 in the Molecular Epidemiology of Colorectal
Cancer Study (MECC) as detailed elsewhere (8, 10) and summarily
presented in Supplementary Table S1. High-density genotype array
data were cleaned by applying standard quality control filters at both
individual subject and SNP levels. Genotype data for case and control
participants were phased and imputed together by an array platform,
thus avoiding any potentially differential imputation error between
case and control participants.

Participants were excluded based on genotyping call rates (<97%),
heterozygosity, duplicates or close propinquity, and inconsistencies
between self-reported and genotypic sexes. We limited the analyses to
individuals of European ancestry (3,586 participants of non-European
descent were excluded) as determined by genetically defined ancestry
and principal components (PC) clustering results with 1000 Genomes
EUR populations. In terms of markers, we excluded SNPs based on
missing call rates (>2 to 5%), departure from Hardy-Weinberg Equi-
librium (P < 1�10�4), and discordant genotype calls within duplicate
samples. Genotypes were imputed to the Haplotype Reference Con-
sortium (version r1.1) using the University of Michigan Imputation
Server (21). To facilitate data management and analysis, genotypes
were converted into a binary format using the BinaryDosage R package
(https://cran.r-project.org/web/packages/BinaryDosage). We filtered
imputed SNPs based on imputation accuracy of R2 > 0.8 and minor
allele frequency (MAF) > 1%. Over 7.2 million SNPS were retained
after imputation and quality control, among which �1 million SNPs
were evaluated in our analysis because of the correlation between
SNPs. PC analysis for population stratification assessment was per-
formed using PLINK1.9 (RRID:SCR_001757) on 30,000 randomly
selected imputed SNPs with MAF and R2 over 5% and 0.99, respec-
tively. colorectal cancer molecular subtypes, that is, BRAF and KRAS
mutation status, CpG island methylator phenotype (CIMP), and
microsatellite instability (MSI), were analyzed in the subset with
available tumor samples (6,565 cases; Supplementary Table S2). BRAF,
CIMP, KRAS, and MSI were determined using specific markers
assessed using PCR, sequencing, or IHC.

Statistical analyses
Logistic regression models were run to examine associations

between BMI and colorectal cancer risk in each study, and the results
for all the studies were summarized using random-effects meta-
analysis methods (Hartung-Knapp) to obtain summary ORs and
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95% confidence intervals (CI). We calculated the heterogeneity P
values usingCochran’sQ statistics, while funnel plots identified studies
with potential outlying ORs. We fitted the models overall and further
stratified them by study design, sex, and tumor site in the colon and
rectum. All meta-analyses of BMI main effects were performed using
the R package Meta (RRID:SCR_019055; ref. 22).

We performed genome-wide interaction scans using the R package
G�EScanR (23), which implements several interaction testing meth-
ods. Our analyses included conventional logistic regression with
multiplicative interaction terms (1 degree of freedom test, 1DF),
two-step EDGE method (17), and 3DF analyses (24), as detailed in
the Supplementary methods. Compared with the 1DF, the joint 3DF
test has higher power to detect G�E interactionswhen they exist, while
accommodating the main effect of each variant on risk of colorectal
cancer (D|G) and the effect of the environment on colorectal cancer
risk (E|G) associations (24). The two-step method reduces the burden
of multiple testing by preserving the statistical power, mainly through
the initial filtering step that incorporates theD|G and E|G associations.
We presented the 1DF analysis and the two-step method, followed by
the 3DF test. The rationale for presenting the results in this order is that
both the 1DF and two-step method test directly for G�E interactions,
the first as a classic test and the latter as a generally more powerful test.
The 3DF analysis is presented last because it tests interaction indirectly
and is particularly powerful in the presence of association between G
and D or between G and E induced by interaction.

