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Abstract 

 

The analysis of kinship from ancient DNA (aDNA) data has the potential to provide insight 

into social structures of prehistoric societies. Kinship analysis is gaining popularity as 

optimised wet-lab methods allow for studies with sample sizes on the level of whole 

cemeteries. However, the specifics of ancient DNA require different methods than what 

would be used for modern DNA. A common way is to use the sites that are identical-by-

descent (IBD), however, detecting these is often a challenging task since it is not easy to 

determine whether a shared locus between two individuals is inherited from the ancestor or if 

another factor caused the similarity. Most methods used in the field are able to identify up to 

2nd or 3rd degree relatives from aDNA data but do not distinguish between different types of 

relationship for the same degree, for instance not being able to differentiate between parent-

offspring and full sibling-sibling relationship in first degree. The aDNA kinship methods 

often use either of window-based or single-site approaches, however, these two approaches 

have not been compared formally before in terms of effectivity and efficiency. In this work, 

READv2 is presented as a re-implementation of a popular kinship analysis method for aDNA 

studies with additional features such as accepting .bed files as input, which take up less space 

than the previous input type, plain-text .tped files. It is shown that the new version works 

more efficiently in terms of runtime. However, the memory requirements seem to be 

increased with the new implementation.  Furthermore, a window-based approach is compared 

with the single-site approach of READv2, as well as varying window sizes, with 

benchmarked simulation data which contains approximately 700 individuals with known 1st 

degree, 2nd degree and 3rd degree relationships. According to the comparison, the sensitivity 

of the method does not vary between the approaches and different window sizes for high 

coverages. However, the single-site approach has been shown to be the superior one by a 

small margin for lower coverages. In addition to these, using the variance of non-shared 

alleles in windows along the genome has been used to implement a method to differentiate 

different first-degree relationships, parent-offspring and siblings. The method is tested with an 

independent dataset from the 1000 Genomes Project which shows that the proposed method is 

able to work with different datasets with varying sets of SNPs. Nevertheless, the first-degree 

classification method requires further analyses to determine the stress-point where the True 

Positive rates for both categories start to drop. Additionally, some necessary changes and 

decisions are required for READv2 to be a user-friendly method that can be used by other 

researchers. The preliminary release of READv2, including example data as well as 

instructions to install the necessary packages and to run the algorithm can be found in 

https://github.com/GuntherLab/READv2/releases/tag/READ.   

https://github.com/GuntherLab/READv2/releases/tag/READ


 

  



 

READv2 – A Method to Reveal Ancient Kinship  

Popular Science Summary 

Erkin Alacamli 

Studying ancient DNA (aDNA) can offer insights into the social structures of prehistoric 

populations. By examining the genetic connections within ancient populations, researchers 

can uncover valuable information about kinship and family relationships. The ancient kinship 

analysis field is rapidly developing, thanks to the advanced laboratory techniques that now 

allow for the study of entire ancient cemeteries. aDNA, however, presents unique challenges 

that requires different methods than those used for modern DNA analysis. 

Identifying regions of the genome that are identical-by-descent (IBD), i.e. chunks of inherited 

DNA, is a common approach in kinship analysis. However, distinguishing the source of 

shared genetic markers between individuals, i.e. inherited from an ancestor or due to other 

factors such as mutation, can be challenging. Existing methods can detect relationships up to 

the second or third degree based on aDNA data. However, they cannot differentiate between 

various types of relationships within the same degree such as parent-offspring and sibling-

sibling relationship in the first degree. 

In this study, an improved version of a popular kinship analysis method called READ is 

introduced as READv2. READv2 offers enhanced features, such as accepting optimized input 

data and a new implementation of the previous algorithm. The new version shows better 

runtime efficiency, although there is a slight increase in memory demands. The study also 

compares two different approaches: the single-site approach of READv2 and a window-based 

approach, using varying window sizes. The tests on simulated data with known relationships 

showed that both approaches yield similar sensitivity and perform well with high coverage. 

However, the single-site approach outperforms the window-based approach, particularly with 

lower coverage. Additionally, a new method that uses the variance of mismatches along the 

windows within genome is developed to differentiate between parent-offspring and siblings. 

The tests using an independent dataset showed its effectiveness across diverse datasets with 

varying sets of genetic markers (SNPs). While this method shows promise, further analysis is 

needed to determine the stress-point, where the performance starts to decline. Furthermore, 

some changes and decisions need to be made to increase the user-friendliness of READv2, 

making it accessible to other researchers that are interested in using it. 
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1 Introduction 

Kinship Studies in Ancient DNA 

Analysis of kinship from ancient DNA (aDNA) data has the potential to provide insight into 

the social structures of prehistoric societies. It can give an idea of how closely related the 

individuals found in a Neanderthal cave (Skov et al. 2022), or in an Early Neolithic Tomb 

(Fowler et al. 2022) were, or it can be used to match different human remains such as a tooth 

or a bone to the same individual. Kinship analysis is gaining popularity as optimised wet-lab 

methods allow for studies with sample sizes on the level of whole cemeteries. However, the 

specifics of ancient DNA (low quality DNA, fragmentation, post-mortem damage) require 

different methods than what would be used for modern DNA. For instance, one of the widely 

used relationship inference methods, KING focuses on modelling the genetic distance 

between two individuals as a function of allele frequencies and kinship coefficient 

(Manichaikul et al. 2010). However, KING is not usually suitable for kinship estimation from 

ancient DNA due to ancient DNA samples being usually unable to yield diploid genotypes in 

which both alleles in a locus are available, because of low coverage and high missingness, 

and the absence of suitable reference sequences to infer allele frequencies. Due to the absence 

of diploid genotypes at both alleles, many methods ((Monroy Kuhn et al. 2018), (Fernandes 

DM et al. 2021), (Fowler et al. 2022)) assume that the genomes are pseudo-haploid which is 

inferring only the available or the most high-quality allele in a locus so that the individual 

ends up being represented by a haploid sequence (Barlow et al. 2020). 

