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Abstract 

 

Time series are points of data measured throughout time in equally spaced 

periods. They present characteristics such as level, noise, trend, seasonality, 

and outliers. Time series forecasting is the attempt to predict single or 

multiple future values. It holds significant relevance in numerous fields, 

including, but not limited to, healthcare, finance, and weather forecasting. It 

has recently gained more attention due to the COVID-19 pandemic, which 

highlighted the importance of predicting and managing crises. Two distinct 

methods of forecasting utilise either statistical or deep learning models, and 

the debate about the best model is still inconclusive. This thesis aimed to 

explicate the benefits and drawbacks of each approach pertaining to single-

step and multi-step forecasting. The study applied four models, two of each 

method, on datasets of varying characteristics and measured their prediction 

accuracy and computing time. The prediction accuracy of each model was 

measured using commonly used evaluation metrics, including Root Mean 

Square Error. Subsequently, the results were compared with the features of 

the datasets to identify possible interconnecting relations between the factors. 

The findings concluded that the deep learning models generally produced a 

more accurate prediction but required more processing power and computing 

time. Contrastingly, the statistical models' predictions were less accurate but 

marginally faster. Furthermore, the forecast accuracy's most impactful 

characteristics were the dataset's trend and linearity. The code and datasets 

were published at: https://github.com/Adam20Taylor/BScThesis. 
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Sammanfattning 

Tidsserier är punkter av data mätt under samma tidsintervall. De presenterar 

egenskaper så som nivå, brus, trend, säsongsvariation och avvikare. 

Tidsserieprognoser syftar till att försöka förutsäga ett eller flera 

nästkommande värden. Det har betydande relevans inom flera områden, 

inklusive, men inte begränsat till, sjukvård, ekonomi och väderprognoser. Det 

har nyligen fått mer uppmärksamhet på grund av COVID-19 pandemin vilket 

belyste vikten av att förutsäga och hantera kriser. Två metoder för 

förutspåendet är antingen genom statistiska- eller djupinlärningsmodeller och 

debatten om vilken modell som är bäst är ännu ofullständig. Huvudsyftet med 

denna uppsatts var att klargöra för- och nackdelar med de två 

tillvägagångsätten, med avseende på både enstegs- och flerstegprognoser. 

Studien gick ut på att undersöka fyra modeller, två från varje metod, och 

tillämpa dessa på datauppsättningar av varierande egenskaper. Modellernas 

beräkningstid mättes och deras prediktionsprecision utvärderades med hjälp 

av vanligen använda mått, som till exempel Root Mean Square Error. 

Resultaten jämfördes med datasetens egenskaper för att identifiera eventuella 

samband. Analysen visade att djupinlärningsmodellerna i allmänhet 

producerade noggrannare prognoser med nackdel av att de krävde mer 

processorkraft och beräkningstid. I kontrast var de statistiska metoderna 

marginellt snabbare men de gav mindre exakta svar. Vidare visade det sig att 

trend var den egenskapen som hade störst inverkan på prognosprecisionen. 

Koden och datauppsättningarna publicerades på: 

https://github.com/Adam20Taylor/BScThesis. 
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1. Introduction 

Forecasting is making informed predictions or estimations of future events 

using historical and present data. It includes discovering and analysing dataset 

patterns, trends, and anomalies. It is used in many fields, such as weather 

forecasting, healthcare, finance, transportation, and supply chain 

management.  

There are multiple models for producing forecasts, such as statistical, 

mathematical, and deep learning models. However, the discussion of what 

model to use in certain situations has yet to come to a clear conclusion. 

Therefore, it poses a problem to developers when deciding which method to 

employ when accounting for time and resources.  

The effectiveness of statistical and deep learning models for time series 

forecasting will be compared in this research, along with the advantages and 

disadvantages of each approach. Additionally, the study strives to clarify 

when to use each model and how to select the most appropriate model given 

a forecasting problem.  

1.1 Purpose 

This project aims to compare and analyse the performance of several time 

series forecasting models. These models are divided into two groups: 

statistical and deep learning. This study will answer the research questions: 

• How do different forecasting models compare when applied to 

varying datasets? 

• What data characteristics affect the performance of different 

forecasting models? 

The findings should aid in choosing the forecasting model depending on the 

dataset's characteristics.  

1.2 Boundaries 

The data used in this thesis will be univariate, meaning a single variable 

measured throughout time. The primary reasons for using univariate time 

series are the abundance and simplicity of data. The most common time series 

are univariate, while multivariate time series can be effectively reduced to 

univariate time series by excluding all but one variable. Other types of time 

series data contain more characteristics; these characteristics are generally 

complex and will, therefore, not be studied in this thesis. 
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2. Background 

2.1 Description of time series 

A time series is defined as points of data measured throughout time. The data 

points are commonly collected in equally spaced periods with a given 

sampling rate. Time series can have different characteristics, such as level, 

noise, trend, seasonality, and outliers. The expected value, or baseline of the 

time series, is called the level and is usually equal to the mean. Noise refers 

to random or unpredictable variations within the data. All measured data has 

some noise caused by measurement errors or sensor noise. Trend and 

seasonality are not always a part of a time series, but they significantly affect 

the different forecasting methods that can be used. Both trend and seasonality 

are recurring patterns within the data. The trend is the long-term upward or 

downward direction of the data. While seasonality is regular variations that 

occur over fixed time periods; for example, energy usage in Sweden rises 

during the winter months. Unusual events may also affect the data drastically 

and are therefore called outliers [1]. 

