
Bachelor of Science in Computer Science
June 2023

Improving the Accuracy of Plant Leaf
Disease Detection and Classification in

Images of Plant Leaves:
By Exploring Various Techniques with the

MobileNetV2 Model

Susanthika Sadhu
Veera Venkata Sai Kashyap Kaligotla

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in
partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science.
The thesis is equivalent to 10 weeks of full time studies.

The authors declare that they are the sole authors of this thesis and that they have not used
any sources other than those listed in the bibliography and identified as references. They further
declare that they have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author(s):
Sai Kashyap Kaligotla
E-mail: veka22@student.bth.se

Susanthika Sadhu
E-mail: susd22@student.bth.se

University advisor:
Suejb Memeti,PhD
Department of Computer Science

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Background:
In recent years, there has been a consistent increase in utilizing deep learning models
to identify and categorize plant leaf diseases. But there is still a gap in the research
study regarding the particular techniques that can enhance the performance of these
models. Some techniques for enhancing accuracy like adjusting the learning rate,
data augmentation operations, and adding additional layers. These techniques help
to increase the accuracy of the final model, which is used in plant leaf disease pre-
vention, agricultural productivity, and disease control.
Objectives:
The goal of this thesis is to build and train the MobileNetV2 model for plant leaf
images to detect diseases and classify them with efficient techniques to increase the
accuracy of the MobileNetV2 model.
Methods:
The research methodology entails running an experiment to evaluate various tech-
niques for improving the performance of the MobileNetV2 model to detect diseases
and classify them in plant leaf images. The techniques used are adjusting the learning
rate, adding additional layers to the model architecture, and implementing various
data augmentation operations. To determine the most optimized model, the model
is trained using the MobileNetV2 architecture and evaluated using metrics such as
accuracy, precision, recall, and F1-score.
Results:
The study’s results demonstrated the efficiency of various implementation strategies
in improving the efficiency of the plant leaf disease detection and classification model.
Particularly, altering the learning rate, adding extra layers, and applying data aug-
mentation were discovered to have considerable favorable effects. The results and
graphs are presented in tabular format for better understanding and visibility.
Conclusions:
Finally, our thesis demonstrates the effectiveness of incorporating random rotation
and crop data augmentation techniques in the MobileNetV2 model for plant leaf
disease recognition and classification in plant leaf images. By employing these tech-
niques, we achieved remarkable evaluation metric scores of 94% for accuracy, 91%
for precision, 96% for recall, and 95% for F1-score. As a result, this enhanced model
allows for plant leaf disease classification and identification of plant leaf images.

Keywords: Additional layers, data augmentations, learning rate adjustment, Mo-
bileNetV2 model, plant leaf disease detection.

Acknowledgments

We would like to express our gratitude to our supervisor, Suejb Memeti, for his
outstanding supervision, guidance, and encouragement. Our sincere thanks are ex-
pressed for his active involvement in leading, helpful suggestions, friendly support,
and advice during our thesis study.

We are incredibly grateful to our examiner Prashant Goswami for his excellent ad-
vice and continuous support for our project proposal. His comprehensive research
lectures greatly aided us in better comprehending the bachelor thesis.

Authors
Susanthika Sadhu
Veera Venkata Sai Kashyap Kaligotla

iii

Contents

Abstract i

Acknowledgments iii

List of Acronyms xi

1 Introduction 1
1.1 Aim and objectives . 3

1.1.1 Aim . 3
1.1.2 Objectives . 3

1.2 Ethical, societal and sustainability aspects 3
1.3 Research Question . 3
1.4 Scope of this thesis . 4
1.5 Outline . 4

2 Background 5
2.1 Object detection using computer vision 5
2.2 Neural Networks (NN) . 5
2.3 Deep Learning (DL) . 6
2.4 Convolutional Neural Network (CNN) 6
2.5 Transfer Learning (TL) . 7

2.5.1 ImageNet Dataset . 7
2.5.2 MobileNetV2 model . 7

2.6 Hyper parameter tuning . 10
2.6.1 Adjusting learning rate . 10

2.7 Adding Additional Layers . 11
2.8 Data Augumentation . 12
2.9 Evaluation Metrics . 14

2.9.1 Accuracy . 14
2.9.2 Precision . 15
2.9.3 Recall . 15
2.9.4 F1-Score . 15

3 Related Work 17
3.1 Related Work . 17

v

4 Method 21
4.1 Experimentation . 22
4.2 Dataset Overview . 23
4.3 Data Preparation: . 23

4.3.1 Experimenting with various data augmentation operations to
training dataset . 24

4.4 Model Creation . 24
4.4.1 Experimenting by additional layers 25

4.5 Training Data Generation . 26
4.6 Model Training . 26

4.6.1 Experimenting by adjusting various learning rates 27
4.7 Model Evaluation and Saving the Model 27

5 Results and Analysis 31
5.1 Presentation of results . 31

5.1.1 Evaluation results after adjusting various learning rates 31
5.1.2 Evaluation results after adding additional layers 34
5.1.3 Evaluation results after various data augmentation operations 35

5.2 Analysis and Interpretation . 36

6 Discussion 39
6.1 Discussion of Experimental results . 40

7 Conclusions and Future Work 43
7.1 Conclusion . 43
7.2 Future work . 44

References 45

A Supplemental Information 51
A.1 Working environment . 51
A.2 Libraries and Tools . 52

A.2.1 Visual Studio Editor . 52
A.2.2 Python . 52
A.2.3 Kaggle . 52
A.2.4 Keras . 52
A.2.5 Scikit-learn . 53
A.2.6 Tensorflow . 53
A.2.7 VGG Image Annotator . 53

A.3 Terms related to chapter 2 . 54
A.3.1 Linearity versus Non-Linearity in NN 54
A.3.2 Feature Maps . 54
A.3.3 Bottlenecks . 54
A.3.4 Activation Function . 55
A.3.5 Train, test and validate data sets 56

vi

List of Figures

2.1 Multi-layer feed-forward network [2] 6
2.2 MobileNetV2 architecture, which was influenced by this article [42] . 9
2.3 Figure 2.3 (a) depicts adjusting the learning rate to find the minimum

loss function. When there is a higher rate, as shown in Figure 2.3 (b),
and similarly for a lower learning rate, as shown in Figure 2.3 (c) [27]. 11

2.4 Data augmentation techniques were used to generate a random rota-
tion of a plant leaf image from our training dataset. 13

2.5 A plant leaf image from our training dataset after undergoing hori-
zontal and vertical flipping data augmentation operations. 13

2.6 In the training dataset, a plant leaf image is used to adjust the image’s
contrast. 14

4.1 Implementation of steps . 22

5.1 This figure depicts the comparison of accuracy, precision, recall, and
the f1-score metric scores when setting the learning rate equal to 0.1
with corresponding epochs from 10 to 50. 32

5.2 This figure depicts the comparison of accuracy, precision, recall, and
the f1-score metric scores when setting the learning rate equal to 0.01
with corresponding epochs from 10 to 50. 33

5.3 This figure depicts the comparison of accuracy, precision, recall, and
the f1-score metric scores when setting the learning rate equal to 0.001
with corresponding epochs from 10 to 50. 34

5.4 This vertical bar graph compares the accuracy, precision, recall, and
f1-score metric scores when different layers are added to MobileNetV2
architecture. 35

5.5 This vertical bar graph compares the metric scores of accuracy, preci-
sion, recall, and f1-score when various data augmentation operations
are performed on a training dataset. 36

6.1 A horizontal bar graph used to visually represent the performance of
each parameter configuration. This graph compares the metric scores
obtained by different parameter configurations, making it easier to
determine the best parameter configuration. 40

A.1 Visualization of a bottleneck architecture, which was inspired from [59] 55

vii

List of Tables

5.1 Evaluation results for learning rate = 0.1 31
5.2 Evaluation results for learning rate = 0.01 32
5.3 Evaluation results for learning rate = 0.001 33
5.4 Evaluation results for adding additional layers 34
5.5 Evaluation results for experimenting with various data augmentation

operations . 35

6.1 Technique with best parameter configuration vs overall metrics score 39

ix

List of Acronyms

DL Deep Learning

TL Transfer Learning

NN Neural Networks

ANN Artificial Neural Network

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network

conv Convolutional layer

Dwise Depth wise convolutional layer

NLP Natural Language Processing

tp True positive

tn True negative

fp False positive

fn False negative

ML Machine Learning

SVM Support Vector Machine

CSV Comma Separated Values

VGG Visual Geometry Group

MSE Mean Square Error

IoT Internet of Things

IDE Integrated Development Environment

OS Operating System

RNN Recurrent neural network

MLP Muilti Layer perceptron

xi

sklearn Scikit-learn

API Application Program Interface

GPU Graphic Processing Unit

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

BMP Bitmap Image file

TIFF Tagged Image File Format

ReLU Rectified linear activation unit

xii

Chapter 1

Introduction

Agriculture is the process of cultivating crops using basic factors like land, water,
labor, seeds, tools, and technology. We can’t imagine human existence without agri-
culture as it is providing the necessities like food for leading a healthy life. It is the
foundation of every society on earth [25]. All around the world, agriculture helps
in providing employment opportunities, nutrition, clothes, and healthcare. Any na-
tion’s economic development depends greatly on farming [31]. Humans also benefit
from food security. Due to the rising population, there is a growing demand for
food, hence agricultural technology advancements are necessary to supply the re-
quirement [38].

Crop health is essential for optimum productivity, hence crop monitoring must
be done regularly using a highly technological manner. Crop monitoring is essential
to farming for proactive control of disease and pest management, effective resource
utilization, yield optimization, and data-driven decision-making. It assists farmers in
detecting and addressing difficulties quickly, making educated decisions, and achiev-
ing sustainable and productive farming systems. The presence of plant leaf diseases
can adversely affect agricultural productivity and food quality [18]. Early identifica-
tion of such diseases can help farmers save time and labor costs and promote plant
growth. However, identifying plant leaf diseases reliably can be challenging due to
the vast array of diseases and pests that affect plants.

Farmers or specialists can recognize and diagnose plant leaf diseases in a generic
fashion. However, this approach could be time-consuming, costly, require specialist
knowledge and inaccurate [31]. Recent advancements in computer vision, Machine
Learning (ML), and Deep Learning (DL) have made it easier to detect plant ill-
nesses [19]. These modern techniques involve analyzing plant leaf images and utiliz-
ing algorithms to identify patterns and diseases. Because many plant leaf diseases
look quite similar, detecting diseases from images is an important area of research.
Therefore, combination of image processing, ML, and computer vision techniques is
necessary to identify and classify diseases accurately in plant leaves [34].

DL has advanced significantly in recent years, especially in image classification
for detecting and classifying plant leaf disease images with precision and speed. How-
ever, DL models come with risks and challenges, including the need for large amounts
of data for training. Transfer Learning (TL) addresses various drawbacks of DL mod-
els. TL is a powerful DL technique that improves learning by using knowledge from
a previously learned task [14]. While TL is frequently linked with small dataset
sizes, it can be used in a variety of circumstances, including big dataset sizes. TL

1

2 Chapter 1. Introduction

reduces overfitting by transferring learned representations and knowledge from the
pre-trained model. It improves interpretability by relying on well-studied archi-
tectures. TL makes use of existing expertise, lowering the knowledge barrier for
practitioners. It also provides the opportunity to remove data biases and enhance
robustness by employing transferable representations. Training time and computing
expenses are reduced since TL models are lightweight and compatible with low-end
graphics processing processors [24]. Furthermore, TL reduces generalization error
and allows DL models to perform effectively on fresh and previously unknown data.
Overall, TL improves performance, efficiency, and generalization when creating DL
models [26].