Most methods used in the field are able to identify up to 2nd or 3rd degree relatives from 

aDNA data but do not distinguish between different types of relationship for the same degree, 

for instance not being able to differentiate between parent-offspring and full sibling-sibling 

relationships in first degree. A common way to estimate the relatedness between the 

individuals is to infer the sites in the genome that are identical by descent (IBD), in other 

words, inherited by the same common ancestor. As the relationship between two individuals 

get closer, the proportion of sites that are in IBD rises.  

The genome-wide proportions of sharing two chromosomes, one chromosome or zero 

chromosomes that are IBD can give information about the relatedness of the compared 

individuals (Popli et al. 2023). For instance, the proportions of these states for two siblings 

are 0.25, 0.5, 0.25; for parent-child relationship they are 0, 1, 0; and for unrelated individuals 

0, 0, 1; respectively. However, detecting the sites in IBD is often a challenging task since it is 

not easy to determine if a shared locus between two individuals is inherited from the ancestor 

or if another factor caused the similarity by just comparing two sequences. Therefore, many 
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methods end up measuring the sites in IBS (identical by state), meaning the sites of interest 

that share the same allele without any knowledge on inheritance (Henden et al. 2018). 

Kinship Estimation Methods 

READ (Relationship Estimation from Ancient DNA) (Monroy Kuhn et al. 2018) is an 

example of the methods that infer family relationships for degraded samples, that can 

successfully infer up to 2nd degree relationships by using as little as 0.1x coverage per genome 

of individual pairs. READ requires only PLINK .tped and .tfam (Chang et al. 2015) files 

which includes SNP (Single Nucleotide Polymorphism) information for each individual for 

each locus (Table 1).  

 

Table 1: An Example .tped file. 4 lines from a .tped file are shown here. Each line represents a different site. The first 4 

columns represent: Chromosome number, Variant identifier, Position in morgans (or centimorgans), Base Pair Coordinate. 

The rest of the columns show the allele information, each two columns belong to one individual, and missing information is 

represented as “0”.  

The workflow of READ (Figure 1) is quite simple when it is compared to its successors. The 

program checks for the proportion of P0 (non-shared alleles between individuals or in other 

words, the alleles that are not in IBS, i.e., 1 - (proportion of sites in IBS)), among the loci 

without any missing alleles present in any of the individuals. After that, a normalization value 

can be chosen from the genome-wide distribution of P0 values (median, maximum, or mean 

of the distribution as stated by the user) or be defined by the user. P0 values are then 

normalized with the normalization value. The normalization value represents the expected P0 

value for a pair of unrelated individuals from the population, and the normalization takes 

place in order to eliminate the effect of the diversity of the population. After the normalization 

step, the relationship type is defined with the cut-off values shown in Figure 1. 
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Figure 1: Workflow of READ. P0 stands for proportion of non-shared alleles in a window (Monroy et al. 2018) 

Another newer method, TKGWV2 (Thomas Kent Genome-Wide Variants 2) (Fernandes DM 

et al. 2021), decreased the required coverage down to 0.026x. This method is also an upgrade 

to an older method which is reported to be effective in the range of 0.04X – 0.1X coverage 

(Fernandes D et al. 2017). Compared to READ, TKGWV2 requires same files and 

information, such as files with aligned reads per individual (BAM files), list of SNPs for 

genotype calling, with the addition of population allele frequencies of the same SNPs. 

However, if the input files are already in PLINK .ped format, then, only allele frequencies are 

needed. The main workflow of TKGWV2 includes genotype calling and creating individual 

pseudo-haploid PLINK .ped text files. As mentioned above, if PLINK files are included in the 

analysis, this first step can be skipped. Afterwards, the method identifies the overlapping 

variants for each pair of individuals, the corresponding allele frequencies are extracted and a 

transposed PLINK text file(.tped) is created, which is then used to calculate pairwise 

relatedness by taking the average of Queller and Goodnight’s relatedness estimator (Queller 

& Goodnight 1989) expressed by the following formula (Oliehoek et al. 2006) for each pair at 

locus l, where xy (and yx) is the pair of individuals x and y, I is the identity for alleles ab for 

individual x, and cd for individual y. Finally, pa  and pb denotes allele frequencies for these 

alleles: 

  𝑟𝑥𝑦,𝑙=
0.5∗(𝐼𝑎𝑐+𝐼𝑎𝑑+𝐼𝑏𝑐+𝐼𝑏𝑑)−𝑝𝑎−𝑝𝑏

1+𝐼𝑎𝑏−𝑝𝑎−𝑝𝑏
 

 

More recently proposed method KIN (Popli et al. 2023) is reported to achieve up to 3rd degree 

relationship classification, and differentiation between parent-offspring and sibling pairs for 

first degree relationships, while requiring as low as 0.05x sequence coverage by the utilization 
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of a Hidden Markov Model (HMM) which is a finite model that is composed of states and 

state-transition probabilities that connect these states (Eddy 1996). KIN fits a model called 

KIN-HMM, the goal of which is to infer the relationship between a pair of individuals by 

incorporating the patterns of common IBD states along the genomes. For this purpose, KIN 

divides the genomes of the pair into windows, and fits the data for each pair of individuals to 

the KIN-HMM model for each considered relatedness case (e.g., parent-offspring, siblings, 

grandparent-grandchild and so on), and the case with the highest likelihood is then chosen to 

classify the relationship between the pair.  