Time series that contain a trend or seasonality are called non-stationary time 

series. Conversely, a time series that does not include these characteristics are 

called stationary. Specific models only work on stationary datasets; others 

can handle stationary and non-stationary datasets. Non-stationary data can 

also be converted into stationary data using different methods. One method is 

first-order differencing which subtracts each value with the previous one and, 

therefore, can remove the trend within a time series [1, 2].  In Figure 1, a 

comparison of stationary vs non-stationary data is shown. The data on the left 

consists of random values between zero and ten; it is stationary because the 

values are randomly distributed around the level. In comparison, the data to 

the right has a clear trend and seasonality. 
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Figure 1: Comparison of a stationary (left) and non-stationary (right) dataset. The data points in the 

non-stationary dataset follow an incremental trend, while data points in the stationary dataset are 

randomly distributed around the level. 

Linearity is not a characteristic of a time series, but it heavily impacts the 

performance of a forecasting model. All data points in a linear time series can 

be described as a linear combination of the previous values in the series. On 

the contrary, a non-linear time series does not have this property and can 

consequently be very complex. Real-world data is ordinarily a combination 

of both linear and non-linear parts [2]. 

2.2 Available models 

2.2.1 Statistical models 

Statistical modelling is fitting mathematical equations to datasets by adjusting 

the number of lags and the weights of the parameters. The lags refer to the 

number of past observations the model will consider when making a 

prediction. Therefore, statistical models can be defined as observing past data 

to predict future values. The models can be applied to datasets of relatively 

small sizes as it does not need any training data to make predictions. However, 

they are also fully operable on large datasets but limited to processing- time 

and power.  

• The autoregressive (AR) model is one of the oldest prediction 

models. It is a simple mathematical formula that uses past data to 

predict future values. The general formulation of the AR model is 

described as follows:  

 𝐴𝑅(𝑝):  

 𝑌𝑡 = Φ0 + Φ1𝑋𝑡−1 + Φ2𝑋𝑡−2 + ⋯ + Φ𝑝𝑋𝑡−𝑝 ( 1 ) 

 

Where p defines the order of the model. The order establishes the 

number of Φ parameters and how many previous data points (lags) the 
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model uses to make a single prediction. The 𝑋𝑡−𝑝 represent the actual 

observed data point p time instances before the data point to be 

predicted. The Φ parameters can then be found using linear least 

squares [2, 3]. 

• The Moving average (MA) model was introduced a few years after 

the AR model [2]. As the name suggests, the MA model bases its 

predictions on the series’ average. It is mathematically described as 

follows: 

 𝑀𝐴(𝑞):  

 𝑌𝑡 = 𝜇 +  𝜃1𝐸𝑡−1 + 𝜃2𝐸𝑡−2 + ⋯ + 𝜃𝑞𝐸𝑡−𝑞 ( 2 ) 

 𝐸𝑡 = 𝑋𝑡 − 𝑌𝑡−1 ( 3 ) 

 

It works similarly to the AR model, where q represents the order of 

the model. However, instead of using a starting parameter and 

previous values, the MA model uses the mean represented by 𝜇 and 

the estimation errors 𝐸𝑡. The estimation errors are calculated by taking 

the difference between the observed value, 𝑋𝑡, and the previous 

prediction, 𝑌𝑡−1. Furthermore, the fitting of the 𝜃 parameters must be 

found using more complicated methods such as maximum likelihood 

estimation or non-linear least squares [1]. 

• Autoregressive Moving Average (ARMA) model combines AR and 

MA. Hence, the mathematical formulation of ARMA is as follows: 

 𝐴𝑅𝑀𝐴(𝑝, 𝑞):  

 𝑌𝑡 = 𝐶 + Φ1𝑋𝑡−1 + Φ2𝑋𝑡−2 + ⋯ + Φ𝑝𝑋𝑡−𝑝 + 

𝜃1𝐸𝑡−1 + 𝜃2𝐸𝑡−2 + ⋯ + 𝜃𝑞𝐸𝑡−𝑞 

( 4 ) 

 

Where p and q determine the order of the autoregressive and moving 

average terms, respectively. However, ARMA can only be applied to 

stationary datasets and is therefore not applicable in all situations. It 

can be expanded to ARIMA, which uses first-order differencing to 

account for trends and SARIMA, which also accounts for seasonality 

in the dataset [1, 2]. 

• Exponential smoothening (ES) methods use weighted averages of 

previous values in the series to perform their one-step predictions. The 

age of the data affects the weight exponentially, and therefore the 

newer data points are prioritised. The mathematical formulations of 

many different ES versions vary. However, equation 5 displays the 

fundamental formulation, simple exponential smoothing.  

 

 𝐸𝑆(𝑊):  
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 𝑌𝑡 = 𝑊 × 𝑋𝑡 + (1 − 𝑊) × 𝑌𝑡−1 ( 5 ) 

 

The weight used in the model is represented as W, and X and Y 

represent the observed values and predictions, respectively [1, 4].  

 

Two of the most well-known expansions of ES are Holt's linear trend 

method and Holt-Winters' seasonal method, commonly referred to as 

double ES and triple ES correspondingly. The double ES model has 

two smoothing equations and can therefore factor in the trend in its 

prediction. Similarly, the triple ES model uses three smoothening 

equations to calculate its output. However, triple ES has two 

variations, the additive and multiplicative methods. Both these 

variations take the level, trend and seasonality into account when 

forecasting and can, therefore, be applied to non-stationary data [1]. 

