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Abstract: This paper investigates the quality of global cloud fraction and cloud-top height products
provided by the third edition of the CM SAF cLoud, Albedo and surface RAdiation dataset from the
AVHRR data (CLARA-A3) climate data record (CDR) produced by the EUMETSAT Climate Monitor-
ing Satellite Application Facility (CM SAF). Compared with with CALIPSO-CALIOP cloud lidar data
and six other cloud CDRs, including the predecessor CLARA-A2, CLARA-A3 has improved cloud
detection, especially over ocean surfaces, and improved geographical variation and cloud detection
efficiency. In addition, CLARA-A3 exhibits remarkable improvements in the accuracy of its global
cloud-top height measurements. For example, in tropical regions, previous underestimations for
high-level clouds are reduced by more than 2 km. By taking advantage of more realistic descriptions
of global cloudiness, this study attempted to estimate trends in the observable fraction of low-level
clouds, acknowledging their importance in producing a net climate cooling effect. The results were
generally inconclusive in the tropics, mainly due to the interference of El Nino modes during the
period under study. However, the analysis found small negative trends over oceanic surfaces outside
the core tropical region. Further studies are needed to verify the significance of these results.
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1. Introduction

The longest space-based observation series from a passive meteorological multispectral
imager is that recorded by the Advanced Very High Resolution Radiometer (AVHRR, [1]).
The TIROS-N satellite, launched in a sun synchronous polar orbit in October 1978, was
the first to carry this sensor. The sensor has subsequently been onboard many NOAA and
EUMETSAT MetOp satellites, with the very last sensor onboard MetOp-C launched in
November 2018. Consequently, the sensor has enabled the observation of clouds, aerosols,
and the earth’s surface for more than 44 years. It is anticipated that the mission will continue
for several more years, and that it may even complete a fifth decade of observations.

An observation series based on one practically unchanged sensor (with only minor
exceptions) spanning almost five decades is a great asset for environmental and climate
studies. This is true even though obtaining accurate climate-quality observations from the
AVHRR is challenging because the sensor was not originally designed for climate studies
and cannot accurately depict trends. The uniquely long period of observation and the
global coverage at high spatial resolution could still be of interest for studies of climate
variability and the monitoring of medium-to-large global changes as well as changes in the
geographic distribution of certain environmental parameters on the earth’s surface.

This paper focuses on cloud observations from the AVHRR. The description and
evolution of global cloudiness in climate models remains the largest uncertainty in climate
scenarios and predictions [2—6]. In particular, the description of low-level cloudiness in
tropical and sub-tropical regions, which is responsible for a large part of the cooling effect
from the reflection of solar radiation back into space, is critical here. It is critical because
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changes in the amount of low-level clouds may easily contribute significantly to either a
positive or a negative feedback effect on the global radiation budget [2].

Estimations of global cloud conditions and their changes over time derived from
AVHRR data are available in several earlier studies [7—10]. These earlier studies indicate
a negative trend in global cloud cover [10]. However, it has been challenging to establish
details concerning the contribution of different cloud levels to overall changes, mainly
because the AVHRR mostly only observes the highest cloud layers. Additionally, the
previously studied time series were too short to estimate trends adequately. In this paper,
we will present results from the third edition of the Climate Monitoring Satellite Application
Facility (CM SAF [11]) cLoud, Albedo and surface RAdiation dataset from the AVHRR data,
abbreviated CLARA-A3 [12]. The data record incorporates several cloud products, surface
and top-of-atmosphere radiation products, and surface albedo products (for access and a
complete description, see the Data Availability Statement section). However, here we focus
only on the global distribution of cloudiness, the observable contribution of vertical cloud
levels, and the associated cloud-top height information. The improvement in the temporal
coverage compared with the predecessor CLARA-A?2 is quite significant, with an extension
in time from 34 years to 42 years. CLARA-A3 now incorporates AVHRR observations from
its very introduction (1979) to the year 2020, which means that both the start and the end of
the time series have been extended compared with those of CLARA-A2. Additionally, the
CLARA-A3 data series is extended continuously by the ongoing production of so-called
Interim Climate Data Records (ICDRs), which means that the complete data record up to
the present (2023) covers 44 years rather than 42 years.

This paper describes the main improvements in cloudiness and cloud-top information
in CLARA-A3 compared with its predecessor, CLARA-A2. We will also repeat inter-
comparisons with similar data records (as in [10]) and take a closer look at possible regional
differences and trends in absolute values. It is also of particular interest here to have a
preliminary look at possible changes in low-level cloudiness at low and middle latitudes,
bearing in mind its importance for the earth’s radiation balance.

In Section 2, we describe the methods and reference datasets used to evaluate the
achievements of the new CLARA edition. We also introduce a method for evaluating the
distribution and the potential changes in the contribution of low-level clouds. After that,
results are given in Section 3, and this will be followed by a discussion in Section 4 and our
conclusions in Section 5.

2. Data and Methods
2.1. Cloud Fraction and Cloud-Top Height Products in CLARA-A3

The global monthly mean cloudiness parameter belongs to the Cloud Fractional
Cover (CFC) product of the CLARA-A3 data record. It is calculated from the binary cloud
masks from all AVHRR overpasses in a month by averaging the results in a 0.25° regular
latitude-longitude grid. The binary cloud masks are derived from thresholding cloud
probabilities at 50%, provided by the cloud probability product, CMAPROB. CMAPROB
is computed using naive Bayesian theory and trained using the data from the cloud lidar
instrument CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) on the CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite recorded
between 2006 and 2016 (for full details, see [13]).

