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Abstract—Goal: Structural brain graphs are conventionally

limited to defining nodes as gray matter regions from an atlas,

with edges reflecting the density of axonal projections between

pairs of nodes. Here we explicitly model the entire set of voxels

within a brain mask as nodes of high-resolution, subject-specific

graphs. Methods: We define the strength of local voxel-to-voxel

connections using diffusion tensors and orientation distribution

functions derived from diffusion MRI data. We study the graphs’

Laplacian spectral properties on data from the Human Connec-

tome Project. We then assess the extent of inter-subject variability

of the Laplacian eigenmodes via a procrustes validation scheme.

Finally, we demonstrate the extent to which functional MRI

data are shaped by the underlying anatomical structure via

graph signal processing. Results: The graph Laplacian eigenmodes

manifest highly resolved spatial profiles, reflecting distributed

patterns that correspond to major white matter pathways. We

show that the intrinsic dimensionality of the eigenspace of such

high-resolution graphs is only a mere fraction of the graph

dimensions. By projecting task and resting-state data on low-

frequency graph Laplacian eigenmodes, we show that brain

activity can be well approximated by a small subset of low-

frequency components. Conclusions: The proposed graphs open

new avenues in studying the brain, be it, by exploring their

organisational properties via graph or spectral graph theory, or by

treating them as the scaffold on which brain function is observed

at the individual level.

Index Terms—Brain graph, diffusion MRI, functional MRI,

graph signal processing, spectral graph theory.

Impact Statement—We propose the design of subject-specific,

whole-brain, voxel-wise brain graphs, treating them as the scaffold

on which brain function can be studied and quantified in relation

to underlying structure.
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M
AGNETIC resonance imaging (MRI) has provided an
effective means to map the brain’s anatomical scaffold,

using diffusion MRI, and, in parallel, to track brain neural
activity using functional MRI (fMRI). Extensive datasets that
include diffusion and functional data on the same set of
subjects, such as the Human Connectome Project (HCP) [2],
have been made freely available, and with such accessibility,
various methodological developments that aim to integrate the
two modalities have emerged.

Computational neuroimaging has successfully adopted graph
theory, creating a new field of interdisciplinary research called
network neuroscience [3]. Structural and functional connec-
tomes are independently defined, and consequently analyzed
using graph theory measures to provide a better understand-
ing of their organizing network principles [4]. There is also
an increasing interest in deciphering how underlying brain
anatomy supports the emergence of spatially and temporally
varying distributed patterns of functional activity [5]–[7]. In
this perspective, it is fitting to consider advancing network
neuroscience to a more unifying analysis approach that ac-
counts for the interplay between brain structure and function.
The study of signal propagation on structural connectomes [8],
[9] is an example avenue of research that is gaining momentum.
Leveraging principles from the recently emerged field of graph
signal processing (GSP) [10], [11], an alternative framework is
taking form, in which functional data are interpreted as func-
tions defined atop of a graph that describes the morphological
or wiring structure of the brain, and, in turn, processed using
spectral methods that are informed by the underlying brain
structure.

GSP generalizes principles from classical discrete signal
processing for time series to data defined on irregular do-
mains. GSP has found numerous applications across multiple
domains—see e.g. [11] for a recent review, and in particular
within neuroimaging, examples include: brain state decod-
ing [12]–[14], brain signal denoising [15], brain activation
mapping [16]–[18], source localization [19], diagnosing neu-
ropathology [20], tracking fast spatiotemporal cortical dynam-
ics [21], [22], brain fingerprinting and task decoding [23] via
quantifying the degree of coupling between brain function and
structure [24], identifying dynamically evolving populations
of neurons [25], deciphering signatures of attention switch-
ing [26], manifesting white matter pathways that mediate corti-
cal activity [27], and elucidating perturbations of consciousness
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induced by brain injury or drugs [28], [29].
The majority of existing applications of GSP in functional