2.2.2 Deep learning models 

Deep learning is a particular form of neural networks. Neural networks 

consist of layers of interconnected nodes that process information based on 

inputs and produce outputs. They can be trained on non-linear datasets of 

differing sizes to recognise patterns and hidden relationships in the data. 

Thus, making them applicable in time series analysis and forecasting [5]. 

The models train on the datasets and compares the predicted value to the 

actual one and corrects itself through optimization algorithms such as Adam 

or gradient descent. They iterate over the same dataset multiple times and a 

completion of the whole dataset is called an Epoch. The optimal number of 

epochs required to achieve the best outcome varies across datasets; however, 

an excessive number of epochs can lead to a phenomenon known as 

overfitting. As a result, the model becomes overly acclimated to a specific 

dataset and performs poorly when applied to real-world data.  

Compared to statistical models, deep learning forecasting models were 

developed to forecast complex non-linear time series better [2]. However, the 

models require many training data points to produce accurate predictions. 

Deep learning models can also be harder to interpret as they only perform 

their assigned task while giving limited information about how the result was 

calculated. 

• Recurrent Neural Networks (RNN) are ubiquitous in time series 

prediction. To learn the characteristics of the time series and then 

estimate future values, an RNN does a recurrent analysis of a set of 

historical data. The recurrent analysis utilises internal states between 

each time variable to create a model of the functional relationships 

within the data, to predict the future of a data sequence. Graphical 

visualisation of the described structure can be seen in Figure 2. The 
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input, output and internal state have weights between each other, 

indicated by U, W and V [2, 6]. 

 

Figure 2: Structure of RNN. Performs recurrent data analysis and predicts future values with the help 

of internal states. X is the input, S is the inner state, and Y is the output. 

A simple RNN employs the equations seen in equations 6 and 7. The 

weights, and the bias vectors, characterised by 𝑏𝑠 and 𝑏𝑦, are learnable 

terms the neural network uses to fit the data better. The 𝑥𝑡 refers to 

the input and 𝑦𝑡 is the output, which in context of time series 

forecasting stands for the observed and predicted value respectively.  

When creating a neural network, the activation functions must be 

specified, represented by 𝑓 and 𝑔 [6]. The most frequently used 

activation functions for RNNs are called the sigmoid (𝜎), hyperbolic 

tangent (tanh) and the rectified linear unit (ReLU) functions.  

 𝑆𝑡 = 𝑓(𝑈 × 𝑥𝑡 + 𝑊 × 𝑆𝑡−1 + 𝑏𝑠) 

 

( 6 ) 

 𝑦𝑡 = 𝑔(𝑉 × 𝑆𝑡 + 𝑏𝑦) 

 

( 7 ) 

The main problem with simple RNNs is that it forgets past data; this 

problem is called the vanishing gradient problem [2, 7]. The problem 

makes the model unable to capture long-term dependencies and fails 

to account for patterns that extend across a significant portion of the 

dataset. 

 

• Long Short-Term Memory (LSTM) is a more developed version of 

RNN and was created as a partial solution to the vanishing gradient 

problem. LSTM changes the calculation of the internal state and 

incorporates an additional state called a cell state. Consequently, it can 

remember long-term dependencies. LSTM also uses gates for the 

information's removal, multiplication, and addition. These gates are 

called the input, output, and forget gates. The state calculations within 

LSTMs can be mathematically formulated with equations 8-13 [2, 6]. 

 𝑖𝑡 = 𝜎(𝑈𝑖 × 𝑥𝑡 + 𝑊𝑖 × 𝑠𝑡−1 + 𝑏𝑖) ( 8 ) 

 𝑜𝑡 = 𝜎(𝑈𝑜 × 𝑥𝑡 + 𝑊𝑜 × 𝑠𝑡−1 + 𝑏𝑜) ( 9 ) 
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 𝑓𝑡 = 𝜎(𝑈𝑓 × 𝑥𝑡 + 𝑊𝑓 × 𝑠𝑡−1 + 𝑏𝑓) ( 10 ) 

 �̃�𝑡 = tanh(𝑈𝑐 × 𝑥𝑡 + 𝑊𝑐 × 𝑠𝑡−1 + 𝑏𝑐) ( 11 ) 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 ( 12 ) 

 𝑠𝑡 = tanh(𝑐𝑡) ⊙ 𝑜𝑡 ( 13 ) 

The input, output and forget gates equations are denoted as 𝑖𝑡, 𝑜𝑡 and 

𝑓𝑡, respectively, while 𝑠𝑡 and 𝑐𝑡 correspond to the internal state and 

cell state. It is necessary to calculate the candidate state, denoted by 

�̃�𝑡, before calculating the cell state. The equations of the gates and 

candidate state follow the same structure as the state calculation for 

the simple RNN, seen in equation 6. The ⊙ in equations 12-13 

corresponds to an element wise vector multiplication. Unlike simple 

RNNs, which require user-defined activation functions, LSTM 

typically uses two specific activation functions: the sigmoid (𝜎) and 

the hyperbolic tangent (tanh) functions. 

 

• The Gated Recurrent Unit (GRU) model also attempts to solve the 

vanishing gradient problem. GRU is similar to LSTM but uses fewer 

gates, called update and reset gates, in slightly different ways. 

