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ABSTRACT 

Water resources play an important role in society and fulfill various functions such as providing 
drinking water, supporting industrial production and enhancing the overall landscape. Water 
bodies, such as rivers and lakes, are particularly important in this context. However, as societies 
and economies develop, the demand for water increases significantly. This also leads to the release 
of domestic, agricultural and industrial wastewater, which often exceeds the self-purification 
capacity of water bodies. Consequently, rivers and lakes are getting more and more polluted, 
endangering the safety of drinking water and causing ecological damage, affecting human health 
and biodiversity. 

Water quality monitoring plays a crucial role in evaluating the state of water bodies. Traditional 
monitoring methods involve labor-intensive field sampling and expensive construction and 
maintenance of automatic stations. Although these methods provide accurate results, they are 
limited to specific sampling points and struggle to meet the demands of monitoring water quality 
across entire surfaces of rivers and lakes. This degree project aim at developing a method that can 
predict absorbance in water with the aim of remote sensing. Along with multispectral imaging and 
machine learning this work proves that this is possible. The result from multivariate analysis is an 
optimal model that can predict absorbance at 420 nm with RSQ of 0,996 and RMSE of 0,00081. 

Keywords: Remote Sensing, Multivariate Analysis, Machine Learning, GIS, Spectroscopy, 
Spectral imaging, Multispectral imaging, Water Quality 
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DEFINITIONS 

Definition Description

Absorbance Absorbance refers to the degree to which a substance absorbs light at a specific 
wavelength, often measured as the logarithm of the ratio of incident and 
transmitted light intensities.

Sentinel-2 Sentinel-2 refers to a satellite mission by the European Space Agency (ESA) 
that provides high-resolution optical imagery of the Earth's surface for various 
applications including land cover mapping, vegetation monitoring, and 
environmental assessment.

Spectroscopy Spectroscopy is the study and analysis of the interaction between matter and 
electromagnetic radiation, typically involving the measurement and 
interpretation of the resulting spectra.

Turbidity Turbidity refers to the cloudiness or haziness of a liquid caused by the 
presence of suspended particles, such as sediment, silt, or fine particles.
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1. INTRODUCTION 

This works is aimed at achieving a master's degree in environmental engineering. The goal is to 
develop a predictive model for measuring absorbance in water, using multispectral imaging and 
various regression models. The dissertation begins with an introduction that provides a 
contextual understanding of the problem. It is followed by an extensive literature review 
describing similar techniques used in previous studies. The methodology used and the results 
obtained are then described in detail, culminating in a discussion and conclusion section that 
concludes the report. 

1.1 Background 

This work is part of the research collaboration AMORE, which involves Mälardalen University and 
Mid Sweden University. The project focuses on studying water quality in the northern 
Scandinavian mountains. In a previous project called ECWA-NOR (Mittuniversitet, 2022b), it was 
concluded that certain water chemical parameters such as color and chemical oxygen demand 
(COD) could potentially serve as indicators for the presence of the faecal indicator organism E. coli 
(Maes et. al., 2021 ). Based on this, the ongoing project AMORE (Mittuniversitet, 2022a) aims to 
further investigate this relationship. The ultimate goal is to determine whether these correlations 
can be used to establish early warning systems to detect fecal pollution outbreaks through remote, 
airborne monitoring of physicochemical water properties. 

Considering the high costs and logistical challenges associated with conventional methods of 
monitoring water quality, especially in mountainous regions with limited road access and long 
distances, it becomes desirable to use unmanned aerial vehicle (UAV)  for monitoring purposes. 
Therefore, the ability to detect water features using remote sensing techniques, including UAV and 
satellite imagery, becomes critical. Many studies have demonstrated the benefits of using 
multispectral imaging to assess water quality (Veronez et al., 2018; McEliece et al., 2020; Cui et al. 
2022). Consequently, this study places a primary emphasis on the application of multispectral 
imaging techniques to improve water quality monitoring capabilities. 

In relation to the assessment of water quality, empirical evidence suggests that absorbance 
measurements at a wavelength of 420 nm can provide a reliable approximation of the brown color 
(SLU, 2022). Along with the outcome from ECWA-NOR this concludes that it should be possible to 
get an indication with remote sensing whether water may contain E. Coli and also with rather 
simple methods validate this with spectroscopy. 

Spectral data  are often used in conjunction with chemometric techniques, such as multivariate 
regression or classification, to develop models that can predict the composition of a sample based 
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on its spectrum. These models can be used for quality control, process optimization, and other 
purposes. In this degree project, water sampling has been conducted with the purpose of 
developing a model that can predict the absorbance of water at specific wavelengths using remote 
sensing techniques. The sampling process involved collecting water samples from various locations 
and measuring their absorbance values at the desired wavelengths. These measurements serve as 
the basis for establishing a relationship between the spectral properties of water and its 
absorbance. By analyzing and modeling the collected data, it becomes possible to create a 
predictive model that can estimate the absorbance of water at those specific wavelengths using 
remote sensing imagery. This approach enables the assessment of water quality and the monitoring 
of environmental changes using non-invasive remote sensing techniques, providing valuable 
insights into the health and characteristics of water bodies. 

1.1.1 Description of technical area 

Prasad & Chanussot (2020) describes multispectral imaging as a technique that involves capturing 
and analyzing images at multiple wavelengths across the electromagnetic spectrum. It captures 
data from specific spectral bands, enabling the analysis of different wavelengths of light. Each band 
can reveal unique information about the depicted objects or scene. By capturing data from multiple 
spectral bands, multispectral imaging enables improved discrimination and differentiation of 
objects based on their spectral characteristics. This can be useful in various applications such as 
agriculture, environmental monitoring, remote sensing and medical imaging. 

And as stated by Chang et al. (2022), multispectral data is usually processed using algorithms and 
techniques to extract valuable information. This may involve techniques such as image fusion, 
classification and feature extraction to gain meaningful insights. 

Multispectral imaging is one of the foundations of this work, three different types of multispectral 
images have been used, images from RedEdge MX, a small camera that’s been used to take photos 
of water at close range. Images from the multispectral camera that’s attached to DJI phantom 4, 
photos with this camera have been at an height of 50m. Finally, also images from the Sentinel-2 
satellites. 

1.2 Sustainable Development Goals 

Water plays an important role in sustaining life on our planet, making its assessment relevant to 
almost all Sustainable Development Goals (SDGs). Although all SDGs have some connection to 
water, some goals are particularly crucial in this context. 
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SDG 6: Clean Water and Sanitation – Help monitor and manage water resources, assess water 
quality parameters and identify sources of pollution. This helps to ensure the availability and 
sustainable management of water and sanitation for all. 

SDG 9: Industry, Innovation, and Infrastructure - Offer innovative methods for monitoring and 
managing water quality, providing valuable data for informed decision-making and infrastructure 
planning related to water resources. 

SDG 11: Sustainable Cities and Communities - Assessing water supports sustainable urban 
development by monitoring and managing water resources, identifying potential risks or pollution 
sources, and promoting resilient and sustainable water management practices in cities and 
communities. 

SDG 13: Climate Action - Help monitor the effects of climate change on water quality and identify 
trends or changes in water bodies. This information is critical to understanding the impacts of 
climate change and developing effective adaptation and mitigation strategies. 

SDG 14: Life Below Water - Assessing water quality is critical to the conservation and sustainable 
use of seas, oceans and marine resources. Provide valuable insights into the health of marine 
ecosystems, detect harmful algal blooms, track pollution sources and support marine conservation 
efforts. 

SDG 15: Life on Land - Monitoring and managing water quality in terrestrial ecosystems is critical 
to maintaining healthy ecosystems and biodiversity. Help assess the effects of changes in land use, 
agriculture and deforestation on water quality in rivers, lakes and wetlands. 

1.2 Purpose/Aim 

Is it necessary to be able to monitor water quality in remote areas in a timely and cost effective way. 
To do this by using remote sensing there needs to be a way of establishing a proxy for certain water 
properties. With multispectral and hyperspectral cameras it is possible to collect information about 
water, however even though using UAV for accessing water quality in remote areas is, compared to 
manual sampling an effective way, it would be far more effective to use satellite imaging for this. 
The Sentinel-2 observations are visiting every spot on the earth every five days, if these images 
could be used much is to be gained. 

Constructing models based on remote sensing data usually faces challenges in obtaining accurate 
reference samples and capturing images free of disturbances, such as glare or reflections. In this 
study, an approach to address these challenges is pursued by performing close-range sensing at a 
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height of 2 meters above the surface, with the aim of reducing interference and obtaining a more 
accurate reference sample. In addition, this thesis aims to investigate the untested method of 
applying a model derived from images taken by a multispectral camera to another multispectral 
camera. 

Overall the aim of this thesis is to create a framework that facilitates the use of Sentinel-2 images 
for the assessment of water properties. 

1.3 Research questions 

• How can water quality be measured with multispectral camera? 
• What accuracy can be achieved on a model that uses multispectral data to predict absorbance at 

certain wavelengths?  
• How can a model generated by a particular multispectral camera be utilized for analyzing satellite 

imagery? 

1.4 Delimitation 

This thesis will primarily focus on investigating absorbance as the most important water property. 
In the context of the AMORE project, remote sensing of clear mountain water bodies presents 
significant challenges, especially when the bottom of the water body is visible. However, for the 
purposes of this thesis, bodies of water with a visible bottom will be excluded from the sampling 
process. Instead, sampling will be done in watercourses where the bottom is not visually 
discernible. Assessing rivers and streams using remote sensing presents difficulties due to the 
presence of nearby shadows, especially in narrower streams. Although addressing these challenges 
is complex, it will not be the main focus of this thesis. Instead, sampling efforts will be 
concentrated in lakes where the bottom cannot be detected visually and where other major 
disturbances are absent. 
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2. LITERATURE REVIEW 

A literature study on current aerial monitoring techniques of water and water properties have 
been performed. To find articles Scopus and Google Scholar have been used to search for articles 
with the keywords: Remote Sensing, Multivariate Analysis, Machine Learning, Spectral imaging, 
Multispectral imaging, Water Quality, Brownness.  

2.1 Brownness in water 

Suspended matter and turbidity are both measures of the clarity of water and are related to the 
amount of particles that are suspended in the water. Suspended matter refers to the amount of 
solid particles or material that is suspended in the water, including organic and inorganic particles, 
such as soil, algae, bacteria, and other substances. These particles can come from various sources 
such as erosion, industrial and agricultural runoff, sewage, and natural biological processes 
(UNESCO, 2019). 

USGS (USGS, 2018) explains turbidity as a measure of the cloudiness or haziness of water caused 
by the presence of suspended particles, such as clay, silt, and organic matter. It is often used as an 
indirect measure of the concentration of suspended matter in the water. Both suspended matter 
and turbidity can have negative impacts on aquatic life and ecosystems. High levels of suspended 
matter and turbidity can reduce the amount of light that penetrates the water, which can affect 
photosynthesis and the growth of aquatic plants. Suspended matter can also smother fish eggs, 
reduce the feeding efficiency of fish and other aquatic organisms, and impact water quality for 
human consumption.To measure suspended matter and turbidity in water, various instruments 
and methods can be used, such as turbidity meters, nephelometers, and sedimentation methods. 
These measurements are important for assessing water quality and the health of aquatic 
ecosystems.  