brain imaging are limited to region-wise analyses, where
regions are defined using a priori brain atlases having 100
to 1000 regions. Motivated by the promising results from
existing region-wise GSP studies in linking brain structure
and function, and novel recent methods for high-resolution
connectomics [30] and activation mapping [31], it is fitting
to further explore the benefits of large-scale brain graphs at
the resolution of voxels. Here we present models to derive the
strength of connection between adjacent voxels using diffusion
MRI data, one based on tensors estimated from diffusion
tensor imaging (DTI) [32], and the other based on diffusion
orientation distribution functions (ODF) estimated from high
angular resolution diffusion imaging (HARDI) data [33]; we
consider the two signal representation settings to make the
methodology applicable to a larger set of available diffusion
MRI data. Using data of 100 subjects from the HCP [2],
we validate the graphs via studying their nodal and spec-
tral measures. We then probe the intrinsic dimensionality of
their eigenspace using a Procrustes validation scheme that
characterizes inter-subject variability. Finally, we demonstrate
the relevance of such high-spatial-resolution voxel-wise graphs
within a GSP setting, particularly through studying the energy
spectral density of resting-state and task fMRI data on these
graphs. We conclude the paper by discussing potential future
research avenues in using voxel-wise graphs, in particular, in
studying the interaction between brain structure and function.

II. MATERIALS AND METHODS
A. Datasets

We used MRI data from the publicly available HCP
dataset—the 100 unrelated subjects, WU-Minn Consortium [2].
MRI acquisition protocols of the dataset and preprocessing
guidelines for diffusion MRI are extensively described else-
where [34]. We used the minimally preprocessed diffusion
and anatomical data. The resting-state and task fMRI scans
of each subject were realigned to their mean images, and
were registered and resampled onto the diffusion data through
rigid-body registration using SPM1. Two signal reconstruction
methods were applied to the diffusion data: (1) DTI tensor
fitting using FSL2, and (2) ODF estimations using DSI Studio3.

B. Graphs and their spectra
Let G := (N ,A) denote an undirected, single-connected,

weighted graph, consisting of a node set N , where |N |= N,
and a symmetric N⇥N weighted adjacency matrix A, wherein
any of its nonzero elements ai j represent the weight of an
edge (i, j) in the graph. The normalized graph Laplacian [35]
is defined as

L = I�D
�1/2

AD
�1/2, (1)

where I denotes the identity matrix, and D denotes the
graph degree matrix, which is diagonal with elements di,i =

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12
2https://fsl.fmrib.ox.ac.uk
3https://dsi-studio.labsolver.org

ÂN
j=1 ai j. L can be diagonalized as L = ULU

>, where U =
[u1,u2, ...,uN ] is an orthonormal matrix stacking the eigen-
vectors ui, i = 1, . . . ,N, and L is a diagonal matrix stacking
the corresponding eigenvalues Li,i = li, which are real and
non-negative due to symmetry and positive semi-definiteness
of L. Without loss of generality, we assume that the diagonal
elements in L, and the corresponding columns in U, are sorted
based on the magnitude of the eigenvalues, i.e., 8i, j if i < j
then Li,i  L j, j. As such, the graph Laplacian eigenvalue
set satisfies {0 = l1  l2 · · ·  lN := lmax  2}, where the
upper bound is guaranteed due to the use of the normalized
Laplacian matrix [35]. This set defines the Laplacian spectrum
of the graph, and the eigenvector set {ui}i=1,...,N defines an
orthonormal basis that spans the RN space of vectors defined
on the nodes of the graph; in the following, we occasionally
refer to the Laplacian eigenvectors also as eigenmodes, a
nomenclature commonly used in the neuroimaging community.

The eigenvalues of a graph Laplacian carry a notion of fre-
quency, which is directly linked to the extent of spatial saliency
manifested by their corresponding eigenvectors. To understand
this link, a metric known as total variation (TV) [36] can
be computed for each eigenvector, or more precisely, for any
given graph signal. A graph signal defined on the nodes of
a graph can be represented as a vector x 2 RN , where the i-
th element, x[i], is the signal value at the i-th node of the
graph. For a given graph signal x, the TV of x is defined as
TV (x)= x

>
Lx, a measure that quantifies the extent of variation

observed in x relative to the underlying graph structure. Given
that the eigenvectors are orthonormal, i.e., u

>
i ui = 1, and that

Lui = liui, it follows that the TV of Laplacian eigenvectors
reduces to TV (ui) = u

>
i Lui = li, showing that the variability

of each Laplacian eigenvector is reflected by the associated
eigenvalue, or in other words, that Laplacian eigenvectors
associated to larger eigenvalues reflect a greater extent of
spatial variability. Alternatively, spatial variability of graph
signals/eigenmodes can be quantified via a measure of zero-
crossings [37], [38]. In particular, we define a weighted zero-
crossing measure as [17]

ZC(uk) =
1
2 Â

i6= j
ai jH(�uk[i]uk[ j]), (2)

where H(·) is the Heaviside step function and ai j is the edge
weight that connects voxels vi and v j. The higher the zero-
crossing metric, the greater the associated variability in the
eigenvectors’ spatial patterns.