KIN requires information on the number of overlapping sites for windows where both 

individuals have information available, the number of pairwise differences at these sites, and 

the probability of runs of homozygosity (ROH) in the windows where individuals have the 

same long allele sequence. By default, this value is obtained from another HMM called ROH-

HMM. Additionally, KIN provides another python package, KINgaroo (Popli et al. 2023), 

that generates the input files for the abovementioned models from .bam files, and additional 

models that correct the data for contamination and inbreeding in order to improve 

classification accuracy. 

As explained in the abovementioned paragraphs, while TKGWV2 uses a single-site-approach, 

READ and KIN use window-based approaches that compare windows of different sizes in the 

genomes of two individuals, similar to the study of Fowler et al. 2022. The difference with 

this method (Fowler et al. 2022) is that they compute the mismatch rates by dividing the 

genome in windows of size 5Mb, and the relatedness coefficient is computed as a function of 

mismatch rate of the pair and expected mismatch rate of an unrelated pair from the same 

population. The latter value is estimated from the genomic data published by the studies that 

targeted the same population (Brace et al. 2019), (Olalde et al. 2018). Afterwards, for the 

differentiation of different types of first-degree relationships, they have checked the DNA 

sharing patterns by computing allelic mismatch rates across sliding windows of size 20Mb 

with step sizes of 1Mb. The presence (sibling pairs) and absence (parent-offspring) of regions 

with zero or two chromosomes shared was used to determine the type of first-degree 

relationship. Moreover, they replicated the analysis with another method called ngsRelate 

(Hanghøj et al. 2019) in order to test the validity of the results that they received from their 

own method. ngsRelate goes over every possible genotypic configuration and assigns a 

probability based on their genotype likelihood, and hence, considers the possible uncertainty 

of the genotypes.  

All these mentioned studies have been used or are still being used in different kinds of 

research areas that involves kinship analysis from aDNA. Although they report high 

performances in terms of the power to estimate relationships, they all have their own 

advantages, disadvantages, and preferred scenarios. For instance, methods like TKGWV2 

need extra information about the samples, such as population allele frequencies or genotype 

likelihoods and so on. Therefore, if the population is unknown, or there is not much 

information and/or studies done about the population of interest, then the results of the 
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analysis might be noisy and unreliable. As mentioned before, READ is a quite basic and 

straightforward method, but it does not correct for contamination or inbreeding which might 

affect the performance (Popli et al. 2023). On the other hand, KIN corrects for these factors 

and additionally, the hidden part is modelling the unobserved diploid genotype unlike the 

other methods, however, the preparation of the data is more complex and time-consuming. 

While ngsRelate and lcMLkin (Lipatov et al. 2015) which utilize genotype likelihoods to 

infer relationships, are used widely used in aDNA research. They are not specifically built for 

low coverages that is usually the case for ancient samples. Besides the methods mentioned 

above, there are some more recent developments that seem to be promising such as ancIBD 

(Ringbauer et al. 2023) and correctKin (Nyerki et al. 2023), yet they need a lot of data to 

operate. 

Aim of The Project 

The goals of this project include reimplementation of READ (Monroy Kuhn et al. 2018) in 

Python3 in order to avoid compatibility and support issues that may arise from the fact that 

Python2 is deprecated and adding new features such as being able to accept .bed PLINK files 

as input in order to save space in the hard drives. Although the mentioned studies use either a 

window-based or single-site approach, these or different window sizes have not been formally 

compared in terms of performance and effectivity before. Therefore, the effect of different 

window sizes in window-based approach, and single-site approach on the performance of the 

method is compared. As illustrated in Marcus et al. 2020, in first degree relationships, the 

difference along windows in parent-offspring relationships varies less than sibling-sibling 

relationships, since an offspring always acquires one copy of chromosomes from their parent 

while siblings can share zero, one or two chromosomes at a given locus. The possibility of 

using this knowledge to differentiate between different kinds of first-degree relationships is 

investigated. Afterwards, this method is tested with an independent dataset from the 1000 

Genomes Project. 

2 Materials and Methods 

2.1 READ reimplementation in Python3 

READ (Monroy Kuhn et al. 2018) is written in Python2 and R, in a way that the R script is 

called in the Python script to carry out some analyses including normalization of P0 values, 

calculating average normalized P0 value per pair, standard error calculation of windows and 

so on. A detailed description of the READ workflow can be found in the Introduction section. 

The first step of the project was to translate the READ script to Python3, in order to update 

the script, and increase efficiency, portability, and to avoid possible version conflicts. The 
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parts of READ previously written in R were implemented using the Pandas (McKinney 2010) 

library in Python3. Furthermore, with the reimplementation, the feature of being able to read 

PLINK .bed, .fam and .bim files was added using the Python PLINKIO (Frånberg 2021) 

library. In order to avoid loops and improve the runtime of the method, the pairwise 

comparison was implemented with the NumPy (Harris et al. 2020) library. The performance 

of the new implementation was tested and compared with the old implementation in terms of 

runtime and memory usage with the Linux time command. The test data (Mathieson et al. 

2015) includes 14 individuals from the Srubnaya culture genotyped at 1.2 million SNPs. The 

effect of halving the number of individuals (with the Plink command –thin-indiv 0.5) and the 

number of SNPs (with the Plink command –thin 0.5) was investigated in the test as well. 

2.2 Simulated data with known relatedness 

The next step after the reimplementation was to create a benchmark using simulated data with 

known relationships to test the performance of READv2 in terms of sensitivity and false 

positive rates. The simulated NGS data was created by Sevval Akturk, Merve Nur Guler, Igor 

Mapelli and Kıvılcım Vural from the Comparative and Evolutionary Biology Lab in Middle 

East Technical University (METU), with the PED-SIM software (Caballero et al. 2019). The 

founders of the pedigrees were created from scratch by estimating allele frequencies from 

modern-day Tuscan individuals from the 1000 Genomes Project (Auton et al. 2015). The 

alleles were randomly drawn from them, in order to eliminate the background relatedness 

between relatively close pairs, and for each pedigree a pair of founders was chosen randomly. 