Swedish University of Agricultural Sciences (SLU) is hosting the web service Miljödata MVM, 
here aggregated data for regions over time periods are provided. Usually these measurements are 
done on behalf  of Swedish Agency for Marine and Water Management. Since 1965 they have 
measured absorbance at 420 nm in water bodies in Sweden. Until 2010 they defined turbidity as 
the difference in absorbance between unfiltered and filtered water at 420 nm. Filtered water 
implies that a NCE filter with a density of 0,45 µm has been used to filter the water (Wallmain, 
2010). Sweden has relatively brown water due to high levels of dissolved humic substances that are 
brought into the water from the surrounding forest and wetlands. Part of the brown color also 
comes from iron and manganese compounds. The dark color of water colored in this way means 
that the sun's light rays are not as far down into the water mass. Both iron and humic substances 
form complexes with nutrients, which means that brown lakes can have relatively high levels of 
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nutrients that are not readily available to the organisms. When assessing the status of lakes, the 
water color is therefore taken into account, which is therefore an important parameter to measure 
(Sveriges Vattenmiljö, 2023). 

Walve's (2020) study speculates on the potential impact of brown water in lakes and streams on 
coastal waters. The study indicates that the visibility depth in coastal waters is not only affected by 
eutrophication, which leads to increased plankton abundance, but also by variations in water color. 
According to Walve (2020), work is underway to develop satellite measurements as alternative 
methods for assessing turbidity. However, it is critical to obtain validation data to assess the 
accuracy of the models used to convert the satellite measurements. 

It is important to note that the presence of brownness in the water does not necessarily indicate 
poor water quality or pollution. Although excess organic matter can have consequences, natural 
variations in water color are common and can be influenced by factors specific to each body of 
water and its surrounding environment. 

2.2 Multivariate Analysis 

Multivariate analysis is a statistical approach that deals with the simultaneous analysis of several 
variables to understand relationships, patterns and structures within a data set. It involves 
analyzing and interpreting data with two or more variables to gain insights into complex 
relationships to make regression or classifications. 

Multivariate analysis is a statistical approach that aims to uncover patterns, associations, and 
dependencies, and understand how changes in one variable relate to changes in others (Johnson & 
Wichern, 2002). It involves the use of various statistical techniques and methods to analyze and 
interpret complex data sets. Principal Component Analysis (PCA) is one commonly used technique 
in multivariate analysis (Jolliffe, 2002). It helps in reducing the dimensionality of large data sets 
while retaining the most important information. By identifying patterns and correlations in the 
data, PCA transforms the data into a set of new variables called principal components. These 
components capture the majority of the variability present in the original data, making it easier to 
visualize and analyze (Yang, 2019). 

Regression modeling is a statistical technique employed in multivariate analysis (Kutner et al., 
2004). It aims to quantify the relationship between a dependent variable and one or more 
independent variables. Multiple Linear Regression (MLR), Partial Least Squares Regression 
(PLSR), Support Vector Machine (SVM), and Artificial Neural Network (ANN) are commonly used 
regression models (Hair et al., 2010). 
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Multiple Linear Regression (MLR) is used to predict the dependent variable using a linear 
combination of independent variables. It helps in understanding the collective and individual 
effects of independent variables on the dependent variable (Hair et al., 2010). Partial Least Squares 
Regression (PLSR) is particularly useful when dealing with high-dimensional data or 
multicollinearity issues. PLSR constructs latent variables, known as principal components, to 
capture the variance in both the independent and dependent variables. It is effective in modeling 
complex relationships and handling collinearity between variables (Hair et al., 2010). Support 
Vector Machine (SVM) is a powerful algorithm for classification and regression tasks. It finds an 
optimal hyperplane that separates data into different classes or predicts the values of a continuous 
variable. SVM can handle linearly separable and non-linearly separable data and is effective in 
handling high-dimensional data and outliers (Hair et al., 2010). Artificial Neural Networks (ANN) 
are computational models inspired by the structure and function of the human brain. ANN consists 
of interconnected nodes organized in layers, which process input to produce an output. The 
connections between neurons have associated weights that are adjusted during training to optimize 
the network's performance. ANN is capable of learning complex patterns and relationships in data, 
making it suitable for tasks such as classification, regression, and pattern recognition. It excels in 
handling non-linear relationships and adapting to different data sets (Haykin, 1999). 

2.3 Remote Sensing Indices 

Remote sensing indices are mathematical formulas or algorithms applied to remotely sensed data, 
such as satellite images, to extract specific information about the Earth's surface or its properties. 
These indices are designed to enhance certain features or characteristics of the observed data, 
enabling researchers and analysts to gain valuable insights. 

Different remote sensing indices have been developed to highlight different environmental factors 
or phenomena. Elhag et al. (2019) discuss the assessment of water quality in Saudi Arabia, focusing 
on the utilization of remote sensing data and various indices to evaluate water-related properties 
and conditions. Among the remote sensing indices employed in their study, two commonly used 
indices are highlighted: Normalized Difference Water Index (NDWI) and Normalized Difference 
Turbidity Index (NDTI). Also Gao (1996) uses these indices for water assessment with remote 
sensing. 

NDWI is an index used to identify and monitor the presence of water bodies. It quantifies the 
relative difference in the reflectance of near-infrared (NIR) and green or short-wave infrared 
(SWIR) bands. To calculate NDWI using Sentinel-2 data, is performed according to equation 1: 

                 Equation 1 NDWI = (B3 − B8)/(B3 + B8)

7



where B3 represents the green band and B8 represents the NIR band. 

NDTI is an index that provides an estimate of water turbidity or suspended sediment 
concentrations in watercourses. It exploits the difference in reflectance between red and SWIR 
bands. Higher NDTI values indicate a higher probability of turbidity or the presence of suspended 
sediment. To calculate the NDTI using Sentinel-2 data, is performed according to equation 2: 

                 Equation 2 

where B4 represents the red band and B11 represents the SWIR band. 

2.4 Remote Sensing and Machine Learning  

Water quality is of paramount importance for maintaining the health and sustainability of our 
environment. It is subject to various challenges and disturbances caused by urbanization, 
industrialization, and human activities. Traditional methods of monitoring water quality typically 
involve on-site measurements, which are accurate but often limited in terms of coverage, 
frequency, and real-time information. To address these limitations, the integration of machine 
learning techniques with remote sensing data has emerged as a promising and powerful approach.  

In a recent study conducted by Adjovu et al. (2023), a comprehensive overview of remote sensing 
applications for water monitoring was presented. The researchers emphasized that remote sensing 
involves the acquisition of data pertaining to the Earth's surface through the utilization of sensors 
deployed on satellites, aircraft, or unmanned aerial vehicles (UAVs). These sensors capture 
information in various wavelengths, allowing for the assessment of water quality parameters such 
as turbidity, chlorophyll-a concentration, and dissolved organic matter. Machine learning 
algorithms, such as regression models, support vector machines, and neural networks, can be 
trained using remote sensing data to predict water quality parameters. These algorithms learn from 
patterns and relationships in the data and are capable of providing accurate predictions over large 
spatial areas and extended time periods. By integrating machine learning with remote sensing data, 
water quality monitoring can be conducted more efficiently. This approach allows for continuous 
monitoring, rapid assessment, and identification of potential pollution sources or changes in water 
quality conditions. The integration of machine learning and remote sensing data offers a powerful 
tool to overcome the limitations of traditional monitoring methods, enabling us to better 
understand, assess, and manage water quality in a timely and cost-effective manner. 

NDTI = (B4 − B11)/(B4 + B11)
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2.5 Previous research in the corresponding field  

This section presents several studies that have effectively integrated remote sensing with either 
machine learning techniques or indices. 

Sharaf El Din & Zhang (2017) show that machine learning algorithms such as support vector 
machine regression and artificial neural network provide accurate results when combined with 
remote sensing-based geospatial data. The use of satellite imagery and artificial intelligence 
enables the mapping and monitoring of surface water quality parameters. Also the combination of 
satellite imagery and artificial intelligence proves to be effective in obtaining representative water 
samples and assessing overall surface water quality levels. The resulting models, validated by 
correlation analysis, demonstrate their reliability in predicting surface water quality levels and 
deriving accurate water quality indices. With 66 sample they managed to produce models with RSQ 
above 0.80. 

In a study be Veronez et al. (2018), they aimed to predict multispectral bands from a low-cost ANN 
sensor for UAV water quality monitoring. The research was conducted at a lake on the campus of 
Unisinos University in Brazil, where 21 water samples were collected simultaneously for TSS and 
DOM analysis. By correlating the predicted bands with TSS and DOM, they achieved promising 
results, where the ANN accurately predicted the multispectral bands from the low-cost sensor. The 
correlations with TSS and DOM gave RSQ values greater than 0.60. In another study by Garg et al. 
(2020) demonstrated the use of Sentinel-2 data to assess turbidity changes in the Ganga River 
during the Covid-19 lockdown, demonstrating the potential for remote sensing without field 
observations. They used NDWI and NDTI indices to estimate turbidity. 

Vogt and Vogt (2016) used a modified GoPro camera attached to a fixed-wing aircraft to estimate 
turbidity in a lake. They compared their results with Secchi disc measurements (Secchi disc 
measurement is a method where a disc is attached to a graduated cord and lowered into water 
being sampled until it is no longer visible from the surface) and found that the images produced 
more detailed gradient maps. The NDTI index was used and glare challenges were identified. They 
also developed a with a technique to manage glare by position the aircraft relative to the sunlight. 

Cui et al. (2022) used a drone equipped with a hyperspectral camera to collect spectra for turbidity 
prediction. They conducted controlled experiments to establish turbidity recovery models and 
validated their accuracy using UAV flight data and a set of 18 water samples. The researchers used 
PLS regression models along with extensive preprocessing techniques for their analysis and 
achieved RSQ of 0.72. McEliece et al. (2020) assessed water quality, particularly Chl-a 
concentration and turbidity, using UAV multispectral imagery. They used linear regression 
methods for prediction, and problems with bottom reflectance were noted. Their study involved 35 
reference measurements with a nephelometer and fluorescence spectrometer. 
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In a study conducted by Al-Kharusi et al. (2019), Sentinel-2 imagery was employed to monitor the 
absorbance at 420 nm in a total of 46 lakes. The researchers employed various band ratios and 
investigated their relationships with absorbance. The best result was achieved using Partial Least 
Squares Regression (PLSR), yielding an RSQ value of 0.65. This indicates a moderate level of 
correlation between the selected band ratios and the absorbance measurements in the lakes. 