C. Spectral decomposition of graph signals

For a given graph signal x, its spectral representation,
commonly referred to as the graph Fourier transform (GFT)
of x, is given as

ex = U
>

x. (3)

The signal can be perfectly recovered through the inverse GFT
operation as, x = Uex = ÂN

i=1ex[i]ui. As such, any given graph
signal can be seen as a linear combination of the orthonormal
set of Laplacian eigenvectors. In particular, |ex[i]|2 gives the
energy spectral density of the signal associated to the i-th
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eigenmode. Given a set of graph signals X = {xk}k=1,...,S
(e.g. graph signals derived from individual time frames of a
given fMRI session) we compute the ensemble energy spectral
density (EESD) of the lower end of the spectrum of X as

EESD(i) =
1
S

S

Â
k=1
exk[i], i = 1, . . . ,C, (4)

where C denotes a desired cutoff index specifying the number
of lower end spectral indices to be studied (C = 1000 in this
study), and xk denotes the demeaned and normalized version
of xk obatined as

xk = (xk�u
>
1 xku1)/||xk�u

>
1 xku1||2, (5)

which ensures |exk[1]|2 = 0 and ÂN
i=1 |exk[i]|2 = 1.

D. Brain graph design
For each subject, we define a weighted brain graph charac-

terized by a node set N = {1, . . . ,N} defined based on the set
of voxels that fall within the subject’s brain mask, covering
gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF), representing a 3D mesh arrangement. In particular, each
node i is associated to a voxel, denoted vi, with coordinates
(xi,yi,zi). The graph edges are defined based on the adjacency
of voxels within the Moore neighborhood cubic lattice of size
3⇥ 3⇥ 3 and 5⇥ 5⇥ 5, where the latter size is only used in
the ODF-based design. For the 5⇥5⇥5 design, voxels in the
outer layer that fall in parallel to the voxels within the inner
layer were excluded, enabling encoding of connections to a
maximum of 98 voxels/directions in the neighborhood of each
focal voxel, whereas the 3⇥ 3⇥ 3 design enables encoding
connections to a maximum of 26 different directions. As such,
the 5-connectivity design trades localization for better angular
resolutions. With this definition of edges, each node i entails a
neighborhood set of the indices of nodes in N that are adjacent
to it, denoted Ni, where |Ni| 26 and  98 for the 3- and 5-
connectivity designs, respectively.

We define the edge weights based on a measure of inter-
voxel fiber coherence across all pairs of adjacent voxels. In
particular, to make the presented method applicable to a wider
range of available diffusion MRI data, we present two edge
weighting schemes using two signal representation models,
one using diffusion tensors and one using diffusion ODFs;
we denote the resulting edge weighting schemes as the DTI-
based and ODF-based methods, respectively. The tensor and
ODF models both aim to represent structural information on
the intra-voxel axon fiber arrangement. The diffusion tensor
model can be seen as a multivariate Gaussian describing the
distribution of fiber bundle alignment, whereas the diffusion
ODF model defines the radial projection of the diffusion
function, providing an estimate of the empirical distribution
of water diffusion.

Let ri j denote the vector pointing from the center of the
voxel vi to the center of the voxel v j. Let {p(i,ri j)} j2Ni denote
estimates of the extent of diffusion at voxel vi in directions
{ri j} j2Ni . In the following, we first present a DTI-based and
an ODF-based approach to estimate {{p(i,ri j)} j2Ni}

N
i=1. We

then use these estimates to define the graph edge weights.

1) DTI-based quantification of diffusion orientation: DTI
is a model-based method for reconstructing the diffusion
signal from diffusion MRI. The assumption in DTI is that
the diffusion pattern follows the shape of a 3D ellipsoid. The
molecular displacement of water at voxel i in the direction ri j
can be approximated by a 3D Gaussian distribution with real
symmetric diffusion tensor T as the covariance matrix:

p(i,ri j) =
1p

(2p)3|T|
exp(�1

2
r
>
i jT
�1

ri j), (6)

where |T| is the determinant of the diffusion tensor. The calcu-
lation of p(i,ri j) requires a discretization step that guarantees
a one-to-one mapping between the (continuous) multivariate
Gaussian model and the (discrete) weighting of nodes in
the brain graph. For the 3⇥ 3⇥ 3 neighborhood encoding
scheme, for a given voxel vi, the set of values {p(i,ri j)} j2Ni
can be arranged into 3⇥ 3⇥ 3 discrete representation, which
mimics the structure of a 3D finite impulse response (FIR)
filter. As such, the problem of obtaining {p(i,ri j)} j2Ni can
be alternatively seen as that of obtaining the coefficients of
an FIR filter. We provide the details of this procedure in the
Supplementary Materials.