Consequently, GRU requires fewer parameters than LSTM but still 

achieves comparable results. GRUs can be described mathematically 

with the following equations [6, 8]. 

 𝑧𝑡 = 𝜎(𝑈𝑧 × 𝑥𝑡 + 𝑊𝑧 × 𝑠𝑡−1 + 𝑏𝑧) ( 14 ) 

 𝑟𝑡 = 𝜎(𝑈𝑟 × 𝑥𝑡 + 𝑊𝑟 × 𝑠𝑡−1 + 𝑏𝑟) ( 15 ) 

 �̃�𝑡 = tanh(𝑈𝑠 × 𝑥𝑡 + 𝑊𝑠(𝑟𝑡 ⊙ 𝑠𝑡−1) + 𝑏𝑠) ( 16 ) 

 𝑠𝑡 = (1 − 𝑧𝑡) ⊙ 𝑠𝑡−1 + 𝑧𝑡 ⊙ �̃�𝑡 ( 17 ) 

The gate equations, 𝑧𝑡 and 𝑟𝑡, also follow the same structure as the 

state equation for simple RNNs, seen in equation 6. Whilst the 

equations for the candidate state and internal state, denoted as �̃�𝑡 and 

𝑠𝑡, illustrate how the utilisation of the gates in GRUs varies from that 

of LSTM. For example, in equation 16, the reset gate, 𝑟𝑡, is multiplied 

element wise by the state of the previous time instance and in equation 

17, the update gate, 𝑧𝑡,  is used for both terms in the addition. 

2.3 Analytical tests 

Analytical tests can be applied to prove the existence of specific properties 

and characteristics within the data. Stationarity is an example of data 

characteristics that can be determined, which is essential for choosing the 

most optimal expansions of the statistical forecasting models. Furthermore, 

analytical tests can also be used to find a baseline in the choice of parameters 

for the ARMA-based models. 
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2.3.1 ACF and PACF 

Autocorrelation Function (ACF) and Partial Autocorrelation Function 

(PACF) are statistical tests used to find correlations between lags (previous 

values) and their respective time series value. Both functions help determine 

a statistical model’s order by observing the number of points outside the 

threshold.  

The ACF measures the linear correlation between a time series and its lagged 

values at different time lags. The correlation coefficients between the y-axis 

and the time lag between the x-axis are shown in the ACF graph. The ACF is 

used to determine if there are significant patterns or seasonal variations in the 

data [1]. The ACF reveals explicitly that the series has a strong linear 

relationship with its initial value, suggesting the presence of a trend in the 

data if it exhibits a significant correlation at the initial lag (lag 1). The 

presence of seasonality or cyclical patterns in the data indicates whether the 

ACF has a strong correlation over several lags. 

The PACF accounts for the impact of intermediate delays and assesses the 

correlation between a time series and its lagged values. The PACF figure 

contrasts the time delays on the x-axis with the partial correlation coefficients 

on the y-axis [9]. The PACF helps determine the relationship between a time 

series model's moving average (MA) and autoregressive (AR) components. 

Notably, the PACF only exhibits statistically significant correlations up to the 

model's AR terms' order. Suppose the PACF substantially correlates at the 

initial lag (lag 1). In that case, it signifies that after accounting for the impact 

of any intermediate delays, the series has a robust linear connection with its 

initial value, suggesting the presence of an AR (1) model. This means the 

model will account for a single previous value in the prediction.  

2.3.2 Augmented Dickey-Fuller test 

One of the most common statistical tests used to determine whether a time 

series is stationary is called the Augmented Dickey-Fuller (ADF) test. ADF 

is a so-called unit-root test, which determines if a unit root exists within the 

data. A unit root refers to a characteristic of a time series variable where the 

variable's mean or average value tends to persist or drift over time. If a time 

series contains a unit root, the series is non-stationary. The null hypothesis 

for the test is that there exists a unit root in the data, and the alternative 

hypothesis is that there is no unit root. This means the time series is stationary 

if the p-value, the test result, is lower than the specified significance level, 

typically 0.05 [10]. 
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2.4 Similar projects 

Similar comparative studies have been made to compare these models [11-

13]. In “A comparison of ARIMA and LSTM in forecasting time series” [13], 

financial data of twelve different stocks were used to compare ARIMA and 

LSTM. Their results indicated that LSTM outperformed ARIMA by 85% but 

did not discuss the data attributes that may have influenced the model’s 

performances. In contrast, a similar study called ”A comparison between 

arima, lstm, and gru for time series forecasting” [12] applied ARIMA, LSTM 

and GRU on a time series of bitcoin prizes and found that ARIMA 

outperformed both deep learning models. It is unclear why these studies got 

contradicting results while using datasets of similar characteristics and sizes. 
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3. Methodology 

3.1 Choice of models 

3.1.1 Deep learning methods 

Recurrent neural networks (RNN) and Convolutional Neural Networks 

(CNN) are both neural networks, but their focus differs. Although CNN can 

be used for time series analysis using a sliding window approach to identify 

temporal dependencies, its primary focus relies on image analysis and 

recognition [14]. RNN is used primarily on sequential data, and its advantage 

of handling long-term dependencies on such data is why the RNN model was 

chosen over CNN.  

