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a b s t r a c t

Context: Design smell Prioritization is a significant activity that tunes the process of software quality
enhancement and raises its life cycle. Objective: A multi-criteria merge strategy for Design Smell prior-
itization is described. The strategy is exemplified with the case of God Class Design Smell. Method: An
empirical adjustment of the strategy is performed using a dataset of 24 open source projects.
Empirical evaluation was conducted in order to check how is the top ranked God Classes obtained by
the proposed technique compared against the top ranked God class according to the opinion of develop-
ers involved in each of the projects in the dataset. Results: Results of the evaluation show the strategy
should be improved. Analysis of the differences between projects where respondents answer correlates
with the strategy and those projects where there is no correlation should be done.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the large dimensions of software systems formed by mil-
lions of lines of code, many Design Smells (code smells, bad smells,
architectural smells) couldbe identified. Automatic detection is use-
ful, but a large number of detected smells is considered a problem.
On the one hand, software modules differ in their stability, impor-
tance and criticality inside the system. Thus, not all detected smells
in thesemoduleswill be repairedbecause they vary in their negative
influence on the software quality (Brown et al., 1998). On the other
hand, the required efforts to resolve the whole smell detected can
outstrip the available human resources, time, and budget.

To assist developers in overcoming these limitations, the activ-
ity of prioritizing Design Smells is promising. Several approaches
have been proposed for design smell prioritization (Singh et al.,
2021; Verma et al., 2021; Kaur et al., 2021; Islam et al., 2022;
Arcoverde et al., 2013; Ouni et al., 2015; Fontana et al., 2015;
Marinescu, 2012), in which some of them shown in Section 2. Var-
ious factors were considered in those approaches to rank detected
smells, such as detection reliability, historical information, devel-
oper context, severity, etc. According to these approaches and the
factors intervening in prioritization, the obtained results showed
different rankings for the same list of Design Smells.

In this work, we propose a design smell prioritization approach
based on merging different combinations of criteria. The proposed
approach has been empirically evaluated by professional develop-
ers, specifically in the case of God Class prioritization in the context
of 24 open source software systems.

Section 2 presents related work and highlights the main differ-
ences with this proposal. Section 3 describes the criteria and
parameters involved. An empirical adjustment of the multi-
criteria merging approach is performed by focusing on the God
Class Design Smell using a dataset obtained from 24 open source
projects (Section 4). Section 5 presents the design, execution and
analysis of the conducted empirical evaluation. Section 6 threats
to validity discussion. Finally, conclusions and future lines of
research are discussed in Section 7.

2. Related Work

A systematic literature review (Kaur et al., 2021; Alkharabsheh
et al., 2018) published in 2018 and 2021, respectively, shows an
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increase in the activity related to prioritization in recent years. This
shows the importance of smell prioritization for adopting smell
detection in software production.

Arcoverde et al. (2013) proposed four heuristics to rank smells
based on their architectural relevance. The heuristics adapted dif-
ferent characteristics of a software component, in which two of
them were related to the software history, namely, the number
of modifications in the component and the number of errors
detected in the component. Also, the number of smells present in
the component, and finally, the main role that component plays
in the software.

Ouni et al. (2015) proposed a meta-heuristic search approach
for Design Smells correction tasks based on a prioritization strat-
egy using four criteria. These criteria take into account the prefer-
ences of the developers in terms of prioritizing different kinds of
Design Smell, the severity of Design Smells, the smell risk, and
the importance of the smell concerning the whole project or con-
cerning specific software components (packages or classes) which
include the detected design Smells.

Fontana et al. (2015) proposed two kinds of Design Smell filters
based on different strengths, namely, strong and weak, to remove
the false positive smells or introduce indicators for the probability
that they could be discarded. In the same year, 2015, also, Fontana
et al. (2015) used a Design Smell Intensity index as a key to identify
and prioritize the most critical smells. The intensity index is
defined to capture the amount of smell associated with each
Design Smell. The strategy focuses on exploiting the distribution
of metrics and their threshold values to obtain different levels of
intensity index for each detected Design Smell. The intensity of a
smell is defined as an indicator of the smell severity (where the
smell severity is measured by computing how many degrees the
smell metric exceeds the specified threshold value Marinescu,
2012). Semantic descriptions illustrate the intensity level, which
ranges from very low to very high. The proposed criteria are inte-
grated into the JCodeOdor detection tool, which was developed by
the authors. The criteria can also be integrated with fully auto-
mated detection tools by calculating the thresholds for the
required metrics.

Vidal et al. (2016,) presented a semi-automated approach for
prioritizing design smells, which they named SpIRIT. The proposed
technique is based on a combination of three criteria: the stability
of the software component in which the Design Smell is detected,
an evaluation of each type of Design smell based on the developers
perspectives, and modifiability scenarios for the software. In this
approach, the developer perspective plays a leading role in the
ranking process because developers can select the most critical
Design Smell from their point of view by assigning values to smells
based on an ordinal scale. Therefore, the developers choose the
Design Smell that they prefer to deal with or the one they know
about in terms of the negative effects it will cause to the system.
Smell agglomerations are introduced and used to describe groups
of smells related to each other (Oizumi et al., 2015). The relation-
ship between smell agglomerations and an architectural concern
and the behavior of smell agglomerations over the component his-
tory in terms of the number of smells in the agglomeration is also
combined. The strategy is supported by the JSpIRIT tool.