2) ODF-based quantification of diffusion orientation: Un-
like diffusion tensors, ODFs do not follow a specific model
and shape. Thus, a one-to-one discretization of a continuous
function similar to that presented for the DTI model cannot be
applied. Here we build on the construction previously presented
by Iturria-Medina [39]. Within standard spherical coordinates,
parametrized by (r,q,f,), let Oi(û) denote the ODF associated
to voxel vi with its center of coordinate being the voxel’s center,
with û(q,f) = (sin(q)cos(f),sin(q)sin(f),cos(q))> denoting
the unit direction vector. Given Oi(û), a measure of the extent
of diffusion at voxel vi along direction ri j can be obtained as

p(i,ri j) =
1

Wi j

Z

Wi j
On

i (û)dW, (7)

where Wi j denotes a given solid angle around ri j, dW =
sin(q)dqdf denotes the infinitesimal solid angle element; in
particular, a solid angle of 4p/26 and 4p/98 is used for the 3-
and 5-connectivity schemes, respectively. The exponent n> 0 is
a desired power factor that is used to sharpen the ODF given the
limited degree to which diffusion ODFs can differentiate fiber
orientations [40]. As such, p(i,ri j) gives an average measure
of the surface area of the ODF within a spherical cap defined
by the solid angle. Given a discrete representation of Oi(û)
in form of No samples, denoted {Oi,k}No

k=1, along No spherical
directions from the center of voxel vi, (7) can be approximated
as

p(i,ri j)⇡
1

|Di j| Â
k2Di j

On
i,k, (8)

where Di j denotes a subset of direction indices {1, . . . ,No}
whose associated set of directions fall within Wi j. The normal-
ization by the cardinality of Di j is due to the difference in
the number of ODF samples that fall within the solid angle
subtended along the different neighborhood directions.
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3) Brain graph edge weights: The graph edge weights ai j
are defined by using the estimates of diffusion orientation at
the associated voxels vi and v j, i.e., p(i,ri j) and p( j,r ji), as
well as the strength of anisotropy at those voxels. In particular,
for a given voxel vi, let F(vi) and Q(vi) denote the voxel’s
fractional anisotropy (FA) and quantitative anisotropy (QA),
respectively. FA can be calculated directly from the eigenvalues
of the diffusion tensor [41] and QA pertains to the amount of
diffusion anisotropy along the fiber orientation as originally
defined by Yeh et. al. [42]. Using these measures, we define
the graph edge weights ai j as

ai j =

magnitudez }| {
Pmag(vi)Pmag(v j)

a2

orientationz }| {✓
p(i,ri j)

bi
+

p( j,r ji)

b j

◆
, (9)

where a = maxk{Pmag(vk)}, bk = 2maxl2Nk
{p(k,rkl)} and

Pmag(vi) denotes the magnitude of anisotropy at voxel i, defined
as

Pmag(vi) =

(
F(vi), DTI-based design
Q(vi), ODF-based design.

(10)

The connectivity structure of the graph is then characterized
in A, such that ai j > 0, given as in (9), if nodes i and j are
connected through an edge, and ai j = 0 if otherwise.

The orientation term in (9) gives a measure of diffusion ori-
entation coherence between the two connected voxels, whereas
the anisotropies give a magnitude measure that is useful in
delineating tissues; the use of anisotropies is in contrast to
using probabilistic tissue maps as used in [39], enabling the
design of the graphs using only the diffusion data. Given
two adjacent voxels that exhibit highly coherent diffusion
orientations, a large weight is associated to the connection
only if the two voxels also exhibit notably large anisotropies.
This interplay between the orientation term and magnitude term
enables, for example, to prevent associating large weight to an
edge between a WM voxel and a CSF voxel. Furthermore, the
normalizations incorporated in the definition, i.e., the a and bk
terms, ensure having an unbiased definition of weights relative
to the structure of the diffusion tensors/ODFs across the brain,
and, mathematically, they impose bounds on the orientation
and magnitude terms—both terms bounded to [0,1], which in
turn results in ai j also being bounded to [0,1].