Even though RNN is an effective model for predicting time series, it has two 

significant limitations. Firstly, they cannot process input sequences of varying 

lengths due to their fixed memory size and suffer from the vanishing gradient 

problem. The problem recedes, as stated before in the model, in forgetting 

past values. A solution to the difficulty is utilising gating mechanisms; as 

stated in 4.2.2, both LSTM and GRU do. The two models can also handle 

variable-length input sequences, which solves the first problem. The model's 

ability to solve both issues is why both are employed in this study.  

 3.1.2 Statistical methods 

Exponential smoothening is considered state-of-the-art in many different 

branches of time series forecasting. It is commonly used to forecast retail 

demand and is helpful for inventory management. As stated in 2.2.1, it can 

account for trend and seasonality with the help of two expansions. Its 

flexibility and simplicity are the rationales behind utilising the model for this 

research.  

An additional state-of-the-art model is ARIMA which can handle datasets of 

a wide range. It can provide accurate predictions even with noisy and missing 

data, making it a good choice for real-world data. Therefore, it is widely used 

within finance and economics, making it an appropriate model for this study.  

3.2 Types of implementations 

To make the comparison between the prediction results of the models fairer, 

it is necessary to place restrictions on the forecasting process. One such 

limitation is to allow only single-step forecasting to be performed by the 

models, meaning that the models can only provide predictions for the next 

single period. Commonly, single-step forecasting is implemented through a 

rolling window implementation. This approach helps to avoid any biases that 

may arise from variations in the length or scope of the forecasting horizon, 
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making the comparison of the model results more objective. However, multi-

step forecasting is needed to determine the correlations between 

characteristics and forecasting accuracy. Therefore, both single- and multi-

step forecasting were implemented. 

3.2.1 Single-step forecasting 

To compare the performance of each model effectively and accurately, a 

rolling window version of each model was implemented. The algorithm uses 

a fixed-size window of historical data to make a prediction, then move the 

window one step forward in time and repeats the process to obtain a sequence 

of predictions. The window size determines the number of lags that will be 

included to make the prediction. This makes the comparison fairer because 

all models get access to the same number of data points for each prediction.  

The ARMA model's order determines the number of data points the model 

can use for each prediction. Therefore, the order of the ARMA model was the 

determining factor of the window size for the other models. Through ACF 

and PACF plots and trial and error, the p and q values for the ARMA model 

were set to three for all datasets. Consequently, the window size for the other 

models was also selected to three. Furthermore, the window size had an 

insignificant effect on the prediction accuracy when it was increased to larger 

values. 

3.2.2 Multi-step forecasting 

As previously mentioned, multi-step forecasting is vital to find correlations 

between the characteristics of the data and the forecasting performance. It 

accounts for the whole dataset when making multiple future predictions. The 

data that the model use persists the same throughout the forecasting process. 

Since this implementation is widely used in the industry, many 

implementations and libraries are available to support its use.  

3.3 Python libraries for model implementations 

All models were implemented using established Python libraries. The 

Statsmodels library was used for the implementation of the statistical 

models. Many statistical models and tests are integrated into this library, and 

it operates well with the Pandas library, which was used to read the CSV 

files containing the data [15].  

For the deep learning models, both the Keras and PyTorch libraries were used. 

Keras was used to implement the single-step versions of LSTM and GRU, 

while PyTorch was used to implement the multi-step versions.  
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3.4 Datasets 

Several datasets with varying characteristics and sizes were used, and most 

of them were acquired using public resources on the Internet. The table below 

presents the datasets and their characteristics and properties.  

Table 1: Table visualising the different characteristics, linearity and sizes of each dataset used in this 

study 

 

Datasets 

Airline 

passengers 

Total 

COVID-19 

cases 

Machine 

temperature 

Gothenburg 

temperature 

Trend Additive Additive No trend No trend 

Seasonality Significant Slight Non-seasonal Significant 

Linearity Partially linear Mostly linear Non-linear Non-linear 

Number of 

data points 

144 1 182 41 140 180 591 

 

• The airline passenger dataset is commonly used in time series 

forecasting. As shown in Figure 3, the dataset has a simple, additive 

trend and a clear seasonality period of 12, which makes the dataset 

ideal for time series forecasting. 

 

Figure 3: Plot visualising the airline passengers dataset, which clearly shows a trend and seasonality 

with a seasonality period of 12 months 

• The dataset containing the total number of COVID-19 cases 

worldwide is available to the public and may be obtained on "Our 

World in data" [16]. The dataset was chosen for its strong trend and 

linearity. The ACF plot found a slight seasonality within the dataset 

with a period of seven. The dataset is plotted in Figure 4, which clearly 

illustrates the trend, but due to its little influence on the data, the 

seasonality is not visible. 
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Figure 4: Total global COVID-19 cases show a strong trend, rising from a single point in January 

2020 to 760 million in March 2023.  

• An industrial partner provided the machine temperature dataset. As a 

result, this dataset cannot be distributed further and is, therefore, not 

a part of the published material. The dataset comprises an AR (40) 

model output applied to a machine's observed internal temperature. 

Statistical tests were run on the dataset, and it was evident that it was 

stationary and therefore lacked any overarching trend or seasonality. 

Figure 5 shows that the dataset exhibits random local upward and 

downward trends throughout the entire dataset.  

 

Figure 5: Plot of the internal temperature of a machine provided by an industrial partner. It shows no 

consistent seasonality or trend. However, random local trends are shown. 