We have chosen to use a TL model based on the MobileNetV2 architecture for
our thesis due to its exceptional performance in image classification tasks and com-
patibility on mobile and embedded devices, making it suitable for use on any de-
vice with low computational power [23, 52]. The use of the MobileNetV2 model in
plant leaf disease identification and classification images on mobile or edge devices
provided benefits such as outstanding performance, effectiveness, and instantaneous
evaluation, allowing for efficient choice-making and intervention in farming environ-
ments [52]. This deep architecture enables the model to learn complex characteristics
and patterns from images, which is required to accurately classify images. Our main
motivation for using the MobileNetV2 model in our thesis is its ability to achieve
high performance with less computation power when compared to other TL models
and its usefulness for resource-constrained situations like mobile devices and edge
computing systems.

For our thesis, we plan to develop a DL model using the TL approach to detect
and classify plant leaf diseases accurately. We recognize that traditional methods are
time-consuming, but with our model, the identification process will be automated.
We will be using the New Plant Disease dataset [7] from Kaggle, which includes
87,000 RGB images of healthy and diseased plant leaves.

The techniques used for the thesis are adding additional layers, adjusting the
learning rate, and various data augmentation operations. These techniques are cho-
sen for this thesis because they solve the challenges like capturing complex features,
optimizing the training process, and addressing the limited availability of training
data [33, 40]. We are going to experiment with three distinct techniques and iden-
tify the most efficient technique for the MobileNetV2 model, which will increase the
model’s accuracy.

This thesis aims to enhance the performance of the MobileNetV2 model in plant
leaf images for disease identification and classification. The focus is on determin-
ing the most efficient technique for enhancing the performance of the model. This
benefits in disease prevention, increased productivity, and disease control. We be-
lieve that our technique will make a significant contribution to plant pathology and
agriculture.

1.1. Aim and objectives 3

1.1 Aim and objectives

1.1.1 Aim
The main aim of this thesis is to improve MobileNetV2 DL’s performance for identi-
fying and classifying plant diseases in images of plant leaves by experimenting with
various techniques and analysing each technique against the model.

1.1.2 Objectives
1. To split the dataset of plant leaf images into train and validation data.

2. To build and train the MobileNetV2 model DL with Keras on the training
dataset of plant leaf images.

3. Experimenting with techniques like learning rate, adding additional layers, and
various data augmentation operations on the model.

4. To evaluate each model’s performance based on relevant metrics, compare each
model’s performance and select the most appropriate technique among those
techniques to improve model accuracy.

1.2 Ethical, societal and sustainability aspects
We make sure that the results of this thesis are used to assist farmers since the main
goal of this thesis is to improve the performance of the MobileNetV2 model in the
plant leaf disease detection task. This implies that the model accurately predicts
the diseases in plant leaves. We make sure that the results are used in a way that
is advantageous to farmers and does not harm them. Instead of harming plants or
spreading diseases.

Our primary goal is to enhance the MobileNetV2 model performance with the
most efficient technique, which will enable the model to predict the outcomes very
accurately. This model allows users to find fast and easily infected plants to minimize
their crop damage. Early identification of plant dis- ease can avoid using pesticides
and other chemicals on plants that impact negatively on plants.

1.3 Research Question
RQ1: Which would be the most efficient technique among adjusting the learn-
ing rate, adding additional layers, and implementing various data augmentation
approaches in optimizing the MobileNetV2 DL model for plant leaf disease image
classification tasks in images?

Motivation: The motivation for RQ1 is to improve the accuracy and efficiency
of the model in detecting and classifying plant leaf diseases in images. We can im-
prove the model’s performance by choosing the most efficient technique among them,
which also helps in providing the best results for plant leaf diseases.

4 Chapter 1. Introduction

1.4 Scope of this thesis
This thesis employs a MobileNetV2 model to improve plant leaf disease identification
and categorization in images. The goal is to identify the most efficient technique
for improving the model’s performance. The research will help to avoid disease
and control disease in agriculture. This study has important implications for plant
pathology and the agricultural sector, benefitting crop health and food production.

1.5 Outline
Our thesis is divided into seven different chapters, each chapter has its emphasis and
purpose. The overview of each chapter is described below:

Chapter-1:
This chapter 1 describes the summary of the thesis, aim, and objectives, and outlines
the structure of the thesis.

Chapter-2:
This chapter 2 gives background information on the primary subject of study and
its implications for practice.

Chapter-3:
This chapter 3 provides a thorough review of earlier and related works on the same
topic, highlighting the research need that this thesis attempts to fill.

Chapter-4:
In this chapter 4, we outline the study technique we used, including the experiment’s
implementation and details on the various methods used.

Chapter-5:
In this chapter 5, the results of the experiment are presented in an understandable
and clear fashion.

Chapter-6
This chapter 6 examines the research study’s findings and discusses the thesis’s con-
sequences.

Chapter-7
This chapter 7 summarizes the thesis and suggests future study directions.

Supplement Information
This Appendix A describes our working environment, the tools that are used in our
work, and other relevant information, which is described in the chapter 2.

Chapter 2

Background

This background chapter describes to give readers a clear understanding of the top-
ics used throughout our thesis and explains how these key terms are important to
our thesis. Initially, we started with Neural Networks (NN), how NN played a big
role in classifying objects by employing computer vision techniques, and how it has
revolutionized various industries. We then delved into the concept of DL, which is
a subset of NN, and how it has enabled machines to perform complex tasks with
human-like efficiency. Next, we discussed how TL with pre-trained weights is used to
detect and classify more accurately. After, we discussed adjusting the learning rate,
adding layers to the architecture, and various data augmentation operations to the
dataset, as well as how these techniques can be added to the model to improve its
accuracy. Lastly, we discussed which evaluation metrics are used in our model. Some
of the key terms related to the background chapter are explained in the supplement
information chapter. This Appendix A provides additional context and details on
important concepts that are related to this chapter 2.

2.1 Object detection using computer vision

Object detection is a technology that allows computers to recognize and locate spe-
cific objects in digital images and videos. It employs computer vision and image
processing techniques to detect instances of class-based objects from a specific class,
for example, cars, bikes, people, etc. This technology is useful in a variety of appli-
cations, including surveillance and autonomous driving, as well as medical imaging
and robotics. Object identification algorithms may efficiently analyze visual data,
extract key features, and properly recognize and localize items of interest by utiliz-
ing advanced algorithms and deep learning models. These models can be taught to
attain astonishing levels of accuracy with the help of training datasets which include
diverse instances of objects from various classes. Object detection, which combines
the capabilities of computer vision with image processing, enables computers to un-
derstand and interact with the visual environment, opening the door to a variety of
opportunities for creativity and problem-solving [10].

2.2 Neural Networks (NN)

An NN is a type of network that is intended to mimic how the brain functions.
Artificial Neural Network (ANN) have at least two layers: an input layer, at least
one hidden layer, and an output layer.

5

6 Chapter 2. Background

Figure 2.1: Multi-layer feed-forward network [2]

Each layer contains one or more neurons, and each neuron is linked to all the
neurons in the next layer. The weights of the connections between neurons are used
to calculate the input to the next layer. Each neuron’s output is then calculated and
passed on to the next layer. Each neural connection in a layer adds up the inputs
and weights and applies an activation function to that value, along with the neuron’s
own bias, to generate output. This output is then sent as input to the next layer.
Once at the output layer, the output is passed through another activation function,
and the resulting value is the network’s final output [1].

2.3 Deep Learning (DL)
DL is a type of NN composed of multiple layers, each of which has a large number of
individual nodes. Due to their deeper architecture, DL networks can handle complex
tasks more efficiently than traditional NN. However, due to its higher complexity,
training a NN can take longer than training traditional NN. DL networks are de-
signed to operate similarly to the human brain, enabling them to process data and
make decisions in the same way as our brains do. This is accomplished by allowing
the system to learn from a wide range of patterns and data kinds [49].

2.4 Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)is a type of NN that is commonly used for im-
age recognition tasks [3,11,24]. CNNs are especially efficient because they drastically
reduce computation time by using filters to progressively reduce the size of the input
image. [3]. A CNN is an extension of a regular NN that is specifically designed to
handle images. It typically consists of multiple blocks of convolutional and pooling

2.5. Transfer Learning (TL) 7

layers, which end in one or more fully-connected layers that are connected to the
output layer. The convolutional layer contains several feature maps of equal size,
each constructed using different filters, that are applied to the input image. After
the image has been processed by the filters, it is ready to be sent to the next layer.
The process of applying filters to the input image is a crucial step in the functioning
of a CNN. The filters are responsible for recognizing and highlighting specific pat-
terns or features within the image, such as edges or shapes. This feature extraction
process helps CNN identify and classify images accurately. While it’s possible to
directly send the processed image to the fully connected layer, the computation time
would suffer greatly because the image is almost fully scaled and multiplied by the
number of filters used. Therefore, it’s more efficient to include one or more pooling
layers to further reduce the size of the image before sending it to the fully-connected
layer. Overall, CNNs complex architecture is what enables it to achieve exceptional
performance in image-related tasks such as object recognition and segmentation [4].

2.5 Transfer Learning (TL)

TL is an approach in which knowledge obtained from training on one type of problem
is transferred to training on other related tasks or domains [35]. It is crucial in Deep
Convolutional Neural Network (DCNN) since DL algorithms require a large amount
of labeled data to train the models, and gathering a large labeled dataset in a domain
is typically difficult. This approach is used to build high-performance classification
networks for given data by using a pre-trained network on a large dataset [57]. It has
the advantage of reducing training time, generalization error, and the computational
cost of developing a DL model [8].

2.5.1 ImageNet Dataset

ImageNet dataset is a large visual database that is specially designed for the use of
deep neural networks for image recognition. To improve the accuracy of image clas-
sification tasks, DL models are pre-trained on the ImageNet dataset, which contains
millions of images from thousands of categories. This pre-training helps the models
learn general features that can be useful for a wide range of image recognition tasks.
TL is then used to adapt these pre-trained models to a new task, fine-tuning them on
a new dataset. By leveraging the knowledge gained from pre-training on ImageNet,
TL allows for faster and more accurate training on new datasets [56].

However, in our thesis, we are using the Imagenet dataset to transfer knowledge of
the pre-trained weights of plant leaf diseases while creating the MobileNetV2 model
step.