E. Group-level eigenmodes
The voxel-wise nature of the studied graphs renders their

size excessively large, with 7.8± 0.7⇥ 105 nodes across the
100 subjects considered. The sheer size of the voxel-wise
graphs impedes computing the full eigendecomposition of the
graph Laplacian, and, therefore, we compute and study the
first leading 1000 eigenvectors corresponding to the lowest
spectral frequencies. To preserve subtle subject-specific spatial
details, we construct all graphs in the native space of each
subject’s diffusion data. To enable inter-subject comparison
of eigenmodes, the DARTEL normalization algorithm [43]
implemented in SPM12 was used to define a group-level
template coordinate space, based on the group’s T1-weighted
MRI data. This results in a structural T1-weighted template as

well as a set of transformation maps per subject. Each subject’s
eigenmodes are then transformed into the template space using
the subject-specific transformations, resulting in inter-subject
spatially aligned eigenmodes.

F. Consistent inter-subject ordering of eigenmodes

The ordering of DARTEL-normalized eigenmodes is not
necessarily consistent across subjects, including sign ambiguity
and linear combinations between modes with close eigenvalues.
To obtain a consistent ordering of the eigenmodes, and enable
inter-subject comparison of individual eigenmodes, we used
the Procrustes transform [44], which finds the optimal rotation,
translation, and/or reflection between two linear subspaces. We
implemented a scheme of Procrustes transformation, where
the subspace is defined by the first K DARTEL-normalized
eigenmodes of any M subset of subjects. Let ui,m denote the i-
th eigenmode of subject m, and let XK,m = [u1,m u2,m · · · uK,m].

Algorithm 1: group-level matching of eigenmodes

Xavg XK,1
for j = 1 to J do

for m = 1 to M do

XK,m Reorder columns in XK,m such that the result-
ing permuted matrix best matches Xavg

end for

Xavg average {XK,1, . . . ,XK,M}
end for

The reordering is done based on Procrustes transformation
estimates, and J denotes the optimal number of iterations to
ensure that Xavg does not remain biased towards its initial
value, i.e., XK,1. The columns of the resulting {XK,m}M

m=1 are
reordered in such a way that they optimally match each other
and can thus be compared across the subjects. Although the
Procrustes transformation removes much of the variance that
is common between subjects, it cannot discount for subject-
specific details; in the following section we define a metric
that quantifies the extent of remaining inter-subject structural
variability.

G. Quantification of the extent of inter-subject structural vari-
ability as encoded in brain graphs

The precision of the Procrustes transformation can be eval-
uated by quantifying the cosine similarity between corre-
sponding eigenmodes of different subjects, after DARTEL
normalization and Procrustes transformation. For any pair of
subjects, a symmetric cosine similarity matrix is obtained,
where the deviation of the off-diagonal elements of the matrix
from zero quantifies inter-subject structural variability. If the
set of eigenmodes of two subjects has been ideally matched,
the cosine similarity matrix should be the identity matrix.
Therefore, to quantify the mismatch between a pair of subjects
m and n based on their first K eigenmodes, we define a
measure of the extent of inter-subject structural variability,
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termed Procrustes error, via computing the cosine similarity
between pairs of eigenmodes as

Em,n(K) =
1
2

vuuut
K

Â
i=1

K

Â
j=1
j 6=i

 
u
>
i,mu j,n

kui,mk
��u j,n

��

!2

. (11)

We used this error term to determine J in Algorithm 1 and also
to compare the different graph designs.

To validate the performance of the Procrustes transforma-
tion, we implemented a bootstrap scheme, which successively
applies the transformation on the first K eigenmodes of two
randomly chosen subjects; the implementation is summarized
in the following algorithm:

Algorithm 2: Procrustes validation

for K = 100 to 1000 step 100 do

for j = 1 to 1000 do

{m,n} randomly select 2 values 2 {1, . . . ,100}
{XK,m,XK,n} Algorithm 1 on {XK,m,XK,n}
e j Em,n(K)

end for

µK  mean of {e j} j=1,...,1000
sK  standard deviation of {e j} j=1,...,1000

end for

When comparing two brain graph designs, the design that
results in a higher µK , with reasonably small sK , is interpreted
as capturing more subject-specific structural features.