• The Swedish Meteorological and Hydrological Institute (SMHI) 

provides open weather data from weather stations around Sweden 
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[17]. The seasonality of the outside temperature is inherent and two-

fold; It has a monthly and a daily seasonality period. An upward trend 

was anticipated as well. However, the statistical tests found no 

evidence of a long-term trend over the entire dataset. The selected 

weather station in Gothenburg began recording weather data in 1961. 

The current measurements are taken once every hour, whereas the 

older ones are collected thrice daily. Thus, the dataset was reduced to 

only include the data points from 2001 to 2022. Figure 6 visualises 

the condensed version of the SMHI dataset. 

 

Figure 6: Plot of the cut-down version of the SMHI dataset. It shows the outside temperature in 

Gothenburg between the years 2001 and 2022. Both the daily and monthly seasonality is shown 

clearly. 

3.5 Evaluation metrics 

The forecasts from the chosen models were evaluated depending on their 

RMSE, MAPE and MAE values. Forecast accuracy is commonly measured 

and compared using these methods. Previous studies have claimed that the 

grading produced by these methods is tough to interpret individually [18]. 

However, due to the comparative nature of this study, individual accuracy 

grading is less critical. Instead, the difference between the forecasting models 

and datasets is in focus. Therefore, using more commonly used accuracy 

gradings is more important than the clarity of the grading. 

RMSE is a regression analysis that aids in understanding the relationship 

between the output variables and one or more predictor variables. It stands 

for Root Mean Square Error and is a metric that shows the average distance 

between the predicted and actual values. A lower value means a superior fit 

for the model. The mathematical equation is shown in equation 18. 
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The 𝑦𝑖 represents the observed, actual value of the 𝑖𝑡ℎ observation. While the 

𝑥𝑖 is, the 𝑖𝑡ℎ predicted value derived from the prediction model. The n is the 

sample size of observations. Significant inaccuracies are amplified by the 

squaring component in the equation, which means singular outliers in 

prediction accuracy significantly affect the grading [19].  

MAE is an abbreviation for Mean Absolute Error. It is used on regression 

models and measures prediction accuracy for a forecasting model. MAPE 

stands for Mean Absolute Percentage Error, and as the name suggests, it 

produces a percentage based on the value of MAE. The following equations 

can calculate the MAE and MAPE scores, where MAE is equation 19, and 

MAPE is equation 20. [18, 19]. 
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( 20 ) 

 

Like the RMSE, the 𝑦𝑖 stands for the observed, actual value of the 𝑖𝑡ℎ 

observation. While the 𝑥𝑖 is, the 𝑖𝑡ℎ predicted value derived from the 

prediction model. The n is the sample size of observations. One flaw of the 

MAPE score is when the observed value is equal to or close to zero. This flaw 

causes scores larger than 100% and is, therefore, impossible to interpret. 

These gradings were used to measure the difference in prediction accuracy 

for each dataset. The differences were then further examined by utilising the 

datasets to discover overarching relationships between the attributes of the 

data and the prediction accuracy of each model. The main features within the 

data that were analysed were size, linearity and stationarity. 
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4. Results 

4.1 Single-step forecasting 

Table 2 showcases the result of the single-step forecasting. In general, the 

statistical models attained a greater numerical value in terms of the evaluation 

metrics, indicating a diminished accuracy in their predictions. However, the 

deep learning models were severely slower than the statistical models. 

Table 2: Table showcasing the results from the single-step forecasting methods. The previously 

mentioned evaluation metrics, the computation time and the epochs required for the deep learning 

models are shown.   

Dataset Model Epochs RMSE MAE MAPE (%) Time (sec) 

 

Airline 

Passengers 

ARIMA - 47,318 39,065 9,5 0,3 

ES - 54,328 44,673 10,9 0,1 

LSTM 500 36,763 26,777 6,6 9,9 

GRU 1000 41,832 30,979 7,3 15,0 

       

Total 

COVID-19 

cases 

ARIMA - 1309825,4 846478,9 0,1 2,1 

ES - 1311301,1 844357,9 0,1 0,9 

LSTM 100 4655169,3 4251304,9 0,6 24,8 

GRU 100 7179840,4 6849942,7 1,1 24,9 

       

 

Machine 

temperature 

ARIMA - 0,590 0,262 1,0 89,4 

ES - 0,443 0,191 0,7 33,5 

LSTM 5 0,415 0,196 0,7 536,5 

GRU 50 0,405 0,218 0,8 653,4 

       

 

SMHI 

temperature 

ARIMA - 1,288 0,909 - 594,6 

ES - 0,839 0,574 - 252,2 

LSTM 5 0,660 0,437 - 2507,7 

GRU 5 0,658 0,436 - 2547,6 

 

4.1.1 Airline Passengers 

The deep learning models produced the most accurate predictions but needed 

many epochs for the optimal fit. Because of this, predicting with the deep 

learning models took a few seconds, whereas making a forecast using 

statistical models took just a fraction of that time. While ARIMA 

outperformed ES in terms of accuracy but not computing time, LSTM 

exceeded GRU in both areas. 

4.1.2 Total COVID-19 Cases 

The RMSE and MAE outcomes derived from the COVID-19 dataset are 

notably distinct from the other datasets. The scores exhibit considerable 

magnitudes, primarily attributed to the dataset's vast data points. Even so, the 
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grades are still relevant as they are not a consequence of errors, which the 

MAPE results confirm as it aligns with the other datasets.  