96 pairs of first-degree relationships, and 144 pairs of second-degree relationships with 

distinct founders (i.e. none of the individuals in first-degree relationships were related to the 

individuals in second-degree relationships) were used in testing. The genome-wide autosomal 

genetic data of all pairs were down sampled to the same 200,000 randomly selected SNPs 

from the Tuscan population from 1000 Genomes Project Phase 3. 

Next, next-generation sequencing data for the pedigrees were simulated as ancient samples by 

cutting the reads in variable lengths to mimic the distribution of actual ancient reads and 

adding post-mortem DNA damage with Gargammel software (Renaud et al. 2017). These 

ancient reads were later mapped to the hs37d5 human reference genome using BWA (Li & 

Durbin 2009) with “aln” option. The reads mismatched to the human reference genome were 

eliminated with a cut-off of 10%, moreover, the remaining reads were trimmed from both 

ends to remove C-to-T (or G-to-A) substitutions that stem from post-mortem DNA damage. 

2.3 Sub-sampling and benchmarking 

Due to the large size of the simulated dataset (n = 696), in order to lower the memory and 

runtime requirements of the analyses, the dataset was divided into groups of 70. Individuals 

from the same relatedness group, such as parent-offspring trios, were kept together in the 

groups using the PLINK –keep-fam command. The READ normalization value was 
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calculated as the median of all the samples, however since this value was not significantly 

different than group medians (Table 2), the default normalization method and value was 

inferred for each group separately and used in successive analyses. 

 

In order to test the performance of READ for different coverages, the original simulation data 

(5X coverage) was down sampled to 1X, 0.5X, 0.1X, 0.05X, and 0.01X coverages with 

SAMTOOLS view -s (Danecek et al. 2021). Then, true positive (TP), false positive (FP) and 

false negative (FN) values of the classifications for each coverage in default window size 

(1Mb) was acquired. Afterwards, in order to see how window size affected the results and to 

compare the window-based and single-site approaches, the power of the method, i.e. 

sensitivity (TP/TP+FN), and the proportion of false positive unrelated matches to all unrelated 

matches, i.e. the pairs in first or second degree relationships but classified as unrelated, were 

acquired for each coverage and window sizes (100Kb, 1Mb, 5Mb, 10Mb and 20Mb).  

For further testing on real data, empirical data from the 1000 Genomes Project (Auton et al. 

2015) was used. The autosomal Illumina Omni2.5M chip high density genotype call SNP 

array data consists of 2368 individuals from 15 different populations with 2,458,861 SNPs. In 

order to further filter the data, first, the number of parent-offspring and sibling pairs for each 

population was calculated (Table 3). Then, the populations with the most sibling pairs and a 

sufficient number of parent-offspring pairs, namely ASW (African Ancestry in Southwest 

US) and CHS (Southern Han Chinese, China), were selected for the further steps. The chosen 

populations were separated into different .bed files with PLINK –keep-fam option, and later 

down sampled to 50%, 25%, 10%, 5% and 1% of the SNPs with PLINK –thin option. The 

data was from modern samples; therefore, the samples were diploid and included 

heterozygous sites. However, this could be problematic for READv2 since it assumes that the 

data is pseudo-haploid. In order to solve this issue, the samples were made pseudo-haploid by 

randomly selecting an allele at each position with a python script (Appendix A). 

Table 2: Global and per-group median values of the mean P0 values for each coverage. The values were recorded 

after the analysis was done for the window size of 1Mb (default) for each group. The global value was recorded by 

taking the median of concatenated mean P0 values of each pair from each group. 
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Table 3: The Number of Parent-Offspring and Sibling Pairs that are Found in Each Population. PO Pair and sib. Pair 

stands for parent-offspring and sibling pairs respectively.  

3 Results  

3.1 Re-implementation of READ 

READ was reimplemented in Python3, and PLINKIO was used to add the ability to read 

PLINK .bed files. Figure 2 shows the runtime and memory usage of the new version run with 

the full example data compared to the old implementation, the new version with SNP thinned 

data (to 50% of the SNPs) and the new version with individual thinned data (to 50% of the 

individuals). After the new implementation of READ, the runtime and the memory usage 

seem to be worsened due to the fact that the entire genotype data is stored in the memory 

while READv1 processed the data line by line and printed intermediate results to a file. It can 

also be deducted that the number of SNPs seems to be in a linear relationship with both the 

runtime and the memory usage, while the number of samples (i.e. individuals) seem to be in a 

more quadratic relationship due to the pairwise comparisons.  
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Figure 2: Runtime (in minutes) and memory usage (in GB) of READ with the full example data in different versions 

(labeled as full, i.e. the new implementation, and Old, i.e. the previous implementation), and the new version with half of the 

individuals (labeled as Sample_thin) and half of the SNPs (labeled as SNP_thin). Full data consists of 14 individuals, and 1.2 

million SNPs. READ was run 10 times in each case in order to eliminate the eventual effect of processor and some other 

random effects.  

In order to decrease the runtime, the pairwise comparisons were implemented as Numpy 

comparisons (this version is called as READv2 in the successive parts of the text) instead of 

pairwise comparison in loops. Figure 3 shows the runtime and memory usage of the new 

implementation with above-mentioned data, as well as a single site, not window-based 

implementation. After the modification, READv2 seems to work more efficiently in terms of 

runtime, compared to READv1. However, although there is quite an improvement, it still is 

lacking in terms of memory usage when compared to READv1. The same relationships of 
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sample thinned data and SNP thinned data with full example data seem to hold in this case, as 

well. 