2.5.2 MobileNetV2 model

MobileNetV2 is a highly adaptable CNN model that is widely utilized in computer
vision applications. Its lightweight architecture and efficient operations make it ideal
for devices with limited resources such as mobile phones and embedded systems. It

8 Chapter 2. Background

is extensively used in picture classification, object detection, semantic segmentation,
and TL applications. Its amazing blend of efficiency and accuracy enables accurate
item recognition, identifying plant leaf diseases, and facial expression analysis. Mo-
bileNetV2 supports TL by exploiting pre-trained weights on large-scale datasets like
ImageNet, decreasing training time and improving performance on given datasets.
As a whole, its versatility, compatibility with varied workloads, and capacity to run
effectively on mobile and embedded devices have solidified it as a powerful option for
DL and mobile vision applications [43].

MobileNetV2 is a CNN architecture that is optimized for use on limited computa-
tional resources. This network employs an inverted residual topology, implying that
residual connections exist between bottleneck levels. As its input, the network uses
a compressed representation of the input image, allowing it to operate with fewer
computations. The resulting image is then expanded to a higher dimension before
being filtered with a compact depthwise convolution. This reduces the number of
parameters that the network must calculate. Finally, using a linear convolution, the
features are projected back into a low-dimensional form. This enables the network
to process images more efficiently [42].

MobileNetV2 architecture

The whole MobileNetV2 model architecture consists of 53 layers (17 of these build-
ing blocks in a row. This is followed by a regular 1×1 convolution, a global average
pooling layer, and a classification layer) [21]. .

1. Building Block: The building blocks are the basic units of the MobileNetV2
architecture. They are made up of a series of steps that are performed sev-
eral times. These blocks contain depthwise separable convolutions, which are
effective convolutions that factorize the traditional convolution. The build-
ing blocks allow the model to acquire more advanced interpretations as data
moves through the layers by capturing and refining characteristics hierarchi-
cally. There are two types of blocks used in this architecture:

(a) Stride=1 block: A residual block with a stride of 1 is a block in Mo-
bileNetV2 that keeps the feature map size the same as the input size. This
block is made up of two types of convolutions, and information is added
directly back to the input. This helps to keep the image’s essential details
and makes the network more efficient.

(b) Stride=2 block: A downsizing block with a stride of 2 is a type of block
used in MobileNetV2 to cut the size of the feature map in half. This is
accomplished through the use of depthwise convolution, which reduces the
size of the feature map. The output of the depthwise convolution is then
transformed using a pointwise convolution. This block does not skip the
connection but instead connects the pointwise convolution output directly
to the next block.

2. Convolutional layer (conv) : In MobileNetV2 architecture, the 1x1 con-
volution is used in the bottleneck block to reduce the number of channels in

2.5. Transfer Learning (TL) 9

Figure 2.2: MobileNetV2 architecture, which was influenced by this article [42]

the feature map, which reduces the number of parameters and computation re-
quired to process the input feature map. A 1x1 conv is a type of convolutional
layer in a NN that uses a 1x1 filter to process the input feature map. The
1x1 convolution is a powerful tool in designing NN, as it can perform several
different operations on the input feature map.

3. Depth wise convolutional layer (Dwise) : In MobileNetV2 architecture,
the second layer in each block is a depthwise convolution. Depthwise convolu-
tion applies a single filter to each input channel separately, which is different
from traditional conv that applies a different filter to each input channel. By
doing so, the Dwise reduces the number of parameters and computations needed
in the model, making it more lightweight and computationally efficient.

4. 1X1 convolution: After the repeated building blocks, a conventional 1X1
convolution layer is applied. Convolution is performed by moving a 1x1 kernel
across the input feature maps and determining a weighted total of values within
each receptive field. The goal of this 1X1 convolution is to further improve the
learned characteristics by mixing and modifying data from other channels.

5. Global Average Pooling: Following the 1X1 convolution layer, a global aver-
age pooling layer is used. This pooling procedure calculates the mean value of
each feature map over its spatial dimensions (width and height). Global average

10 Chapter 2. Background

pooling generates a compact representation of the characteristics by decreasing
the spatial dimensions of the feature maps to a set of sizes independent of the
input image size.

6. Classification Layer: The global average pooling layer’s output is subse-
quently delivered to the classification layer. This layer associates newly discov-
ered features with certain classifications or groups. In the classification layer, a
softmax activation function is usually utilized to generate end probabilities for
each class, showing how likely it is that the input image belongs to each class.

2.6 Hyper parameter tuning

Hyperparameter tuning is an important phase in the development of DL models
since it has a large impact on the model’s performance. The hyperparameters
are the settings that govern the model’s behavior, like the learning rate, batch
size, and the number of hidden layers. In order to achieve optimal performance,
it is crucial to carefully select the hyperparameters that best suit the specific
problem. Tuning these hyperparameters entails determining the most suitable
combination of values that will lead to the best possible results [6].

2.6.1 Adjusting learning rate

Adjusting the learning rate is a key approach used in NN training to improve
its performance. The learning rate is one of the hyperparameters that governs
how often the model weights are changed during training. By adjusting the
learning rate, the model may be better optimized, and accuracy or convergence
can be improved [6].

Advantages of adjusting the learning rate [60]:

(a) Faster convergence: By modifying the learning rate, the model can
arrive at the best solution faster, reducing overall training time.

(b) Better optimization: A well-tuned learning rate can assist the model
in better optimizing the loss function and improving its accuracy.

(c) Enhanced generalization: By employing a lower learning rate, the
model is less likely to overfit the training data and can better generalize
to new data.

(d) Tuning Model performance: Model performance can be fine-tuned by
iteratively modifying the learning rate and observing the influence on the
model’s performance.

Although adjusting the learning rate in a model is challenging, the main goal
is to reduce the loss of function. However, by recursively adjusting the learning
rate, there can be a minimum loss of function. On the other hand, if the
learning rate is set too low, the model could become stuck at a local minimum
and fail to converge to the global minimum. This could result in a suboptimal

2.7. Adding Additional Layers 11

model with poorer performance than a model trained at a higher learning rate.

Figure 2.3: Figure 2.3 (a) depicts adjusting the learning rate to find the minimum
loss function. When there is a higher rate, as shown in Figure 2.3 (b), and similarly
for a lower learning rate, as shown in Figure 2.3 (c) [27].

2.7 Adding Additional Layers

Adding additional layers to NN is one of the common methods for improv-
ing the performance of models. With additional layers, the model can acquire
advanced representations of the input data, resulting in more accurate predic-
tions [48]. This technique can be helpful in the prevention of overfitting, which
happens if the model becomes too complicated and starts capturing the noise
in the data rather than the underlying patterns. Convolutional layers, pooling
layers, dropout layers, and normalizing layers are some of the layers that can
be added to NN. Every layer has a distinct purpose like decreasing the spatial
dimension of the input data or injecting randomization to avoid overfitting [51].

There are so many layers in DL and NN in a model architecture, but with
careful design and optimization, Some of the famous layers are the convolu-
tional layer, dense layer, and pooling layer. Each layer is described briefly in
the following points:

(a) Convolutional layer (conv): A convolutional layer is the first layer in
CNN architecture, and it is the core building block of CNN architecture
that performs convolutional operations on the input data. The convolu-
tional layer is followed by the polling layer or fully connected layer. By
adding a convolutional layer to the CNN architecture, it increases its com-
plexity, capturing complex patterns in images. In the convolutional layer,
a convolutional operation is applied to the input, and afterwards, the re-
sult is passed on to the next layer. This operation converts all the pixels
in its field into one-pixel value [29].

12 Chapter 2. Background

(b) Dense Layer : A dense layer connects every neuron from the previous
layer to every neuron in the current layer, enabling a comprehensive anal-
ysis of the input data. It is often used in the final layers of a model for
predictions. Matrix-vector multiplication is performed by the dense layer,
where matrix values are trainable parameters updated through backprop-
agation. The dense layer output is a vector of size ’m’, which can be
used to modify the vector’s dimensionality. The number of neurons in the
dense layer determines the output dimensionality [46].

(c) Pooling layer : This layer is used to decrease the spatial dimension of
the input data by downsampling it. It is applied to each feature map of
the input volume independently, and the volume depth is always preserved
during the pooling operation. The most common type of pooling layer is
max pooling, which takes the maximum value within a certain window of
the input data. This helps reduce the number of parameters in the model
and prevent overfitting [37].

2.8 Data Augumentation

Data augmentation is a technique for creating new training data from existing
training data. It is an effective approach that is commonly utilized in computer
vision and Natural Language Processing (NLP) tasks [47]. Data augmenta-
tion helps in reducing overfitting problems and improving the generalization
of NN [36]. By producing variations of the original data, the dataset grows in
size, which aids in preventing overfitting by giving a broad set of instances for
the model to learn from [47].

There are many data augmentation operations that can be applied to a train-
ing data set. Some of the most well-known data augmentation operations are
rotation, horizontal flip, vertical flip, colour jitter, and Random Selection of a
Single Image from the training dataset.

(a) Random rotation : Random rotation is a common data augmenta-
tion operation that involves rotating the input data by a random angle.
This helps the model learn different orientations of objects in the training
dataset and can improve its ability to generalize to new data. By apply-
ing various data augmentation techniques, we can increase the variation
of the training data and improve the robustness of the model [47].

2.8. Data Augumentation 13

Figure 2.4: Data augmentation techniques were used to generate a random rotation
of a plant leaf image from our training dataset.

(b) Horizontal flip and Vertical flip : Horizontal and vertical flips are
also common data augmentation operations that involve flipping the in-
put data horizontally or vertically. This helps the model learn different
orientations of objects in the training dataset and can also improve its
ability to generalize to new data [47].

Figure 2.5: A plant leaf image from our training dataset after undergoing horizontal
and vertical flipping data augmentation operations.

(c) Random Selection of a Single Image from the training dataset
: The process of randomly selecting one image from the training dataset
is referred to as the random selection of a single image. This selection is
frequently used to feed a model during the training phase. During each
training iteration or epoch, the image is typically chosen at random. It
helps in the diversification of the data presented to the model, preventing
it from memorizing or overfitting specific examples. The model is exposed

14 Chapter 2. Background

to different instances of the data by randomly selecting images, which
improves its generalization capability [47].

(d) Colour Jitter : Another technique that can be used to augment train-
ing data is color jitter. This involves randomly adjusting the brightness,
contrast, saturation, and hue of an image to create variations of the same
image. This technique can help the model learn to recognize objects under
different lighting conditions and colour variations, making it more robust
and accurate in real-world scenarios [47].

Figure 2.6: In the training dataset, a plant leaf image is used to adjust the image’s
contrast.

2.9 Evaluation Metrics

The evaluation metrics are used to measure the performance of a model. These
measures are useful to determine how well the model predicts the results and
to find which one performs most efficiently [22].

The symbols below are helpful for the formulae of different evaluation metrics:

(a) True positive (tp) and True negative (tn) denote the number of positive
and negative instances that are true classified.

(b) False positive (fp) and False negative (fn) denote the number of positive
and negative instances that are falsely classified.