Together, these articles highlight the application of remote sensing techniques, including specific 
indices and images from satellites, aircraft and drones, in the assessment of turbidity and water 
quality. Different approaches were used, ranging from qualitative estimation to regression 
modeling, each with their own strengths and considerations. Especially remote sensing techniques 
using UAVs and multispectral sensors offer promising opportunities for water quality monitoring. 
These technologies provide high-resolution and spatially extensive data, enabling effective 
assessment of various water parameters. While these studies have contributed valuable insights, 
there are research gaps and opportunities for further investigation remain. One notable research 
gap is the limited utilization of handheld cameras with multispectral capabilities in water quality 
assessment. The novelty and importance of this project lie in its focus on developing a model using 
a handheld camera and subsequently applying it successfully to satellite data. This approach 
presents a unique opportunity to bridge the gap between field-based measurements and satellite 
imagery, providing more accurate and reliable water quality assessments. By using a handheld 
camera, this project enables researchers to reduce interference and obtain more precise reference 
samples for model development. This approach addresses a key challenge in remote sensing-based 
water quality assessment, where differences in bandwidth and resolution between satellite data 
and ground-based measurements can introduce uncertainties. 
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3. METHODOLOGY 

The following chapter describes the methodology used to complete the thesis. It begins by 
detailing the procedural steps taken and the methods used to collect and process the data. In 
addition, it deepens the concept of multivariate analysis and highlights the importance of 
research ethical considerations. 

3.1 Procedure 

To predict water properties using satellite images, a model needs to be developed. This model is 
constructed based on data collected from a handheld camera and spectroscopy analysis of water 
samples. Several models are generated and evaluated, and the most optimal one is selected for 
application to the satellite data. However, applying the model to satellite imagery poses specific 
challenges that need to be addressed. One challenge is the difference in bandwidth between the 
satellite sensor and the data used to train the model. Satellite imagery operates within specific 
spectral bands, and these bands may not align perfectly with the bands captured by the handheld 
camera. This misalignment can introduce uncertainties and errors in the prediction process. 
Also satellite imagery typically has lower resolution compared to data obtained from handheld 
cameras or drones. The limited resolution of satellite images can make it more challenging to 
accurately detect and analyze the variations in water bodies. Fine-scale features and subtle changes 
may not be captured adequately, which could impact the accuracy of the predictions. 

To overcome some of these limitations, a drone equipped with a camera that shares similar spectral 
bands to the handheld camera will be used. The drone data can provide more detailed and localized 
information about the water bodies, enhancing the monitoring process. The model developed using 
the handheld camera data can be applied to the drone data to obtain fine-grained insights into the 
water properties. To validate the effectiveness of this method, the results obtained from the drone 
data will be compared with the corresponding satellite data. This comparative analysis serves as a 
crucial step in verifying the accuracy and reliability of the model. By comparing the predictions 
from the drone data with the satellite data, any discrepancies or deviations can be identified and 
assessed. Figure 1 visually represents the planned procedure, illustrating the flow of data collection, 
model development, application to satellite and drone data, and the comparative analysis between 
the two datasets. 
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Figure 1: Procedure to produce and validate a multivariate model. 

3.2 Collect data 

3.2.1 Indices to identify water bodies 

Before selecting sampling sites, an evaluation of the nearby water bodies was performed to ensure 
an adequate level of dissimilarity between lakes. If all lakes shared similar characteristics, it would 
be challenging to develop a model. This assessment was carried out using the indices NDWI and 
NDTI. 

The results displayed in Figure 2 illustrate the outcomes of applying the NDWI (Normalized 
Difference Water Index) and NDTI (Normalized Difference Turbidity Index) to the water bodies. 
The variations observed in the indices indicate differences between different water bodies. 
Moreover, within each individual water body, fluctuations in the indices can be observed. 
These findings have important implications for sampling strategies and the interpretation of 
absorbance values. The variations between water bodies suggest that different water bodies possess 
distinct properties and characteristics that influence the measured absorbance values. 

The fluctuations within individual water bodies highlight the spatial heterogeneity within these 
bodies of water. This means that different areas within the same water body may exhibit varying 
levels of absorbance. Therefore, sampling from different locations within the water bodies can yield 
different absorbance values. It is essential to account for this spatial variability when designing 
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sampling campaigns and interpreting the obtained results. It is worth noting that additional 
analysis and investigation are necessary to determine the specific factors contributing to the 
observed variations and fluctuations in the NDWI and NDTI indices. These factors could include 
environmental conditions, water composition, land use, and other relevant variables. 
Understanding these factors will further enhance the interpretation and application of the 
absorbance values derived from remote sensing indices in assessing water quality and related 
phenomena. 
 

Figure 2: NDWI and NDTI indices in the vicinity of Gothenburg. 

3.2.2 Water-samples in bottles 

Water samples are collected using PET bottles that have been thoroughly rinsed to prevent any 
contamination. The careful collection process ensures that the samples remain pristine and free 
from any external influences. After collection, the water samples are stored in a cool and dark 
environment to maintain their integrity until they are analyzed. 

The water samples are collected from either the surface of the water or from just below the water 
surface. This standardized sampling depth ensures consistency across all samples and helps to 
capture the characteristics of the target area accurately. The volume of each water sample is 
approximately 500 ml, providing an adequate amount of water for comprehensive analysis. This 
sample size allows for conducting multiple tests and measurements to obtain a thorough 
understanding of the water's properties. By following these meticulous sampling procedures, the 
collected water samples are representative of the specific area under investigation. 
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3.2.3 RedEdge MX micasense 

The hand-held camera used in this study is equipped with a multispectral sensor consisting of five 
lenses, as illustrated in Figure 3. During the sampling process, the camera is securely mounted on a 
stick and positioned approximately 2 meters above the water surface. To achieve consistent image 
alignment, a geometric object is employed and positioned in the water. This object serves the dual 
purpose of reducing wave and ripple disturbances on the water surface, leading to improved image 
quality and alignment. In some cases, the researchers may use waders or even an inflatable raft to 
access deeper parts of the watercourses for extensive sampling. To guarantee uninterrupted power 
supply, the camera is connected to a power bank.   

Figure 3: Micasense RedEdge MX camera (MicaSense, 2023) to the left, using the camera in field work to 
the right. 

To achieve precise and dependable measurements, the utilization of a calibration panel is essential. 
Prior to each photo session, capturing an image of the calibration panel is necessary. These panel 
photos play a crucial role in the subsequent image processing stage by facilitating the calibration of 
reflectance values. By referencing the images on the calibration panel, the acquired data can be 
appropriately adjusted to compensate for any fluctuations in lighting conditions or sensor 
sensitivity. This calibration process ensures the accuracy and reliability of the measurements, 
allowing for a robust analysis of the collected data. In this work, the camera used is equipped with a 
RedEdge sensor, which consists of several bands. The specific bands associated with the RedEdge 
camera are described in Table 1 (MicaSense, 2023). 

Table 1: Micasense RedEdge MX bands (MicaSense, 2023). 

Band Center Bandwidth

Blue 475 nm 32 nm

Green 560 nm 27 nm

Red 668 nm 16 nm

Red edge 717 nm 12 nm

Near infrared 842 nm 57 nm
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3.2.4 DJI Phantom 4 Multispectral 

The UAV used in this study is provided by MDU, it is the DJI Phantom 4 Multispectral, shown in 
Figure 4. The drone is equipped with specific bands, which are described in Table 2 (DJI, 2023). A 
notable observation is that when comparing the bandwidths of the RedEdge camera, it is clear that 
there is an overlap between all the bands, albeit with small variations of a few nanometers. This 
overlap ensures that the drone's spectral range complements and matches the RedEdge camera's 
band, enabling extensive and synchronized data collection. 

An additional feature of the UAV is the inclusion of an integrated spectral sunlight sensor located 
on top of the drone. This sensor captures solar radiation, enabling the collection of highly accurate 
and consistent data over different time periods throughout the day. By taking into account 
variations in sunlight intensity, this built-in sensor improves the reliability and precision of the 
collected data, regardless of the specific time at which the measurements are taken. As a result, in 
this scenario, the reliance on a calibration panel is unnecessary, as the sunlight sensor fulfills the 
calibration requirements. 

Table 2: DJI Phantom 4 Multispectral bands (DJI, 2023). 

 

Figure 4: DJI Phantom 4 Multispectral, closeup to the left (DJI, 2023), UAV in field work to the right. 

Band Center Bandwidth

Blue 450 nm 16 nm

Green 560 nm 16 nm

Red 650 nm 16 nm

Red edge 730 nm 16 nm

Near infrared 840 nm 26 nm
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3.2.4 Sentinel-2 

Sentinel-2 is a satellite mission developed by the European Space Agency (ESA, 2023) as part of 
the Copernicus program, which is a European Earth observation and environmental monitoring 
initiative. The primary purpose of the Sentinel-2 mission is to provide high-resolution optical 
imagery for ground monitoring and management. It aims to support various applications related to 
agriculture, forestry, land cover mapping, natural disaster monitoring and urban planning. 
Sentinel-2 consists of a constellation of two identical satellites, namely Sentinel-2A and 
Sentinel-2B. These satellites work together to ensure global coverage, revisit rate and data 
continuity. The satellites take multispectral images in 13 spectral bands, ranging from visible to 
short-wave infrared. The spatial resolution of Sentinel-2 imagery varies between bands, with the 
highest resolution of 10 meters for the visible and near-infrared bands. The other bands have 
resolutions of 20 meters and 60 meters.The Sentinel-2 satellites offer a short revisit time, with 
global coverage every 5 days. This frequent revisit rate makes it possible to monitor and track 
changes on the Earth's surface over time. 

The Copernicus Hub (Copernicus, 2023), officially known as the Copernicus Open Access Hub, is 
the primary online platform for accessing and distributing data collected by the Sentinel satellites. 
It provides free and open access to the vast archive of Sentinel data, allowing users to search, 
download and process the images for various applications. 

Table 3: Sentinel-2 bands (ESA, 2023) 
Band Center Bandwidth

Ultra Blue (B1) 443 nm 21 nm

Blue (B2) 490 nm 66 nm

Green (B3) 560 nm 36 nm

Red (B4) 655 nm 31 nm

Visible and Near Infrared (B5) 705 nm 15 nm

Visible and Near Infrared (B6) 740 nm 15 nm

Visible and Near Infrared (B7) 783 nm 20 nm

Visible and Near Infrared (B8) 842 nm 106 nm

Visible and Near Infrared (B8a) 865 nm 21 nm

Short Wave Infrared (B9) 940 nm 20 nm

Short Wave Infrared (B10) 1375 nm 31 nm

Short Wave Infrared (B11) 1610 nm 91 nm

Short Wave Infrared (B12) 2190 nm 175 nm
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Table 3 shows the available bands in the Sentinel-2 dataset, which consists of a total of 13 distinct 
bands. Among these bands, those that show the closest alignment with the bands on the RedEdge 
camera are B2, B3, B4, B6 and B8. These special bands will be used when the developed model is 
applied to the Sentinel-2 images. 

Through meticulous band selection that closely matches the spectral sensitivity of the RedEdge 
camera, the model's effectiveness in utilizing Sentinel-2 data is enhanced. This deliberate choice of 
bands ensures a robust and dependable assessment of water properties, fostering meaningful 
comparisons and analyses across diverse images and platforms. The alignment of corresponding 
bands between the RedEdge camera and Sentinel-2 data facilitates a holistic evaluation of water 
properties by the use of multispectral imagery. In this particular study, it is important to note that 
atmospheric correction was not applied to the Sentinel-2 data. This decision aligns with the 
findings of Al-Kharusi et al. (2019), who reported that better results in predicting absorbance at 
420 nm from Sentinel-2 imagery were achieved when using uncorrected data. By utilizing the 
uncorrected imagery, the study takes advantage of the inherent characteristics of the Sentinel-2 
data, potentially enhancing the accuracy and performance of the absorbance prediction model. 