 

Figure 3: Runtime (in minutes) and memory usage (in GB) of READ for the newly implemented version. Modified 

READv2 ran on full example data compared to the old(i.e. READv1) version, single site version with full data. As explained 

above, the effect of halving SNPs (SNP_thin) and halving the number of individuals (Sample_thin) is shown as well. READ 

was run 10 times in each case in order to eliminate the eventual effect of processor and some other random effects.  

3.2 Window size and Single-Site Approach Comparison 

The simulated data with known relationships was then used to analyse the comparison of the 

effects of a single site approach and the previously used window-based approach, as well as 

the effect of varying window sizes. Figure 4 shows the power of READv2 under different 
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window sizes and different coverages. The sensitivity seems to be the same for high 

coverages (i.e. 5X, 1X for both degrees and 0.5X for first degree relationships), first degree 

classification can be observed to perform better than second degree classification in each 

coverage and window size. As the coverage goes lower, the single site method seems to be the 

best performing one by a small margin (the values of the points in the graph can be found in 

Appendix B). In other words, usage of windows (the default value of READv1 was set to 

1Mb without testing) seems to be reducing the performance of READv2.  

 

Figure 4: The sensitivity and false positive rates of READv2 for 1st degree and 2nd degree pairs. The analyses have been 

done for varying window sizes (100Kb, 1Mb, 5Mb, 10Mb and 20Mb) as well as for single site approaches for varying 

sequencing coverages (0.01X, 0.05X, 0.5X, 1X, 5X). The red line shows the proportion of false positive unrelated pairs (the 

pairs that are in either first degree or second degree but classified as unrelated) to all unrelated pairs. The blue line shows the 

sensitivity of READv2. 

3.3 Variance of Pairs in First Degree Relationship 

As explained in the Introduction section, the variance of non-shared alleles (P0) at the 

windows along the genome is expected to be higher in sibling pairs than parent-offspring 

pairs. In order to show this, the variance and the mean of P0 per pair was plotted for different 

windows and coverages (Figure 5). According to the plot, as expected, the mean normalized 

P0 of parent-offspring pairs and sibling pairs is the same on average but there is more 

variation for siblings. The difference in the variance can be only seen for high coverages, 

while the values for the low coverages seem to be the same. Additionally, the difference is 

more visible in the window size of 20Mb compared to the others and it is generally more 



23 

when the window sizes are larger. However, no clean separation of the values can be made 

with this plot, and the magnitude of the variance seem to be highly coverage dependent. 
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Figure 5: Mean and Variance of Normalized P0 values along the windows of varying sizes for varying coverages. The 

mean and variance values for window sizes of 100Kb and 20Mb are shown(1Mb and 10Mb plots can be found in Appendix 

C), for coverages of 5X, 1X, 0.5X, 0.1X, 0.05X, 0.01X. The blue and red bars show siblings and parent-offspring pairs, 

respectively. 

Therefore, histogram plots of normalized P0 values of windows in 5X coverage data were 

created (Figure 6) for 10 random pairs in the parent-offspring and sibling relationship 

categories separately. The reason for this was to determine which window size yields a 

histogram closer to the expected result which is parent-offspring having one peak around the 

mean (i.e. first degree P0), and sibling pairs having three peaks for identical parts, first degree 

parts and unrelated parts of the genome.  
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Figure 6: Example Histogram Plots of the P0 values of windows of size 20Mb along the genome with 5X coverage. 

Example histogram plots for parent-offspring pairs(top) and sibling pairs(bottom) are shown. 20Mb window size roughly 

resulted in three peaks in siblings and one peak in parent-offspring pairs as expected. 

 

 

Figure 7: Example Histogram Plots of the Normalized P0 values of windows of size 100Kb along the genome with 5X 

coverage. Example histogram plots for parent-offspring pairs(top) and sibling pairs(bottom) are shown. 100Kb window size 

did not result in the expected shape of the histograms. Histogram plots for 1Mb and 10Mb can be found in Appendix D. 
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According to the histograms, a window size of 20Mb resulted in plots closest to the 

expectation (Figure 5) compared to smaller window sizes of, for instance, 100Kb (Figure 7). 

Therefore, a window size of 20Mb was used to calculate the proportion of all windows, in 

which normalized P0 values do not fall between 0.625 and 0.90625, i.e. the windows that 

would be classified as identical or unrelated (Figure 8). The figure gives a clear separation of 

the values for parent-offspring and sibling pairs for higher coverages such as 5X, 1X and 

0.5X. As explained above, the expectation was that sibling pairs have more of these windows 

than parent-offspring pairs, and according to the plot, the cut-off values to distinguish the 

pairs as parent-offspring or sibling pairs was visually determined as values below 0.3 to 

parent-offspring, values between 0.35 and 0.6 to siblings, and values above 0.6 is not 

specified to any type, and they are left as unknown, as well as the values between 0.3 and 

0.35. For coverages lower than 0.5X, both categories have similar and high values, as a matter 

of fact, the values exceed 0.6 only in lower coverages where both the parent-offspring and 

sibling pairs have those high values. Additionally, the interval of 0.3 and 0.35 seems to be the 

region where both categories sometimes overlap with high coverages. 