2.9.1 Accuracy

Accuracy metric measures the proportion of true classified instances to the to-
tal number of instances [22]. The formula for the calculation of the accuracy
metric:

Accuracy(A) =
tp+ tn

tp+ tn+ fp+ fn
(2.1)

2.9. Evaluation Metrics 15

2.9.2 Precision

Precision metric measures the proportion of the number of true positively clas-
sified instances to the total number of positively classified instances [22]. The
formula for the precision metric:

Precision(P) =
tp

tp+ fp
(2.2)

2.9.3 Recall

Recall measures the proportion of positive instances that are correctly classified
to the total number of correctly classified instances [22]. The formula for the
recall:

Recall(R) =
tp

tp+ tn
(2.3)

2.9.4 F1-Score

F-Score measures the harmonic mean of precision and recall [22]. The formula
for the F1-Score:

F1− Score(F1) = F = 2 ∗ P ∗R
P +R

(2.4)

Chapter 3

Related Work

3.1 Related Work

Rout et al. [39] utilized computer vision techniques for disease diagnosis and
classification in plant leaves. By utilizing computer vision techniques, they
successfully detected powdery mildew, tomato yellow leaf curl virus, citrus
greening disease, and soybean rust diseases in plant leaves. Despite identifying
diseases in plant leaves, they faced some challenges, like obtaining high-quality
images that accurately captured the characteristics of healthy and diseased
leaves. This requires specialized equipment and expertise in image acquisition,
and another challenge is developing algorithms that can accurately detect a
wide range of diseases across different plant species. This requires extensive
training data and a careful selection of features that are relevant across differ-
ent types of diseases. Therefore, effectively to identify and classify objects, it is
essential to combine image processing, ML, and computer vision techniques, as
this approach helps to overcome the challenges of image segmentation, feature
extraction, and classification.

Although Chen et al. [9] developed an ML model for disease diagnosis, they
encountered some limitations. These included the model’s inability to handle
small amounts of data as well as the need for segmentation and feature extrac-
tion. Some existing research focused on using traditional ML techniques for
plant leaf disease detection in images, which provide less accurate results [53].
Wang et al. [55] conducted a comparison study between traditional ML and DL
algorithms for image classification. The researchers used four different datasets
to analyze and compare the accuracy and time performance of the two algo-
rithms based on sample size and picture type. Through their analysis, they
found that while traditional ML image recognition models have their advan-
tages, they also have deficiencies that can be improved upon by utilizing DL
models. Thus, they propose the use of DL models to enhance the accuracy of
image recognition.

For the detection and classification of plant leaf images, DL techniques could
indeed model and resolve large-scale data challenges [5,33]. Among several DL
approaches, DCNN have been utilized extensively for image classification [30].

17

18 Chapter 3. Related Work

But they consist of many parameters and also require a lot of computation.
So, training with TL gives better results [20].

Past studies on plant leaf disease identification in plant leaf images have looked
at both classic ML methods such as Support Vector Machine (SVM) and deci-
sion trees, as well as DL approaches such as CNN and TL. These approaches,
however, have limits. In this research, Geetha Ramani et al. [16] proposed a
unique DCNN model that was trained using data augmentation approaches
and achieved a high classification accuracy of 96.46%. The model outperforms
classic ML and TL methods and exhibits consistency as well as dependability,
making it a significant addition to the area.

Verma et al. [54] compared the performance of four different models, Mo-
bileNetV2, MobileNet, Inception, and DenseNet, for image classification. They
evaluated the accuracy and training time of each model. The results showed
that MobileNetV2 achieved the highest accuracy of 99.57% with a training time
of 700.23 seconds, while DenseNet had the lowest accuracy of 98.58% with a
training time of 6,789.12 seconds. Although the Inception model had slightly
better accuracy, its performance was not significantly better than MobileNetV2.
Based on the results, the authors concluded that MobileNetV2 outperformed
the other models in terms of accuracy and training time for image classification.

These are the primarily related works for plant leaf disease detection in plant
leaf images using the MobileNetV2 model. Mahesh et al. [32] used the plant
village dataset, which contains 54,303 healthy and unhealthy leaves, in their
work to detect plant diseases in plant leaf images. They also used the Mo-
bileNetV2 model for this purpose. Despite his comparison of the MobileV2Net,
ResNet50V2, and InceptionV3 models, this study concluded that the Mo-
bileV2Net model obtained an average model accuracy of 95%. Another study
utilizing the MobileNetV2 model to detect plant diseases focused more specifi-
cally on tomato leaf plant leaves and used 4,671 images from the plant village
dataset. Siti Zulaikha et al. [58] in order to detect three different tomato
diseases, additionally employed a variety of fine-tuning techniques for the Mo-
bileNetV2 model. The MobileNetV2 model can detect the disease with greater
than 90% accuracy by adjusting the learning rate, optimization method, and
batch size techniques through their experimentation.

After training the model, the performance may be insufficient to classify and
detect accurately. To increase the model performance there are several tech-
niques such as hyperparameter tuning, an ensemble of algorithms, feature se-
lection, adding additional layers, adding more datasets, changing image size,
increasing epochs [12, 15]. For our project, we chose the techniques like ad-
justing learning rate parameter tuning, adding additional layers, and applying
data augmentation techniques. These techniques have proven to be effective
in deep learning tasks, particularly in image classification [17]. Adjusting the
learning rate technique helps the model to converge faster and minimize the

3.1. Related Work 19

risk of overfitting while adding additional layers increases the model’s capac-
ity to extract features from the input data [12] Data augmentation techniques
improves the model’s generalization ability by generating new training data
points and reducing overfitting [44]. Although there are various data opera-
tions like rotation, horizontal flip, vertical flip, random crop, color jitter, and
random rotation and crop. Though the combination of these operations may
create more images from a small dataset, in some cases, not all combinations
of these operations are equally effective in improving the performance of the
model. Out of these operations, random rotation and crop combination have
proven to be effective in boosting the performance of the model because they
help increase the diversity of the training dataset and reduce over lifting [50].
By comparing these techniques we aim to build a model with the highest ac-
curacy to detect plant leaf disease and classification of plant leaf images.

Research Gap

The related work shows a gap in research investigating specific techniques like
adjusting the learning rate, data augmentation, and adding additional lay-
ers for plant disease identification. The purpose of using these techniques is
to improve the performance of the MobileNetV2 model for plant leaf disease
identification and classification in plant images. So, our thesis is to identify
an efficient technique for improving the MobileNetV2 accuracy in plant leaf
disease identification and classification in plant images. The successful identi-
fication of plant diseases helps prevent disease, improve crop production, and
control disease.

Chapter 4

Method

For our thesis, we utilized an experimental research methodology in order to
achieve the aim and answer the research question. An experiment was done
on the CNN-based MobileNetV2 architecture with three different techniques
tested. In order to train the model, we used the new plant leaf diseases dataset
from Kaggle. This experiment was conducted after initially trained model with
no technique using three different techniques and comparing each model’s per-
formance. Based on the comparison of three different models, determine the
most efficient method to increase the accuracy of the model.

The procedure for this experimentation methodology is described below:

Step-1: The input for the method is the collection of plant leaf images with
corresponding annotations file. The necessary data is extracted from the parsed
and preprocessed data, which includes image paths, bounding box coordinates,
and class labels.

Step-2: The MobileNetV2 object detection base model is built with pre-
trained weights from the ImageNet dataset. Additional layers are built on
top of the model’s architecture to adapt it for plant leaf disease detection and
classification in plant leaf images.

Step-3: The model is prepared for training by compiling it with the Adam
optimizer and a mean squared error loss function.

Step-4: During the training phase, the model is trained using a custom gen-
erator that generates batches of images and their corresponding labels. The
training process involves iterating across several epochs, where each epoch con-
sists of feeding batches of images to the model, computing the loss, and ad-
justing the model’s weights based on the gradients.

Step-5: After training the model, it is saved as a file for future use. The
saved model is loaded and the test dataset is processed to evaluate the model’s
performance. The test dataset contains images from the test dataset as well
as the annotations that go with them. The model predicts labels based on the
test data, and the predicted labels are compared to the true labels to calculate
evaluation metrics such as loss, accuracy, precision, recall, and F1 score.

21

22 Chapter 4. Method

4.1 Experimentation

We conduct experiments in our thesis to investigate various techniques for im-
proving a plant leaf disease detection and classification model in plant leaf
images. We look at how changing the learning rate, adding layers to the Mo-
bileNetV2 architecture, and using data augmentation operations on the training
dataset can improve the model’s performance. By doing so, we gained insights
into the best strategies for improving the accuracy and reliability of our model
by analyzing the results of these experiments. Through experimentation, we
improved the performance of a plant leaf disease detection and classification
model in plant leaf images.

Experiment - 1 : To adjust the learning rate, we experiment during the
training process, which occurs between the model creation and training pro-
cesses (i.e., between steps 4 and 5). and then the model is evaluated using
relevant metrics.

Experiment - 2 : Adding an additional layer to the model architecture is
defined during the model creation process (i.e., in step 2), after which we will
repeat steps 3-5 to build this model. Once three different layers are added to
the model architecture, the model will be evaluated using relevant metrics.

Experiment - 3 : Similarly, we experiment with various data augmented oper-
ations to training dataset in order to experiment with various data-augmented
operations (i.e., in step 1). We build the model again by repeating steps 2
through 4. Once various data-augmented operations are done, then the model
is evaluated using relevant metrics.

The steps we follow in the process are represented in the following flow di-
agram:

Figure 4.1: Implementation of steps

4.2. Dataset Overview 23

4.2 Dataset Overview

The New plant diseases dataset [7] is used for this work, and we have done
experiments on it. This dataset contains approximately 87,000 RGB photos
of healthy and diseased crop leaves that have been classified into 38 differ-
ent classifications. The complete dataset is already partitioned into an 80/20
ratio of training and testing datasets while maintaining the directory structure.

We decided to resample the given dataset due to a large number of images
and limited computational resources for the training process. The dataset was
resampled to a total of 7,600 RGB images, with 200 images in each class. We
reduce the size of the dataset while maintaining a balanced distribution across
classes using this downsampling method. Now we can train the model within
the given time constraint and optimize computational efficiency by reducing
the number of images.

4.3 Data Preparation:

The data preparation step in training a model involves getting the dataset into
a suitable format for the training process. It includes various tasks such as
data cleaning, data transformation, and data splitting. For getting a suitable
format of data, we started by creating an annotation file. In this file, each
image has its own details like image_paths, box_coordinates, Next, we loaded
the training dataset and its associated annotations by defining a function that
returns the dataset in a suitable form for the training process.

To create an annotation file for our dataset, we decided on the Comma Sepa-
rated Values (CSV) annotation format. This format will be useful in creating
annotations for each image in our dataset, which can include image information
such as image_paths, box_coordinates(x_min, x_max, y_min and y_max),
and class labels, primarily defining our annotation schema. We gathered the
images we wanted to annotate and made sure they were organized. We fol-
lowed by employing the Visual Geometry Group (VGG) Image Annotator tool
to manually annotate the images according to our annotation schema and saved
the annotation file in CSV format. Lastly, we reviewed and validate the anno-
tations after they had been created to ensure accuracy and consistency.

Load the training dataset containing images and associ-
ated annotations

This step provides the necessary data for training the model. The training
dataset contains the collection of images along with an annotation file.

For Load the Training dataset of images we defined a function parse_anno
tation_csv(file_path)

24 Chapter 4. Method

def parse_annotation_csv (f i l e_path)

The function parse_annotation_csv(file_path) considers a file path as input
which is basically a CSV file located at that path. The CSV file contains
annotations of images, with each row presenting an annotation for a specific
image. This function returns a dictionary of annotations.