3.3 Spectral imaging 

Prasad and Chanussot (2020) emphasize that spectral imaging plays a crucial role in obtaining a 
comprehensive understanding of objects or scenes by leveraging the detection and analysis of light 
at various wavelengths. This technique involves capturing images within specific spectral bands 
across the electromagnetic spectrum, enabling the differentiation and characterization of objects or 
materials based on their distinct spectral properties. By examining the intensity of light across 
different wavelengths, spectral imaging offers valuable insights into the composition, properties, 
and spatial distribution of materials. This detailed spectral information enhances our ability to 
study and interpret the characteristics of the observed targets, enabling a more comprehensive 
analysis and understanding of the subject matter. 

3.3.1 Radiometric calibration 

Radiometric calibration is a process used to convert the raw digital numbers obtained from remote 
sensing instruments into physical units of radiance or reflectance (Xue et al. 2023). This is 
necessary to ensure that data from different instruments, or from the same instrument at different 
times, can be compared accurately and consistently. Radiometric calibration is an important step 
in the processing of remote sensing data, as it ensures that the data is accurate, precise, and 
comparable over time and space. 
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Prior to capturing an image of the water, it is important to take a separate picture of the calibration 
panel. This preliminary step ensures accurate calibration and adjustment of the subsequent 
images. A dedicated script is used to use the calibration panel photo for the calibration process. 

In Appendix 8.3, specifically in the "Field Study Photos" section, refer to Image C to observe the 
calibration panel. The image shows the calibration panel used during the field study, providing a 
visual reference for the equipment and methodology used in the sampling process. The calibration 
panel serves as a reference point to determine the necessary adjustments and corrections for 
accurate and reliable analysis of the water images captured by the hand-held camera. 

3.3.2 Pre-processing 

After adjusting and calibrating the captured images, a specific part of each image is selected and 
cropped. This cropping process focuses on extracting a relevant region of interest. Consequently, a 
3D array comprising numerical values representing the spectral information of the cropped area is 
obtained. 

By unfolding the 3D array, the data is reshaped and organized into a 2D format, which simplifies 
its representation and facilitates its integration into different modeling approaches. This 
conversion enhances the compatibility and applicability of the data in the subsequent stages of 
analysis. When the deconvolution process is complete for all photos, a resulting dataset is obtained, 
consisting of 2D array representing the spectral information for each cropped image. To improve 
the quality and reduce the noise in the data set, a smoothing technique is applied. A moving 
average is used to smooth the data, resulting in a more refined and consistent representation of 
water properties across the images. 

By performing these steps of cropping, unfolding, and smoothing, the collected image data is 
processed and prepared for further analysis and modeling. 

3.4 UV-Vis spectroscopy 

Spectroscopy is the study of how matter interacts with light. Mendoza (2019) defines absorbance as 
a type of spectroscopy that measures the amount of light absorbed by a sample at a specific 
wavelength. This is typically done by shining light of a certain wavelength through a sample and 
measuring how much light is absorbed by the sample. The amount of light absorbed can provide 
information about the sample's composition, concentration, and other properties. Absorbance is 
commonly used in chemistry, biochemistry, and other fields to analyze and characterize a wide 
range of samples. 
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The spectroscopy analysis is conducted at the chemistry and biochemistry laboratory located at 
Chalmers. Within this facility, a range of instruments are available for use. In this work, the 
spectrometer employed is the Cary 4000 (shown in figure 5), which possesses the capability to 
measure the entire UV-Vis-NIR region. The spectral data obtained from the analysis is provided in 
a comma-separated values (csv) file format. The spectra measurements cover a wavelength range 
spanning from 250 to 700 nm. This range captures the relevant spectral information necessary for 
the analysis of the water samples. 
 

Figure 5: Spectrometer Cary 4000. 

3.4.2 Pre-processing 

In the context of this study, the construction of the dataset follows a straightforward procedure. 
The primary objective revolves around extracting the absorbance value specifically at 420 nm from 
the spectral data. Extensive literature review has confirmed the significance and relevance of this 
particular absorbance value. As such, there is no need for additional preprocessing steps beyond 
this targeted extraction process. Once the absorbance values at 420 nm have been successfully 
extracted from the spectral data, they can be readily employed for subsequent analysis and 
modeling. This streamlined approach greatly simplifies the dataset construction process, resulting 
in enhanced efficiency and direct utilization of the absorbance information at the desired 
wavelength. 

3.5 GIS 

Geographic Information System (GIS) is a technology utilized to capture, manage, analyze, and 
visualize spatial or geographic data. It integrates various layers of information, including maps, 
satellite images, and data points, to facilitate the examination and interpretation of geospatial data. 
In this degree project, GIS plays a crucial role in conducting an initial evaluation of the water 
bodies, as discussed in chapter 2.3.1. By utilizing GIS, it is possible to assess the characteristics and 
attributes of the water bodies, aiding in the selection of suitable sample locations for further 
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investigation. GIS enables the creation of maps that portray the distribution and characteristics of 
the water bodies, providing a visual representation of the data. Also it is a valuable tool for 
visualizing the resulting data obtained from the work. By integrating the collected data into GIS 
software, maps and spatial visualizations that enhance the understanding of the analyzed 
information can be generated. This visual representation enables the identification of patterns, 
trends, and relationships within the data. The utilization of GIS in this degree project allows for an 
early assessment of water bodies, facilitates the selection of sample locations, and aids in the 
production of maps and visualizations to enhance the interpretation of the obtained data.  

3.6 Multivariate Analysis 

In this degree project, Principal Component Analysis (PCA) will be employed to evaluate the 
datasets. PCA is a multivariate analysis technique that helps identify patterns, reduce the 
dimensionality of the data, and extract meaningful information from complex datasets. By applying 
PCA, it is possible to gain insights into the underlying structure and variability of the multispectral 
images. 

Regression modeling techniques will be utilized to establish a relationship between the 
multispectral images captured by the RedEdge camera and the absorbance at the selected 
wavelength, namely 420 nm. Regression modeling aims to develop mathematical models that can 
predict or estimate the value of a dependent variable (in this case, absorbance) based on 
independent variables (the multispectral images). Several regression methods will be employed in 
this study, including Multiple Linear Regression (MLR), Partial Least Squares Regression (PLSR), 
Support Vector Machines (SVM), and Artificial Neural Networks (ANN). Each method offers 
distinct advantages and characteristics for modeling and prediction purposes. By comparing the 
performance and accuracy of these different regression models, the most suitable approach can be 
identified for predicting absorbance based on the multispectral images. 

The optimal regression model obtained from the RedEdge camera data will be applied to the 
multispectral images acquired from the Sentinel-2 satellite. This step allows for the assessment of 
the model's transferability and performance when applied to different data sources and platforms. 
Finally, the same optimal model will be extended to the images obtained from the DJI Phantom 4 
drone, providing further validation and evaluation of the model's effectiveness across different 
imaging devices. 

3.6.1 Validation 

The models are evaluated using root mean square error (RMSE) and root square (RSQ). RMSE 
tells us how far apart the predicted values are from the observed values in a dataset, on average. 
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The lower the RMSE, the better a model fits a dataset. RSQ is a metric that tells us the proportion 
of the variance in the response variable of a regression model that can be explained by the predictor 
variables. This value ranges from 0 to 1. The higher the RQS value, the better a model fits a dataset 
(Yang, 2019).   

3.7 Research ethics considerations 

In this degree project, there are two key aspects that require careful consideration in terms of 
research ethics. The first pertains to the use of drones, and the second relates to the utilization of 
cloud services. Conducting research involving these aspects necessitates adherence to several 
important research ethics considerations. When it comes to flying drones in Sweden, obtaining a 
certificate is mandatory. This certification process can be completed through Transportstyrelsen 
(Transport Agency) as specified in their regulations and guidelines (Transportstyrelsen, 2023). 
These regulations outline the legal requirements and procedures that must be followed to ensure 
safe and responsible drone operation within the country. 

Respecting research ethics is crucial when using cloud services for data storage, analysis, or other 
purposes. It is important to consider factors such as data privacy, security, and compliance with 
relevant regulations and guidelines. Researchers must ensure that appropriate measures are in 
place to protect the confidentiality and integrity of any sensitive or personal data stored or 
processed in the cloud. 

Privacy and Consent: Make sure you respect privacy rights and obtain proper consent when 
collecting data with drones. Inform individuals about the purpose of data collection, potential risks 
and how their privacy will be protected. Be aware of taking pictures or data that may infringe on 
personal privacy. In this case only photos of water with now visible reference have been obtained, it 
is also important to make sure the horizon is not visible when sharing drone photos.  

Risk reduction and environmental impact: Prioritize safety when using drones. Follow local 
regulations and obtain necessary permits or licenses. Conduct a risk assessment to identify 
potential hazards and implement appropriate safety measures. Minimize risks to participants, 
spectators and property during drone flights. Consider the potential environmental impact of 
drone operations, such as noise disturbance or habitat disturbance. Minimize the ecological 
footprint by following environmental regulations, avoiding sensitive areas and taking precautions 
to mitigate any negative effects on wildlife or natural habitats. One of the flights was performed in a 
Nature reserve, in this case it was necessary to contact the park and nature administration. Also 
important to make sure not to disturb any animals during the flight. 
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Data security and confidentiality: Take steps to protect the security and confidentiality of data 
collected and stored in the cloud. Ensure cloud service providers have appropriate security 
protocols in place to protect sensitive information. Consider encryption, access controls and secure 
data transfer when using cloud services. The data used in Googles cloud services was not 
considered sensitive, the data was simply a subset from the Copernicus hub which is public 
accessible. 
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4. CURRENT STUDY 

This chapter describes the current study, here the steps are described on how to recreate the 
work. First there is a site description then it follows a section on how different software have been 
used to carry out the work. 

4.1 Site description Gothenburg 

Gothenburg is the second-largest city in Sweden and is located on the country's west coast. The 
area around Gothenburg is characterized by a diverse landscape that includes forests, lakes, and 
coastline. The weather in the area around Gothenburg is influenced by its coastal location and can 
vary significantly throughout the year. In the summer months, temperatures can reach up to 
25-30°C in July and August, while winter temperatures can drop to around freezing with 
occasional snowfall. 

 

Figure 6: Overview of sample location area. 

The study area encompasses a wide range of lakes, including both large and small shallow lakes. 
These lakes vary in their geographical characteristics, with some located at lower elevations while 
others are situated at higher altitudes. This diversity of lake types provides an ideal setting for 
conducting sampling activities. 
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It is worth noting that the city of Gothenburg is situated near the outlet of the Göta älv river. The 
catchment area of this river extends into parts of the sampling area. The presence of this river and 
its associated catchment area adds another dimension to the study, as it introduces potential 
influences and interactions between the river and the surrounding lakes. The abundance of lakes 
and their diverse characteristics within the study area present a valuable opportunity for 
comprehensive sampling and analysis. This allows for a more comprehensive understanding of the 
region's water bodies and the factors that may impact their water quality. 