Sae-Lim et al. (2016, 2017) presented a technique to prioritize
smells that works by estimating the developer context by applying
an impact analysis technique on textual information. Data on the
context are collected through a list of issues obtained from an issue
tracking system, including textual information related to each soft-
ware module. Based on the results of the impact analysis, the
detected smells are prioritized. Verma et al. (2021), highlighted
the influence of various elements on code smell prioritization, such
as detection tools, metrics, and factors. It’s typical that when
releases of object-oriented software increase, the ratio of code
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smell also increases. Understanding the drawbacks of code smell
will improve the accuracy of the proposed approaches. Recently,
Islam et al. (2022), proposed a novel approach for prioritizing code
smells based on collecting information related to code parts that
are frequently used and can change prone. The information is
obtained from the comments history analysis, log files mining,
and static code analysis. The proposed technique was evaluated
using a case study of medium size project implemented in Java.
The result shows the approach has a better performance compared
with the same works regarding the developer-oriented testing
phase to detect code smells.

Despite the diversity of the proposed prioritization approaches
but there exist limitations concerning the selected criteria. For
example, some works, such as Verma et al. (2021) and Arcoverde
et al. (2013) did not consider the role of human context, while in
other works (Ouni et al., 2015; Marinescu, 2012), the historical
information dimension was discarded. Moreover, the number of
parameters used to compute each criterion is another challenge
where only one parameter has been used to measure the selected
criterion in some works. Nevertheless, we assume that these crite-
ria have a significant role in the activity of design smell prioritiza-
tion and should be considered.

In our work, three criteria were selected to develop a technique
for prioritizing smells based to be repaired. The criteria cover dif-
ferent aspects of software components, namely, historical informa-
tion, smell density & intensity, and the assessment of developer
context. The main differences between our approach and those of
previous works are that we foster the use of the same quality tool
of several smell detection tools as an expert committee. Several
tools can detect the same smell, and this fact influences the smell
intensity. As part of the historical information criterion, we con-
sider the volume of changes and the significance of changes. Also,
we have employed multiple weighting strategies to rank the smells
to give different relative importance to the selected parameters of
the criteria. The strategy was empirically adjusted using a dataset
formed by different versions of 24 open source projects. We focus
on a particular smell, God Class, for empirical adjustment and eval-
uation but define the strategy in a general way to be used for dif-
ferent smells. Finally, the approach was evaluated by different
developers related to the same open source software project devel-
opment. A web-based survey was designed to assess empirically
the ranking list generated by our technique with the same project
developers.
3. Proposed Approach

The proposed approach focused on the prioritization of God
Class detection. Nevertheless, as mentioned before, the way the
proposal is designed facilitates generalization to other smells.
However, efforts in validation and adjustment to that other smells
should be made. Defining priorities among different types of smells
is beyond the scope of this work. The approach is organized in five
steps, as shown in Fig. 1. The first three steps (Step1, Step2, and
Step3) are focused on the dataset preparation, while Step4 is
focused on computing the parameters of each criterion. Finally,
in Step5, the list of ranked god classes is obtained.

Step 1. In this step, we randomly selected a set of software pro-
jects implemented in Java in which the source code is the input of
the approach. The selected projects were of different sizes and
domains. They were downloaded from the SourceForge repository,
one of the most known repositories used in the open-source
context.

Step 2. Here, the source code of the target version of the soft-
ware is analyzed using multiple smell detectors. Several tools were
standard in God Class detection. We selected a set of tools that



Fig. 1. Prioritization technique.
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were the most cited and used in the context. Moreover, have a high
precision of god class detection.

Step 3. Once the software systems are analyzed in the previous
step (Step2), in this step, the output of each tool will be a part of
the preliminary list of god classes obtained from all tools (union
set).

Step 4. Next, in Step5, which is considered the core of the pro-
posed approach, some parameters are computed for each God Class
in the union set for each of the three criteria. The examined aspects
focused on the stability, maintainability, and the developers’ con-
text assessment. First, the stability of the classes on the target ver-
sion is tackled through the criterion of historical information. For
this purpose, a sample of earlier versions should be examined. Also,
the maintainability aspect is evaluated by considering the density
& intensity of smells in the target version. Finally, the developers’
importance regarding God Class detection in the earlier version is
considered. Once the set of parameters to measure each criterion
is collected. Then, we try to assign the suitable weight for each
parameter to obtain a rank as a weighted sum of all the selected
parameters that allow classifying all God Classes in a prioritized
list.

Step 5. Finally, in this step, we obtained the final prioritized list
of god classes.

3.1. Detecting Design Smell

The purpose of using several detection tools acting as a commit-
tee is to obtain different diagnoses on the same item. This approach
leads to reducing the false negatives but can introduce false posi-
tives. Nevertheless, coincidences among tools indicate how ”in-
tense” is the presence of the smell in the item, leading to an
agreement between tools. Therefore, as long as we focus on the
empirical adjustment and validation in God Class prioritization,
the rest of the text refers to the smelly items as ”classes”.

3.2. Computing Parameters for Historical Information Criterion

This criterion focused on two issues related to class stability. On
the one side, it is considered the volume of changes from a previ-
ous version to the target version. On the other hand, if the change
occurred, we try to capture whether it has been significant or not.
We use software change history also as a measure of code impor-
tance. Its variation reflects the interest and concern of developers
to correct errors or increase its functionality. In our experience, if
a class is frequently changed, we suspect similar behavior will be
followed in the next versions. For this reason, we highlight the
parameters of the class that have frequent and significant changes
to prioritize repairing it. The following parameters have been
selected: a variation on Number of Method (4NOM), a variation
on Lines of Code (4LOC), and a variation in Cyclomatic Complexity
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(4CC) that we call SOC. SOC stands for Significance of Changes. The
NOM and LOC are used to measure the volume of changes, while
the CC is used for the significance of changes. NOM is related to
the number of responsibilities and tasks the class will execute.
Therefore, NOM increasing or decreasing will influence these
responsibilities. On the other hand, if no changes occurred on the
NOM inside the class, but the changes happened on the LOC inside
the body of the method or the class attributes, the changes could
be considered an indicator of some refactoring operation or bug
repairing. Several empirical studies in the literature (Curtis et al.,
1979; Jay et al., 2009; Jbara et al., 2014; Landman et al., 2014;
Tashtoush et al., 2014) showed there is a significant correlation
between cyclomatic complexity and lines of code. Intuitively, the
larger the lines of code (LOC) or the number of methods (NOM),
the more branches, the higher the cyclomatic complexity. There-
fore, we can reasonably expect that increasing or decreasing
NOM or LOC will have an effect on the cyclomatic complexity of
the class under analysis. Nevertheless, when variation NOM and/
or LOC do not lead to variation in cyclomatic complexity, the
change will be considered without significance and penalized in
the weighted sum.