The corresponding cloud-top height product (denoted CTO) is based on monthly
averaged CTO products from every AVHRR overpass. Cloud-top geometrical heights
(CTH), as well as cloud-top pressures (CTP) and cloud-top temperatures (CTT), were
estimated via infrared AVHRR channels by an artificial neural network (ANN), also trained
using data from the CALIPSO-CALIOP sensor. The method is described in detail in [14].

Combining the cloud mask and CTP information makes estimating the gross relative
contributions of the various vertical cloud layers to the total cloud cover possible. Thus,
the CFC product includes information on the observable (i.e., not obscured by higher
clouds) contribution of low-level, medium-level, and high-level clouds using the classical



Remote Sens. 2023, 15, 3044

30f17

International Satellite Cloud Climatology (ISCCP) subdivisions of these three cloud layers
which refer to cloud-top pressure levels of 680 hPa and 440 hPa.

2.2. Detailed Evaluation of Global Cloudiness and Cloud Detection Sensitivity from CALIPSO

A detailed evaluation of the CLARA-A?2 cloud mask was previously performed using
cloud information from the CALIOP cloud lidar on the CALIPSO satellite [15]. This was
based on information derived from globally collocated AVHRR and CALIPSO-CALIOP
measurements and CALIOP cloud masks and cloud optical thickness products. In ad-
dition to estimating traditional validation scores (i.e., mean error or bias, hit rate, and
Hanssen—Kuipers skill (KSS) score, all of which are explained in [16]), the study defined a
cloud detection sensitivity parameter (CDS) for evaluating cloud detection efficiency as a
function of the geographical position on the earth. In other words, CDS describes the small-
est cloud optical thickness for which the probability of detection by the CLARA-A2 cloud
mask is still equal to or better than 50%. This was estimated in an equal-area global grid,
thus providing information on how cloud detection efficiency varied with the geographical
position on the earth. We repeat this validation study here, but now for CLARA-A3, to
see the extent to which the validation scores and CDS values have changed. The basic
validation scores for CLARA-A3 were estimated using independent results from 2010, since
collocation data from this year were not used to train the cloud-masking method. However,
the entire matchup dataset from 2006 to 2016 was used to estimate the CDS parameter to
enable results with global coverage on a coarse-resolution grid.

2.3. Detailed Evaluation of Cloud-Top Height Information from CALIPSO

Regarding the CLARA-A3 cloud mask, a detailed evaluation of the cloud top informa-
tion (i.e., the CTH product) from 2010 was performed using the globally collocated AVHRR
and CALIPSO-CALIOP information. These results were compared with the corresponding
results from CLARA-A2. The validation scores used (which are defined in [16]) were the
mean error (bias), the mean absolute error (MAE), and the bias-corrected root mean square
error (bc-RMSE). Results were also given separately for the three vertical cloud layers
(low-level, medium-level, and high-level clouds).

We can expect the CTH accuracy results to depend upon cloud thickness and whether
multi-layer clouds exist. To illustrate this, we complement the overall results with results
obtained under certain special conditions (e.g., single-layer clouds, multi-layer clouds,
opaque clouds, and semi-transparent clouds).

2.4. Comparison of CLARA-A3 Results and Other Cloud Climate Data Records

Several other satellite-based global cloud climatologies exist, and we have here com-
pared CLARA-A3 CFC and CTP monthly mean values with results from the most up-to-date
versions of the following data records:

ISCCP-HGM: The International Satellite Cloud Climatology Project (ISCCP) H-Series
has provided a cloud CDR with monthly gridded results since 1983 [17,18]. Here, we
used the ISCCP-HGM product as it provided the Level-3 monthly means. At the time of
this evaluation, the ISCCP-HGM CDR (v01r00) data from 1983 through June 2017 were
available, and a corresponding ICDR, including data through December 2018 (covering a
total of 35 years), was also available.

PATMOS-x: This evaluation used the latest version (v06r00) of the PATMOS-x cloud
CDR [9]. The daily Level-2b data are available at 0.1 x 0.1-degree resolution for each
AVHRR-carrying satellite (separate data are available for the ascending and descending
nodes). Note that an official Level-3 PATMOS-x product based on this latest version is
unavailable. Therefore, we computed monthly Level-3 aggregations using a 50% threshold
on the Level-2b cloud probability data to facilitate a fair comparison. The PATMOS-x
version 6 data used here cover the period 1982-2020 (39 years).

ESA-CCI: The AVHRR-based cloud CDR (Version 3) derived in the framework of
the ESA Climate Change Initiative [8] was also used in this evaluation. It covers the
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period from 1982 through 2018 (37 years) and includes only the data collected by the
prime satellites carrying the AVHRR sensors. The Level-3 monthly CDR is available at
0.5 x 0.5-degree resolution.

MODIS: This study used the Level-3 monthly 1 x 1-degree cloud property products
from the latest Collection 6.1 [19] derived from MODIS, onboard the Aqua satellite (product
MYDO08_M3). They cover the period from 2003 through 2020 (18 years).

CALIPSO-CALIOP: This study used version 1.00 of the CALIOP lidar Level-3 cloud
product (1 x 1 degrees) derived for the Global Energy and Water Cycle Experiment
(GEWEX) Cloud Assessment [20]. It reports different flavors of cloud property statis-
tics. Two flavors, namely TopLayer and Passive, were used here. The TopLayer flavor
provides cloud descriptions of the uppermost tropospheric cloud layer that the CALIOP
sensor can see. These include sub-visual thin cirrus clouds that typically lie below the
detection limit of passive sensors such as AVHRR. The Passive flavor, on the other hand,
uses an optical depth threshold of 0.3 to provide cloud statistics to facilitate comparisons
with the passive sensors. The data from this CALIPSO Level-3 GEWEX product covering
2007 through 2016 (10 years) were analyzed. Note that the dataset is defined using the
same CALIOP Level 2 products used in [15].