H. Spectral decomposition of fMRI data
As proof-of-concept of the applicability of the proposed

whole-brain, voxel-wise brain graphs, we evaluated the extent
to which brain fMRI data are spatially shaped by the underlying
brain structure as encoded by the graphs. In particular, we
constructed fMRI graph signals from six functional tasks as
well a resting-state acquisition, across 100 subjects. Each fMRI
time frame was transformed in to a single graph signal. This
was done by extracting the fMRI voxels associated to the graph
vertices, i.e., voxels that fall within each subject’s brain mask,
arranging them as a vector, ordered based on the order of
vertices as reflected in each subject’s graph adjacency matrix.
As such, for each subject, a time-evolving series of graph
signals were obtained from each of the subjects’ task or resting-
state 4D fMRI volumes. We studied the energy spectral density
of the extracted graph signals associated to the first 1000
spectral indices of the ODF-3 graph. To serve as a null, we also
evaluated the energy spectral density of synthesized shuffled
fMRI signals—obtained through random permutation of voxel
indices of each fMRI volume to destroy spatial order, as well
as white Gaussian noise signals.

III. RESULTS
Fig. 1 shows the degree distributions of the graphs across

the different tissue types. The connectivity strength is highest
in WM nodes compared to GM and CSF nodes. The degree
distribution of ODF-5 graphs is a shifted version of that of the
ODF-3 graphs towards a higher degree, reflecting the larger
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Fig. 1. Degree distribution of the (A) DTI-3, (B) ODF-3, and (C)
ODF-5 voxel-wise brain graphs for a representative subject. (D)
Distribution of the number of nodes in each tissue type across all
subjects.

number of connections possible with the ODF-5 design. It
can be observed that the nodal degrees within gray matter and
CSF almost coincide for the DTI design whereas this is much
less pronounced in the ODF designs (compare Fig. 1(A) with
Figs. 1(B) and (C)); this is more pronounced for the ODF-
3 design, which reflects that the ODF-3 design bears larger
differences across tissue types compared to the DTI-3 design.
Fig. 1(D) shows the distribution of nodes for the different
tissue types across all subjects; the median number of nodes
for GM, WM, and CSF were 254 299, 221 964, and 294 028,
respectively, with standard deviations 25 322, 28 579, and 25
742, respectively.

A. Spectral Comparison

Fig. 2(A) shows the first Laplacian eigenmodes obtained
from the three brain graphs of a representative subject. Noting
that the first eigenmode of L is a function of the graph nodal
degrees—u1 = D

1/2
1 where 1 denotes the constant function

that assumes the value of 1 on each node, the spatial pattern
manifested by the first eigenmodes is a corroboration of the
results shown in Fig. 1(A)-(C), demonstrating that the distinc-
tion between tissue types naturally arises from the assignment
of the connectivity weights in the brain graph, in particular
through the assignment of the magnitude term in (9). Moreover,
the first eigenmode manifests a specific profile of local tissue
structure, in which higher values reflect voxels/regions that are
more strongly connected to their surrounding neighbourhood,
particularly observed at regions of less ambiguous fiber struc-
ture, e.g. within the corpus callosum The second and third
eigenmodes shown in Fig. 2(B) manifest global morphological
organization of the brain, contrasting the posterior and anterior,
and the left and right brain regions, respectively. The next
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Fig. 2. (A) First Laplacian eigenmode of 3-connectivity DTI, 3-
connectivity ODF and 5-connectivity ODF brain graphs of a repre-
sentative subject. (B) The next lowest frequency eigenmodes corre-
sponding to the 3-connectivity ODF brain graph.

eigenmodes exhibit a greater extent of spatial variability and
localized information.
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Fig. 3. (A) Lower-end eigenvalues of DTI-3, ODF-3 and ODF-5
graphs, consisting of their first 1000 eigenvalues. (B) weighted zero-
crossing the corresponding eigenmodes; cf. (2); solid lines show the
mean and shades show the standard deviation across the 100 subjects.

Fig. 3(A) shows the lower-end graph spectra in which the
rate of increase in the first 1000 eigenvalues are shown. The
ODF-5 graph has relatively larger eigenvalues than the ODF-3
and DTI-3 graphs. Given that the eigenvalues entail a notion of
spatial saliency, the increase in local connectivity in the ODF-
5 implies that the associated eigenmodes have greater degrees
of freedom, and as such, spatial saliency can become higher.
The spatial saliency of the eigenmodes’ can be quantified
by computing their weighted zero-crossing, cf. (2). Fig. 3(B)
shows a trend that is consistent with that of the eigenvalues,
thereby confirming the general notion that higher indexed
eigenmodes encompass a larger extent of spatial saliency.