In order to unify the scale of parameter values, the results are
normalized by computing the relative measure of all parameters
against the maximum value of the previous or target class. In the
following paragraphs, we described in detail the selected
parameters.

4Number of Methods (NOM). Starting from the selected ver-
sions [previous version (i), target version (j)] of the project, 4NOM
= —NOMi-NOMj— is calculated. The obtained result of 4NOM ran-
ged from 0 to N, where 4NOM = 0 if no changes happened (same
number of methods/ responsibilities from one version to the
other). To normalize the results, we compute the relative measure
(RelNOM) of a particular class (c) as follows:

RelNOMðcÞ ¼ DNOM
maxðNOMi; NOMjÞ ; NOMi; NOMj > 0

4Lines of Code (LOC). In the same way, variation in LOC is cal-
culated 4LOC = —LOCi-LOCj—. To obtain a normalized value, the
relative measure (RelLOC) of changes in LOC of a particular class
(c) is computed as follows:

RelLOCðcÞ ¼ DLOC
maxðLOCi; LOCjÞ ; LOCi; LOCj > 0

Significance of Changing (SOC). To compute the significance of
changing (SOC) of a particular class (c) between any two versions
(i, j) of a project, firstly, variation 4SOC = —CCi-CCj— is obtained.
Then, the relative measure of (RelSOC) is computed as follows:

RelSOCðcÞ ¼ DSOC
maxðSOCi; SOCjÞ ; SOCi; SOCj > 0
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These three parameters can be calculated automatically and
integrated with any tool.

3.3. Computing Parameters for Smell Density & Intensity Criterion

Different studies have shown a lack of agreement in detecting
smells among various detection tools. With the criterion of inten-
sity, which assesses the number of tools that detect the smell in
the class, we highlight among the detected those with the most
significant possibility of being truly positive. In addition, the rela-
tionship between the presence of the aimed smell in the class
and other types of smells complement ‘‘intensity” with ‘‘density”.
Density is focused on determining the volume of problems found
in the class by identifying different types of smells and their
amount of total repetitions. The impact of code changes on the
smell density along the different versions of the same class is
addressed. A class having a high smell density will be harmful
and should be revised and improved first.

To this end, we selected different parameters to represent the
criterion of Density & Intensity. The chosen parameters are
explained in detail In the following paragraphs:

Number of Detection Tools (DT). This parameter is concerned
with computing the number of tools that detect the smell in a par-
ticular class (c). The number of tools is different based on the type
of smell we want to detect and the availability of different tools
that can detect it. The parameter value is considered an indicator
of the agreement of detection tools. Moreover, the higher value,
the more intensity in the presence of the Design Smell. It is inter-
preted as it is straightforward for several ”experts” that the class is
smelly.

A set of factors affect the integration of this parameter to the
top of other tools. Some tools are designed to work standalone,
by means of plug-ins, or both. Moreover, the implementation of
tools determines how the tool should be used, either through a
graphical interface or by commands or both. Therefore, depending
on the tool, the value of this parameter can be obtained fully auto-
mated or semi-automatically according to the current version of
some detection tools. The parameter value is computed as follows:

DTðcÞ ¼
Xn
i¼1

Ti
ðcÞ; Ti

ðcÞ 2 f0;1g

DT(c) is the number of tools that detect the particular smell in

class (c), n is the number of tools and Ti
c is the tool (i) that detects

the smell in class (c). This value is 1 if detected or 0 if not. DT ðcÞ
range from 1 to n. So, it should be necessary to be normalized. Rel-
ative measure (RelDT) is calculated as:

RelDTðcÞ ¼ DTðcÞ
n

; n > 0

Design Smell Types (DST). This parameter calculates the num-
ber of the different smell types found in the class according to the
set of available detection tools. Whenever different types of smells
are detected in the class, the number of quality factors that are
negatively affected increases, and therefore the number of various
issues that the developers will need to focus on to fix. As a conse-
quence, if the class is not immediately repaired, the future mainte-
nance effort will increase. The importance of this parameter lies in
identifying the group of smells that are related to each other, what
is called in the literature ‘‘Design Smells Agglomeration” as men-
tioned in Section 2 (Oizumi et al., 2016; Oizumi et al., 2017;
Oizumi et al., 2015; Carvalho and Mendonça, 2018; da Silva
Sousa, 2016), where the presence of a particular smell indicates
the presence of other types of smells in the same class, the param-
eter’s value depends on the number of smells each tool is designed
to detect. In this parameter, we considered the smell type detected
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by more than one tool as different due to the ambiguities in the
definition of the smell used by each tool and the applied detection
strategy. The parameter is calculated as follows:

DSTðcÞ ¼
Xn
i¼1

DSTi
ðcÞ; DSTi

ðcÞ 2 f0;1g

Where (DST(c)) is the number of different types of Design Smells
that are detected in a particular class, n is the number of Design
Smell types and (DSTi) is the Design Smell type (i) that is detected
by the tools, in which the value is 1 if detected or 0 if not. The scale
of this parameter is different from one class to another; thus, it
should be normalized by obtaining the relative measure of the
Design Smells types (RelDST) as follows:

RelDSTðcÞ ¼ DSTðcÞ
n

; n > 0

Total repetitions of all types of Design Smells (TotDST). Using
this parameter, the number of problems (Design Smells) that could
be found in the class are identified. In this parameter, we will com-
pute the summation of the total repetitions of all types of Design
Smells detected in the class using the available detection tools.
The parameter calculation is defined as follows:

TotDSTðcÞ ¼
Xn

i¼1

Fi
ðcÞ; Fi

ðcÞ 2 fNg; n P 0

Where (TotDST) the total repetitions of all Design Smell types

that are detected in the particular class (c), (Fi
ðcÞ) factor represents

how many times the Design Smell type (i) appears in class c (i.e.
the repetition), (i) represents each Design Smell type detected,
and (n) the number of different Design Smells types detected by
all the selected tools. The obtained values for different classes will
be various in their ranges. So, it is necessary to adjust the values to
the same scale as the other parameters. For this purpose, as a first
step, we computed the ratio (TotDST):

RatioTotDSTðcÞ ¼ TotDSTðcÞ
DSTðcÞ

; DSTðcÞ > 0

Then, we use the Min–Max normalization technique (Saranya
and Manikandan, 2013) in order to adjust the result of
RatioTotDST(c) for each class between 0 and 1 as follows:

NormalizedRatioTotDSTðcÞ ¼ RatioTotDSTðcÞ �MinðRatioTotDSTÞ
MaxðRatioTotDSTÞ �MinðRatioTotDSTÞ
3.4. Computing Parameters for Developers Context Criterion

Several studies in the state of the art (Arcoverde et al., 2011;
Palomba et al., 2014; Peters and Zaidman, 2012; Sae-Lim et al.,
2016; Sae-Lim et al., 2017; Sae-Lim et al., 2017; Yamashita and
Moonen, 2012; Alkharabsheh et al., 2016; Alkharabsheh et al.,
2019) have focused on the importance of developers’ context
regarding their years of experience, background, awareness of
Design Smells, etc., on Design Smell evaluation. In our experience,
detection approaches that ignore developers’ context are not fully
satisfactory because these approaches do not consider the subjec-
tivity related to the persons on smell detection. Thus, the results of
these approaches could be Design Smells that are not relevant or
significant to the developers. The role of professional developers
is to approve or reject Design Smells detected by automatic tools,
especially in large-scale software systems when the results of
detection tools include an extensive list of Design Smells. Modern
quality assurance tools such SonarQube include in their functional-
ity the possibility that the developers or QAs indicate false
positives.
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The developers assessment (DevEvl) parameter is a binary deci-
sion (1,0), in which the result will be (1) when the developers con-
firm the smell detected in class (c) that has been detected by tools.
Otherwise (0), when the developer rejects that (c) is smelly. The
default value of this parameter is (0) because all the studies in
the literature indicate that there is a lack of agreement between
humans, tools and both.

DevEvlðcÞ ¼
1; If thedeveloper confirms truepositive
0; Otherwise

�

4. Empirical Adjustment of the Multi-criteria Approach

As mentioned before, the case of God Class Design Smell is
focused on tackling empirical adjustment and empirical evaluation
of the proposed prioritization technique. The whole parameters are
going to be combined and adjusted in a way that the prioritization
technique can be able to meet the final purpose of the study.
Whether the selected criteria and parameters used to prioritize
the detected God Classes were relevant to the ranking that devel-
opers believe. To detect God Class, there exists a long list of proto-
types and tools. We avoided the prototypes and concentrated on
the automatic tools. We assigned a set of criteria to select the tools
that include available and free, common in god class detection,
analyzing java source code and must have a high accuracy in detec-
tion. From the obtained list, we selected a set of five tools that
involve DÉCOR, iPlasma, PMD, Together, and JDeodorant. Accord-
ing to our systematic mapping study on design smell detection
published in 2019 Alkharabsheh et al. (2018), the chosen tools
were the most mentioned in the works related to the activity of
design smell detection. The selected tools have used different
strategies to detect the god class. The strategies were built based
on the precise definitions of god class. The variation of detection
strategies will increase the total number of god classes in the data-
set and reduce the threats to construct validity. For example,
JDeodorant employed the hierarchical agglomerative clustering
algorithm, DECOR used the rule-based, and the group of iPlasma,
PMD, and Together used a metric-based strategy, in which differ-
ent sets of metrics and threshold values were used in the detection
technique. They constitute the committee. In the next subsections,
we start by describing the dataset built to be used for empirically
setting up the combination of the previously presented parameters
in Section 4.1. Then, in Section 4.2, we explain by example how this
dataset is used in tuning the rankings, i.e., how we combine the
selected parameters to produce the relevant God Class list for each
software project.

4.1. Dataset

The dataset is collected from 24 open source Java software pro-
jects (see Table 1) and used in several previous studies
(Alkharabsheh et al., 2016; Alkharabsheh et al., 2016;
Alkharabsheh et al., 2022; Alkharabsheh et al., 2021;
Alkharabsheh et al., 2021; Alkharabsheh, 2021) for different pur-
poses.These software projects range from small to large sizes and
belong to different domains. The dataset used in this study is avail-
able on the web1. Two different versions of each project were cho-
sen, the target version and the previous version. The last column
of the table presents the number of classes added to (+) or removed
from (-) the previous version of the software projects. This number
can be an indicator of the code improvement concerning eliminating
classes or dividing the complex or large classes (god class) into two
classes or more, which finally affects the total number of classes.
1 shorturl.at/DFLN4
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God Class detection was performed in both versions of the pro-
jects. Results show that the total number of God Classes in the pre-
vious versions was 1;958, representing 15:6% against the total
number of classes of all projects in this version. The largest number
of God Classes was detected in the Jasperreport v4.7.1 project (311
God Classes), and the lowest number was detected in the Plugfy
v0.3 (1 God Class). On the other hand, considering together all
the classes of the 24 projects, the total number of God Classes in
the target versions was 1;131, representing 9:11% of the total. As
can be seen, the number of god classes in the target version
decreased compared with the number in the previous version
(from 1,958 to 1,131). This decrease is expected because some
refactoring operations have been conducted on the god classes
detected in the previous versions, or some of these classes have
been removed from the next versions of the software project.