  

Figure 8: Proportion of Windows that cannot be specified in any degree for different coverages. The analysis was done 

using the window size of 20Mb. The red and blue boxes represent parent-offspring and sibling pairs, respectively. The area 

under blue and between red dashed lines represent the cut-off intervals for parent-offspring and sibling classifications, 

respectively. 
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3.4 Testing First Degree Classification with 1000 Genomes Data 

In order to test the effectiveness of the first-degree classification method with an independent 

dataset, the 1000 Genomes data from CHS (Southern Han Chinese, China) and ASW (African 

Ancestry in Southwest USA) was used. The test was carried out with full dataset (2,458,861 

SNPs), 50% (roughly 1,250,000 SNPs), 25% (roughly 625,000 SNPs), 10% (roughly 250,000 

SNPs), 5% (roughly 125,000 SNPs) and 1% (roughly 25,000 SNPs) of the SNPs, to be able to 

determine the stress-point, i.e. the point where the performance starts to decline, of the 

method (Figure 9). The results show that the method is functioning well in terms of the 

proportion of correct matches (nearly 95% for parent-offspring pairs and 100% of the sibling 

pairs) and low amounts of FP (0% for both), wrong category classification (0% for both) and 

N/A rate (roughly 5% for parent-offspring pairs and 0% for sibling pairs), in an independent 

empirical dataset for number of SNPs of 125,000 and larger. However, in the case of 1% of 

the SNPs, it performs poorly. Nearly all the parent-offspring pairs seem to be classified as 

siblings and two as N/A but no TPs, and 3 of the 8 sibling pairs (37.5%) seem to have turned 

into N/A pairs while the rest of the samples (5 pairs) were identified correctly. AWS was 

excluded from the study in the end, as discrepancies between the reported degrees of 

relationship in the sample information data shared with the dataset were identified.  

 

Figure 9: Test of the First-Degree Classification Method on Empirical Data from 1000 Genomes. The lines represent 

correctly classified parent-offspring/sibling pairs among all the parent-offspring/sibling pairs (TP), wrongly classified parent-

offspring/sibling pairs among all parent-offspring/sibling pairs (Wrong Category), parent-offspring/sibling pairs classified as 

NA among all the parent-offspring/sibling pairs (NA Rate), and unrelated (not parent-offspring/sibling pairs) pairs classified 
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as parent-offspring/sibling among all unrelated pairs (FP). The TP rates seem to be high (100% for siblings, and a bit lower 

than 100% for the parent-offspring pairs) for percentages larger than 5%.  

4 Discussion 

4.1 Re-implementation of READ 

One of the first goals of the project was to re-implement READ, which was originally 

implemented in Python2 and R (Monroy Kuhn et al. 2018), in Python3 in order to avoid 

compatibility and support issues as well as adding new features to READ such as being able 

to read binary .bed files which takes up less space than plain-text .tped files. The initial re-

implementation took more time to run than READv1 and used much more memory in the 

process. This could be explained by the fact that while READv1 does not hold the data in the 

memory, instead it reads the input line by line and writes intermediate results in a file to be 

read by the R script. The new implementation holds the data in the memory and performs all 

operations in the same script. Furthermore, the analysis with half of the SNPs showed that the 

number of SNPs seems to be in a linear trend with the runtime and memory usage, while the 

number of individuals is in a quadratic relationship. This could be explained by the fact that 

as the number of individuals increases, the number of pairs increases quadratically. Therefore, 

it takes more resources to perform the analysis for more individuals. Additionally, the SNPs 

are compared linearly (i.e. once for every available locus), therefore, when the number of 

SNPs increases, the resource usage increase linearly. 

The pairwise comparison was then implemented with NumPy array comparisons instead of 

pairwise comparisons in loops, in order to increase the efficiency of the script. NumPy arrays 

efficiently store and access the data, and many NumPy operations were implemented in C 

programming language, avoiding the high cost of loops in Python (Harris et al. 2020). 

Because of that, the expectation was to decrease both the runtime and memory cost compared 

to the initial READv2 implementation, and the results of the analysis of runtime and memory 

usage of READv2 have confirmed the expectations. Additionally, the relationship of SNP size 

and sample size with runtime and memory usage seem to hold in this case as well. Although 

the memory usage of READv2 have improved with the usage of NumPy arrays, it is still 

performing poorly compared to READv1, due to the reasons explained above. 

4.2 Window size and Single-Site Approach Comparison 

Another goal of the project was to compare the effects of window-based or single-site 

approaches which were not formally compared before. The window-based approach that is the 

default mode for READv1 performed poorly compared to a single-site approach, in terms of 

runtime and memory usage (Figure 3). In fact, the single-site approach of READv2 seems to 

perform similar to window-based approach with half of the SNPs in terms of runtime, and to 
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window-based approach with half of the individuals in terms of memory usage. Since the 

single-site approach of READv2 was implemented in a way that uses the whole sequence as 

one window, the number of generated results per pair is just one line, instead of one line per 

each window evaluated. Therefore, memory and runtime costs were expected to be lower for 

the single-site approach than the window-based approach for READv2. Additionally, in the 

way that READv2 is implemented right now, the genome data is first divided into windows, 

and then each pair is compared for each window. This, and having only one line of result for 

each pair might explain the similarities to the case of half of the SNPs in runtime and to the 

case of half of the individuals in memory usage, respectively.  

The analysis with varying window sizes and single site across different coverage situations 

using the simulated data with known relationships also resulted in favour of the single-site 

approach for low amounts of data. The power of the method (i.e. sensitivity) for different 

window sizes and single-site was similar for sufficient amount of data (i.e. the data with 

higher coverages, in this case 5X, 1X and 0.5X for first-degree classification; 5X and 1X for 

second-degree classifications). The poorer performance of 2nd degree classifications for lower 

coverages suggests that the performance of READv2 is more susceptible to missingness of 

data for second degree relationships, which was observed in READv1 as well (Monroy Kuhn 

et al. 2018). The reason for this is simply because the interval for 2nd degree relationships is 

narrower, therefore, the noise tends to push some pairs into “unrelated” category. For the 

lower coverages, the single-site approach of READv2 seems to be the best performing one by 

a small margin (Appendix B), and the performances seem to worsen as the window sizes 

increases. However, the single-site approach could not have been used in the successive 

analyses of the project, because, in order to evaluate the variance of the windows, normalized 

P0 values from multiple windows were needed, as explained above, single-site approach 

yields one normalized P0 value for the entire genome. Another disadvantage of the single-site 

approach arising from this is that the confidence for classification cannot be estimated, 

therefore, the uncertainty of the results cannot be assessed. If this was implemented in a way 

that estimates uncertainty, the single site approach might have gotten slower as well. 