Consequently, we carried out inter-comparisons of different climate data records in
the same manner as in [10], but with more recent versions of the data records and several
additional CDRs.

2.5. Evaluating Potential Changes in Low-Level Cloud Contributions at Low and Middle Latitudes

Deducing changes in low-level cloudiness from AVHRR data is not trivial; an accurate
estimation of low-level cloudiness is impossible because of obscuring clouds at higher
levels. Thus, the estimated amount of low-level clouds will always be an underestimate of
the true amount. However, one has to consider that the cooling effect caused by low-level
clouds is most significant when upper-layer clouds are absent. If higher clouds are present,
especially if these are high and thin cirrus clouds, reflected sunlight and thermal radiation
emitted from the low-level clouds might be absorbed by these higher clouds, and this
can actually lead to a warming instead of a cooling of the system. Thus, to really see a
significant cooling effect, we need to study cases in which low-level clouds are present and
upper-level clouds are absent. During daytime, such cases lead to large amounts of solar
radiation being reflected back into space, and most of this thermal radiation may radiate
into space without significantly interacting with the atmosphere and clouds. This leads to a
sizeable cooling effect.

Consequently, the contribution of low-level clouds to the total cloud cover is important,
even if we cannot correctly depict all low-level clouds. Therefore, we will look at the
geographical distribution and temporal evolution of the observable low-level cloud fraction
over the CLARA-AS3 period. Since the cooling effects should be most prominent at low-
and mid-latitude areas (where the solar radiation input and the thermal radiation output
are high), we have focused on these regions. In addition, we have separated land and ocean
areas to see whether there are specific regions (e.g., oceanic marine stratocumulus areas)
that have experienced more visible changes.

3. Results
3.1. Detailed Evaluation of Global and Regional Cloudiness from CALIPSO-CALIOP Data

Table 1 shows the validation results for CLARA-A3 based on collocated data from
AVHRR and CALIPSO-CALIQP for 2010. This year was chosen since the data from this
year were excluded from the training of the CMAPROB cloud-masking method. The Cloud
Layer product (CLAY) version 4.20 [20,21] was used, and results were computed from
the best complete matches (i.e., entire global orbits) between afternoon orbit satellites
(i.e., NOAA-18 and NOAA-19) and the CALIPSO satellite. The best match here means
a matchup with a minimum 5 min time difference between the observations of the two
satellites. More details on the collocation procedure are given in [15]. To avoid including
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too many regional details while still enabling the identification of some regional variations,
we show the overall results in Table 1 for four geographically fixed zonal regions, each
region including contributions from both hemispheres (as defined in [13] and [15]): polar
(above latitude 75°), high-latitude (latitude interval 45-75°), sub-tropical (latitude interval
10-45°), and tropical (within latitude 10°, here representing only the innermost part of the
tropical region).

Table 1. Summary of CALIOP validation scores for CLARA-A3. The table shows mean error (bias),
hit rate (HR), and Hansen-Kuipers skill score (KSS) as global and regional (zonal) averages for
independent validation data for the NOAA-18 and NOAA-19 satellites in 2010.

Area/Region Number of Matchups Bias (%) HR (%) KSS
Global 7,040,474 —11.4 82.1 0.68
Tropical 786,829 —-18.0 78.8 0.67
Sub-Tropical 2,778,030 —8.3 84.8 0.72
High-Latitude 2,497,471 —8.4 85.1 0.69
Polar 978,144 —22.7 69.7 0.49

The validation scores in Table 1 clearly show how the cloud detection efficiency varies
over the different regions. About 11% of all the CALIOP-detected clouds appear undetected
globally, but most of the missed clouds belong to the tropical and polar regions. In the
tropical region, an abundance of very thin cirrus clouds exists, and a large fraction of
them are not detectable (i.e., subvisible) by AVHRR. In contrast, the problem in the polar
region is that thick clouds may also be missed in the polar winter due to the absence
of visible information and frequent near-surface temperature inversions. This explains
the rather poor results for the polar region. It is noteworthy, however, that the results
for the polar summer are much better and are almost comparable with results for the
high-latitude region.

Table 2 shows the corresponding results obtained for CLARA-A2 [15] based on all
available AVHRR-CALIOP matchups from 2006-2015. The cloud-masking method of
CLARA-A2 was not trained using CALIOP data, which means that results from this period
obtained using CALIOP data should describe the overall performance well. However, the
CLARA-A2 validation effort limited the observation time difference to 3 min.

Table 2. Summary of CALIOP validation scores for CLARA-A2 (as reported by Karlsson and
Hakansson, 2018). The table shows mean error (bias), hit rate (HR), and Kuipers skill score (KSS) as
global and regional (zonal) averages for all validation data for the NOAA-18 and NOAA-19 satellites
in the period 2006-2015.

Area/Region Number of Matchups Bias (%) HR (%) KSS
Global 23,305,814 —13.1 80.2 0.65
Tropical 2,311,711 —-14.7 792 0.63
Sub-Tropical 8,370,135 —-8.3 83.8 0.70
High-Latitude 8,606,165 -114 83.1 0.68
Polar 3,984,770 —26.2 67.0 0.47

Comparing Table 2 with Table 1, we note an improvement in all scores globally and for
almost all regions. Only for the tropical region do the bias and hit rate scores appear slightly
worse. On the other hand, the bias and KSS show clear improvements. Our experience is
that the KSS gives very robust information on product quality since it is less dependent on
the actual distribution of clear and cloudy cases in the reference dataset. For this reason, we
conclude that improvements can be seen over all parts of the globe since the KSS is higher
in all regions. The polar region, however, is still challenging, as is indicated by its relatively
poor scores.
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It should be mentioned that the changed matchup tolerance between the CALIOP and
AVHRR measurements, i.e., changing from 3 min for the CLARA-A2 validation in [15] to
5 min for the CLARA-A3 validation in the current study, had only a marginal effect on the
results. This can be deduced by comparing these results with the CLARA-A3 prototyping
results in [13], for which a 3 min tolerance was used. These results are largely repeated here.