The complete list of god classes in both versions can be accessed
on the web2 According to the numbers and rates of God Classes in
both versions, we can conclude the problem was reduced in some
projects such as GanttProject and JFreeChart in the target versions
against the previous versions (15:6% to 9:11%). It could be an indi-
cator of the code improvement (refactoring operations), specifically
when the same class was identified in the previous versions as a
God Class and the target version was not.

4.2. Constructing the Concrete God Class Ranked List

The general strategy proposed is based on giving a Top X prior-
ity list to developers or QAs, where X is small enough to allow
attention to be focused on those priorities and not too over-
whelmed with many issues to solve. Whenever the developer or
QA requests the priority list of God Classes, the Top X, the first X
classes in order of priority, is given. Once the developer has already
analyzed them and either created tasks to repair the presence of
the smell, discarded reparation at this point, or indicated that he/
she thinks it is not God Class (indicates false positive), then the
exact mechanism is applied to get the next Top X.

It has been decided to instantiate X with 5 to exemplify the
strategy and explain the construction of a Top 5. The reason to
instantiate concretely in 5 is to directly use the Top 5 obtained
for each project in the dataset in the stage of empirical validation
that will be presented in the following section. In this empirical
validation, these Top 5 will be given to developers involved in each
project as a prioritized list of 5 elements to contrast their opinion
on the ranking. Therefore all the strategy that will be explained
below is talking about Top 5 but could be talking about Top 10,
Top X in general, always thinking that X should be small enough
to allow developers or QAs to focus the attention.

To understand how we will be constructed the concrete God
Class rank (Top 5) for each software project, we present a running
example of a software project from the dataset, JFreeChart. After
analyzing the project’s source code of the selected versions (v1.0.
x, v1.5.0), our findings showed that 161 God Classes were detected
in the previous version (v1.0.x). In contrast, 72 God Classes were
detected in the target version (v1.5.0). A set of 72 God Classes
was common among the project versions, which are the same
god classes in the target version v1.5.0. that included in the prelim-
inary list. In another example, FullSync, the number of god classes
in v0.10.2 (previous version) was 13, while in v0.10.4 (target ver-
sion) was 8. The common god classes between both versions were
3. As mentioned before, this study focused on the set of god classes
common in both versions. Table 2 presents the number of god
classes in the previous and target versions of the software pro-
jects,and the number of common God Classes in both versions.
2 shorturl.at/DFLN4



Table 2
Number of god classes in the previous and target version of each project.

Project Name Previous Version target Version # Common GodClass

Version # GodClass Version # GodClass

AngryIPScanner 3.0 2 3.5 4 2
Apeiron 2.92 16 2.94 9 8
Checkstyle 6.2.0 20 8.0.0 9 3
DigiExtractor 2.3.1 27 2.5.2 36 27
Freemind 1.0.1 42 1.1.0 62 32
FullSync 0.10.2 13 0.10.4 8 3
GanttProject 2.0.10 167 2.8.8 33 33
jasperreports 4.7.1 311 6.2.2.x 200 179
jAudio 1.0.4 121 1.1.1 78 76
Java graphplan 1.0.7 18 1.0.12 8 8
JCLEC 4.0.0 88 4.0.x 88 88
JDistLib 0.3.5 22 0.3.8 17 17
JFreeChart 1.0.x 161 1.5.0 72 72
JHotDraw 5.2 26 7.6 50 1
keystore-explorer 5.1 47 5.3.2 40 40
Lucene 3.0.0 136 6.5.0 70 14
Matte 1.7 31 1.8.2 25 25
Mpxj 4.7.0 127 7.0.2 111 85
OmegaT 3.1.8 174 4.1.1 52 41
Plugfy 0.3 1 0.6 0 0
PMD 4.3.x 29 6.0.0 38 7
Smeta 0.9.1 20 1.0.3 16 16
squirrel-sq 3.7.1 79 3.8.1 55 55
Xena 5.0.0 217 6.1.0 50 50

Table 1
Characterization of the selected versions of projects.

Name Previous Version target Version # of Classes

Version NOC TLOC Version NOC TLOC Inc(+)/Dec(-)

AngryIPScanner 3.0 177 10,456 3.5 213 11,205 +233
Apeiron 2.92 62 8,908 2.94 64 6,557 +2
Checkstyle 6.2.0 116 7,039 8.0.0 169 10,546 +53
DigiExtractor 2.3.1 77 610 2.5.2 80 15,668 +3
Freemind 1.0.1 501 60,972 1.1.0 517 60,151 +16
FullSync 0.10.2 211 13,915 0.10.4 200 13,536 �11
GanttProject 2.0.10 621 66,540 2.8.8 652 39,798 +31
jasperreports 4.7.1 1,797 350,690 6.2.2.x 2,889 210,480 +1092
jAudio 1.0.4 461 57,144 1.1.1 477 59,026 +16
Java graphplan 1.0.7 56 6,481 1.0.12 56 6,512 0
JCLEC 4.0.0 305 13,556 4.0.x 305 13,556 0
JDistLib 0.3.5 88 29,845 0.3.8 78 32,081 �10
JFreeChart 1.0.x 499 206,559 1.5.0 980 123,120 + 481
JHotDraw 5.2 171 8,162 7.6 609 71,222 +438
keystore-explorer 5.1 384 83,144 5.3.2 374 47,158 �10
Lucene 3.0.0 393 42,351 6.5.0 1,392 96,66 +999
Matte 1.7 603 52,067 1.8.2 659 40,037 + 56
Mpxj 4.7.0 513 85,065 7.0.2 644 98,681 + 131
OmegaT 3.1.8 629 58,348 4.1.1 932 56,557 +303
Plugfy 0.3 50 1,039 0.6 52 1,089 +2
PMD 4.3.x 757 52,576 6.0.0 1,288 37,031 +531
Smeta 0.9.1 229 14,241 1.0.3 222 30,843 �7
squirrel-sq 3.7.1 1,138 71,626 3.8.1 1,598 129,711 + 460
Xena 5.0.0 2,572 402,506 6.1.0 1,975 61,526 �597
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For each God Class, we computed the parameter values associ-
ated with each criterion in the previous section. Therefore, these
values are not shown here for short.