GRU was an outlier in prediction accuracy for this dataset as the MAPE score 

is one per cent worse than the rest. Both statistical models had a similar 

prediction accuracy score, while LSTM outperformed GRU by the same 

margin as the statistical models outperformed LSTM.  

The deep learning models required fewer epochs to fit the data optimally. As 

a result, the overfitting became a factor more rapid and was already a 

significant factor at 250 epochs. Overfitting refers to the model training too 

much on a dataset. Rather than capturing the underlying patterns or 

relationships, it starts to fit the noise or random fluctuations in the training 

data.  

 

4.1.3 Machine Temperature 

All models produced similar predictions for this dataset. The ARMA model 

performed slightly worse than all other models regarding prediction accuracy, 

but the statistical model's computing time was much faster than the deep 

learning models. GRU, LSTM and ES all produced very similar accuracy 

scores. However, LSTM and ES obtained a favourable MAE and MAPE 

grading, while the RMSE score was superior for the prediction given by the 

GRU model.  

4.1.4 SMHI Temperature 

As stated, the MAPE score produces disproportionately high scores when the 

observed data consists of values close to or equal to zero. As a result, the 

SMHI dataset's MAPE grading is useless because several of the temperature 

measurements contained therein equal zero. 

The deep learning models produced the most accurate predictions for this 

dataset. However, the computing power and time necessary for the prediction 

were excessive. The GRU model outperformed LSTM in both time and 

accuracy on this dataset, but the difference in performance was minuscule.  

The statistical models had trouble making accurate predictions; ARMA's 

RMSE and MAE scores were twice as high as deep learning models, while 

ES was slightly better. In contrast, the computing power and time required 

for the predictions were much lower than the deep learning models. 

4.2 Multi-step forecasting 

The results for the multi-step forecasting are shown in Table 3. Generally, 

multi-step forecasting differed in results from the single-step method. 

Statistical models achieved drastically worse outcomes in non-linear datasets 
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than deep learning models. Furthermore, SARIMA showed exponential 

growth in computing time with the size of the dataset.  

Table 3: Result of the multi-step forecasting. Note that the total COVID-19 cases dataset was divided 

by ten million to retrieve forecasting from the deep learning models. Furthermore, the SARIMA 

model used minimised versions of both temperature datasets. * Applied on a reduced version of the 

dataset 

Dataset Model Epochs RMSE MAE MAPE (%) Time 

(sec) 

 

Airline 

Passengers 

SARIMA - 24,909 18,999 4,5 0,3 

ES - 30,241 21,445 4,8 0,1 

LSTM 1900 77,128 58,220 12,8 32,3 

GRU 2700 74,574 55,979 12,2 59,5 

       

Total 

COVID-19 

cases 

SARIMA - 5,337 4,257 6,4 1,4 

ES - 20,080 16,874 25,7 0,2 

LSTM 150 11,376 8,991 13,5 17,8 

GRU 350 13,4 10,953 16,4 67,5 

       

 

Machine 

temperature 

SARIMA* - 4,696 3,435 9,8 16,2 

ES - 4,365 3,571 14,8 0,1 

LSTM 7 0,423 0,232 0,9 29,4 

GRU 10 0,413 0,227 0,9 62,5 

       

 

SMHI 

temperature 

SARIMA* - 4,390 3,476 - 72,3 

ES - 8,258 6,780 - 1,9 

LSTM 2 0,707 0,480 - 38,9 

GRU 3 0,705 0,472 - 82,4 

4.2.1 Airline passengers 

The peaks in the airline passengers dataset were challenging for the deep 

learning models to predict. Both produced forecasts with a MAPE score of 

around 10%, where LSTM was faster but slightly less accurate than the GRU 

model. Similarly, for the statistical models, the ARIMA model was slightly 

more accurate than ES but also slower. Both statistical models had an 

improved accuracy grading compared to the deep learning models. 

4.2.2 Total COVID-19 Cases 

Both statistical models fitted the data to a straight line, whereas ARIMA 

performed best. Exponential smoothening got the best results when it 

assumed that the dataset did not have any seasonal component, conversely to 

ARIMA, which received the best score when it did account for a seasonal 

period. Both LSTM and GRU could not produce a prediction because of the 

immense values within the dataset. To solve this, the values within were 

divided by a factor of 10 000 000. Even then, the models failed to fit the data 

according to the constant linear trend that the dataset has as they 

approximated the prediction to a slightly lower value than the actual data.   
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4.2.3 Machine Temperature 

Arima could not handle such large datasets, which resulted in the dataset 

being cut down to 8000 data points, where 5000 are training data. After that, 

it could produce a forecast which resulted in a straight line with a slight 

downward trend, but it still had a 10% error margin.  

The computing time for the models differed immensely; ES produced a 

forecast of 0.3 seconds, and ARIMA took 16 seconds. LSTM and GRU took 

37 and 54 seconds, respectively.  

4.2.4 SMHI Temperature 

Similarly to the machine temperature dataset, the dataset needed to be reduced 

to a smaller size for the ARIMA function to be able to produce a prediction. 

To keep the differences in size as a factor, the SMHI temperature dataset was 

reduced to 19 000 data points. In this case, 15 000 data points were used for 

training data and 4 000 for testing. ARIMA was very inefficient in its 

prediction. It took ARIMA longer to provide a forecast for the smaller dataset 

than for LSTM to produce a forecast for the complete dataset.  