4.3 Variance of Pairs in First Degree Relationship 

As expected, the mean P0 values for different window sizes were the same for parent-

offspring and sibling pairs, while the variance of windows across the genome seems to differ. 

However, there is no consistent quantitative difference between the variance levels of parent-

offspring and siblings that could be used as a cut-off value to classify them separately in each 

coverage or window size. In addition to this, all variances seem to increase with lower 

coverages. 

Parent-offspring and sibling pairs were also expected to separate in terms of distribution of 

normalized P0 values of windows, since an offspring receives exactly one chromosome 

directly from a parent, the difference between a parent and an offspring is expected to be the 
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same along the genome. However, siblings can inherit different chromosomes from their 

parents, as well as the same ones. Therefore, the difference between two sibling genomes is 

expected to differ more along the genome: some parts identical, some parts in first-degree 

pattern, and some parts in unrelated pattern. As a result of this, the normalized P0 histogram 

of a parent-offspring pair is expected to have one peak near the mean that is in first degree 

classification interval, while the same histogram that belongs to a sibling pair is expected to 

have three peaks located near a value in the identical/twin interval, a value near the mean, and 

a value in the unrelated interval. In other words, a sibling pair is expected to contain more 

windows that cannot be classified as in first- or second-degree relationship, compared to a 

parent-offspring pair. 

The histograms showed that a window size of 20Mb yields the results closest to the 

expectations. The other window sizes, such as window size of 100Kb, resulted in peaks close 

to 0, which are windows of almost no difference. This might be because of the fact that 

smaller windows mean less SNPs, hence, the P0 value per window is noisier, and therefore, 

the classification of individual windows is more difficult. Consequently, a window size of 

20Mb was used to determine the cut-off values in first degree relationship classification. 

The analysis of proportion of windows that cannot be specified as first or second degree 

showed clear separation of parent-offspring and sibling pairs in coverages higher than and 

equal to 0.5X. Based on the clear separations, the cut-offs for parent-offspring (smaller than 

0.3), sibling (between 0.35 and 0.6) and N/A (other values) categories were defined. The 

inclusion of N/A category was in order to allow reducing wrong classifications (e.g. parent-

offspring pairs as sibling pairs) in the case of low amounts of data. The proportions for lower 

coverages (0.1X, 0.05X, 0.01X) seem to converge to 1 regardless of the type of relationship 

and fall out of the classification intervals for siblings and parent-offspring mentioned above, 

so they would be classified as N/A. Similarly, this can be seen in the histograms where the 

variation goes up to 4 which is approximately the maximum normalized P0 value for the 

simulated data (maximum P0 value of 1 divided by the approximate median of 0.25) which 

means that there are mostly 0s and 4s, and very little in the middle where the classification 

takes place. 

The same trend can be seen in the case of the empirical data from the CHS population from 

the 1000 Genomes Project as well. The test shows that the majority of parent-offspring pairs 

were classified as siblings, and a large part of the siblings classified as N/A (as in the specific 

type cannot be determined) when using 1% of the SNPs (roughly 25,000 SNPs). This could 

be a result of the abovementioned process: as the coverage (or the amount of data) decreases 

for individuals, P0 values per window are spread more widely and the proportion of windows 

that cannot be specified as first- or second-degree increases. Therefore, the results for parent-

offspring pairs are now overlapping the sibling classification interval. Similarly, the true 

sibling pairs are now pushed into to the N/A interval.  
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Additionally, the test seems to be working when using 5% (roughly 125,000 SNPs) or more  

of all the SNPs and it also worked for 0.5X coverage (roughly 50,000 overlapping SNPs) in 

the simulation data. However, it seems to fail for 1% (25,000 SNPs) and all the classifications 

below 0.1X (roughly 2,000 overlapping SNPs) for simulations were N/A. Therefore, the 

interval where the method fails might have been hit, unintentionally. Unfortunately, the range 

between 0.1X and 0.5X is where many published ancient individuals fall (Mallick et al. 2023) 

making it crucial to avoid false classifications. 

Although the abovementioned test presents many results in terms of usability of this method 

for an independent dataset, it does not show the stress-point of the method (i.e. where the TP 

values starts to drop), as well as the point where all the pairs have been pushed up to the N/A 

zone.  

4.4 Future Directions  

Resource usage: Although READv2 works faster than READv1, it can be further improved 

by first performing the pairwise comparisons for all sites (i.e. the same way in single-site 

approach) and then dividing the resulting NumPy array into windows, instead of dividing the 

genome into windows and doing the pairwise comparisons for each window, as explained 

above. This way, the number of operations performed might decrease, and this might improve 

the runtime, and possibly the memory costs.  

Distinguishing parent offspring/sibling pairs: As explained above, the test with the 1000 

Genomes population showed that the first-degree classification method can be used with an 

independent dataset, and it performs as expected for larger subsets of the full data. It also 

showed that, when using 1% of the SNPs, most of the parent-offspring pairs have been 

predicted to be siblings, which might be misleading in a real scenario. One way to solve this 

could be implement a way to express the confidence levels for the classification. This way, 

the reliability of the results can be shown to the user.  

Besides the results that can be observed from the test, there are some conclusions that cannot 

be drawn, such as at what minimum threshold would all the pairs be pushed into the N/A 

zone, or when would the TP values start to drop (the stress-point of the method). These could 

be determined by further analysis including e.g., 0.5%, 2%, 3% and 4% of the SNPs. 

Furthermore, including more sibling pairs (i.e. including data from more populations) might 

decrease the effect of noise and provide more resolution on the exact performances for sibling 

predictions. 