Developers’ assessment of God Classes as true positives or false
positives was obtained as part of previous work by means of a web
survey. Modern QA tools such as SonarQube include functionality
to allow developers or QAs to state whether they consider a result
a false positive.

A weighting strategy is applied. The strategy only includes the
set of parameters in the historical information (RelNOM, RelLOC,
RelSOC) and Design Smell density criteria (RelDT, RelDST, Ratio-
TotDST) because these parameters are from the same type of scale
9337
”numeric.” All values are between 0 and 1, while the developer
context is ”Boolean,” The values are either 0 or 1. Therefore, it is
challenging to combine different types of variables. For these 6
numerical parameters, we present 3 possible scenarios in which
the weight of the decision is distributed with different criteria.

Scenario 1: giving the same weight value to both criteria, hav-
ing all parameters the same percentage. As mentioned above, the
total weight is 100, and we have 6 parameters. Therefore, the per-
centage value for each parameter is 1=6 ¼ 16:67%.

Scenario 2: giving the highest weight value to the Smell Density
& Intensity criterion, where all parameters in the criterion shared
the weight value in a similar percentage, while the remained
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weight value is divided between all parameters in the other criteria
in equal percentage. Hence, we gave 66:7%ð2=3Þ of the weight per-
centage to the smell density parameters (RelDT, RelDST, Ratio-
TotDST), in which each parameter of the three has 22:2%, and
the rest weight percentage (33:3%) distributed between the
parameters of the other criterion (RelNOM, RelLOC, RelSOC),
11:11% for each parameter.

Scenario 3: giving the highest weight value to the historical
information criterion, where all parameters in the criterion shared
the weight value in a similar percentage, while the remained
weight value is divided between all parameters in the other criteria
in equal percentage. Therefore, we gave 66:6% of the weight per-
centage to the historical information parameters (RelNOM, RelLOC,
RelSOC), in which each parameter has 22:2%, and the rest param-
eters of the other criterion (RelDT, RelDST, RatioTotDST) have
11:11% for each.

According to these scenarios, Table 3 shows the obtained
weighted scores and the ranks (R) of the God Classes in the target
version of the JFreeChart v1.5.0 project. To compute the position of
the rank of each God Class in the list, we ranked them in descend-
ing order based on their weight scores. The God Class with the
highest weight score is in the first position in the ranking. Accord-
ing to this mechanism, multiple ranking lists have been obtained to
obtain a unified list from the previous ranks (R1, R2, R3). The next
steps are followed for each project in the dataset.

Step 1. Obtaining the list of classes confirmed as a God Class
according to the criterion of developers context can be seen in
the motivating example in step 1 of Fig. 2. Even though all classes
have been identified as God Classes by the automatic tools men-
tioned previously, the most critical is the set that has been con-
firmed by the developers as a God Class. If the list of God Classes
in this step is empty, i.e., no God Class has been approved by the
developers, then the list of the top five God Classes will be obtained
Table 3
The obtained scores and ranks for God Classes in the target version of JFreeChart v1.5.0 p

Class Name scenario1 R1

Axis 0.24 3
ChartPanel 0.23 4
DefaultPolarItemRenderer 0.31 1
PolarPlot 0.26 2
RingPlot 0.22 5

Fig. 2. List of top five God Classes
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directly from step 2 by choosing the first five classes have the high-
est weighting values.

Step 2. Obtaining the list of top ten God Classes based on each
weighting scenario, so we have three lists (scenario1, scenario2,
scenario3). Then, the duplicated classes between the three lists
are merged into one class that has the highest weight value. After
that, we combine the three lists (scenario1, scenario2, scenario3)
into one list and sort it according to the weight values in descend-
ing order (step 2 in Fig. 2). If the list of God Classes after merging
the three lists does not include common classes with the list in
step 1 or does not have enough to obtain the top five classes, then
the next ten God Classes should be obtained by the same process.
The process continues until we get the top five list.

Step 3. Select the top five God Classes common between the
two lists in steps 1 and 2, as shown in step 3 of Fig. 2.

The purpose of this strategy is to top rank classes that will be
high in the list of priorities, whatever the weighting was. This is
a multi-criteria merge.

5. Empirical Evaluation

In order to evaluate the proposed technique, focusing on the
case of God Class, we designed a web-based survey questionnaire
to define priorities among the classes of the target version of soft-
ware systems to decide which class to be repaired first by human
experts, who are part of the project team or are regular or sporadic
contributors.

Research Question: How are the top-ranked God Classes
obtained by the proposed technique compared to the top-ranked
God class according to the opinion of developers involved in the
project?.