4.3.1 Experimenting with various data augmentation op-
erations to training dataset

In our thesis, we want to see how different data augmentation operations affect
the performance of our model for plant leaf disease detection and classifica-
tion in plant leaf images. We will test various augmentation techniques such
as rotation, horizontal flip, vertical flip, random crop, colour jitter,
and random rotation and crop. These techniques are commonly used to
improve model accuracy and generalization by increasing the robustness of the
training data. The code below shows how we experiment with various data
augmentation operations for our model.

To experiment with various data augmentation operations in Keras, we followed
the steps described below.

(a) We define data augmentation operations to be performed in the model by
assigning each operation to a different variable.

r o t a t i on=30
h_f l ip=True
v_f l ip=True

(b) After initialising variables, we created a datagen object of the Instance
of ImageDataGenerator()

(c) We generated augmented images by using datagen object

augmented_images = datagen . f low (x_train , y_train ,
batch_size=32)

Once the augmented images are generated, these images are combined with the
training dataset to create an augmented training dataset. This dataset includes
both original and enhanced images. This augmented dataset is treated as the
original training dataset, which is again used for training the model (which is
basically step-3).

4.4 Model Creation

After the data preparation step is done, the MobileNetV2 model with pre-
trained weights from ImageNet will be created by importing the necessary li-
braries, loading the MobileNetV2 architecture, and integrating the pre-trained

4.4. Model Creation 25

weights into the architecture. Additional layers can be added to this model by
specifying them.

Define the MobileNetV2 model architecture for the de-
tection and classification of plant leaf diseases in digital
plant leaf images

The architecture of the MobileNetV2 model for plant disease identification
and classification can be defined using the Keras Application Program Inter-
face (API). Defining a function create_mobile netv2_model(num_classes).

def create_mobilenetv2_model (num_classes)

This model is initialized with pre-trained weights from the ImageNet dataset,
which aids to leverage the knowledge learned from a large-scale image classifi-
cation task.

The need for this function is to define the MobileNetV2 model architecture
for plant leaf disease identification and classification in plant leaf images. By
using a pre-trained model as the base, we benefit from its ability to obtain
meaningful features from images. The additional layers added on top of the
base model allow us to adapt the model for specific classification tasks. The
softmax activation in the final layer enables us to extract class probabilities,
providing a prediction for each class. This architecture sets the foundation
for training and fine-tuning the model to accurately classify plant leaf diseases
based on input images.

4.4.1 Experimenting by additional layers

We are conducting experiments in our thesis to improve the performance of
our plant leaf disease detection and classification model by adding additional
layers. We examine the impact of adding a dense layer, a pooling layer, and a
convolutional layer to the existing model architecture. We believe to find out
how these extra layers contribute to the model’s accuracy and effectiveness in
identifying and categorizing plant leaf diseases through these experiments.

Before experimenting with adding various layers, we had to download the Dense
layer, Convolutional layer, and Polling layer from tensorflow.keras.layers
module into our working environment, After downloading we add layers to
architecture by model.add() method. The code below shows how we add
layers to our model by using the function add().

model . add (Dense (64 , a c t i v a t i o n=’ r e l u ’))
model . add (MaxPooling2D ((2 , 2)))
model . add (Conv2D(64 , (3 , 3) , a c t i v a t i o n =’ r e l u ’))

26 Chapter 4. Method

4.5 Training Data Generation

Training data generation is the process of creating the training dataset that
will be employed to train a DL model. To do this, We define a function called
custom_generator(). This function takes in the parameters like image_paths,
annotations, batch_size, num_classes, and target_size and generates batches
of training data.

Generating batches of training data is a common process in most DL processes
for training the model. By dividing the images in the dataset into subsets of
batches, we can improve the efficiency of training, enhance model generaliza-
tion by reducing overlifting for each individual class, and also improve com-
putational efficiency. Moreover, dividing the dataset into batches also allows
for easier management of memory usage during training. This is particularly
important when working with large datasets that cannot be loaded entirely
into memory at once. We integrated the batch of 32 sets into our method and
will use it in a custom generator function for generating batches of images.

def custom_generator (image_paths , annotat ions ,
batch_size , num_classes , t a r g e t_s i z e =(224 ,224))

4.6 Model Training

Model training is the process of demonstrating a DL model to a labelled training
dataset in order to train it to recognize patterns and make accurate predictions.
During training, the model learns to adjust its internal parameters, primarily
weights, and biases, based on the input data and the desired output, which are
referred to as labels.

It is essential in object detection tasks because it allows the model to learn
the characteristics and visual representations of various objects in images. The
model can learn to detect and classify objects accurately by training on a la-
belled dataset which includes input images and their corresponding class labels.

An optimizer is a method for adjusting the parameters of a DL model during
the training process. Its primary goal is to minimize the specified loss function
by iteratively updating the model’s parameters based on training data slopes.
It is specified as an argument in the modele.compile() method in Keras. We
chose the Adam optimizer because it is a popular optimization algorithm that
adapts the learning rate for each parameter based on the gradient’s first and
second moments. For using the loss parameter, we specify the loss function to
be used during training as Mean Square Error (MSE).

model . compile (opt imize r=Adam(l r =0.001) ,
l o s s=’mse ’)

4.7. Model Evaluation and Saving the Model 27

The model is then fit to the training dataset after it has been compiled. Fitting
the model involves training it on the provided training dataset, after which it
learns to generalize patterns and make predictions. To fit the model, we use
the model.fit() method, which starts the training process. The model will be
exposed to training data in batches during training, and the internal parameters
will be updated iteratively using an optimizer to minimize the specified loss
function.

h i s t o r y = model . f i t (t ra in_generator , epochs=50,
va l idat ion_data=val_generator)

4.6.1 Experimenting by adjusting various learning rates

One of the key aspects we investigate is the impact of varying learning rates on
the model’s accuracy and effectiveness. We can determine the optimal settings
for improved detection and classification by fine-tuning the learning rates. To
investigate the accuracy and performance of the model, typically used training
and validation datasets are used. The training dataset is used to optimize the
model parameters during the training process, while the validation dataset is
used by the model to evaluate the model’s performance. For the given experi-
ment, the model is trained using the training dataset, and the learning rate is
adjusted for each parameter. Afterwards, the model’s performance is evaluated
on the validation dataset.

To do so,

(a) We set the values for learning rates and epochs by using a list.

l_r = [0 . 1 , 0 . 0 1 , 0 . 0 0 1]
epochs_l i s t =[10 ,20 ,30 ,40 ,50]

(b) For each Learning rate in l_r and for each number in the epochs in the
epochs_list we created an instance of the model and compile the model
using the Adam optimizer

obj = keras . op t im i z e r s .Adam(l ea rn ing_rate=l_r)
model . compile (opt imize r=obj)

(c) To train the model using training and validation dataset for given epochs
list we used model.fit() method.

4.7 Model Evaluation and Saving the Model

After compiling and fitting the model, it needs to be evaluated by training data
and calculated for accuracy, precision, recall, and the f1-score metric scores. To
do so, first, we need to predict the trained model on the testing dataset, in which
the model takes input data from the testing dataset and generates predictions

28 Chapter 4. Method

of its corresponding targeting variables. Next, we convert the predicted proba-
bilities into class labels for a more intuitive understanding and analysis of the
model’s predictions. This predict label is used to calculate accuracy, precision,
recall, and f1-score in Keras by passing this parameter to the imported function.

Evaluate the trained model on the test dataset

After compiling the model, it is essential to evaluate the model by testing
the dataset to validate its performance.

To do so,

(a) We evaluate the model on the test dataset by calling the model.evaluate()
method and passing the test dataset file path and test dataset labels as
arguments and storing the resulting loss value in a variable named loss.

l o s s , accuracy = model . eva luate (test_data ,
t e s t_ l ab e l s)

(b) We made predictions on the test dataset by calling the model.predict()
method and storing predicted values in a variable.

y_pred = model . p r ed i c t (test_data)

(c) Next, we converted the predicted probabilities to class labels by calling
the np.argmax() function from the NumPy library.

y_pred_labels = np . argmax (y_pred , ax i s =1)

Calculate metrics such as loss, accuracy, precision, recall,
and F1-score

After training the model, it is important to evaluate the trained model by
calculating accuracy, precision, recall, and F1 scores, in order to ensure that
the model has learned the desired behaviour and is able to accurately predict
the labels for new data.

To calculate,

(a) We imported precision_recall_fscore_support() function from the sklea
rn.metrics module.

(b) We Calculate the precision, recall,accuracy and F1-score by calling the
precision_recall_fscore_support() function for testdataset and stored in
respective variables.

However, calculating the accuracy metric score while already done by evaluat-
ing the model by the test dataset step.

4.7. Model Evaluation and Saving the Model 29

Save the trained model

After calculating the metrics of the model, we saved the model because en-
ables us to reload the model later without the need for retraining, making it
convenient for deployment, inference, or further fine-tuning. To save the model
we call model.save(’model.h5’), where ’model.h5’ is the chosen file to save
our model and ’.h5’ indicating a Hierarchical Data Format file.

Chapter 5

Results and Analysis

5.1 Presentation of results

This thesis aimed to develop a plant leaf disease classification and detection
model and improve its performance using three different techniques. Vari-
ous experiments were conducted, including exploring different learning rates,
adding additional layers, and implementing data augmentation operations. The
objective was to evaluate the performance of the model in terms of accuracy,
precision, recall, and F1 score.

5.1.1 Evaluation results after adjusting various learning
rates

In this thesis, an experiment was conducted to analyze the impact of different
learning rates on the performance of a plant leaf disease classification model.
Multiple learning rates were tested, ranging from 0.1 to 0.001, across different
epochs. The objective was to identify the optimal learning rate that maximizes
the model’s accuracy, precision, recall, and F1 score. The results of this ex-
perimentation provide valuable insights into the effect of learning rates on the
model’s learning dynamics and overall performance.

For lr=0.1 with different epochs

We present the evaluation results for the model trained with a learning rate of
0.1 and varying epochs. The following Table 5.1 shows the performance metrics
for each epoch.

Epoch Accuracy Precision Recall F1-Score
10 0.87 0.85 0.88 0.86
20 0.88 0.87 0.87 0.87
30 0.87 0.88 0.86 0.87
40 0.87 0.89 0.84 0.86
50 0.87 0.90 0.82 0.85

Table 5.1: Evaluation results for learning rate = 0.1

31

32 Chapter 5. Results and Analysis

Figure 5.1: This figure depicts the comparison of accuracy, precision, recall, and the
f1-score metric scores when setting the learning rate equal to 0.1 with corresponding
epochs from 10 to 50.

For lr=0.01 with different epochs

We present the evaluation results for the model trained with a learning rate
of 0.01 and varying epochs. The following table 5.2 shows the performance
metrics for each epoch.

Epoch Accuracy Precision Recall F1-Score
10 0.88 0.86 0.89 0.87
20 0.88 0.88 0.88 0.88
30 0.88 0.89 0.87 0.88
40 0.87 0.90 0.85 0.87
50 0.87 0.91 0.83 0.87

Table 5.2: Evaluation results for learning rate = 0.01

5.1. Presentation of results 33

Figure 5.2: This figure depicts the comparison of accuracy, precision, recall, and the
f1-score metric scores when setting the learning rate equal to 0.01 with corresponding
epochs from 10 to 50.