3.2. Investigating the Cloud Detection Sensitivity (CDS) Parameter

The standard validation results above, based on a comparison with the binary CALIOP
cloud mask, do not account for the fact that some CALIOP-detected clouds are subvisible
to the AVHRR. By also considering the CALIOP-estimated optical thickness of clouds,
it is possible to estimate the CDS parameter, as is explained in Section 2.2 and in [15].
Furthermore, by collecting a large number of AVHRR-CALIOP matchups globally, it is
possible to estimate how this parameter varies geographically. Figure 1 shows the CDS
parameter for CLARA-A3 calculated from almost 44 million matchups collected in the
period 2006-2016.

5

Detection Limit

0

Figure 1. Geographical distribution of the cloud detection sensitivity parameter (called “Detection
Limit” in the figure) in an equal-area 300 km resolution Fibonacci grid. The CDS is the lowest cloud
optical thickness for which the probability of detection is still equal to or higher than 50%. The color
legend indicates the global mean CDS. The white color = 0.217.

Figure 1 clearly illustrates how much the cloud detection efficiency depends on the
distinction between ocean and land surfaces. The AVHRR performs cloud detection over
ice-free ocean surfaces very well, and, in many areas (i.e., over medium- and high-latitude
oceans), almost as well as the cloud mask of the CALIOP cloud lidar. In some locations,
the CDS values even fall below 0.05, meaning that the CLARA-A3 cloud mask is almost
identical to the CALIOP unfiltered cloud mask. However, over tropical oceans, where the
numbers of sub-visible cirrus clouds are high, the CDS values are consequently higher
(i.e., in the interval 0.1-0.2).

Cloud detection over land surfaces is significantly less efficient, as is shown in Figure 1.
The lower efficiency is due to the considerably higher land surface reflectance in the visible
AVHRR channels which makes it harder to distinguish between clouds and land surfaces
compared to detecting clouds over ocean surfaces. In particular, discerning the conditions
over high-latitude areas with frequent snow- and ice-cover during the dark winter season
is problematic. This problem is further enhanced by cold surface temperatures and surface
temperature inversions which often make it difficult to distinguish clouds from the earth’s
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surface based exclusively on the information obtained from the infrared AVHRR channels.
However, we emphasize that the results obtained over snow- and ice-covered surfaces
during the polar summer are significantly better than those shown in Figure 1.

Figure 2 shows the differences in the CLARA-A3 CDS values compared with the
corresponding results for CLARA-A2.

0.4

0.2

0.0

r—0.2

-0.4

Figure 2. Geographical distribution of CDS differences between CLARA-A3 and CLARA-A2 (called
“Detection Limit Difference” in the figure) in an equal-area 300 km resolution Fibonacci grid. Note
that improvements in CDS values result in negative differences.

Although the global mean CDS slightly improves from 0.225 to 0.217 for CLARA-A3,
the changes occur over a variety of different geographical regions. The good detection
performance over the ice-free ocean has improved even further, especially over the Southern
Ocean around the Antarctic continent, and over the Arctic Ocean. On the other hand,
the results over land surfaces are essentially unchanged, and in some places (e.g., over
Antarctica and Greenland), we even see some degradation (although the relative changes
are small when Figure 2 is compared with Figure 1).

3.3. Results from Comparisons of CLARA-A3 Cloud Fraction Results with Other Cloud Climate
Data Records

Figure 3 shows the CLARA-A3 cloud fraction results compared with six other CDRs
(introduced in Section 2.4), including the results from the predecessor CLARA-A?2, over the
entire period 1979-2020.

According to all of the CDRs, the global mean CFC is close to 65% and fairly stable,
even though we see a small negative trend when excluding seasonal variation. Only the
ISCCP-HGM CDR gives a trend exceeding —1%/decade. A characteristic seasonal variation
in global cloudiness, linked to the asymmetric distribution of land and ocean in the two
hemispheres, is seen in most of the data records. The northern hemisphere has more land
areas in tropical and sub-tropical regions than the southern hemisphere, and this leads
to more convective cloudiness forming in the northern hemisphere (e.g., over India and
Indonesia) during the monsoon periods and the passages of the Inter-Tropical Convergence
Zone (ITCZ). The cloudiness maximum normally occurs between July and October in the
northern hemisphere, slightly after the summer solstice.
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Figure 3. Global cloudiness or cloud fractional cover (CFC) over the CLARA-A3 period 1979-2020.
The CLARA-A3 results are compared with those of six other CDRs (described in Section 2.4) and the
results from CLARA-A2.

Comparing CLARA-A3 with CLARA-A2, we note a general increase of about 2-3% in
the estimated global cloudiness. This indicates that the CLARA-A3 results are improved
compared with the CALIPSO-CALIOP observations, as is shown by the HR and bias scores
in Tables 1 and 2. The CLARA-A3 values now fall between the CALIPSO-PASSIVE and
CALIPSO-TL results in Figure 3, in contrast to the CLARA-A2 results, which are even
lower than the CALIPSO-PASSIVE results. This means that a large number of the very
thin clouds additionally detected in the CALIPSO-TL dataset are now also detected in the
CLARA-A3 dataset.