Survey Design: The survey questionnaire was constructed in
three parts. In the first part, three questions related to the subject’s
roject according to each weighting scenario.

scenario2 R2 scenario3 R3

0.26 2 0.22 3
0.26 2 0.20 4
0.25 3 0.38 1
0.27 1 0.28 2
0.21 4 0.22 3

in JFreeChart v1.5.0 project.
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profile regarding their years of experience in software develop-
ment, software project, and their role in the project. The second
part involves the list of top five God Classes in the software project
that should be repaired from first place to last according to the pro-
posed technique. We decided to rank only the top five God Classes
in each software project because it would not be acceptable to give
the respondent an extensive list of God Classes requiring more
time to analyze. The respondents are asked to either agree or pro-
pose another ranked list in case they disagree. Finally, in the last
part, we asked the respondents to select the set of factors that have
been taken into account when ranking the God Classes based on
their importance. This last part was conducted as a replication of
Sae-Lim et al. study (Sae-Lim et al., 2017) to answer another critical
research question, but this part is beyond the scope of this paper.
(To show the survey questions see reference K. et al., 2022).

Execution: To obtain responses from the available software
project team and the contributors, they were contacted via the
available addresses in the public repositories (GitHub, Source-
Forge) where the software projects were found. We sent a message
to explain the situation and a link to the survey. The survey was
duplicated 24 times and sent separately for each project to give
each survey the top five God Class ranked list specific to each pro-
ject. To facilitate the task of the experts, we provided a link in the
survey to remember the definition of God Class Design Smell. The
complete questionnaire is available on this url. The total number of
contacted people via SourceForge was 49, while on GitHub was 89.
In some cases, some people may be in both repositories because
most of the projects migrated from SourceForge to GitHub. See
the dataset on the web to show the number of contacted people
in each project. Several criteria are considered during the survey
design stage to choose the respondents. These criteria focused on
the experience in software development, experience with the pro-
ject, and the leading role in the project. We aim to increase the
number of respondents who have a strong background as can as
possible.

The survey stayed open for three months, from August 2018
until November 2018. We received feedback on 15 software pro-
jects in a ratio of 62:5% of the total number of projects. The respon-
Fig. 3. Left up panel: Distribution of percentage and numbers of respondents over the e
and numbers of respondents over the expertise years in the same software project. Cente
that played in the software project.
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dents have extensive working backgrounds in software
development and in the same software project they assess in this
survey. Moreover, they have many years of experience. The final
number of respondents for these projects was 35, and all answers
were accepted. In the following, we provide more details about
analyzing the respondents feedback.

5.1. Survey Analysis

Subject’s profile: Fig. 3 presents the results related to the
respondent profiles (the first part of the survey) regarding their
years of experience and their leading role in the software project.
Most respondents (54%) have more than ten years of experience,
and 63% of the respondents have more than five years of experi-
ence in the same projects. As seen from both panels of the figure,
most of them (37%) contributed to the project as software devel-
opers, while 3% were software testers. Also, more than 50% of
the respondents acting as software developers in the project have
more than ten years of expertise in software development and
more than five years in the same project. Summarizing, more than
50% of respondents have enough expertise and knowledge on the
project which satisfy the goals of the study.

Top Five God Classes: In this part of the survey, we asked the
respondents to determine if they agreed or disagreed with our
God Class prioritized list ranked as the top five of each software
project. Then, based on their decision, the survey asks either to
assign ranking positions to the existing list or to propose a new
ranked list. Table 4 shows the distribution of the respondents
answers related to their decision of agreement or disagreement
with the top five God Classes listed by each software project. As
shown, 48:6% (17 out of 35) of the respondents answers agree with
our list, but with different ranking positions of the God Classes.

On the other hand, 51:4% (18 out of 35) of respondents dis-
agreed with our list, in which 8 did not answer the question related
to proposing another ranking list. In contrast, the rest of the
respondents (10) suggested another ranked list that included God
Classes from the lists that were obtained by using our technique.
The presented ranking lists were the software projects
xpertise years in software development. Right up panel: Distribution of percentage
r down panel: Distribution of percentage and numbers of respondents over the roles



Table 4
Distribution of respondents numbers over the selected software projects with respect to who answered the survey, who agree with our top five list, and who disagree with our top
five list.

Project Name Version # Respondents Agree Disagree

Angry IPScanner 3.5 2 1 1
checkstyle 8.0.0 2 1 1
Freemind 1.1.0 1 1 0
FullSync 0.10.4 1 0 1
Ganttproject 2.8.8 3 3 0
JAudio 1.1.1 2 1 1
Java graphplan 1.0.12 1 1 0
JCLEC 4.0.0 2 0 2
JFreeChart 1.5.0 3 2 1
Jhotdraw 7.6 3 1 2
Lucene 6.5.0 5 1 4
MPXJ 7.0.2 1 0 1
OmegaT 4.1.1 2 1 1
Plugfy 0.6 2 1 1
PMD 6.0.0 5 3 2

Total 35 17 18
Percentage 48.6% 51.4%
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Checkstyle-8.0.0, FullSync-0.10.4, Jhotdraw-7.6, Lucene-6.5.0,
JCLEC-4.0.0 and PMD-6.0.0. In these projects, 21 new God Classes
were added by the respondents to be in the top five list, while 19
God Classes were selected from our top five list.

The highest number of respondents was 5 in two cases of the
projects (Lucene-6.5.0, PMD-6.0.0). In addition, in 5 software pro-
jects, the number of respondents who agree with our technique
equals the number of respondents who disagree.

To identify to what extent the similarity of ranking positions
between our technique and respondents answers was, we hypoth-
esised that there was a correlation between the ranking positions
of our technique and the respondents answers. For this purpose,
we computed Spearman’s correlation coefficient (Pirie, 2004) using
the R tool. Spearman’s correlation value can range from �1 to 1.
The higher the value of correlation, the stronger similarity. The
perfect similarity is when the correlation is 1 while �1 implies a
perfect inverse correlation.

We computed the correlation with different categories of
respondents according to their decision if they agree or disagree
with the technique, their role in the project, and the type of expe-
rience as shown in Tables 6–8. In general, a weak correlation result
was found between our technique and the respondents ranking.