To identify novel loci, we filtered out previously known GWAS hits
and SNPs identified in linkage disequilibrium (LD) with them in the
1000 Genomes EUR dataset. All models were adjusted for study, sex,
age at diagnosis or enrollment, and the first three PCs of genetic
ancestry to account for population substructure. For SNPs that reached
statistical significance (P ¼ 5.0�10�8/3 ¼ 1.67�10�8, to account for
three main tests) or showed a trend towards that threshold (P <
5�10�6), we performed stratified G�E analyses by sex, tumor site
(proximal colon, distal colon, rectum), and study design.We also added
smoking status (never/ever), an established risk factor for colorectal
cancer, to themultivariatemodels.Wedidnot adjust for other lifestyle or
dietary variables associated with colorectal cancer, such as alcohol
consumption, physical inactivity, intake of red and processed meats,
or calcium, because they do not interact with the SNPs and their
inclusion in previous genetic analyses in our consortium (25) did not
materially change the associations with colorectal cancer.

We calculated ORs stratified by BMI categories (normal, over-
weight, obese) and genotype to examine the patterns of stratum-
specific associations. These models were fitted using imputation
posterior probabilities and visualized with a plot of predicted log-
odds versus genotype by BMI category. As the positive association
between obesity and colorectal cancer risk was consistently stronger in
males than in females, we also explored the G�BMI interactions
separately by sex.Weused logistic regression (cases/controls; mutated/
nonmutated) and nominal polytomous logistic regression (mutated/
nonmutated/controls) to explore the interactions between the signif-
icant SNPs and BMI on colorectal tumor molecular subtypes, that is,
BRAF and KRAS mutation status, CIMP, and MSI.

Functional annotations were examined for the significant findings,
as described in the Supplementary methods. In brief, the magnitude of
the association, the extent of the association explained by LD, as well as
chromosomal position and neighboring SNPs and genes were inves-
tigated. Regional plots were generated using the command line version
(Standalone) of LocusZoom v1.3 (26). The putative functional role
of the SNPs with significant interactions and those in LD (r2 > 0.2) at
500 kb flanking regions were explored relative to their potential

contribution to regulate gene expression by their physical location in
regions of chromatin accessibility or histone modifications (variant
enhancer loci). Genes where expression in colon tissue samples were
regulated by functional SNPs (P values below 5�10�4) were identified
using the colon transverse tissue samples from GTEx v8 dataset, and
the colon transcriptome explorer (CoTrEx 2.0; https://barcuvaseq.org/
cotrex, accessed January 2023) of the University of Barcelona and
University of Virginia genotyping and RNA sequencing (BarcUVA-
Seq) project dataset (27). This dataset is comprised of 445 epithelium-
enriched healthy colon biopsies from ascending, transverse, and
descending colon. We retrieved for each significant SNP, the genes
with available expression and located within one million base pairs.
The gene expressions were fit in a gene only model, and subsequen-
tially in amodel including the interaction between the continuous gene
expression and BMI, and a model with the gene expression in
categories.

All statistical analyses were performed using R version 3.6.0. (RRID:
SCR_001905, Foundation for Statistical Computing).

Data and code availability
The datasets and code supporting the current study have not been

deposited in a public repository because they are part of an interna-
tional consortium but are available from the corresponding author
upon request.

Results
A total of 36,415 colorectal cancer cases (17,139 females) and 48,451

control (23,717 females) participants were included in this analysis.
Mean age (SD) of the participants was 63.8 (10.4) and 62.4 (9.7) years
in case and control participants, respectively (Table 1).

In a meta-analysis of all the participating studies, each 5 kg/m2

increase in BMI was associated with 17% higher risk of colorectal
cancer (OR¼ 1.17; 95%CI, 1.12–1.21; Fig. 1). The positive association
was consistent across study designs, sex, and tumor anatomical
subsites, although the estimated BMI effect was higher in males
(OR ¼ 1.22; 95% CI, 1.16–1.28) compared with females (OR ¼
1.13; 95% CI, 1.08–1.18; Pinteraction ¼ 4.47�10�8) and in the distal
colon (OR ¼ 1.23; 95% CI, 1.17–1.29) compared with the proximal
colon (OR¼ 1.15; 95%CI, 1.10–1.20; Pinteraction¼ 0.003) or the rectum
(OR ¼ 1.10; 95% CI, 1.05–1.16; Pinteraction ¼ 9.0�10�8).