Release as a software: Since READv2 is a method intended to be used in active aDNA 

research, it needs to be made more user friendly such that any researcher can run READv2 

with desired parameters and without needing to change it manually in the script. Therefore, 

the two different approaches, window-based and single-site, need to be set as two different 

options that can be set with different flags. However, if the single-site approach is used, there 
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should be a way to express the uncertainties, or a way to be able to use the first-degree 

classification method. At least, the latter can be done, possibly, going over the data twice: 

once to determine the degrees with the single-site approach, and second time to distinguish 

the pairs in a first-degree relationship with the window-based approach. However, the effect 

of this on runtime and memory usage needs to be investigated as well. Another consideration 

should be on changing the default window size from 1Mb to a smaller one. Similarly, the 

effect on the required resources, as well as the performance of READv2 with independent 

datasets could give an idea on how to make this decision. 
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Appendix A – Python Script for Pseudo-Haploid Alleles 

#!/usr/bin/env python 

from numpy.random import randint 

import sys 

##read tped from stdin and make all sites homozygous 

for l in sys.stdin: 

        split=l.rstrip().split() 

        for i in xrange(4,len(split),2): 

                a=split[i+randint(0,2)] 

                split[i]=a 

                split[i+1]=a 

        print ' '.join(split) 
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Appendix B – Graph Values 

Degree Values single_site 100Kb 1Mb 10Mb 5Mb 20Mb covs

1st Deg Sensitivity 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 5X

1st Deg FP 0.0010586 0.0010587 0.0010586 0.0010587 0.0010586 0.0010588 5X

2nd Deg Sensitivity 0.9513889 0.9513889 0.9513889 0.9583333 0.9513889 0.9722222 5X

2nd Deg FP 0.0017785 0.0018210 0.0017785 0.0017786 0.0017361 0.0017788 5X

1st Deg Sensitivity 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1X

1st Deg FP 0.0010586 0.0010585 0.0010586 0.0010586 0.0010585 0.0010584 1X

2nd Deg Sensitivity 0.9513889 0.9444444 0.9513889 0.9513889 0.9444444 0.9166667 1X

2nd Deg FP 0.0017361 0.0016512 0.0017785 0.0017361 0.0016936 0.0017357 1X

1st Deg Sensitivity 1.0000000 1.0000000 1.0000000 1.0000000 0.9895833 1.0000000 0.5X

1st Deg FP 0.0010586 0.0010585 0.0010586 0.0010585 0.0010586 0.0010583 0.5X

2nd Deg Sensitivity 0.9444444 0.9305556 0.9375000 0.9444444 0.9444444 0.9236111 0.5X

2nd Deg FP 0.0018209 0.0017783 0.0018632 0.0016936 0.0017360 0.0016510 0.5X

1st Deg Sensitivity 0.9479167 0.9270833 0.9375000 0.9062500 0.8854167 0.9270833 0.1X

1st Deg FP 0.0010668 0.0010705 0.0011161 0.0010364 0.0011254 0.0010802 0.1X

2nd Deg Sensitivity 0.6666667 0.6250000 0.6250000 0.5486111 0.5972222 0.5833333 0.1X

2nd Deg FP 0.0110096 0.0146442 0.0169564 0.0235360 0.0254956 0.0238939 0.1X

1st Deg Sensitivity 0.8125000 0.7916667 0.8437500 0.7291667 0.7916667 0.7187500 0.05X

1st Deg FP 0.0086878 0.0107532 0.0111807 0.0206267 0.0152047 0.0235036 0.05X

2nd Deg Sensitivity 0.4236111 0.4166667 0.4722222 0.3611111 0.4097222 0.3333333 0.05X

2nd Deg FP 0.1177839 0.1284144 0.1224139 0.1507525 0.1411306 0.1586993 0.05X

1st Deg Sensitivity 0.2395833 0.2083333 0.1979167 0.1770833 0.2083333 0.1770833 0.01X

1st Deg FP 0.2180556 0.2026100 0.2091350 0.2054186 0.2053636 0.2075115 0.01X

2nd Deg Sensitivity 0.1111111 0.1250000 0.0972222 0.0972222 0.1250000 0.1250000 0.01X

2nd Deg FP 0.1160240 0.1154612 0.1204618 0.1181435 0.1209592 0.1169509 0.01X  

Table S1: The graph values of the Figure 4. It can be seen that the sensitivity values are equal to 1 for each window size 

for 1st degree individuals in high coverages (0.5X, 1X, 5X). The differences between the windows start to arise for the low 

coverage, and the single site approach seems to be superior to all window sizes.  
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Appendix C – Mean and Variance for Extra Windows 
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Figure S1: The mean and variance of normalized P0 values of windows of size 1Mb and 10Mb. Similar to Figure 5, 

there is a clear separation of variance values for high coverages, and variation seem to be increasing and converging to the 

maximum value of 4, as the coverage drops, preventing to determine a clear cutoff value that could be used to classify first-

degree relationships. As expected, and similar to Figure 5, the mean values are the same for these two different categories in 

different window sizes. 

  



42 

Appendix D – Histogram Plots from Extra Window Sizes 

1Mb – Parent-offspring pairs: 

  

1Mb – Sibling pairs: 

  

Figure S2: The histogram plots of parent-offspring and sibling pairs of windows of size 1Mb. The parent-offspring 

histogram starts to look like the ideal plot, the normal distribution, however, the sibling plot is still far away from the 

histogram plot with three peaks. 
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10Mb – Parent-offspring pairs: 

  

10Mb – Siblings: 

  

Figure S3: The histogram plots of parent-offspring and sibling pairs of windows of size 10Mb. Parent-offspring plots 

continue to look like the ideal plot of normal distribution, and sibling plot looks more like the ideal plot with three peaks, 

however, the areas in identical interval and unrelated interval do not have a clear peak to be identified easily, yet. 

 