For lr=0.001 with different epochs

We present the evaluation results for the model trained with a learning rate
of 0.001 and varying epochs. The following table 5.3 shows the performance
metrics for each epoch.

Epoch Accuracy Precision Recall F1-Score
10 0.87 0.85 0.90 0.87
20 0.88 0.87 0.88 0.88
30 0.88 0.88 0.87 0.88
40 0.87 0.89 0.85 0.87
50 0.87 0.90 0.83 0.87

Table 5.3: Evaluation results for learning rate = 0.001

34 Chapter 5. Results and Analysis

Figure 5.3: This figure depicts the comparison of accuracy, precision, recall, and the
f1-score metric scores when setting the learning rate equal to 0.001 with correspond-
ing epochs from 10 to 50.

5.1.2 Evaluation results after adding additional layers

Next, the experiment was done with the technique of adding additional layers.
For this technique, we examined adding different layers like the pooling layer
convolutional layer, and dense layer. The goal was to find the efficient layer
that provides maximum results for the provided metrics by adding it. The
results obtained with different layers are shown below in table 5.4:

Adding layers to the
MobileNetV2

Accuracy Precision Recall F1-Score

No additional layer 0.89 0.83 0.82 0.82
Adding dense layer 0.91 0.87 0.85 0.85
Adding pooling layer 0.92 0.85 0.83 0.83
Adding convolutional layer 0.93 0.89 0.87 0.87

Table 5.4: Evaluation results for adding additional layers

5.1. Presentation of results 35

Figure 5.4: This vertical bar graph compares the accuracy, precision, recall, and
f1-score metric scores when different layers are added to MobileNetV2 architecture.

5.1.3 Evaluation results after various data augmentation
operations

To enhance the performance of our model, we applied various data augmen-
tation techniques to our training dataset. The following table5.5 displays the
evaluation results of implementing Technique 3, which includes rotation, hor-
izontal flip, vertical flip, random crop, color jitter, and random rotation and
crop:

Data Augmentation opera-
tions applied to the valida-
tion set of the MobileNetV2

Accuracy Precision Recall F1-Score

Rotation 0.88 0.92 0.94 0.93
Horizontal Flip 0.85 0.89 0.91 0.90
Vertical Flip 0.84 0.88 0.90 0.89
Random Crop 0.89 0.93 0.95 0.94
Color Jitter 0.87 0.90 0.92 0.91
Random rotation and crop 0.94 0.91 0.96 0.95

Table 5.5: Evaluation results for experimenting with various data augmentation
operations

36 Chapter 5. Results and Analysis

Figure 5.5: This vertical bar graph compares the metric scores of accuracy, precision,
recall, and f1-score when various data augmentation operations are performed on a
training dataset.

5.2 Analysis and Interpretation

From the obtained results, the following can be observed:

(a) Varying learning rates and epochs: The choice of learning rate and
the number of epochs while training the model can significantly affect
model performance. Greater learning rates enhance precision but may
lead to a lower recall. Similarly, increasing the number of epochs can
improve accuracy up to a certain point, after which it might also result in
overfitting.

i. With lr=0.1, the best result is obtained after 20 epochs with an ac-
curacy of 0.88 and an F1-score of 0.87. Raising the number of epochs
above 20 reduces performance.

ii. For lr=0.01, the best result is obtained after 30 epochs with an accu-
racy of 0.88 and an F1-score of 0.88. Raising the number of epochs
above 30 has no apparent impact on performance.

iii. With lr=0.001, the best result is obtained after 20 epochs having an
accuracy of 0.88 and an F1-score of 0.88. Increasing the number of
epochs beyond 20 reduces performance.

Overall, lr=0.01 yields the best results, and the model needs to be trained
for about 30 epochs. When the learning rate was set to 0.001, the vali-
dation accuracy steadily increased but remained relatively low, indicating
that the model was learning slowly and likely becoming stuck in local
minima. When the learning rate was set to 0.1, the validation accuracy
was inconsistent and unstable, indicating that the model was learning too
quickly and likely overshooting the optimal answer. In contrast, when the

5.2. Analysis and Interpretation 37

learning rate was set to 0.01, the validation accuracy gradually grew and
the overall performance was significantly better. As a result, a learning
rate of 0.01 is proposed for MobileNetV2. So, lr=0.01 with 30 epochs is
considered to be one of the best parameter configurations.

(b) Adding additional layers: Adding extra layers to the model can help it
perform better compared to the base model. This is because the additional
layers aid in feature extraction and categorization, resulting in greater
accuracy, precision, and recall.

i. The overall performance of the base MobileNetV2 model with no ad-
ditional layer is not very good, with a maximum accuracy of only
0.89. This shows that the model may be too simple for capturing all
of the information required for accurate categorization.

ii. Adding a dense layer to the base model enhances its performance
greatly, achieving a maximum accuracy of 0.91. This implies that
increasing the number of trainable parameters in the model can help
it capture the required features for accurate classification.

iii. The addition of a pooling layer to the base model enhances overall
performance, but not as significantly as the addition of a dense layer.
The highest possible accuracy is 0.92, indicating that pooling can help
the model capture specific aspects more accurately, but it may not be
as useful as adding additional trainable parameters.

iv. Adding a convolutional layer to the base model boosts overall per-
formance even more, with a maximum accuracy of 0.93. This im-
plies that increasing the number of convolutional layers may assist the
model to capture more complicated features and enhance its overall
performance.

Therefore, the addition of a convolutional layer to the base MobileNetV2
model can significantly improve its performance. So, it can be one of the
best parameter configurations.

(c) Various data augmentation operations: Implementing different data
augmentation techniques, like rotation, flipping, cropping, and color mod-
ifications, results in significant improvements in precision, accuracy, recall,
and F1-score. The augmentation operations help the model learn robust
representations by increasing the diversity and variability in the training
data, leading to enhanced generalization abilities and improved perfor-
mance in classifying plant leaf diseases.

i. Applying a rotation augmentation leads to the best overall perfor-
mance, with an average accuracy of 0.92. This shows that including
rotation augmentation enhances the model’s generalization and per-
formance on test data.

ii. Adding horizontal and vertical flip augmentations improves model
performance, but not as significantly as rotation augmentation. This
implies that flip augmentations may assist with the model generalize
better.

iii. Applying a random crop augmentation increases the model’s perfor-
mance as well, with an average accuracy of 0.93. This shows that

38 Chapter 5. Results and Analysis

random cropping can help the model learn better representations of
the input data.

iv. Applying color jitter augmentation improves performance slightly,
having an average accuracy of 0.90. This implies that color jitter
can assist the model in learning more accurate color representations
of the input data.

v. Lastly, combining random rotation and crop augmentation yields the
best overall performance, with an average accuracy of 0.95. This
shows that adding several augmentations may assist the model to
learn and adapt better representations of the input data.

Overall, the random rotation and crop augmentation apply to the valida-
tion dataset of the MobileNetV2 provided great results. So, it can also be
one of the best parameter configuration techniques.

Chapter 6

Discussion

We carefully designed experiments and evaluated the performance of our pro-
posed CNN architecture throughout the research process. We obtained results
that provide insights and answers to the research questions posed by training
the model on the new plant diseases dataset.

Research Question:

Which would be the most efficient technique for adjusting the learning rate,
adding additional layers, and implementing various data augmentation ap-
proaches to optimize the MobileNetV2 model in plant leaf disease classification
tasks in images?

Answer: We systematically explored various techniques based on the exper-
imental results presented in the chapter5 by modifying the parameters in our
model. To evaluate the model’s performance, we recorded the corresponding
metric scores for each technique. We identified the best parameter configura-
tion after analyzing and comparing the results, which can be seen in the table
below6.1.

Technique of best parameter con-
figuration

Accuracy Precision Recall F1-Score

When adjusting Learning rate = 0.01
and epoch=30

0.88 0.89 0.82 0.82

When adding Convolutional layer to
MobileVNetV2 architechture

0.93 0.89 0.87 0.87

When adding Random rotation and
crop to validation dataset

0.94 0.91 0.96 0.95

Table 6.1: Technique with best parameter configuration vs overall metrics score

39

40 Chapter 6. Discussion

Figure 6.1: A horizontal bar graph used to visually represent the performance of
each parameter configuration. This graph compares the metric scores obtained by
different parameter configurations, making it easier to determine the best parameter
configuration.

6.1 Discussion of Experimental results

(a) Learning rate:

• The model trained with a learning rate of 0.01 performed well, achiev-
ing metric scores of 87%, 89%, 82%, and 82%. These results indicate
that the model performed well throughout the evaluation process.

• This suggests that the selected learning rate is suitable for this task,
allowing the model to converge and generalize well on the given vali-
dation data set.

(b) Additional Convolutional Layer:

• The model enhanced with an additional convolutional layer showed a
significant improvement in accuracy, achieving a metric score of 93%,
89%, 87%, and 87%.

• This indicates that the added layer helped in capturing more com-
plex patterns and features within the leaf images, leading to better
classification performance.

• The increased depth and capacity of the model allowed for a more
refined representation of the input data, resulting in improved accu-
racy.

(c) Random Rotation and Crop Data Augmentation:

6.1. Discussion of Experimental results 41

• The technique of applying random rotation and crop as a data aug-
mentation parameter resulted in a metric score of 94%, 91%, 96%,
and 95%.

• This augmentation technique introduces variations in the training
data, simulating real-world scenarios where leaves may be in different
orientations or partially visible.

• By exposing the model to a diverse range of leaf images, the model
became more robust and better equipped to handle variations in the
input data, leading to improved accuracy.

Adjusting Learning Rate: Adjusting the learning rate with 0.01 and 30
epochs did not result in major improvements in the efficiency of the model. A
quicker learning rate can help the model converge faster, but it can also result
in overfitting and decreased generalization capabilities.

Adding Additional Layer: Adding a dense layer or a pooling layer reduced
accuracy slightly, while adding a convolutional layer improved accuracy slightly
but not equally as the data augmentation technique.

Data Augmentation Operation: The method of applying random rotation
and cropping (Data augmentation technique) into the training data assisted
the model in performing well on new data and producing excellent outcomes
on the test dataset. This is because it made the training data more diverse
and unexpected, allowing the model to learn more efficiently and function well
on unknown data. The model is subjected to diverse views and perspectives
of the leaf photos by randomly rotating and cropping the pictures, which can
assist it to acquire more robust features and patterns. Also, by adding more
randomness and variability into the training data, this method helps to alle-
viate the problem of overfitting by preventing the model from memorizing the
training data and instead pushes it to learn more generalizable characteristics.

However, changing the learning rate and adding a convolutional layer can as-
sist to enhance the model’s accuracy, the improvement may not be significant
enough to make a major difference. These strategies have limits and are un-
able to compensate for a lack of diversity and quantity of training data. As a
result, random rotation and crop technique continues to be an important
method for enhancing model accuracy, particularly in cases where training data
is restricted. The model can acquire more robust features and generalize better
to unknown data by increasing the volume and diversity of the training data.