Table 2 summarizes the most prominent SNP�BMI interactions.
The quantile-quantile (Q-Q) plot for G�BMI interaction for the 1DF
analysis did not reveal residual stratification in the study population
(Supplementary Fig. S1). In the 1DF exploration using multiplicative
interaction terms in logistic regression models, we did not observe any
genome-wide statistically significant loci interacting with BMI on
colorectal cancer risk (Supplementary Fig. S2). Nine SNPs with P
values below 5�10�6 in the 1DF are presented in Supplementary
Table S3.

In the two-step EDGE approach, we observed a statistically signif-
icant interaction between variants located in the formin 1/Gremlin 1
(FMN1/GREM1) gene region and BMI in colorectal cancer risk
(Supplementary Fig. S3). The lead SNP with the lowest P value was
rs58349661 (Pstep 2 ¼ 4.97�10�6 < Pthreshold ¼ 4.3�10�5), which
was in high LD with surrounding SNPs showing similar significant
interactions (Supplementary Table S4). The 3DF test also identified
this locus interacting with BMI on colorectal cancer risk (rs58349661
P3DF ¼ 3.68�10�10; Supplementary Table S3). Consistent with
these findings, we observed suggestive findings for SNPs in this locus
in the 1DF test (rs58349661 P1DF ¼ 4.97�10�6) as well as strong
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association with colorectal cancer (rs58349661 P(D|G) ¼ 4.3�10�7)
and BMI (rs58349661 P(E|G) ¼ 3.7�10�10).

This locus is within the FMN1/GREM1 gene region with SCG5 and
has transmembrane and coiled-coil domains 5 B (TMCO5B) as
neighboring genes (LocusZoom plot for rs1975678, Fig. 2). While
investigating the relationship between rs58349661 and previously
studied genetic variants, we found that this locus is close to, but not
in strong LD (R2 ¼ 0.002 to 0.162) with genetic variants previously
associated with colorectal cancer in FMN1 (rs16959063, rs17816465),
GREM1 (rs10318, rs1919364), and SCG5 (rs16969681, rs4779584;
refs. 8, 28, 29). None of these variants showed a significant interaction
with BMI after correction for multiple testing (Fig. 2).

Among participants with CC and CT genotypes of rs58349661,
overweight (ORCC ¼ 1.13; 95% CI, 1.08–1.18; ORCT ¼ 1.12; 95% CI,
1.05–1.18) and obesity (ORCC¼ 1.45; 95%CI, 1.38–1.52; ORCT¼ 1.28;
95% CI, 1.19–1.37) were associated with higher colorectal cancer risk,
whereas null associationswere observed across BMI categories in those
with the TT genotype (ORTT overweight ¼ 1.02; 95% CI, 0.86–1.19;
ORTT obesity ¼ 1.00; 95% CI, 0.83–1.21; Fig. 3). Similarly, analyses
stratified by BMI showed that the CT and TT genotypes were
associated with a higher colorectal cancer risk in participants with
normal BMI or overweight, but the risk was null in obese participants

(Supplementary Table S5). Analyses of rs58349661�BMI stratified by
sex, study design, and tumor anatomical location showed similar
results as in the whole study population (Supplementary Table S6).
The interaction between the T allele of rs58349661 and BMI did not
differ across tumor molecular subtypes (all P values comparing
mutated vs. nonmutated for BRAFmutation, KRAS mutation, CIMP,
and MSI were > 0.05; Supplementary Fig. S4).