The sampling took place during the months of March and April, which coincided with a period of 
significant precipitation. The abundant rainfall preceding the sampling period has significant 
implications for the water quality of the studied lakes, particularly in terms of surface runoff. The 
increased precipitation is expected to have led to higher levels of turbidity and brownness in many 
of the lakes. This is due to the influx of rainwater that flows into the lakes from the surrounding soil 
and catchment areas. As the rainwater carries sediment, organic matter, and other particles, it can 
contribute to the overall turbidity and brown coloration of the water. 

The timing of the sampling in relation to the preceding precipitation events also provides valuable 
insights into the immediate effects of rainfall on the water quality parameters being investigated. 

4.2 Tools 

A range of software tools have been employed to handle and process the data effectively. The 
nature of the project required the conversion of data between various software platforms to 
perform different tasks. The software utilized includes QGIS (QGIS, 2023), Matlab (The 
MathWorks Inc., 2022), HYPER-tools (HYPER-tools., 2023), Google Earth Engine (Google Earth 
Engine, 2023), and Visual Studio Code (Visual Studio Code, 2023). Each software has its unique 
functionalities and capabilities that were leveraged for specific data processing and analysis steps. 
Working with multiple software packages can be a time-consuming process, as it involves 
transferring and converting data between different formats and interfaces. This requires careful 
attention to detail to ensure the accuracy and integrity of the data during the transitions. 

Figure 7 provides a visual representation of the various steps involved in working with the data 
across these different software platforms. It serves as a guide to illustrate the sequence and flow of 
tasks performed during the data processing and analysis stages, highlighting the complexity and 
interplay between the software tools employed. 
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Figure 7: Use of software in current study. 

The spectroscopy component of the project involves conducting spectroscopic analysis on water 
samples. The output from the spectrometer is a csv file containing a spectrum ranging from 250 
nm to 700 nm. Importing this file into Matlab enables various operations, including principal 
component analysis (PCA) and extraction of absorbance values at 420 nm. 

Working with the RedEdge photos requires additional steps. First, the provided script by 
MicaSense (MicaSense Image Processing Setup, 2023) is applied to all the photos using the Python 
script editor in Visual Studio Code (VSC). This script calibrates and aligns the images, resulting in 
TIFF files that include all the bands. For each sample location, two photos are selected, resulting in 
a total of 50 TIFF files. These files are then imported into Matlab for further processing. 

In Matlab, the imported TIFF files are subjected to cropping and spatial binning using the 
hypertools toolbox. This process generates 3D arrays representing the image data. To facilitate 
modeling, the data is restructured from 3D arrays to 2D arrays in Matlab. 

The results from spectroscopy analysis and RedEdge photography are used for regression 
modeling. Matlab is utilized to generate different models, and the model with the best performance 
is selected. This model is then applied to the Sentinel-2 satellite data. 

To access the Sentinel-2 satellite images, Google Earth Engine (GEE) is employed. GEE simplifies 
the retrieval of images by allowing the application of filters to obtain specific sets of desired images. 
It also offers easy export options for images in desired formats. A significant advantage of GEE is 
that most calculations are performed on Google's servers, eliminating the need for a powerful 
computer. However, it is important to note that data is stored on Google's cloud services. 
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The process begins with creating a script in GEE to select Sentinel-2 images within the target area, 
during the desired time span, and with minimal cloud coverage. If multiple images meet the 
criteria, a simple median value is used. The selected images are then exported as a TIF file with the 
appropriate bands. The file is imported into Matlab, where the established model is applied to the 
data. Prior to applying the model, it is essential to unfold the data structure. This process generates 
the resulting data. To visualize the data, it must be exported as a new TIF file, before exporting, it is 
crucial to refold the data back to its original data structure. However, when exporting with Matlab, 
the geo-information is lost. To address this, a script provided by OSGeo4W (OSGeo4W, 2023) is 
used to copy the geo-information from the original TIF file. The modified TIF file can then be 
imported into QGIS, allowing for visualization of the model's results. 
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5. RESULTS AND DISCUSSION 

This chapter presents the results achieved in the degree project, including the sampling and 
analysis outcomes. It also explains the decision-making process and provides visualizations of the 
model's results. Furthermore, the chapter compares the current work with related studies from 
the literature review. Lastly, it discusses the methods used for interpreting and validating the 
results. 

5.1 Sampling results 

The sampling took place in late March and early April, as earlier dates were not feasible due to the 
presence of ice covering most of the lakes. A total of 49 locations were initially selected for 
sampling, but successful sampling was carried out at only 25 of these locations (refer to figure 8). 
Several factors contributed to the unsuccessful sampling, including shallow water (where excessive 
interference occurred if the lake bottom was visible), the presence of ice, inaccessibility to certain 
locations, or the lakes being considered redundant for sampling purposes. The names of the 
sampled lakes and the corresponding dates of the sampling events are provided in table 8 in the 
appendix.  

Figure 8: Successful and unsuccessful sampling locations. 
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5.2 Spectral imaging 

Each photo set comprises five individual images, which undergo calibration and alignment using a 
script provided by Mica Sense. Figure 9 illustrates two samples presented in the RGB format. As 
mentioned earlier, a geometric object is utilized to enhance the alignment process of the images. 
Once alignment is achieved, a specific region within the images is selected, aiming for an area with 
minimal or no glare. This selection helps prevent any disturbances in the data. The chosen region is 
then cropped and unfolded to form a 2D array. This process is repeated for all the photos, leading 
to the completion of the predictor dataset construction.      

Figure 9: Aligned images from RedEdge MX. Bad alignment to the left, good alignment to the right. 

Figure 9 provides visual reveals that the alignment process was not consistently successful, which 
raises concerns about the potential impact on the resulting model. When bands are not properly 
aligned, it can introduce spatial and spectral discrepancies. Spatial misalignment causes pixels 
from different bands to correspond to different locations on the ground, leading to a loss of spatial 
coherence and accurate feature representation. Spectral misalignment, on the other hand, can 
result in incorrect spectral signatures, making it difficult to accurately differentiate between 
different materials or extract meaningful information. Also in order to assess the relationships 
between the different bands, correlation calculations were performed and the results are presented 
in table 4. The correlations offer insights into the interdependencies among the bands, providing 
valuable information for further analysis and interpretation of the data. 
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Table 4: Correlation between bands, calculated using Pearson's linear correlation coefficient. 

Table 4 highlights the presence of significant correlation among the different bands, suggesting 
that certain bands may contain redundant information. This observation opens up the possibility of 
constructing a model without the need to utilize all the available bands. By identifying and 
excluding highly correlated bands, the model can potentially be streamlined and simplified, leading 
to more efficient and focused analysis. This finding underscores the possibility of selecting the most 
informative and independent bands for developing an optimal predictive model. 

5.2.1 PCA 

PCA analysis provides valuable insights into the samples, allowing for a comprehensive 
understanding of their characteristics. By plotting the scores on PC1 and PC2, we obtain a visual 
representation of the distribution patterns among the different samples. In the absence of distinct 
clusters, a uniform distribution of points would suggest minimal differences between the samples. 
In this particular case, the presence of evident clusters indicates the presence of unique 
characteristics within the samples. Figure 10 shows the scores and loadings plot, offering further 
clarity on the distribution patterns. Notably, certain samples, such as 26, 37, 45, and 46, stand out 
from the rest. These samples exhibit distinctive features that differentiate them from the majority 
of the other samples. 

Figure 10: Scores and loadings from all images. 
 

CorrelaIon blue green red nir red edge

blue 1 0.95 0.92 0.82 0.92

green 0.95 1 0.97 0.78 0.94

red 0.92 0.97 1 0.78 0.98

nir 0.82 0.78 0.78 1 0.85

red edge 0.92 0.94 0.98 0.85 1
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Figure 11: Successful sample sites with ids. 

Upon examining the map depicted in figure 11, it becomes apparent that samples 45 and 46 
originate from a stream called Kungsbackån. This geographical context provides a logical 
explanation for the notable differences observed in these samples. However, it is somewhat 
unexpected that samples 26 and 37 stand out significantly, as their nearby samples exhibit 
similarities with the majority of the dataset. To shed light on this observation, we turn our 
attention to the corresponding photos captured during the sampling process, which are presented 
in figure 12. 

 

Figure 12: Sample 26 to the left, sample 37 in the middle and sample 10 to the right. 
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The photos of samples 26 and 37 reveal a substantial amount of glare and reflections, significantly 
affecting the quality of the images. Although these imperfections might appear inconspicuous, a 
comparison with another sample, such as sample 10 in figure 11, clearly highlights the pronounced 
differences. The presence of excessive glare and reflections in the images of samples 26 and 37 
contributes to their distinctive appearance and deviates them from the expected patterns observed 
in neighboring samples. 
   

Figure 13: Scores and loadings after removing sample 26 and 36. 

After conducting the analysis and observing the distinct characteristics of samples 26 and 37, a 
logical step is to exclude them from the dataset. This exclusion leads to a revised scores plot, as 
depicted in figure 13. Notably, the revision has resulted in an enhanced explanation level for PC1, 
further reinforcing the evident clustering observed among the remaining samples. 
By comparing the loadings plots in figure 10 and figure 13, it becomes apparent that the removal of 
samples 26 and 37 has caused slight adjustments in the band structures. Ideally, no changes in the 
loadings plots would occur, indicating that these samples were clear outliers. However, the increase 
in the explanation level of PC1 and the amplified clustering observed in the revised scores plot 
indicate that excluding these two samples when constructing the models may indeed be a beneficial 
decision. 
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5.3 Spectroscopy 

The spectroscopy analysis follows a more straightforward process, as described in chapter 3.4. 
Each water sample is measured within the wavelength range of 250-700 nm. Prior to analyzing the 
samples, a baseline measurement is conducted using tap water. This baseline measurement serves 
as a reference and is subsequently subtracted from the measurements of the subsequent samples. 
Although the focus lies on the wavelength of 420 nm, it is still valuable to examine the entire 
spectrum. This broader analysis allows for the identification of deviating samples and the 
exploration of other characteristic features. Figure 14 presents the spectra obtained from the 
samples, providing a visual representation of their respective spectral profiles. Upon examination, 
no significant deviations or anomalies are observed among the samples. For specific absorbance 
values at the wavelength of 420 nm, refer to table 8 in Appendix 8.1, which provides absorbance 
data for each sample. 

 

Figure 14: Spectra from 250 nm to 700 nm for all samples. 

The visualization of the samples and their corresponding absorbance levels is presented in figure 
15, depicting a map that provides a comprehensive overview. This visual representation offers a 
valuable means of examining the data and identifying any significant variations, particularly in 
terms of differences within the same lake. Upon reviewing the map, no clear deviations or notable 
discrepancies in absorbance levels are detected among the samples. The absence of distinct 
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patterns or irregularities indicates a relatively consistent distribution of absorbance values across 
the sampled locations. 

 

Figure 15: Sample locations with absorbance level. 