Chapter 7

Conclusions and Future Work

7.1 Conclusion

Early detection of plant leaf diseases helps in disease prevention and increases
productivity and disease control. The goal of this thesis was to determine the
most effective method for recognizing and classifying plant leaf diseases employ-
ing the MobileNetV2 model. MobileNetV2 is a CNN architecture developed
specifically for mobile and embedding visual applications. This was designed
to meet the demand for effective and lightweight models that can function
on resource-constrained devices such as smartphones, tablets, and Internet of
Things (IoT) devices. The most important reason for utilizing MobileNetV2
for this thesis is its capability to establish an appropriate balance of accuracy
and processing efficiency, which makes it suitable for real-time applications
on mobile devices. Then, we explored three distinct strategies: adjusting the
learning rate, using data augmentation techniques, and adding extra layers to
the model. The main reasons for investigating these techniques are to reduce
the problem of overfitting in the model, improve the model accuracy, and also
they perform well in the image classification tasks.

We started by importing the new plant diseases dataset, which consists of pho-
tos of damaged and healthy plants as well as annotations for each. We then
used the three strategies discussed above to train and assess the MobileNetV2
model. We discovered that adding convolutional layers to the model increased
its accuracy by 2-3% when compared with the original model, while data aug-
mentation approaches such as random rotation and crop enhanced accuracy
by 5-6%. However, changing the learning rate had no significant effect on the
model’s accuracy.

Finally, the MobileNetV2 model with random rotation and crop proved to be
the most efficient method for identifying and classifying plant leaf diseases
in plant images. Our results demonstrated that this technique considerably
increased the model’s accuracy to 94% without raising its computational cost.

43

44 Chapter 7. Conclusions and Future Work

7.2 Future work

For future work, the research can be expanded in the following way:

(a) Tuning with more parameters like dropout rate, batch size, etc.

(b) Experimenting with these techniques on different datasets.

(c) At present, the experiment is done with a single technique, it can be
extended with combinations of multiple techniques to observe how they
impact the MobileNetV2 model performance.

(d) Instead of fixed scales of images for training and testing, it can be extended
to test the model with multiple scales.

(e) The present method detects only static pictures, it can be extended by
adapting this to detect in real-time on live video sources which will be
more helpful to the farmers.

References

[1] C. C. Aggarwal et al., “Neural networks and deep learning,” Springer,
vol. 10, no. 978, p. 3, 2018.

[2] K. I. Ahamed and S. Akthar, “A study on neural network architectures,”
Comp. Eng. Intell. Syst, vol. 7, pp. 1–7, 2016.

[3] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convo-
lutional neural network,” in 2017 international conference on engineering
and technology (ICET). Ieee, 2017, pp. 1–6.

[4] R. Andersson Dickfors and N. Grannas, “Object detection using deep learn-
ing on metal chips in manufacturing,” 2021.

[5] O. Asif, S. A. Haider, S. R. Naqvi, J. F. Zaki, K.-S. Kwak, and S. R. Islam,
“A deep learning model for remaining useful life prediction of aircraft tur-
bofan engine on c-mapss dataset,” IEEE Access, vol. 10, pp. 95 425–95 440,
2022.

[6] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion.” Journal of machine learning research, vol. 13, no. 2, 2012.

[7] S. BHATTARA. (2019) New plant diseases dataset. [Online]. Available:
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset

[8] D. Castillo. (2021) Transfer learning for machine learning. [Online].
Available: https://www.seldon.io/transfer-learning

[9] L. Chen and Y. Yuan, “Agricultural disease image dataset for disease iden-
tification based on machine learning,” in Big Scientific Data Management:
First International Conference, BigSDM 2018, Beijing, China, November
30–December 1, 2018, Revised Selected Papers 1. Springer, 2019, pp.
263–274.

[10] S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V.-K. Papastathis, and M. G.
Strintzis, “Knowledge-assisted semantic video object detection,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 15, no. 10,
pp. 1210–1224, 2005.

[11] P. R. M. de Araujo and R. G. Lins, “Computer vision system for workpiece
referencing in three-axis machining centers,” The International Journal of
Advanced Manufacturing Technology, vol. 106, pp. 2007–2020, 2020.

[12] J. Dsouza. (2021, November) How to improve the accuracy of your image
recognition models. [Online]. Available: https://www.freecodecamp.org/
news/improve-image-recognition-model-accuracy-with-these-hacks/

45

46 References

[13] H. Fan, S. Liu, M. Ferianc, H.-C. Ng, Z. Que, S. Liu, X. Niu, and W. W. C.
Luk, “A real-time object detection accelerator with compressed ssdlite on
fpga,” 2018 International Conference on Field-Programmable Technology
(FPT), pp. 14–21, 2018.

[14] K. P. Ferentinos, “Deep learning models for plant disease detection and
diagnosis,” Computers and electronics in agriculture, vol. 145, pp. 311–
318, 2018.

[15] R. Gandhi. (2022, January) How to increase the accuracy of a
neural network. [Online]. Available: https://towardsdatascience.com/
how-to-increase-the-accuracy-of-a-neural-network-9f5d1c6f407d

[16] G. Geetharamani and A. Pandian, “Identification of plant leaf diseases
using a nine-layer deep convolutional neural network,” Computers & Elec-
trical Engineering, vol. 76, pp. 323–338, 2019.

[17] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[18] L. Haiyan, L. Xiruo, and Z. Hongjie, “Research on quality and product
losses of soybean by grey leaf spot [j],” Chinese Journal of Oil Crop Sci-
ences, vol. 27, no. 3, pp. 66–69, 2005.

[19] S. S. Harakannanavar, J. M. Rudagi, V. I. Puranikmath, A. Siddiqua,
and R. Pramodhini, “Plant leaf disease detection using computer vision
and machine learning algorithms,” Global Transitions Proceedings, vol. 3,
no. 1, pp. 305–310, 2022.

[20] S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska,
“Identification of plant-leaf diseases using cnn and transfer-learning ap-
proach,” Electronics, vol. 10, no. 12, p. 1388, 2021.

[21] M. Hollemans, “Mobilenet version 2-machinethink.net,” https:
//machinethink.net/blog/mobilenet-v2/, [Accessed 23-Apr-2023].

[22] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics for data
classification evaluations,” International journal of data mining & knowl-
edge management process, vol. 5, no. 2, p. 1, 2015.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[24] M. Hussain, J. J. Bird, and D. R. Faria, “A study on cnn transfer learn-
ing for image classification,” in Advances in Computational Intelligence
Systems: Contributions Presented at the 18th UK Workshop on Compu-
tational Intelligence, September 5-7, 2018, Nottingham, UK. Springer,
2019, pp. 191–202.

[25] M. A. Jasim and J. M. Al-Tuwaijari, “Plant leaf diseases detection and clas-
sification using image processing and deep learning techniques,” in 2020
International Conference on Computer Science and Software Engineering
(CSASE). IEEE, 2020, pp. 259–265.

[26] D. P. P. Javierto, J. D. Z. Martin, and J. F. Villaverde, “Robusta cof-
fee leaf detection based on yolov3-mobilenetv2 model,” in 2021 IEEE

References 47

13th International Conference on Humanoid, Nanotechnology, Informa-
tion Technology, Communication and Control, Environment, and Man-
agement (HNICEM). IEEE, 2021, pp. 1–6.

[27] J. jordan. (2018) Setting the learning rate of your neural network.
[Online]. Available: https://www.jeremyjordan.me/nn-learning-rate/

[28] C. Kevin. (2018, May) Feature maps. [Online]. Available: https:
//medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e

[29] R. Khedgaonkar, K. Singh, and M. Raghuwanshi, “Local plastic surgery-
based face recognition using convolutional neural networks,” in Demys-
tifying Big Data, Machine Learning, and Deep Learning for Healthcare
Analytics. Elsevier, 2021, pp. 215–246.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[31] A. Luckey, “Assessing youth perceptions and knowledge of agriculture:
The impact of participating in an agventure program,” Ph.D. dissertation,
Texas A & M University, 2012.

[32] T. Mahesh, R. Sivakami, I. Manimozhi, N. Krishnamoorthy, B. Swapna
et al., “Early predictive model for detection of plant leaf diseases using mo-
bilenetv2 architecture,” International Journal of Intelligent Systems and
Applications in Engineering, vol. 11, no. 2, pp. 46–54, 2023.

[33] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for
image-based plant disease detection,” Frontiers in plant science, vol. 7, p.
1419, 2016.

[34] D. Munjal, L. Singh, M. Pandey, and S. Lakra, “A systematic review on
the detection and classification of plant diseases using machine learning,”
International Journal of Software Innovation (IJSI), vol. 11, no. 1, pp.
1–25, 2023.

[35] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[36] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[37] K. Rana. (2020) Pooling layer—short and sim-
ple. [Online]. Available: https://ai.plainenglish.io/
pooling-layer-beginner-to-intermediate-fa0dbdce80eb

[38] P. Rosset, “Food sovereignty and the contemporary food crisis,” Develop-
ment, vol. 51, no. 4, pp. 460–463, 2008.

[39] R. Rout and P. Parida, A Review on Leaf Disease Detection Using Com-
puter Vision Approach, 03 2020, pp. 863–871.

[40] A. Saleh, M. Sheaves, and M. Rahimi Azghadi, “Computer vision and deep
learning for fish classification in underwater habitats: A survey,” Fish and
Fisheries, vol. 23, no. 4, pp. 977–999, 2022.

[41] M. Sandler and A. Howard. (2018) Mobilenetv2: The next generation
of on-device computer vision networks. [Online]. Available: https://ai.
googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html?m=1

48 References

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520.

[43] ——, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[44] D. Shah. (2023, March) Data augmentation guide. [Online]. Available:
https://www.v7labs.com/blog/data-augmentation-guide

[45] T. Shah. (2017) About train, validation and test sets in ma-
chine learning. [Online]. Available: https://towardsdatascience.com/
train-validation-and-test-sets-72cb40cba9e7

[46] P. Sharma. (2020) Keras dense layer explained for be-
ginners. [Online]. Available: https://machinelearningknowledge.ai/
keras-dense-layer-explained-for-beginners/

[47] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmenta-
tion for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[49] A. G. Smith, E. Han, J. Petersen, N. A. F. Olsen, C. Giese, M. Athmann,
D. B. Dresbøll, and K. Thorup-Kristensen, “Rootpainter: deep learning
segmentation of biological images with corrective annotation,” New Phy-
tologist, vol. 236, no. 2, pp. 774–791, 2022.

[50] J. Solawetz. (2020) Getting started with data augmentation in
computer vision. [Online]. Available: https://blog.roboflow.com/
boosting-image-detection-performance-with-data-augmentation/

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[52] S.-H. Tsang. (2019) Review: Mobilenetv2-
lightweightmodelimageclassification. [Online]. Avail-
able: https://towardsdatascience.com/
review-mobilenetv2-light-weight-model-image-classification-8febb490e61c

[53] D. Varshney, B. Babukhanwala, J. Khan, D. Saxena, and A. kumar Singh,
“Machine learning techniques for plant disease detection,” in 2021 5th In-
ternational Conference on Trends in Electronics and Informatics (ICOEI).
IEEE, 2021, pp. 1574–1581.