We did not observe that rs58349661 or correlated SNPs (e.g.,
rs1975678, which is in perfect LD with rs58349661, R2 ¼ 1, Supple-
mentary Table S4) were associated with gene expression. rs58349661
was not associatedwith gene expression in colon tissues in theGTEx v8
data. Nevertheless, rs58349661 (or variants in LD) were expressed in
other tissues, especially in cultured fibroblasts. These SNPs reside in a
region with high H3K27ac activity in normal colonic epithelium, but
this activity is lost in tumor cells (Supplementary Fig. S5). Genes near
variant rs58349661 identified via the BarcUVa dataset were
AC123768.3, Rho GTPase activating protein 11A (ARHGAP11A),
apoptosis and caspase activation inhibitor (AVEN), cholinergic recep-
tor nicotinic alpha 7 subunit (CHRNA7), FMN1, and ryanodine
receptor 3 (RYR3), of which, a significant interaction with BMI was
observed for AVEN (Pinteraction ¼ 0.04) and CHRNA7 (Pinteraction ¼
0.04; Supplementary Table S7).

Discussion
In this study from three large international colorectal cancer

consortia, we discovered a new locus locatedwithin the FMN1/GREM1
gene region (rs58349661) that interacts with BMI on the association
with colorectal cancer risk. Analyses stratified by genotypes of
rs58349661 showed that obesity and overweight were associated with
a higher risk of colorectal cancer in those with the CC genotype but not
in those with the TT genotype, which showed consistently null
associations across BMI categories.

Our novel G�BMI finding at the FMN1/GREM1 locus is close
to a region with multiple known GWAS loci for colorectal cancer risk.
Among the �200 SNPs associated with colorectal cancer in GWAS,
an increasing number of independent loci have been located within
the broader SCG5-GREM1-FMN1 region (rs17816465, rs10318,
rs1919364, rs16969681, and rs4779584; refs. 8, 30, 31). The lead SNP
(rs58349661), as well as other correlated SNPs in our interaction
analysis, has not been previously observed in GWAS analyses for
colorectal cancer risk.Moreover, none of these genetic variants were in
strong LD with previously known loci, suggesting that this interaction
locus was independent of previously known loci. Our finding of a
higher colorectal cancer risk associated with obesity and the CC
genotype, and null associations with the TT genotype, suggests that
T and C alleles may participate in specific mechanisms that influence
the effect of obesity on colorectal cancer risk.

The mechanisms by which obesity affects colorectal cancer risk are
not fully understood, but several plausible hypotheses have been
proposed, including the colonic microenvironment and related sys-
temic inflammation, oxidative stress, and major changes in other
metabolic activities, including hyperinsulinemia and diabetes melli-
tus (32). At the histologic and cellular levels, obesity originates from
uncontrolled hyperplasia and/or hypertrophy of the adipocytes.
GWAS studies on adiposity traits, including BMI, have not reported
any associations with SNPs within FMN1 gene (33–37). This is
consistent with gene expression studies that did not report the major
activity of FMN1 inmatured adipocytes (38). In contrast to adipocytes,
FMN1 is expressed in the colon and rectal mucosal cells (38). FMN1 is
known to interact with alpha-catenin in the production of adherens

Table 1. Selected characteristics of the participants.

Cases
(n ¼ 36,415)

Controls
(n ¼ 48,451)

Females, % 47.1 49.0
Age, yrs, mean � SD 63.8 � 10.4 62.4 � 9.7
Anthropometry, mean � SD
Height, cm 169 � 9.6 169 � 9.6
BMI, kg/m2 27.5 � 4.8 27.1 � 4.6
Socio-demographic and lifestyle, %
Education (highest completed)

Less than high school 26.9 21.7
High school/GED 18.8 14.7
Some college 22.5 24.7
College/graduate school 27.3 32.2

Smoking, ever
No 44.5 49.0
Yes 53.1 49.5

Medical information, %
Type 2 diabetes (ever diagnosed)