B. Procrustes Validation
We evaluated the inherent inter-subject variability encoded

in two voxel-wise brain graph designs via the Procrustes trans-
form, which finds the optimal configuration that matches single
subject eigenmodes to an averaged set. This step, however,
cannot account for subject-specific fiber pathways encoded
in the eigenmodes, as manifested by the cosine similarity
analysis of pairs of subjects. The cosine similarity matrices of
two sets of eigenmodes before and after applying Procrustes
transformation are shown in Fig. 4. The diagonal structure
of the cosine similarity matrix associated to the transformed
eigenmodes shows the effectiveness of the transformation
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Fig. 4. Cosine similarity between the first 300 eigenmodes before and
after Procrustes transformation (PT) for two representative subjects.

in aligning eigenmodes of the same neuroanatomical spatial
nature. The insets show traces of flipped signs and unordered
eigenmodes in the original vectors, which were corrected after
Procrustes transformation. The precision of the Procrustes
analysis improves after several rounds of the transformation;
see Fig. 1 in Supplementary Materials.

Fig. 5 shows the Procrustes error when different subset of
eigenmodes are used, for each of the three graph designs,
reflecting the extent of inter-subject structural variability cap-
tured by the eigenmodes. Furthermore, to serve as a null for
comparing and validating the brain graphs, we synthesized
100 random orthonormal vectors of the same dimension as
each of the subject-specific eigenmodes, applied DARTEL
normalization, and then subjected the resulting vectors to
Procrustes validation. All three brain graphs show a decreasing
trend, and they get closer to that of the null upon reaching
higher K-values. Despite the differences in the Procrustes
errors across the three brain graphs for low values of K,
all errors eventually converge to a single point for high K.
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In addition, the ODF-based designs show higher Procrustes
errors than the DTI-based design, across K. The ODF-5 design
slightly outperformed the ODF-3 design, suggesting the benefit
of using the larger neighborhood in encoding fiber orientations
with better angular resolution.

C. Spectral decomposition of fMRI

Fig. 6(A) shows the ensemble energy spectral densities of
the fMRI. The energy spectral density of the fMRI data is
characterized by a power-law behavior. The lowest frequency
component eigenmodes capture the majority of the energy
content (spatial variability), which is about two orders of
magnitude greater than what is captured by the 1000th eigen-
mode. Moreover, a notable dispersion is observed in the energy
profiles of approximately the first 100 spectral indices across
the different tasks, whereas for the higher spectral indices, the
profiles are more closely packed, following a steady power-
law drop. This observation is more apparent by inspecting
the cumulative ensemble energy (CEE) profiles, see Fig. 6(B);
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results are shown also for synthesized shuffled fMRI signals
(cf. Section II-H) and Gaussian noise signals. In particular, the
CEE profiles of task and rest fMRI sharply differ from that of
Gaussian noise as well as shuffled fMRI data. For Gaussian
noise, each eigenmode captures a fraction of the total energy
equivalent to approximately 1/N, where N is the number of the
graph nodes, whereas shuffled fMRI still entails the distribution
of values as in the real fMRI data, but lacks the exquisite
spatial dependencies manifested in fMRI data that is linked to
the underlying structure. The CEE profiles of fMRI data show
that functional brain activity is expressed preferentially by
lower-frequency components; approximately 85% of the total
signal energy content4 captured by the first 1000 eigenvectors,
wherein the contributions from the first eigenmode are equal
to zero due to that the data were demeaned, cf. Section II-C.

IV. DISCUSSION
Voxel-wise brain graphs enable overcoming several limi-

tations associated to existing region-wise brain graphs. For
example, they obviate the need for cortical parcellation, and as
such, downstream analysis will not be affected by the choice
of parcellation scheme [45]. Moreover, analyses on local-
encoding voxel-wise graphs prevents variations in results as a
function of the algorithm that is employed to approximate the
number of WM tracts for region-wise graphs [46]. Lastly, given
that the proposed graphs are constructed at the native diffusion
space and encompass the whole brain, tissue segmentation and
subsequent transformation to a template space is not needed,
which can be challenging especially in populations that exhibit
a complex mixture of brain structural deficits.