[54] D. Verma, D. Bordoloi, and V. Tripathi, “Plant leaf disease detection using
mobilenetv2,” Webology, vol. 18, no. 5, pp. 3241–3246, 2021.

[55] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classifica-
tion algorithms based on traditional machine learning and deep learning,”
Pattern Recognition Letters, vol. 141, pp. 61–67, 2021.

[56] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet

References 49

training in minutes,” in Proceedings of the 47th International Conference
on Parallel Processing, 2018, pp. 1–10.

[57] Y. Yuan, S. Fang, and L. Chen, “Crop disease image classification based on
transfer learning with dcnns,” in Pattern Recognition and Computer Vi-
sion: First Chinese Conference, PRCV 2018, Guangzhou, China, Novem-
ber 23-26, 2018, Proceedings, Part II 1. Springer, 2018, pp. 457–468.

[58] S. Z. M. Zaki, M. A. Zulkifley, M. M. Stofa, N. A. M. Kamari, and
N. A. Mohamed, “Classification of tomato leaf diseases using mobilenet
v2,” IAES International Journal of Artificial Intelligence, vol. 9, no. 2, p.
290, 2020.

[59] X. Zhou and A. Lerch, “Chord detection using deep learning,” 01 2015.
[60] H. Zulkifli. (2018) Understanding learning rates

and how it improves performance in deep learn-
ing. [Online]. Available: https://towardsdatascience.com/
understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059

Appendix A

Supplemental Information

A.1 Working environment

We created a suitable working environment for our research and experimenta-
tion in our thesis. We set up our working environment by doing the following:

(a) Installation of the Visual Studio Editor : To efficiently write
and manage our code, we installed the Visual Studio Editor, a popular
Integrated Development Environment (IDE).

(b) Programming language : Python was chosen as our primary program-
ming language for implementation in our thesis.

(c) Operating System : Windows Operating System (OS) was chosen as
the operating system for our experimentation and development.

(d) Dataset Set Acquisition : We obtained the new Plant Disease datasets
from Kaggle, a popular platform for accessing and sharing datasets rele-
vant to various domains.

(e) Libraries Dependencies : To make our work easier, we imported a
number of necessary libraries. These included NumPy, Scikit-learn, Ten-
sorflow, and Keras. These libraries offer functionalities for developing
and training models, managing datasets, and carrying out various data
manipulation and analysis tasks. They are widely used in the field of DL.

(f) Creation of annotation file : To create an annotation file, we used
VGG Image Annotator to extract box_corcordinates, class_labels and
image_paths paths. Primarily, we are defining the annotation schema
by using this tool.

(g) Graphs : After calculating accuracy, precision, recall, and f1-score metric
scores, we stored these scores in a Google Sheet. Google Sheets includes
a feature for displaying charts from existing sheets.

51

52 Appendix A. Supplemental Information

A.2 Libraries and Tools

A.2.1 Visual Studio Editor

Visual Studio Code is a lightweight and adaptable source code editor designed
by Microsoft that is frequently utilized by programmers for a variety of cod-
ing languages and environments. It includes syntax highlighting, automatic
code completion, debugging tasks, as well as integrated version control tools.
With a thriving marketplace of extensions, developers can tailor the editor’s
capabilities to their own requirements. Visual Studio Code is a multi-platform
development environment that is accessible on Windows, macOS, and Linux.
It is noted for its rapidity and extensive assistance from the community 1.

A.2.2 Python

Python is a popular general-purpose programming language that was created
by Guido van Rossum and released in 1991. Since then, it has become one of the
most widely used programming languages in the world. Python’s popularity
can be attributed to its simplicity, readability, and ease of use. It is a high-level
language that is interpreted, which means that it does not need to be compiled
before it can be run. This makes it easy to write and test code quickly. Python
is also an object-oriented language, which means that it supports the creation
of objects that have properties and methods. This makes it easy to write
complex programs that are easy to maintain and extend. Additionally, Python
has a large standard library that provides many useful modules for tasks such
as web development, data analysis, and scientific computing 2.

A.2.3 Kaggle

Kaggle is an online community and platform for data scientists and ML prac-
titioners. It provides a variety of tools, such as datasets, ML competitions,
discussion forums, and interactive courses. Users can analyze and investigate
varied datasets, participate in machine learning challenges to solve real-world
problems, cooperate with each other via conversations and code sharing, and
improve their abilities through interactive classes. It provides a central location
for data science enthusiasts to study, cooperate, and demonstrate their skills
in a collaborative and competitive atmosphere 3.

A.2.4 Keras

Keras is a Python-based open-source NN library that is easy to use. It offers
a high-level API for developing and training DL models. Keras allows users

1https://link.springer.com/chapter/10.1007/978-1-4842-6901-5_1
2https://www.python.org/
3https://www.kaggle.com/

A.2. Libraries and Tools 53

to easily design and test with various NN architectures such as CNNs, RNNs,
and Muilti Layer perceptron (MLP). It includes pre-defined layers, activation
functions, and optimizers that can be integrated simply, as well as a chance to
modify and construct custom layers and loss functions. Keras interfaces effort-
lessly with major DL frameworks like TensorFlow and Theano, and it stresses
ease and accessibility. It is frequently employed for deep learning applications
because of its simplicity of usage, versatility, and compatibility 4.

A.2.5 Scikit-learn

Scikit-learn (sklearn)is a popular open-source Python ML library. It includes
a complete set of tools and methods for a wide range of ML problems, like
regression, clustering, classification, and dimensionality reduction. Scikit-learn
provides effective implementations of major ML techniques and enables data
preprocessing, feature extraction, and model evaluation through an intuitive
and consistent API. It works well alongside additional Python scientific com-
puting packages and is compatible with frameworks such as TensorFlow and
PyTorch 5.

A.2.6 Tensorflow

TensorFlow is a prominent open-source deep learning framework created by
Google. It provides an extensive framework for creating and implementing
machine learning models. TensorFlow allows programmers to create and train
neural networks using high-level API such as Keras, or they can use the lower-
level TensorFlow API for further customization. The framework enables a wide
range of NN topologies, like CNN, Recurrent neural network (RNN), and trans-
formers. TensorFlow offers distributed computing features for training models
over numerous Graphic Processing Unit (GPU) or workstations. It also makes
model deployment easier on a variety of platforms, such as mobile and edge
devices. The TensorFlow ecosystem offers pre-trained models, datasets, and li-
braries that enable tasks such as image classification, object identification, and
natural language processing. Compatibility with major libraries and frame-
works improves interoperability 6.

A.2.7 VGG Image Annotator

VGG Image Annotator is an image and video annotation tool that was built by
researchers at Oxford University. It is a free open-source tool and is available
on the website. Some of the key points of the VGG annotator are that it is
used to define regions in images and videos, used for object detection, image
segmentation, and other computer vision tasks; it supports a variety of formats,
which include Joint Photographic Experts Group (JPEG), Portable Network

4https://doi.org/10.1007/978-1-4842-3516-4_2
5http://scikit-learn.sourceforge.net.
6https://journals.sagepub.com/doi/10.3102/1076998619872761

54 Appendix A. Supplemental Information

Graphics (PNG), Bitmap Image file (BMP), and Tagged Image File Format
(TIFF); it is used to emulate the performance of computer vision tasks; it is
used to label images and videos for supervised learning; it has a simple interface,
making it a great choice for simple annotation projects; and it also supports
circles and ellipses for polygon labelling 7.

A.3 Terms related to chapter 2

A.3.1 Linearity versus Non-Linearity in NN

Linearity refers to the property of a model in which the output is directly
proportional to the input, whereas non-linearity denotes a more complex rela-
tionship between input and output that cannot be expressed as a simple linear
function.

Linearity: Linear models are frequently the simplest and most effective method.
A linear model, in fact, fits a straight line to the data, allowing it to predict
based on a linear relationship between the input features and the output vari-
able.

Non-Linearity: Non-linear models, on the other hand, can capture more
complex relationships between the input features and the output variable. This
makes them useful in situations where a linear model may not be able to ac-
curately represent the data.

A.3.2 Feature Maps

A feature map is the output of a particular filter applied to an input image. It is
also known as an activation map or feature activation. These filters are small
sections of the image that represent various characteristics. One filter may
detect horizontal lines, while another may detect edges. Each filter applied to
the input image generates a feature map that highlights the areas of the image
that contain that particular feature. When multiple filters are applied to an
input image, the same number of feature maps are generated [28].
A channel is a collection of feature maps which act as a convolutional layer’s
output [13].

A.3.3 Bottlenecks

In the context of NN, a bottleneck refers to a layer in the network that has a
smaller number of neurons than the layers before or after it. The purpose of a
bottleneck layer is to make it easier for the network to process.

7https://www.robots.ox.ac.uk/~vgg/software/via/

A.3. Terms related to chapter 2 55

Figure A.1: Visualization of a bottleneck architecture, which was inspired from [59]

A.3.4 Activation Function

In NN, an activation function is a mathematical function that adds non-
linearity to the output of the network. This function is applied to the weighted
sum total of a neuron’s inputs and decides whether the neuron needs to be
activated or not. The purpose of the activation function is to introduce non-
linearity into the network.

There are several kinds of activation functions, and each one uniquely processes
data. Sigmoid, Rectified linear activation unit (ReLU), and Softmax are some
examples of activation functions. Each of these functions has distinct proper-
ties and is best suited to specific tasks. The Sigmoid function, for example, is
frequently used in binary classification tasks, whereas the Softmax function is
commonly used in multi-class classification tasks [4].

Linear Activation Function

A linear activation function is a mathematical function that performs a simple
linear transformation on the input data. Unlike other activation functions, it
does not introduce any non-linearity into the network’s output. As a result, it
is often used in the final layer of a neural network for regression tasks, where
the goal is to predict a continuous output value. In MobileNetV2, the linear
activation function is used in the final layer of the network. This layer produces
a vector of scores that represents the predicted probabilities of the input image
belonging to different classes. These scores are calculated by multiplying the
input features by a set of weights and adding a bias term. The linear activation
function is then applied to this result to produce the final output scores [41].

ReLU6 (Rectified Linear Unit) Activation Function

56 Appendix A. Supplemental Information

ReLU6 is a type of activation function that is commonly used in NN. Its pur-
pose is to prevent the activation values from becoming too large, which could
slow down the learning process and cause numerical instability. The ReLU6
activation function is applied after each convolutional layer in the network. By
using the ReLU6 function, non-linearity is introduced into the network, which
is important for learning complex patterns in the data. In MobileNetV2, the
ReLU6 function is specifically used to keep the model lightweight and compu-
tationally efficient [41].

A.3.5 Train, test and validate data sets

Train dataset: A training dataset is a set of data used to train an ML or
DL model. It is a subset of the overall dataset that is used to teach the model
how to recognize patterns and make predictions based on the input data [45].

Validation dataset: A validation set is used to monitor the model perfor-
mance during the training process, fine-tune hyperparameters, and perform
model selection [45].

Test dataset: A test set is ideally used only once at the very end of the
project to evaluate the performance of the final model that is fine-tuned and
selected on the training process with training and validation sets [45].

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona,
Sweden