5.3.1 PCA 

Performing a Principal Component Analysis (PCA) on the entire spectral dataset, which includes 
the full range of spectra rather than just the absorbance at wavelength 420 nm, provides insights 
into how the different samples contribute to the overall variation. The loadings plot in figure 16 
reveals a remarkably high explanation level for PC1, indicating that the x-axis is of primary 
importance when interpreting the plot. Examining the loadings plot, we observe that samples 4 and 
41 are situated on the far right, while samples 35 and 29 are positioned on the far left. The spectra 
represent absorbance values, and increased absorbance is indicative of the presence of more 
absorbing species, which can include colored dissolved substances and colored particles. Also 
absorbance can be influenced by the presence of light-scattering particles. Sample number 35 
corresponds to Nordsjön, a well-known "bottomless lake" with a depth of 48 meters (Wikipedia, 
2023a). This explains why, according to the loadings plot, it appears as a distinct lake. Similarly, 
sample number 29 represents Stora Kåsjön, a clear lake with a depth of 32 meters and an elevation 
of 109 meters above sea level. This lake is characterized by low nutrient levels and is free from 
excessive growth (Wikipedia, 2023b). Thus, it is logical for Stora Kåsjön to exhibit a low 
explanation level in the loadings plot. 
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On the other hand, sample number 4, Horsickan, is a small and shallow lake that contains fine 
particles of organic and inorganic matter suspended in the water, resulting in a brown coloration 
(Swedish Agency for Marine and Water Management, 2023). It is therefore understandable that 
this sample displays a high explanation level. Lastly, sample number 41 corresponds to 
Abborrtjärn, another small lake surrounded by houses. This lake also exhibits brownish water and 
is expected to have a high explanation level. 

Based on this analysis, it is apparent that no samples should be removed from the dataset. Each 
sample contributes valuable information and offers unique characteristics that contribute to the 
overall variability in the dataset. 

Figure 16: Loadings and scores from spectroscopy. 

The scores plot in figure 16 demonstrates a uniform distribution of samples, indicating a consistent 
behavior across the dataset. Additionally, it reveals that the scores values at 420 nm are clustered 
around zero on both PC1 and PC2. This suggests that the absorbance values at 420 nm do not 
exhibit significant deviations. While it is important for the model to have some level of deviation in 
the data for accurate predictions, excessively small variations can pose challenges for prediction 
accuracy. 

When the values at a specific wavelength, such as 420 nm, show minimal deviation, it implies that 
the samples have similar absorbance characteristics at that particular wavelength. In such cases, it 
may be more difficult for the model to distinguish subtle differences and make accurate predictions 
based solely on that wavelength. To achieve better predictive performance, it may be necessary to 
consider other wavelengths or incorporate additional variables that exhibit greater variation across 
the samples. This would provide the model with more informative features and enhance its ability 
to capture and predict the desired outcomes effectively. 
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5.4 Multivariate analysis 

The data preparation process for creating a model is outlined in figure 17. To generate the 
predicting dataset, several steps are involved. First, the photo is calibrated and aligned to ensure 
accurate representation. From this aligned photo, a small portion is cropped out for further 
analysis. At this stage, the data takes the form of a three-dimensional array, with the depth of the 
array representing the different bands captured by the photo. Next, the data is unfolded, meaning 
that each pixel corresponds to one row in the resulting dataset, while the different bands are 
presented within each row. This process creates a dataset with a large number of rows, reflecting 
the number of pixels in the photo. 

The response dataset is relatively simpler. For each sample, the response value remains the same 
across all rows. Therefore, the response dataset becomes an array with a consistent value for each 
specific sample. When combining all the samples, the resulting dataset contains a total of 7308 
observations. These observations capture the spectral information from the aligned and cropped 
photos, allowing for further analysis and modeling. 

 Figure 17: Extracting data for multivariate analysis. 

Figure 18 provides an illustration of the construction of the final dataset after all samples have been 
processed. The dataset is built by combining the information obtained from each individual 
sample. For each sample, the processed data from the aligned and cropped photos are collected. 
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These processed data represent the spectral information captured by the different bands. Each 
pixel within the photo contributes a row to the dataset, and the values from the different bands are 
organized within each row. As the processing is completed for each sample, their respective data 
are appended to the dataset. This process is repeated for all samples, resulting in a comprehensive 
dataset that encompasses the spectral information from the entire set of handled samples. The final 
dataset is structured as a matrix, with rows representing individual pixels and columns 
representing the different bands. The values within the matrix correspond to the spectral 
measurements captured by the bands for each pixel. 

Figure 18: Building data structure for multivariate analysis. 

The dataset generated from the processed samples is utilized to build four types of models: 
Multiple Linear Regression (MLR), Partial Least Squares Regression (PLSR), Support Vector 
Machine (SVM), and Artificial Neural Network (ANN). To explore the performance of these 
models, three different dataset configurations are tested. The first configuration includes all sample 
points without any noise removal. The second configuration excludes sample points 26 and 37, 
which were identified in Chapter 3.2.1 as potentially misleading, and also incorporates noise 
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removal using a moving average window. Finally, a third configuration focuses solely on the RGB 
bands, with noise also removed. 

For MLR and PLSR, there are not many variations in terms of configurations. However, for SVM 
and ANN, some calibration is necessary to optimize the performance of these algorithms. 

SVM - When using Matlab’s function fitrvm (which fits a support vector machine regression 
model) it is possible to select what kernel to use, the options are gaussian, linear and polynomial 
(The MathWorks Inc., 2022). In this specific case gaussian worked best.  

ANN - Matlab’s function for fitting a neural network is called fitnet, to construct the model there 
are two important configuration, training function and hidden layers (The MathWorks Inc., 2022). 
There are many options for this, however in this case a good result was achieved by using Bayesian 
Regularization for training function and two hidden layers, one with the size of 20 and one with 
30.  The results are presented in table 5. 

Table 5: RMSE and RSQ of models. 

From table 5 it is evident that MLR and PLSR is not suitable for this problem. However both SVM 
and ANN performs satisfactorily. MLR is based on the assumption of a linear relationship between 
the predictor variables and the response variable. Therefore, when the true relationship is 
nonlinear, MLR may fail to accurately capture and model the data. On the other hand, PLSR is 
designed to handle nonlinearity to some extent, allowing it to better capture nonlinear patterns 
compared to MLR. However, it is important to note that even though PLSR is more flexible and 
capable of accommodating nonlinear relationships, there are limits to its ability to capture highly 
complex nonlinear patterns. In cases where the data exhibits intricate and highly nonlinear 
relationships, PLSR may still struggle to provide accurate predictions (Hair et al., 2010). 

MLR PLSR SVM ANN

1. All samples with no noise removed

RMSE 0,01085 0,01098 0,00254 0,00406

RSQ 0,122 0,165 0,955 0,887

2. Without sample 26 and 36 and noise removed

RMSE 0,00998 0,01052 0,00176 0,00081

RSQ 0,338 0,325 0,979 0,996

3. Only RGB without sample 26 and 36 and noise removed

RMSE 0,0106 0,0107 0,0044 0,00335

RSQ 0,259 0,242 0,873 0,928
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In the second attempt ANN performs exceptionally good, also SVM performs good, however SVM 
doesn’t perform much better compared to the first attempt. What’s also is really interesting is that 
ANN shows good result in the third attempt. This means that it should be possible to get good 
results with an ordinary RGB camera using ANN (from table 4, the high correlation indicated that 
this might be the case). During the development of these models, the dataset was split into a 
training set consisting of 70% of the data and a validation set consisting of 30% of the data. Figure 
19 illustrates the validation results of the Artificial Neural Network model, which it the best 
performing model. 
 

Figure 19: Validation results on ANN model. RMSE: 0,00081, RSQ: 0,996. 

5.5 Sentinel-2 

The optimal model, determined based on the previous analyses, is applied to the Sentinel-2 data 
using specific bands outlined in Chapter 3.2.4. These bands include B2, B3, B4, B6, and B8. By 
utilizing these bands, a layer is generated that represents the absorbance level at 420 nm, as 
depicted in Figure 20. 

The generated layer appears to perform well in capturing the desired information. However, 
validating its accuracy is challenging. One approach to validation involves examining the sample 
locations and comparing the absorbance levels derived from the model with those obtained 
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through spectroscopy analysis. In Figure 21, the results from analyzing the map are presented in a 
pair plot, allowing for a visual comparison between the model predictions and the spectroscopy 
data. This analysis aids in assessing the agreement between the model-generated absorbance levels 
and the actual measurements from the spectroscopy analysis. By examining the pair plot, patterns, 
trends, and similarities can be observed, providing an indication of the model's performance and 
its ability to capture the variations in absorbance across different sample locations. 
 

Figure 20: ANN model applied to Sentinel-2 data. 

Upon analyzing the pair plot generated from the comparison between the model predictions and 
spectroscopy data, several performance metrics were calculated. The root mean squared error 
(RMSE) was determined to be 0.0064, indicating the average difference between the predicted and 
observed absorbance values. Additionally, the coefficient of determination (RSQ) was calculated to 
be 0.67, providing insight into the proportion of variance in the absorbance levels explained by the 
model. 
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Figure 21: Pair plot of predicted values from ANN applied on Sentinel-2 and actual values from 
spectroscopy. 

Examining the pair plot, an interesting observation is the presence of a plateau, represented by a 
dotted line, at approximately 0.034% absorbance. This suggests that the model encounters 
challenges in accurately predicting absorbance levels within this specific range. The plateau 
indicates a consistent deviation or inability of the model to capture the variations in absorbance at 
this particular absorbance. These findings provide valuable insights into the model's performance 
and limitations. While the RMSE and RSQ metrics provide a quantitative assessment of the 
model's accuracy and explanatory power, the presence of the plateau suggests a potential area for 
improvement or further investigation to enhance the model's predictive capabilities in that specific 
absorbance level. 

5.6 DJI Phantom 4 multispectral 

Two specific locations, namely Lilla Delsjön and Rådasjön, were carefully chosen for drone 
sampling purposes. The geographical representation of these locations can be observed in figure 
22. According to the absorbance mapping generated by the ANN model (figure 20, with a more 
detailed map available in the appendix, figure 33), these two lakes exhibit distinct differences in 
absorbance levels. It is worth noting that they are in close proximity to each other and not situated 
in the immediate vicinity of Landvetter, the airport, unlike some other lakes. This aspect is 
important as flying a drone near the airport is prohibited, thus making these selected locations 
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suitable for drone monitoring. The aviation authority Luftfartsverket offers a useful resource called 
Drönarkartan, which provides information on the feasibility of drone flights in specific locations 
(LFV, 2023). 

The drone flights were conducted at an altitude of 50 meters above the surface of the lakes in sunny 
weather. This specific altitude selection emphasizes the need for further sampling and data 
collection. It is anticipated that significant improvements can be achieved by expanding the 
dataset, implying that additional sampling and data acquisition would contribute to enhanced 
monitoring and analysis of the lakes' characteristics and absorbance levels. 

Figure 22: Sample locations for drone surveillance.  

Figure 23 shows the captured photos during the drone monitoring activities. Notably, when 
observing the photos from the Rådasjön location, it becomes apparent that obtaining an image 
without substantial glare proved to be challenging. Glare in the photos can hinder the clarity and 
accuracy of the captured data. 