No 81.7 85.0
Yes 11.8 8.4

Any postmenopausal HRT use
No 20.3 21.8
Yes 11.1 13.3

Regular aspirin or NSAID use
No 53.9 51.2
Yes 27.9 34.2

Dietary intake, Mean � SD
Energy, kcal/day 1,950 � 760 1,890 � 717
Calcium, mg/day 790 � 442 809 � 440
Folate, mcg/day 373 � 217 389 � 222
Fiber, g/day 19.5 � 9.8 19.8 � 9.7
Red meat, servings/day 0.7 � 0.6 0.6 � 0.6
Processed meat, servings/day 0.4 � 0.4 0.3 � 0.4
Fruit, servings/day 2.0 � 1.7 2.2 � 1.8
Vegetable, servings/day 2.9 � 2.5 2.6 � 2.5

Note: Frequencies may not add up to 100 due to missing values.
Abbreviations: GED, general educational development; HRT, hormone replace-
ment therapy; NSAID, nonsteroidal anti-inflammatory drugs.
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junctions and polymerization of actin monomers (39). Hence, this
phenomenon is mainly observed during the formation of epithelial
sheets in adipocyte stem cells when linear actin cables and micro-
tubules are formed at adherens junctions (40). This may explain why
FMN1 activity is not observed in fully developed adipocytes. FMN1 has
been reported as an epigenomic region associated with early childhood
adiposity, a period in which adipose tissue is still in development (41).

Although very little is known about FMN1 and colorectal cancer,
there are extensive data on formins, more generally, their role
in developmental biology, WNT signaling, and their association
with colorectal cancer. Humans have 15 Formin genes including
FMN1 (38). These genes are defined by a �400 amino acid formin
homology-2 (FH2) domain, which is the actin nucleation apparatus
responsible for eukaryotic actin filament assembly and elonga-
tion (42, 43). FH2 influences actin dynamics and is common in

all Formins across multiple eukaryotic species (44). Formins were
originally identified at the mouse limb deformity locus (45) and
FMN1 particularly is central to one of the human syndactyly
disorders (46), another one of which involves a novel splicing
mutation in APC that results in an �80% reduction in the wildtype
transcript (47). Several Formins (including DAAM1 and DAAM2)
are key components of canonical WNT signaling in cancer devel-
opment (48, 49), thus they are involved in APC mutation and colon
polyp formation. A variety of Formins but not FMN1, have been
implicated in invasion and metastasis of colorectal cancer (38).
Additional studies are necessary to fully understand the possible
contribution of FMN1 to colorectal tumor development according
to obesity status.

In a previous G�BMI analysis, we observed a locus located within
SMAD7 that interacts with BMI on colorectal cancer risk. Our current

Figure 1.

OR and 95% CI for colorectal cancer risk associated
with BMI (per 5 kg/m2 increment). The OR and 95%
CIs were calculated for individual participating stud-
ies and then meta-analyzed.

Table 2. Summary of G � BMI analyses using 1DF, two-step, and 3DF analyses.

P values for each method
Method G�E significant Positiona Gene chr A1 A2 MAF P(D|G)

b P(E|G)
c P1DF Pstep 1 EDGE

d Pstep 2 EDGE
e P3DF

1DF None
Two-step
EDGE

15 SNPs
(all in LD)f

rs58349661 – 33122966 FMN1 15 C T 0.21 4.3 � 10�7 3.7 � 10�10 5.0 � 10�6 2.22 � 10�6 4.97 � 10�6 3.7 � 10�10

3DF 12 SNPs
(E|G driven)g

Abbreviations: DF, degrees of freedom; EDGE, elastic data-driven genetic encoding.
aPosition based on NCBI Build37.
bAssociation between genetic variant and colorectal cancer.
cAssociation between genetic variant and BMI.
dTwo-step EDGE filtering P value.
eTwo-step EDGE second step P value.
fFive SNPs, all located on FMN1 and LD (presented in Supplementary Tables). The SNP with the lowest P value was rs58349661.
gTwelve SNPs were significant for G�BMI in the 3DF analyses (presented in Supplementary Tables). None of these SNPs had a marginal G effect, except for
rs58349661 (previously observed in the two-step approach) and rs7313400. The latter was not significant in the 1DF analysis (P1DF ¼ 0.07).
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Figure 2.