The differences observed in the geographical distribution of CFC between CLARA-A3
and the other datasets in Figure 3 are shown in Figure 4. Again, we note that, in general,
more clouds are detected over ocean surfaces compared with CLARA-A2 (second panel
from the left in the upper row). Over land, the changes are small or slightly negative.

Even if the best agreement is seen with PATMOS-x in Figure 3, there are still some
regional differences (e.g., over Antarctica and over northern hemisphere land surfaces at
high latitudes or in mountainous regions). The largest regional differences are seen in
the MODIS and ISCCP data records. The boundaries between individual geostationary
satellites and the boundaries between geostationary and polar satellites show up in the
ISCCP results. CFC over land areas is obviously higher in the ISCCP and MODIS data
records than in the CLARA-A3 data record. In addition, more clouds were detected over
tropical and sub-tropical oceans in the MODIS data than in the CLARA-A3 data.

It is encouraging that the CLARA-A3 CFC is generally higher than the CALIPSO-
Passive CFC and lower than the CALIPSO-TL CFC (as is indicated in Figure 3). Thus, a
substantial number of clouds with an optical thickness lower than 0.3 are now detected
in CLARA-A3.

The comparison results can be studied more thoroughly by looking at how the different
CDRs relate to each other on average during each month of the year (Figure 5). This reveals
some further details. For example, the differences in the number of clouds in CLARA-
A3 compared with CLARA-A2 are more or less the same, regardless of the month. In
contrast, the comparison with the CALIPSO-TopLevel results show a pronounced annual
cycle, with the highest (negative) difference in the spring and early summer months of
the northern hemisphere. Since cloud detection depends on how optically thin clouds are
(as was explained earlier), this indicates that in spring and early summer there is a global
abundance of very thin or subvisible clouds which the AVHRR has difficulty detecting.
The reason for this abundance of thin clouds is discussed further in Section 4.
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Figure 4. Global distribution of CFC (%) for CLARA-A3 (upper leftmost panel) and CFC differences
between CLARA-A3 and all other CDRs in Figure 3. Differences have been calculated exclusively
using data from the common periods of the respective data records.

CFC Total, Monthly climatology difference

CLARA-A3 - CAL-TL
CLARA-A3 - CAL-PA
7
CLARA-A3 - MODIS 3
2
CLARA-A3 - PATMOSX 0
-2
CLARA-A3 - ISCCP 5
-7
CLARA-A3 - ESA-CCI

1 2 3 4 5 6 7 8 9 10 11 12
Month

Figure 5. Mean CFC differences between CLARA-A3 and the other investigated CDRs as a function
of month.

3.4. Detailed Evaluation of Cloud-Top Heights from CALIPSO-CALIOP Data

In this section, we show the validation results for cloud-top height from 2010 compared
with the previous results for CLARA-A2 from the period 2006-2015.

Table 3 shows comparisons with the collocated CALIPSO-CALIOP detected cloud
(i.e., the uppermost cloud layer), regardless of how optically thin the CALIOP-detected
cloud layer is. The results are subdivided into three vertical cloud levels. The corresponding
results for CLARA-A2 are given in Table 4.
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Table 3. Summary of cloud-top height (CTH) validation scores for CLARA-A3 compared with
CALIPSO-CALIOP uppermost cloud layers. The table shows the mean error (bias), mean abso-
lute error (MAE), and root mean squared error (RMSE) for the NOAA-18 and NOAA-19 satellites
during 2010.

Cloud Layers Number of Matchups Bias (m) MAE (m) RMSE (m)
All clouds 3,891,277 —904 1665 3238
Low-level clouds 1,152,690 223 430 1059
Medium-level clouds 547,311 64 930 1620
High-level clouds 2,191,276 —1739 2498 4168

Table 4. Summary of cloud-top height (CTH) validation scores for CLARA-A2 compared with
CALIPSO-CALIOP uppermost cloud layers. The table shows the mean error (bias) and root mean
squared error (RMSE) for the NOAA-18 and NOAA-19 satellites during the period 2006-2015.
Observe that the mean absolute error was not calculated in the CLARA-A2 study.

Cloud Layers Number of Matchups Bias (m) MAE (m) RMSE (m)
All clouds 13,221,285 —2132 - 4302
Low-level clouds 3,513,247 561 - 1388
Medium-level clouds 1,850,485 —352 - 1578
High-level clouds 7,068,344 —4235 - 5713

It is clear from Tables 3 and 4 that the results have improved significantly for CLARA-
A3. The total bias is reduced to less than half of that for CLARA-A2. The improvement
comes mainly from the much more accurate estimation of CTH for high-level clouds (i.e., the
cloud tops are now more than 2 km higher than in CLARA-A2), but also from a reduction
in the general overestimation of CTH for low-level clouds observed in CLARA-A2. The
spread of the results has also improved, as is indicated by the reduced RMSE values.

The results shown in Table 3 are based on all common cloudy cases for CLARA-A3
and CALIPSO-CALIOP in 2010 observed by the NOAA-18 and NOAA-19 satellites. This
means that cases of thin multi-layered clouds are also included. To obtain a more accurate
idea of how well the CLARA-A3 CTH estimation works for individual cloud layers, we
show in Table 5 the results for cases with exclusively single-layered clouds detected by
the CALIOP cloud lidar. The results improve further with a near-zero bias for the total
dataset and a reduction in all difference scores and all vertical levels. For example, the
large improvement for high-level clouds shows that the CLARA-A3 CTH algorithm can
also provide reasonable CTH estimations for very thin and high cloud layers.