Figure 23: Drone images, Lilla Delsjön to the left, Rådasjön to the right. 
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The outcomes of applying the model to the drone images are depicted in figure 24. Both lakes, 
Delsjön and Rådasjön, exhibit a remarkably narrow range of absorbance values, ranging from 
0.032 to 0.034. Although Delsjön has a slightly higher mean absorbance around 0.033, while 
Rådasjön has a mean around 0.032. This difference however in means suggests that the 
absorbance in Delsjön should be nearly twice that of Rådasjön, as indicated in figure 21, with an 
absorbance of 0.039 in Delsjön and 0.022 in Rådasjön. Though, it is important to note that these 
values come with some uncertainty. The images from Rådasjön exhibited significant reflections, 
which can potentially impact the accuracy of the model. As mentioned in chapter 3.2.1, reflections 
have been observed to have a notable effect on the data. Additionally, the calibration of these 
images heavily relies on the drone's light sensor since it was not feasible to use the calibration 
panel employed with the RedEdge camera. 

The RedEdge camera and the DJI camera capture images with different sets of metadata, which 
poses challenges in applying the mica sense script to the DJI images. As a result, aligning and 
constructing a multispectral dataset had to be carried out manually using QGIS, which is not 
specifically designed for this purpose. This process was time-consuming and complex. It is worth 
noting that DJI images are primarily intended for processing in DJI's dedicated software, and 
working with them becomes challenging when that software is unavailable. The absence of proper 
calibration and alignment can hinder the comparison of the data. Furthermore, the "plateau" 
phenomenon discussed in chapter 5.5 suggests that the model may encounter difficulties in 
accurately predicting absorbance in this specific region. 

Considering these factors, it is essential to interpret the results with caution and recognize the 
potential limitations and sources of uncertainty associated with the drone monitoring data. Further 
investigations and refinements are necessary to improve the reliability and precision of the model's 
predictions. 
 

Figure 24: ANN applied on drone images. 
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5.7 Literature Review 

The literature review reveals that using remote sensing to assess water is well established in the 
research context. Vogt & Vogt (2016) already did it in 2016, they didn’t use any machine learnings 
techniques but rather relied on indices. In many of the reviewed articles indices or other algorithms 
are the chosen methodology. However both Veronez et al. (2018) and Cut et al. (2022) uses 
machine learning in their research. Even though there are multiple studies where both remote 
sensing and machine learning have been applied no work was found where a model been produced 
with one remote sensing technique and then applied on an other, like in this degree project (the 
model is produced with data from the RedEdge camera and then applied on both the DJI 
phantom-4 and sentinel-2 data). 

Vogt & Vogt (2016) highlighted the issue with glare that can disturb the image data. This is 
something that was experienced also in this work. Especially at Rådasjön it was difficult to get 
good pictures with the drone. McEliece et al. (2020) highlight the issue with bottom reflectance, 
which amplifies the decision to disregard handling of water bodies were the bottom is visible. Also 
in some of the articles Cui et al. (2022) and Verne et al. (2018) they were using more sophisticated 
calibration and pre-processing methods than in this work.  

The reviewed articles used sample sizes ranging from 18, 21, 35 to 66, which on average is more 
than the 25 samples used in this study. The achieved RSQ for the optimal model in this study was 
exceptionally high at 0.99, which exceeded the RSQ values reported in the reviewed articles (0.60 
to 0.90). Furthermore, when the model was applied to the Sentinel-2 data, the RSQ remained 
relatively high at 0.67, indicating a very satisfactory performance. 

5.8 Environmental data from Miljödata MVM 

As stated in chapter 1.1.2 when producing models for satellite data it is important to find a way of 
validating the outcome. To manually do such work would be very extensive, instead in this degree 
project it is attempted to validate the model using environmental data, Miljödata MVM. This is a 
web service provided by SLU that allows you to find chemical, physical and biological data. 
Amongst other things there are water data about absorbance at 420 nm, which is what’s been 
examined in this paper. However most common is the absorbance of filtered water, the water 
measured in this paper has been unfiltered. Hence we need to know how these values correlate.  

To address this, data from a nearby lake, Härsvatten, which includes both filtered and unfiltered 
absorbance values, is utilized. A linear regression analysis is performed, revealing a gradient of 
1.4737. This suggests that approximately 68% of the absorbance can be attributed to the filtered 
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water component. Figure 25 illustrates a graph displaying the filtered and unfiltered absorbance 
values of the lake. The linear regression analysis yields an RSQ value of 0.6079. 
 

Figure 25: Absorbance relation of filtered and unfiltered water. 

The identification of a correlation between filtered and unfiltered water samples means that we can 
recalculate unfiltered water absorbance to filtered water absorbance. The next logical step is to 
apply this discovery to real-world data, preferably from a nearby lake that exhibits dynamic 
fluctuations in water quality throughout the year. Unfortunately, none of the lakes with available 
samples have the desired data set. However, we have identified Vimmersjön, which is just north of 
Gothenburg, as a potential candidate due to its extensive data register. According to existing 
information, there is an established sampling position in the central part of the lake (figure 26). It 
is noteworthy that the MVM collected water samples from Lake Vimmersjön during the summer 
and winter seasons of 2020. The recorded values for these samples are presented in Table 6 and 
Table 7. It is worth noting that the selection of Lake Vimmersjön as our data source is important 
because it provides data after the launch of Sentinel-2 in 2015, which is in line with our 
requirement for relevant information. 

Figure 26: Location of sample sites in Vimmersjön, (Miljödata, SLU). 
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Table 6: Absorbance in Vimmersjön at summer. 

Table 7: Absorbance in Vimmersjön at winter. 

To be able to compare this data a few steps needs to be carried out. First applying the ANN model 
on Sentinel-2 data, this results in the maps in figure 27. (the sentinel-2 data is filtered to be in the 
same time-period as the Miljödata data). 

Figure 27: ANN model applied on Sentinel-2 data. Summer to the left and winter to the right.   

To give a more fair value a hexagonal grid is applied which presents the mean absorbance value in 
the specific area. In figure 28 theses are presented. 

Date Depth Abs f 420

Vimmersjön 2020-06-29 0,5 0,049

Vimmersjön 2020-06-29 3,5 0,059

Vimmersjön 2020-07-16 0,5 0,051

Vimmersjön 2020-07-16 3,5 0,051

Vimmersjön 2020-08-10 0,5 0,047

Vimmersjön 2020-08-10 3,5 0,046

Mean 0,0505

Date Depth Abs f 420

Vimmersjön 2020-10-23 0,5 0,105

Vimmersjön 2020-10-23 3,5 0,105

Vimmersjön 2020-11-20 0,5 0,119

Vimmersjön 2020-11-20 3,5 0,12

Vimmersjön 2020-12-15 0,5 0,13

Vimmersjön 2020-12-15 3,5 0,12

Mean 0,1165
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Figure 28: Summer values to the left, winter values to the right. 

From figure 28 we get that the values vary between [0,032, 0,043] in the summer and between 
[0,013-0,015] in the winter. 

The MVM data is filtered and has been measured with a cuvette that is 5 cm, in our spectroscopy 
we used a 1 cm cuvette. Hence the first step is to multiply the values with 5. The next step is to 
make it represented as filtered water. As stated 68% of absorbance is represented by filtered water, 
hence we also need to multiply the value with 0.68 (Equation 3). The outcome is displayed in Table 
8, and it demonstrates a close correspondence between the obtained values and those predicted by 
the model. 

abs 420 5 cm cuvette =  (unfiltered abs 420 1 cm cuvette) * 5 *0.68             Equation 3 

Table 8: Recalculation according to equation 1, to filtered absorbance with 5 cm cuvette. 

It is important to be aware that this calculation is very rough, and as stated in chapter 2.1 the 
difference between filtered and unfiltered absorbance at 420 nm is also a measure of the turbidity. 
So this approach assumes that the turbidity is the same in Härsvatten and in Vimmersjön. In 
figure 29 the locations of the lakes is presented, the distance is merely 15 km, however Göta Älv 
goes in-between the lakes, there could be runoffs to either lake which could affect the turbidity. 
  

Unfiltered Mulitply with 5 
(CuveWe size)

MulIply with 0.68 (to get 
filtered value)

Means from table 8 and 9 Error

Winter: lower 
value

0,032 0,175 0,119 0,1165 0,0025

Winter: higher 
value

0,043 0,215 0,146 0,1165 0,0295

Summer: lower 
value

0,013 0,065 0,044 0,0505 0,0065

Summer: higher 
value

0,015 0,075 0,051 0,0505 0,0005
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Figure 29. Distance between Härsvatten and Vimmersjön 

5.9 Stora Delsjön and Lilla Delsjön 

One notable observation when examining the map in figure 20 is the significant contrast between 
Stora Delsjön and Lilla Delsjön. Figure 32 provides a closer look at this discrepancy, clearly 
indicating that the model predicts much higher absorbance in Lilla Delsjön compared to Stora 
Delsjön. If this prediction is accurate, it necessitates an explanation for such a stark contrast. 
A closer examination of the terrain reveals multiple inlets leading to Lilla Delsjön from the 
surrounding area, as shown in figure 31. It is worth noting that this area is part of the catchment 
area from Göta älv. Additionally, the MVM has conducted measurements in this region. For 
instance, one of the lakes in the vicinity, Stora Björketjärnen, recorded a measured value of 0.369 
(using a 5 cm cuvette) for filtered absorbance on November 4, 2019. Correspondingly, this would 
translate to an unfiltered value of 0.109 (using a 1 cm cuvette). It is plausible that the inflow of 
water with such absorbance levels from Stora Björketjärnen into Lilla Delsjön could account for 
the notable disparities observed between these two lakes. 

However, it is peculiar that the satellite image does not indicate a higher value for Stora 
Björketjärnen. This discrepancy could potentially be attributed to slow water movement within the 
lake, hindering the satellite's ability to detect higher absorbance levels accurately. 

Further investigations and analyses are necessary to fully understand and explain the observed 
differences between Stora Delsjön and Lilla Delsjön. The combination of satellite imagery, field 
measurements will contribute to a comprehensive understanding of the factors influencing 
absorbance variations between these two lakes. 
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Figure 30. Zoomed in from figure 20. Stora and Lilla Delsjön.  
 

Figure 31. Stora and Lilla Delsjön, white arrows indicate catchment from Göta älv. Inlets to Lilla Delsjön is 
marked with Red. Stora Björketjärn is in yellow marking. 

5.10 UAVs 

The application of the ANN model on the UAV data did not yield the expected results when 
compared to the outcomes obtained from Sentinel-2 data. In order to make a definitive 
determination regarding which data source is closer to reality, a more extensive collection of water 
samples would be necessary. It is important not only to gather samples from the shoreline but also 
from further out in the lakes. 

Upon initial examination, the results from the drone data appear to be inaccurate. This conclusion 
is reinforced by several factors. Firstly, data was only collected from two locations, which is 
insufficient to provide a comprehensive representation of the lakes. There is a clear need for 
additional drone sampling, encompassing different heights and lighting conditions. Also, the 
results obtained from the drone data fall within the region described as a plateau in figure 21, 
where the model may encounter difficulties in accurately predicting absorbance levels. The reliance 
on the integrated sunlight sensor further adds uncertainty to the data. 