Table 5 shows the interpretation of this coefficient.
Table 6 presents the correlation between our technique and the

categories of all respondents, the group of respondents who agree
with our approach, and the group that disagrees but includes God
Table 5
Interpretation of the Spearman’s correlation values.

Spearman’s correlation value Degree of Correlation

0:00 6 Corr < 0:19 Very weak
0:20 6 Corr < 0:39 Weak
0:40 6 Corr < 0:59 Moderate
0:60 6 Corr < 0:79 Strong
0:80 6 Corr 6 1:00 Very strong

Table 6
Correlation values between our prioritization technique and the different categories
of respondents that include all, agree, and disagree (group that were include God
Class from our list) regarding the ranking positions.

Respondents Category All Agree Disagree

# Respondent 35 17 3
Correlation 0.12 0.28 �0.004
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Classes from our top five regarding the ranking positions. As can be
seen, there is a correlation between both rankings, where there
was a very weak correlation (0:12) in the case of all respondents,
and only a weak correlation (0:28) was found in the case of respon-
dents who agree with us. Despite the correlation is weak, we
decided to make more analyses with this group of respondents to
identify if there is a relationship between the role of respondents
in the software project or the experience type with their ranking
decisions.

Table 7 shows the correlation between both rankings (tech-
nique and the respondents who agree) based on classifying the
respondent into small groups according to their role in the pro-
ject. Even though there was a small number of respondents in
each category, we found a correlation value ranging from strong
to very strong in two cases when the role of respondents was
Software Tester or Regular Contributor in the project. Despite
that the developers category is the closest to the nature of the
code, a low correlation is found. In our opinion, the reason is
related to the developers experience and the team’s instability
over time. Therefore, we compute the correlation only with the
group of developers with the highest years of experience (5
developers). The obtained result was (0:23), which indicates a
weak correlation.

Finally, Table 8 describes the correlation between the two rank-
ings based on classifying the respondents who have the highest
years of experience in software development on the same software
project. The results show that the correlation ranged from very
weak to weak with preference when the respondents have more
expertise in software development in general.

6. Threats to Validity

As for threats to construct validity the set of new God Classes
detected in the new classes in the target versions of the software
projects, because the target versions include new classes that were
never found in the previous versions. Therefore, these God Classes
will never be detected. To this end, further work has to be done by
including more intermediate versions that might resolve the prob-
lem. The selection of only one previous version of the project is an
essential threat because it might affect the strategy to compute the
appropriate parameters of each criterion. Another threat is the
unbalanced number of parameters used to represent the criteria,
precisely, the developer context. We plan to replicate the study
by including more parameters to this criterion. To take all the fac-
tors expressed in this list, a strategy should consider some infor-



Table 7
Correlation values between our prioritization technique and different categories of respondents: Administrator (Admin), Architect (Arch), Developer (Dev), Tester (Test), Regular
Contributor (RegCont.) and Sporadic Contrib (SprCont.) who agree with the technique according to their role in the project.

Respondents Cat. Admin. Arch. Dev. Test. RegCont. SprCont.

# Respondent 1 2 8 1 2 3
Correlation NA �0.07 0.08 0.8 0.71 �0.06

Table 8
Correlation values between our prioritization technique and the different categories
of respondents who have the highest experience in software development and in the
same software project regarding the ranking positions.

Experience Exp. Software Development In the same project

# Respondent 8 10
Correlation 0.25 0.15
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mation from issue trackers. This aspect could be essential to con-
sider in future work.

The project contributors are the main threat to internal valid-
ity. Each project contributor has a set of different achievements
based on their background and experience to play a particular role
in the project team, such as admin, tester, designer, architect, and
core developer. In other cases, the contributors might be sporadic
and do not have a deep knowledge of the project details. Another
threat is related to the number of core software developers
responding to the survey and those with a high experience in the
selected project. Different results may be obtained when this num-
ber increases.

The main concern of external validity is the generalizability of
results. In this study, we analyzed the java projects from different
domains using the five detection tools developed based on a
metrics-based approach. In addition, only one type of Design Smell
(God Class) has been selected to conduct the study. Another threat
is that the developers only ranked the first five God Classes because
asking the developers to rank the whole list of God Classes is time-
consuming and costly. Moreover, the number of developers in the
study depends on the software team and contributors, which var-
ies from one project to another and might not be enough in some
projects.

Finally, the main threat to conclusion validity is related to the
absence of quantitative analysis using the well-known statistical
techniques because of the number of developers who evaluated
the God Classes of each project. Moreover, the number of God
Classes assessed and ranked by the developers is another threat.
We think the replication of the study with many developers and
analyzing the results quantitatively are significant.
7. Conclusions and Future Work

We proposed a Design Smell Prioritization technique. Specifi-
cally, for God Class Design Smell, based on a combination and
merging of three criteria (Historical Information, Design Smell
Density, Developer Context), we assumed essential and the devel-
opers should be taken into account. Then, the technique was car-
ried out in the context of two different versions of 24 open
source software systems and empirically evaluated by professional
developers from the same software system teams. Besides, the
developers were asked to determine the factors they considered
for ranking the God Class Design Smell. Spearman’s correlation
coefficient was used to examine the ranking results. The results
show a weak correlation between the rankings proposed by our
technique and the ranking obtained by evaluators in general. Bet-
ter results were obtained with the evaluators who have more years
of experience. Also, the Task Relevance and Module Importance
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were the most critical factors that the evaluators took into account
during the God Class prioritization.

It would be interesting to modify the technique to consider dif-
ferent types of Design Smells and include parameters that analyze
the relationship between them. It would also be interesting to
analyse several versions of the same software, instead of just
one, to improve the evaluation of the evolution of the software
by expanding the measures used in the historical information of
changes.
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