Finally, to whether the CTH estimation for optically thick clouds also works satisfacto-
rily, we compiled separate results for cases in which single cloud layers had an integrated
optical thickness larger than 0.4. The results are shown in Table 6. As was expected, re-
moving semi-transparent cloud layers improves most validation scores even further. The
precision scores (i.e., MAE and RMSE) show particular improvement, indicating more
robust results with smaller variability.

Table 5. Summary of cloud-top height (CTH) validation scores for CLARA-A3 compared with those
for CALIPSO-CALIOP for exclusively single-layered clouds. The table shows the mean error (bias)
and root mean squared error (RMSE) for the NOAA-18 and NOAA-19 satellites during 2010.

Cloud Layers Number of Matchups Bias (m) MAE (m) RMSE (m)
All clouds 1,955,783 —49 929 2095
Low-level clouds 927,654 244 427 1069
Medium-level clouds 301,120 266 741 1441

High-level clouds 727,009 —554 1646 3080
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Table 6. Summary of cloud-top height (CTH) validation scores for CLARA-A3 compared with those
for CALIPSO-CALIOP for exclusively single-layered clouds with a cloud optical thicknesses above
0.4. The table shows the mean error (bias) and root mean squared error (RMSE) for the NOAA-18
and NOAA-19 satellites during 2010.

Cloud Layers Number of Matchups Bias (m) MAE (m) RMSE (m)
All clouds 1,681,166 207 625 1229
Low-level clouds 835,583 177 368 925
Medium-level clouds 272,928 290 651 1285
High-level clouds 572,655 212 987 1550

3.5. Results from Comparisons of CLARA-A3 Cloud-Top Pressure Results with Other Cloud
Climate Data Records

Figure 6 shows the CLARA-A3 cloud top results (i.e., cloud-top pressure, CTP) com-
pared with six other CDRs plus CLARA-A2. In accordance with the results presented in
the previous section, the CLARA-A3 mean CTP values are significantly lower (indicating a
higher CTH) than those of CLARA-A2. The difference of roughly —75 hPa is fairly constant
over the whole period. The CTP values are fairly constant over the whole period for all of
the CDRs, but mutual differences exist for most of them. The most remarkable feature is the
high CTP values of the MODIS-Aqua CDR. However, a large part of this discrepancy is the
result of the cloud-conservative approach used when calculating MODIS Level 3 products.
This means that not all of the detected clouds are included in the Level-3 calculations, and
thus many of the thinnest upper-level clouds are likely excluded. PATMOS-x shows the
best agreement with CLARA-A3, but with a seasonal variation. The results of both of these
CDRs lie between the results of the CALIPSO-PASSIVE and CALIPSO-TL data records.

1000 CIP
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—— MODIS-Aqua

06 —— CALIPSO-PASSIVE
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Figure 6. Global mean cloud-top pressure (CTP, hPa) over the CLARA-A3 period from 1979 to 2020.
CLARA-A3 results are compared with six other CDRs (described in Section 2.4) as well as previous
results from CLARA-A2.

CLARA-A3 is the only CDR with CTP estimations from the early TIROS-N and NOAA-
6 satellites, but these results appear to be outliers in the CTP series. The reason for this
is not currently understood and requires further study. However, since the CFC results
appear fairly reasonable for these satellites in Figure 3, and since the CTP results of the
other satellites with the original AVHRR/1 sensor do not stand out either, we suspect
that there were some infrared calibration problems (e.g., a cold bias) affecting these two
early satellites.

Geographical CTP differences between the CDRs are shown in Figure 7. We note the
general decrease in CLARA-A3 CTP values compared with those of CLARA-A2, except for
the regions with large marine stratocumulus near the west coasts of the continents, where
changes are positive (second panel from the left in the upper row). This agrees well with
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the improvements deduced from CALIPSO-CALIOP comparisons (Tables 3-5). Changes
are most prominent in the tropical and sub-tropical regions where now we even see mean
CTP values for CLARA-A3 below 200 hPa. the best agreement is found with PATMOS-x,
while most of the other CDRs generally show higher (ESA-CCI and ISCCP) or much higher
(MODIS) CTP values. The results for CALIPSO-PASSIVE and CALIPSO-TL support the
earlier conclusion that CLARA-A3 can now detect a substantial number of clouds optically
thinner than 0.3. These clouds are often very high and are most prominently seen in
the tropical region. The CTP values for these clouds retrieved from CLARA-A3 are also
reasonable (i.e., they are located between the two CALIPSO variants).

CcTP
CLARA-A3 - CLARA-A2 CLARA-A3 - ESA-CCI
= . e

(AL

CLARA-A3

CLARA-A3 - ISCCP

——— — —
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— — — —
-300-150 0 150 300 -300-150 0 150 300 -300-150 0 150 300 -300-150 0 150 300

Figure 7. Global distribution of CTP (hPa) for CLARA-A3 (upper leftmost panel) and CTP differences
between CLARA-A3 and all other CDRs in Figure 6. Differences have been calculated exclusively
using data from the common periods of the respective data records.

As with the CFC results, we can look at the annual variation in CTP comparison
results in Figure 8. Here, we do not see as much variation over the course of the year as ws
seen in the case of CFC. We again conclude (assuming CALIPSO-TopLayer results to be
the best reference for global cloud altitudes) that the CLARA-A3 results have improved
considerably compared with those of CLARA-A2, and that they are now clearly better than
the CALIPSO-Passive flavor. We can also see that CLARA-A3 and PATMOS-x have very
similar results, with only small differences in the course of the year. The MODIS results
stand out as being very different from those of CLARA-A3, but this probably has more
to do with sampling and Level-3 averaging issues than with any clear weakness in the
retrieval method (as was mentioned earlier).
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Figure 8. Mean CTP differences between CLARA-A3 and the other investigated CDRs as a function
of month.
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3.6. Results from Studies on Potential Changes in Low-Level Cloud Contributions

The demonstrated improvements in cloud detection and cloud-top height assignment
shown by CLARA-A3 strengthen the prospects of conducting studies concerning changes
and trends in the contribution of clouds from different vertical levels. We will give just one
example here regarding the contribution from low-level clouds (introduced in Section 2.5).
Figure 9 shows the overall trends in observable CFC contributions (% per decade) of
low-level clouds.