48



In some of the reviewed articles, more sophisticated preprocessing techniques were employed on 
drone images. Exploring and evaluating these methods could potentially improve the accuracy of 
the results. For instance, the use of a polarized filter can be effective in mitigating glare and has the 
potential to enhance the overall outcome. To draw more robust conclusions and improve the 
reliability of the drone data, it is imperative to expand the sampling efforts, implement advanced 
preprocessing techniques, and explore alternative methods for mitigating interference such as 
glare. These measures will contribute to refining the accuracy and validity of the drone-based 
absorbance measurements. 

5.11 Water behavior in lakes 

Incorporating the depth of the lakes and temperature variations at different depths into the model 
would provide valuable insights. The water temperature plays a significant role in the circulation of 
water within lakes, particularly during the spring when temperatures rise. Figure 28 clearly 
illustrates the differences in absorbance between summer and winter, indicating the influence of 
seasonal changes on turbidity levels. 

By considering the depth of the lakes and temperature profiles at various depths, the model can 
better account for the variations in turbidity. This additional information can help explain why 
lakes like Stora Björketjärnen, which may not be detected as having high absorbance by the model, 
exhibit different characteristics due to factors such as depth and temperature. Integrating these 
parameters into the model would enhance its predictive capability and provide a more 
comprehensive understanding of the turbidity dynamics in the lakes. Water movement in a lake is 
affected by various factors, including wind, temperature gradients, inflows/outflows, and lake 
morphology. Understanding the dynamics of water movement is critical to understanding how sea 
conditions change throughout the year. 

The lake's circulation pattern can vary depending on the size, shape and geographical location of 
the lake. Some lakes may exhibit gyres or large-scale circulation patterns driven by wind direction 
and lake bathymetry. Inflowing and outflowing rivers or streams also affect water movement in 
lakes. It is important to note that water movements and lake dynamics can be affected by local and 
regional factors, such as climate patterns, hydrological inputs and human activities. Each lake has 
its own unique characteristics, and these factors contribute to the complexity and variability of 
water movements within lakes throughout the year. 

In addition to considering the dynamics of water movement and incorporating depth and 
temperature variations, it is important to address the concept of turbidity and its relationship to 
environmental problems. Turbidity, which refers to the cloudiness or haziness of water caused by 
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suspended particles, is often used as an indicator of water quality. However, it is essential to 
recognize that turbidity alone may not directly correlate with specific environmental issues. 
While high turbidity levels can indicate the presence of suspended particles, such as sediments or 
organic matter, it does not provide detailed information about the nature or source of these 
particles. It is crucial to understand the underlying causes of turbidity and whether they are natural 
or result from anthropogenic activities, such as erosion, pollution, or sedimentation. To overcome 
this challenge and gain a comprehensive understanding of the environmental implications, it is 
necessary to integrate turbidity measurements with other water quality parameters and contextual 
information. By considering additional factors like nutrient levels, dissolved oxygen, pH, and the 
presence of specific contaminants, a more holistic assessment of the environmental conditions can 
be achieved. 
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6. CONCLUSIONS 

The results obtained in this thesis highlight the successful detection of absorbance in water using a 
multispectral camera. The implementation of multivariate regression techniques and effective data 
structure management has led to the development of a highly accurate model. This model has 
demonstrated its applicability to satellite data, although further validation through extensive 
sampling is necessary to assess its overall accuracy. 

The findings indicate that the developed models provide reliable estimates of absorbance at 420 
nm. Notably, the near-sensing method employed in this project has proven to be effective, offering 
the potential for assessing various other water properties beyond absorbance at 420 nm. 

Among the models evaluated, the Artificial Neural Network (ANN) exhibited the best performance, 
achieving an impressive RSQ value of 0.996. Interestingly, an ANN model that solely relied on the 
RGB band also performed exceptionally well. Additionally, the Support Vector Machine (SVM) 
model demonstrated strong performance and exhibited better resilience against skewed data. Table 
5 demonstrates that the RSQ value for the SVM model surpassed that of the other models when all 
samples were included without any smoothing, aligning with expectations given SVM's robustness 
against outliers (Chapter 2.2). These findings demonstrate the efficacy of both ANN and SVM 
models for predicting absorbance in water, showcasing their potential for accurate estimations. 
Furthermore, it is worth mentioning that the optimal model demonstrated successful application to 
Sentinel-2 data, achieving an RSQ value of 0.67. 

The performance of these models should be further validated through extensive sampling to ensure 
their reliability across different water bodies and conditions. Overall, this thesis highlights the 
significance of utilizing multivariate regression techniques and robust data management in the 
detection of water absorbance using multispectral cameras. The success of the ANN and SVM 
models opens up avenues for future research in water quality assessment, paving the way for more 
precise and efficient monitoring of water properties. 

6.1 FUTURE WORK 

The UAV imaging results in this thesis highlight the need for improvement in preprocessing 
techniques and filters to enhance image quality. Capturing multiple photographs at the same 
location (stacking images) and using the median value can mitigate issues like wave glare and 
surface disturbances. Further exploration of different altitudes and weather conditions would 
provide valuable insights for successful water quality assessments using UAVs. 
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Investigating the practicality of utilizing UAVs for collecting water samples is an intriguing 
research avenue. However, it requires the establishment of a secure and reliable method for sample 
collection. Implementing such an approach would enable the collection of samples from locations 
farther away from the shoreline. Also the discovery of the potential to develop an RGB model is 
intriguing. The utilization of solely RGB information for predicting absorbance presents an 
interesting approach, as it offers the advantage of reducing costs.  

To enhance the reliability and accuracy of the model's performance, it is highly recommended to 
incorporate filtered water samples in future sampling endeavors. By utilizing filtered water 
samples, it becomes possible to validate the results using Miljödata MVM, an invaluable resource 
for evaluating water quality. This validation process plays a crucial role in bolstering the model's 
reliability and accuracy, offering valuable insights into the effectiveness of the developed approach. 
By aligning the model's predictions with the data available in Miljödata MVM, a comprehensive 
assessment of the model's performance can be achieved, leading to a more robust and trustworthy 
water quality analysis. 
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Appendix 1 - Lake-names, sample dates, absorbance and 
coordinates 

Table 9: Lake names, dates and absorbance at 420 nm with 1 cm cuvette. 
id Name Date Abs 420 nm Coordinates

3 Tulebosjön 2023/03/28 0.0475 57°36'31.5"N 12°04'53.2"E

4 Horsickan 2023/04/01 0.0468 57°38'20.6"N 12°03'12.9"E

6 Örtjärnen 2023/03/27 0.0245 57°38'50.6"N 12°08'35.0"E

10 Västra Ingsjön 2023/03/27 0.0292 57°36'28.7"N 12°15'54.8"E

11 Södra Barnsjön 2023/04/01 0.0094 57°34'12.1"N 12°07'18.2"E

13 Stensjön (West, Kungsbacka) 2023/03/28 0.0219 57°29'42.9"N 12°09'57.4"E

15 Stensjön (East, Kungsbacka) 2023/03/28 0.0196 57°29'19.2"N 12°14'18.3"E

16 Lygnern (South) 2023/03/28 0.0165 57°27'02.9"N 12°11'22.4"E

18 Kvarndammen (L. Djursjön) 2023/03/28 0.0114 57°33'24.5"N 12°11'35.0"E

21 Delsjön 2023/04/01 0.0109 57°41'19.6"N 12°02'05.7"E

23 Stensjön (South) 2023/04/01 0.0255 57°39'24.9"N 12°02'37.2"E

24 Stensjön (Northn 2023/04/01 0.0247 57°39'49.0"N 12°02'39.1"E

25 Rådasjön (West) 2023/04/01 0.0215 57°39'47.3"N 12°03'25.5"E

26 Landve\ersjön (West) 2023/03/27 0.0194 57°39'33.4"N 12°05'15.3"E

28 Landve\ersjön (East) 2023/03/27 0.0207 57°40'46.3"N 12°12'16.2"E

29 Stora Kåsjön 2023/04/01 0.0065 57°42'41.5"N 12°08'34.4"E

35 Nordsjön 2023/03/27 0.0207 57°37'06.3"N 12°12'03.0"E

37 Rådasjön (South) 2023/03/27 0.0074 57°39'55.0"N 12°08'35.5"E

41 Abborrtjärn 2023/03/27 0.0399 57°38'43.8"N 12°09'52.2"E

42 Massetjärnen 2023/03/27 0.0328 57°39'33.5"N 12°07'19.1"E

43 Lygnern (North) 2023/03/28 0.0223 57°32'04.6"N 12°25'43.5"E

45 Kungsbackaån (outlet) 2023/03/28 0.0381 57°27'49.9"N 12°04'19.4"E

46 Kungsbackaån 2023/03/28 0.0251 57°28'52.1"N 12°04'26.7"E

48 Härlanda tjärn 2023/04/01 0.0344 57°42'31.1"N 12°03'11.9"E

49 Bergsjön 2023/04/01 0.0124 57°44'58.0"N 12°03'52.1"E
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APPENDIX 2 - ANN applied on Sentinel-2 

 

Figure 32. Big map of ANN applied on Sentinel-2. 
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APPENDIX 3 - Code tip for reproducing the work 

Reshaping 3D-array to 2D-array when constructing dataset (Matlab): 
The resulting array, denoted as 3D_array, is obtained by cropping the multispectral image. The 
depth of the 3D_array corresponds to the different bands captured by the multispectral sensor. By 
reshaping the 3D_array, we obtain a new array called 2D_array. In the 2D_array, each row 
represents a pixel, and the width of the array now represents the different bands of the 
multispectral data.  

Reshape sentinel-2 data before applying model (Matlab): 
In this context, a Sentinel-2 image is being read and it is crucial to preserve the original size of the 
image. This information becomes necessary when the data needs to be reshaped back to its original 
dimensions. It is important to note that the same operation is being applied as mentioned in the 
previous tip. The resulting array, 2D_array, is now ready for being applied to the model. 

Reshape model result after applying model on sentienl-2 imagery (Matlab): 
The array, result, represents the output obtained after applying the model. In order to restore the 
data to its original size, a final reshaping step is necessary. This step is crucial as it enables the 
visualization of the data during subsequent analysis and interpretation. 

Using OSGeo4W to save and apply geo information: 
The initial step involves storing the geoinformation as a gif file. Subsequently, this geoinformation 
is applied to another file, namely sentinel_420abs.tif. As a result, a new file is generated, named 
sentinel_420abs_with_geo.tif. This new file now possesses the same geoinformation as the 
original file. This process is necessary since exporting the result from Matlab can lead to the loss of 
geoinformation. 
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listgeo original_sentinel.tif > sentinel.gtf
geotifcp -g sentinel.gtf sentinel_420abs.tif sentinel_420abs_with_geo.tif

sentinel = imread([filename]);
[n,m] = size(sentinel);
2D_array = reshape(sentinel, [], size(sentinel, 3),1);

3D_array = reshape(result, n, []);

2D_array = reshape(3D_array, [], size(3D_array, 3),1);



APPENDIX 4 - Field study photos 

 

Figure 33. Field study photos
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Sampling with RedEdge MX in waders.

Sampling with inflatable raft.

Gear for sampling, RedEdge MX. powered with a 
powerbank, mounted on stick. Bicycle hose and 

DJI Phantom 4 - Multispectral, take off.Assembling DJI Phantom 4 - 
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