Results on fMRI show that despite the high dimensionality
of voxel-wise graphs, brain functional activity can be well
approximated by merely a small subset of their low-frequency
Laplacian harmonics, whereas in contrast for region-wise brain
graphs a larger subset of their total number of Laplacian
harmonics is required [21], [24], [28]. This observation shows
that functional brain maps are smooth relative to the underlying
fiber architecture and tissue profile morphologies, which, on
the one hand, is consistent with energy profile of fMRI graph
signals on tissue-specific, voxel-wise graphs [16], [47], and
on the other hand, can be linked to the decreasing trend
observed in the Procrustes validation errors (see Fig. 5), where
increasing K-values reduce the error close to that of a randomly
generated graph. This energy pattern is reminiscent of a power-
law behaviour, which is interesting in light of the evidence of
scale-free behaviour in human brain activity [48], [49] observed
in both temporal and spatial scales. Moreover, a practical
implication of such energy profiles is that the lower-spectral-
end energy content of fMRI data on whole-brain voxel-wise
graphs has the potential to provide signatures of mental activ-
ity, similar to that observed for cerebral cortex gray matter
graphs [50], which substantially reduces the computational

4For each graph signal, the first eigenmode captured approximately 70% of
the total signal energy. In the demeaning step, cf. Section II-C, the contribution
from the first eigenmode was regressed out. As such, baed on Fig. 6(B), the
total amount of energy captured by the first 1000 eigenmodes amounts to
approximately 85% of total signal energies of the original signals, i.e., 70+
0.45⇥30.

burden associated to diagonalization of the graph Laplacian.
Alternatively, to study the energy profile across the spectrum,
a filter design scheme that adapts to the ensemble signal content
can be used to efficiently partition the spectrum [51], which
can be implemented in a computationally efficient manner [52],
obviating the need to even compute individual eigenvectors.

Voxel-wise brain graphs hold the potential to open new
research avenues to study the brain. One avenue is to study the
graphs from a pure structural perspective, using spectral graph
theoretical measures that have been used to e.g. discriminate
auditory gyri subtypes [53], or to perform subject identifi-
cation and characterization of hemispheric asymmetries [54].
A second, more interesting, avenue of research is to employ
voxel-wise brain graphs within the context of relating brain
structure to function. The proposed voxel-wise graphs can
be leveraged to perform whole-brain anatomically-informed
spatial filtering and interpolation of fMRI data, operations
that are inherent within numerous fMRI processing pipelines;
e.g. spatial smoothing to enhance whole-brain fMRI activa-
tion mapping, as done using tissue-specific designs in gray
matter [16], [18] and white matter [17], [31]. Moreover, it
yet remains to be studied how functional connectivity (FC)
and their associated measures can be extended to accurately
integrate structural information. FC has often been associated
to Euclidean distance [55], whereas by using the Laplacian
eigenmodes of the proposed graph, functional distance can be
better interpreted in relation to the underlying brain structure.
That is, functional variations that are captured using low-
frequency eigenmodes are smooth with respect to long-distance
white matter bundles, whereas localized and short-distance
functional associations are expected to be dominated by higher
frequency components. Lastly, the exquisite voxel-wise scale
of the proposed graphs can enable assessing the extent to
which brain structural-functional relations hold at spatially
finer mesoscales [30]; e.g. by using graph Slepians [56]–[58] or
variants of localized graph filter banks [59], [60] and spectral
transforms [61]–[63], focus can be placed on a particular subset
of nodes, thus, providing a finer level of analytical resolution
than that provided by conventional region-wise graphs.

V. CONCLUSION
Two methods for constructing voxel-wise brain graphs from

diffusion MRI data were studied. Through a Procrustes vali-
dation scheme that reflects inter-subject structural differences,
it was shown that low-frequency eigenmodes of such high
spatial resolution graphs reflect the highest amount of structural
information from diffusion MRI. This finding was corrobo-
rated by the manifested energy spectral density of functional
signals showing the preferential expression of human brain
activity onto lower frequency components. Overall, the pre-
sented results signify the capability of voxel-wise brain graphs’
eigenmodes in capturing anatomically-constrained functional
variations that are specific to different cognitive tasks. By
treating voxel-wise brain graphs as the scaffold on which brain
function is observed, they hold the potential to open new
research avenues to study the brain, in particular, enabling
the development of novel GSP methods to study the interplay
between brain structure and function, in health and disease.
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