Figure 9. Geographical distribution of overall trends in the observable CLARA-A3 CFC contributions
of low-level clouds (% per decade) from 1979 to 2020.

It is clear that the period under study is too short to permit the removal of the influence
of typical El Nino/Southern Oscillation (ENSO) signatures on cloudiness in the tropical
regions. Apparently, El Nino episodes were somewhat more frequent in the second half of
the CLARA-A3 period, as is shown by the enhanced positive trend in the eastern part of the
Pacific Ocean and the South Atlantic Ocean between South America and southern Africa.
However, when discarding the core tropical region and the polar regions (where wintertime
cloud detection is unreliable), we can see a small negative trend in the observable fraction
of low-level clouds. The results for the various latitudinal zones (between 75° North and
75° South) are summarized in Table 7, and these results are also separated into land and
ocean portions.

Table 7. Overall trends in observable CFC contribution from low-level clouds (% per decade) over
the CLARA-A3 period (1979-2020) sub-divided into latitudinal bands and land and ocean portions.
Statistically significant trends (calculated using Mann—Kendall tests) are marked with (X).

Latitudinal Zone Total (%/Decade) Land (%/Decade) Ocean (%/Decade)
Middle Latitudes North (45-75°N) —0.414 (X) —0.263 (X) —0.451 (X)
Sub-Tropical North (10-45°N) —0.355 (X) —0.224 —0.456 (X)
Tropical (10°S-10°N) +0.116 +0.111 +0.151
Sub-Tropical South (10-45°S) —0.066 —0.169 —0.060
Middle Latitudes South (45-75°S) —0.541 (X) —0.114 —0.591 (X)

Typical El Nino-related features (positive trends) can be seen in the tropical zone and,
to some extent, in the sub-tropical south zone (indifferent to slightly negative trends), but
in all other zones, the trends are negative. The largest negative trends (all of which were
found to be statistically significant) are found over oceans in the two middle latitude zones
and in the sub-tropical north zone. Here, we have trends of approximately —0.5% per
decade or 2% over the full period. Such a change is interesting and likely to have some
impact on the radiation budget in these regions, especially in the sub-tropical north region,
with high incoming solar radiation fluxes and high outgoing longwave radiation fluxes. It
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is noteworthy in this context that cloud detection is also most efficient over these regions
with very low CDS values (according to Figure 1). In other words, the CFC values are more
certain here than in other regions of the world where cloud detection is less efficient due to
higher surface reflectances and colder surface temperatures. Thus, the trend estimations
should be most reliable here, even if other factors (for example, variations in observation
frequency and orbital drift effects) may influence the results.

4. Discussion

Validation studies of cloud detection efficiency and cloud-top height information have
revealed further improvements in the new CLARA-A3 CDR compared with its predecessor,
CLARA-A2. This improvement is mainly due to CLARA-A3 capitalizing on the high-
quality information on clouds obtained from CALIOP on the CALIPSO satellite, which has
provided invaluable input for the training of the cloud detection and cloud top retrieval
systems. It has facilitated a shift from the traditional binary cloud-masking method to a new
probabilistic approach. Even if improvements in cloud detection efficiency are not dramatic
(compared with the results presented in [15]), other advantages are evident in this simple
validation of an interpreted binary cloud mask. For example, access to cloud probabilities
allows users to utilize cloud information in a stricter mode (i.e., in a clear conservative
or cloud conservative mode) for applications that are very sensitive to cloud masking
errors. This has enabled safer downstream processing of other CLARA-A3 products such
as surface radiation budget components and surface albedo (as is explained in [12]). This
detailed evaluation of the improved cloud detection sensitivity (CDS) parameter also has
positive implications for other applications. The underlying method relies on calculating
the probability of detection (POD) of a cloud with a specific optical thickness. Since
these statistics are geolocated, it is possible to express POD as a function of optical depth
and location anywhere on earth. These POD lookup tables form the basis of the CFMIP
Observation Simulator Package (COSP) simulators for the CLARA data record ([22]), which
can be used in climate model inter-comparisons. This simulator, initially developed for
CLARA-A2, has now been updated to be valid for the new CLARA-A3 edition.

The motivation for defining the CDS parameter came mainly from the observation
that the cloud detection limits of cloud screening methods have for a long time taken a
very simple form, most often that of a fixed optical thickness threshold (e.g., cloud optical
thickness 0.3, as used in the COSP ISCCP simulator [23]). However, it is obvious that the
ability to detect clouds in satellite imagery depends to a large extent on the properties
of the underlying surfaces. One should therefore expect quite substantial variability in
the effectiveness of cloud detection, and our ambition was to find a measure that would
describe this variation. We found it useful to use the optical depth value above which a
majority (50%) of clouds are detected. Consequently, we observed that the CDS parameter
should not be interpreted as a definitive limit above (or below) which all clouds are
detected (or not detected). This situation (i.e., when the POD values go quickly from 0%
to 100% when passing the optical thickness threshold of the CDS parameter) only occurs
occasionally for locations with very low CDS values. In contrast, for locations with very
high CDS values, there is normally only a gradual increase (or decrease) in POD values for
increasing (or decreasing) cloud optical thicknesses. Therefore, the best way of describing
the overall cloud detection ability at a particular location is to use the full range (or full
profile) of the POD values as a function of cloud optical thicknesses. This has been applied
in the CLARA-A3 simulator [22]. The long operation time of the CALIPSO satellite (much
longer than the nominally expected lifetime) enabled the estimation of the CDS parameter
globally with a fine horizontal resolution. This enabled the compilation of a large enough
number of AVHRR/CALIOP collocations.