LocusZoom plots for the interaction between rs58349661 (rs1975678 used as perfect LD proxy) and colorectal cancer. The genomic position is shown on the x-axis
whereas the y-axis reports the �log10 of the P value of the interaction with BMI. Purple dot, rs1975678. The colors of the SNPs are based on their correlation with
rs1975678. Previously known GWAS variants, with their references, are also included: rs17816465, rs1919364, rs12708491.

Figure 3.

BMI in relation to colorectal cancer risk, stratified by
genotype. Using normal BMI as the reference, risk for
colorectal cancer was estimated for overweight and
obesity across the genotypes of rs58349661.
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analytical strategy excluded SMAD7 and other known GWAS loci for
colorectal cancer and BMI. TGFb in cellular proliferation and inflam-
mation has been proposed as a mechanism of action through which
SMAD7 interacts with colorectal cancer risk (50). In contrast to the
tumor-promoting profile of SMAD7 in obesity, FMN1 does not have a
clear relationship with inflammation. It is possible that FMN1 acts in
tandemwith neighboring genes, such asGREM1 and SCG5 because the
catena SCG5-GREM1-FMN1 constitutes a hotspot for several colo-
rectal cancer–related SNPs. Animal studies have shown that GREM1
may be activated by a cis-regulatory region within FMN1 (51). Given
that the SNPs interacting with BMI are located within the enhancer
region, as indicated by high H3K27ac activity, it might also be possible
that these SNPs impact GREM1. Moreover, GREM1 has been asso-
ciatedwith cancer fibroblasts in colonic and rectal smoothmuscles and
colonic crypt bases, and may participate in colorectal tumorigenesis
through bonemorphogenetic protein (BMP) signaling (52).Mutations
in GREM1 are associated with the development of hereditary mixed
polyposis syndrome (HMPS), a rare condition associated with an
increased development of colon polyps and higher colorectal cancer
risk, often beginning in childhood. Overexpression of GREM1, as
observed in HMPS, acts as a BMP antagonist, thus allowing the cells to
conserve stem properties and develop into neoplasia (53). Experimen-
tal studies using animal and humanmodels have shown that increased
expression of GREM1 can induce epithelial dedifferentiation through
BMP signaling and initiate gut cells neoplasia (54, 55). Future studies
should specifically aim to unveil the potential mechanisms by which
this SNP interacts with obesity on the association with colorectal
cancer risk.

The main strength of our study was the sample size, the largest ever
to have examined G�BMI associations. The use of several comple-
mentary statistical approaches was also a strength because it allowed
clear characterization of a specific locus within FMN1/GREM1 that
was consistently captured in the two-step and 3DF analyses, with a
suggestive association indicated by the 1DF test. One limitation of our
study is that it included only participants of European ancestry; hence,
our findings may not be generalizable to other populations. Notably,
the T allele of rs58349661 is common in other populations, with
frequencies of 0.186, 0.518, 0.210, 0.307, 0.216 in African, East Asian,
European, South Asian, and American populations, respectively. The
A allele (rs58349661 is triallelic) is rare in all populations (frequency
in Asian, European, and American populations �0), except in the
African population where it has a frequency of 0.059. Another
limitation is that a recall time of 1 to 2 years prediagnosis in some
(but not all) case–control studies may not be enough to rule out weight
loss due to the tumor. Such weight loss may also have affected the BMI
at recruitment in colorectal cancer cases occurring during the early
years of follow-up in cohort studies.

In conclusion, we identified a new locus in the FMN1/GREM1 gene
region that interacts with BMI on the association with colorectal
cancer risk. This locus has not been previously described in relation
to obesity or colorectal cancer, and additional investigation is required
to elucidate the potential mechanisms by which it may modify the
detrimental effects of obesity in promoting colorectal carcinogenesis.
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