This evaluation of CFC and CTP parameters using plots of global averages and
global difference distributions reveals many noteworthy features which require further
investigation to be fully understood. However, for the globally averaged CFC parameter,
we may conclude that the different CDRs have reached a better agreement on global
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cloudiness than in previous evaluations [10,24]. The range of the spread of CFC values has
decreased, and there is now a stronger indication of relatively stable global CFC values
with only a minimal negative trend over four decades. Questions remain concerning the
first two satellites in the series, the Tiros-N and NOAA-6 satellites. Their CFC values
are somewhat high (and reinforce previously found negative trends if included in the
calculations), and their CTP values are much lower than those of the other satellites.
The indication of a cold bias can be seen in the 11 um channel of the Tiros-N AVHRR
when compared with the corresponding HIRS channels ([25] The cold bias could explain
the overestimated CFC and the underestimated CTP results. The seasonal variation in
the CFC values (i.e., high values in the late summer or early autumn in the northern
hemisphere) can be explained by the asymmetric distribution of land cover in the two
hemispheres. This leads to excessive CFC values in the northern hemisphere linked to
summer monsoons over India, Indonesia, and northern Africa. However, it is still uncertain
how much of this variation can also be attributed to problems in cloud detection, e.g., to
the underestimation of CFC during the polar winter, which primarily affects the South Pole
region. Unfortunately, the CALIPSO-CALIOP observations cannot be used to verify this
in the central parts of polar areas. The seasonal variation in the CTP parameter is more
marked for some CDRs, especially CLARA-A3 and MODIS. Surprisingly, the PATMOS-x
CDR does not show the same seasonal variation in CTP values. We suspect that his is
because the new PATMOS-x CRD merges the results from the AVHRR and HIRS. Adding
HIRS data probably improves the cloud detection capability of PATMOS-x, but the coarser
resolution may lead to somewhat smoother results (despite applying a method to enhance
the spatial resolution of the HIRS data). More studies are needed to confirm this. Here,
we can only conclude that including HIRS data does not seem to lead to significantly
better results than those obtained with CLARA-A3. The new ANN-based retrieval method
in CLARA-AS3 appears to have found additional, previously unused information in the
AVHRR data that can be used for CTP retrieval.

The improvements in CFC and CTP product quality evident in CLARA-AS3 triggered
an attempt to estimate potential trends in the observable CFC contribution of low-level
clouds. Any changes here could lead to substantial changes in the radiation balance at the
earth’s surface and at the top of the atmosphere. However, the results are not conclusive
because ENSO cycles heavily influence cloudiness in large regions where low-level clouds
often occur. Nevertheless, a noteworthy mean negative trend of about —0.5% per decade
over ocean surfaces in sub-tropical and mid-latitude regions exists. Further studies must
be undertaken to determine the significance of these results and remove additional uncer-
tainties. Such uncertainties include whether the presence of optically thin or optically thick
clouds affect the changes in the observable fraction of low-level clouds. Investigating this
requires revisiting all of the original level-2 products, since these include the necessary
information on cloud optical thickness. However, this also necessitates separating cloudi-
ness data according to nighttime and daytime conditions. Finally, further studies must also
involve the surface and top of atmosphere radiation products in the CLARA-A3 CDR to
determine the effects and trends of these radiation products. The radiation contribution
from low-level clouds is only one of many factors contributing to the radiation budget.
However, one should investigate whether the possible negative trend in low-level cloudi-
ness over ocean surfaces found here is also accompanied by increasing trends in incoming
solar radiation at the surface and decreasing trends in outgoing reflected solar radiation at
the top of the atmosphere.

5. Conclusions

This study investigated the quality of global cloudiness (cloud fraction) and cloud-top
height information in the CLARA-A3 CDR. Compared with its predecessor, CLARA-A2,
we observed clear improvements in the detection of very thin clouds over most oceanic
areas, particularly those in the tropical region, and over the Arctic Ocean. For land areas,
the improvements were marginal, but the switch to a probabilistic approach has facilitated
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the use of cloud information when processing additional radiation and surface albedo
products in the CLARA-A3 CDR.

The most prominent improvement was that observed in the CLARA-A3 cloud-top
height product, which has significantly reduced the previous systematic underestimation
of cloud-top altitudes. For high-level clouds, the improvement is better than 2 km when
compared with the CALIOP cloud lidar. In addition, the tendency to overestimate the
cloud tops of low-level clouds has been reduced. These improvements in the basic cloud
products have improved the overall description of the three-dimensional distribution and
the temporal evolution of global cloudiness, even if descriptions of the vertical extension of
clouds is limited exclusively to describing the upper cloud boundary.

For demonstration purposes, and to capitalize on these improvements, we finally
looked at the changes in the observable fraction of low-level clouds over the 42-year
CLARA-A3 period. These clouds are though to play an essential role in a net cooling effect
on the earth’s climate. The results are inconclusive since there are still visible features
linked to the influence of ENSO modes. However, outside of the core tropical region
and the polar areas (where cloud detection is still a challenge), a negative trend of about
—0.5% per decade in low-level cloudiness was found over oceanic areas. Further studies
are required to verify these findings, and these studies should incorporate additional
cloud optical thickness information and consider the results of the CLARA-A3 surface and
top-of-atmosphere radiation budget products.
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