ES generated its prediction very fast. However, the accuracy of the ES model 

was the worst because it could not follow the local trends within the dataset 

and only oscillated around a specific value. Even so, the ES model was able 

to perform a prediction on the entire dataset as well. The prediction generated 

for the whole SMHI dataset was more accurate than the reduced version while 

still being worse than the deep learning models and ARIMA.  

The deep learning models both generated very accurate forecasts. The 

predictions were equally precise for both versions of the dataset. In both 

cases, the RMSE and MAE score was better by a factor of seven to eight 

compared to the statistical models. Furthermore, the deep learning models 

required very few epochs to generate a good prediction, whereas GRU needed 

slightly more epochs to achieve comparable precision to LSTM. 
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5. Discussion 

5.1 Summary 

5.1.1 Single-step forecasting 

No model outperforms the others in accuracy and computing time, but there 

are some evident patterns. The deep learning models performed very similarly 

to each other and produced more accurate results on all datasets than the 

statistical models except for total covid-19 cases. This dataset contained vast 

numerical values and a strong trend which appears to contribute to erroneous 

predictions. The effect of the immense numerical values is presumably an 

implementation-specific problem since values of considerable scale should 

not affect the accuracy of prediction models. It is also important to note that 

it took the deep learning models 22 seconds longer to produce a forecast than 

the second-best model, ARIMA, which took 1,4 seconds.   

ES always had the lowest computing time and performed best on the total 

covid-19 cases and machine temperature dataset. However, the deep learning 

models were almost as accurate as ES on the machine temperature dataset. 

However, they took 9 and 11 minutes instead of ES, which needed 33,5 

seconds to produce a forecast. It is further prominent in the SMHI dataset, 

where both deep learning models had a processing time of 40 minutes, and 

both statistical models were done in under 7 minutes. The rolling window 

implementation and the complexity of the deep learning models directly cause 

the extended computing time.  

There is no evident connection between the characteristics of the datasets and 

the accuracy as was expected. As stated before, the rolling window eliminates 

all patterns of trend and seasonality because it forces the models only to 

observe three values at a time.  

5.1.2 Multi-step forecasting 

Multi-step forecasting favoured the deep learning models as the statistical 

models converged over time to a linear trend, except for the Airline passenger 

dataset. In contrast, exponential smoothening and ARIMA could accurately 

fit the data to the dataset. This is because the dataset has an evident seasonal 

pattern and trend and is partially linear.  

The statistical models always had a lower computing time than the deep 

learning models, except for the SMHI data, where ARIMA took 72 seconds 

to forecast the smaller dataset version. While GRU, the next worse, took 81 

seconds to predict the full version of the SMHI dataset accurately.  
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As previously mentioned, ARIMA could not perform multi-step forecasting 

on the larger datasets as it would run out of memory, which resulted in the 

datasets being reduced for that model. This causes the results to be more 

challenging to interpret as the model was based on a modified dataset 

compared to the other models. Furthermore, the computing time for the SMHI 

dataset is ten times larger than the machine temperature dataset while only 

consisting of three times more data points. However, this also causes the 

model to perform better on the dataset because it has more data to train on.  

5.2 Correlations between characteristics and performance 

5.2.1 Size 

The size of the datasets mainly affects the computing time and power required 

for predictions. The deep learning models require fewer epochs to accurately 

predict large datasets, as opposed to small ones, where it needs more epochs 

to produce the same result. This directly affects the computing time as the 

models can run 1 000 epochs on the smaller datasets within the same time for 

a singular epoch on the large dataset. However, there is no visible correlation 

between the size of the datasets and the prediction accuracy. 

5.2.2 Trend 

The trend had a significant effect on the performance of the ARIMA model. 

ARIMA have greater prediction accuracy on all datasets containing a trend. 

According to our results, the ARIMA model is the best forecasting model for 

predicting datasets containing trends. 

Contrastingly, the deep learning models failed to predict data containing 

trends accurately. Surprisingly, the deep learning models could only give a 

remotely accurate prediction for the total COVID-19 cases dataset if all data 

points were minimised in size. As previously mentioned, the size of the data 

points should not impact the prediction accuracy and is most likely 

implementation specific. Furthermore, only a minimal pre-processing was 

done on the data because this thesis concentrated on the forecasting models 

themselves. This might have led to the deep learning models failing to 

forecast trends accurately. 

5.2.3 Seasonality 

ES favours the datasets with a seasonal component and consequently 

performs worse on datasets without such characteristics. However, for the 

other models, the results provide no evidence of a correlation between the 

forecasts' accuracy and the dataset's seasonal component.   
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5.2.4 Linearity 

The deep learning models were better at forecasting non-linear datasets than 

the statistical models.  

Both statistical models were significantly affected by the linearity of the 

dataset. For multi-step forecasting, the statistical models cannot subsequently 

follow the non-linear data points and tend to create linear approximations for 

their predictions. 

5.3 Limitations and future research  

5.3.1 Limitations 

One limitation of this study is the number of datasets. Due to the tight deadline 

of the thesis project, no more time could be allocated to finding and testing 

additional datasets. The limited number of different datasets made it 

challenging to find clear correlations between the data characteristics and the 

performance of the forecasting models.  

The ARIMA model was not trained with optimal hyper-parameters. 

Therefore, the results may change with hyper-parameter-tuned ARIMA. This 

project used ACF and PACF plots as starting points. However, in most cases, 

trial and error were necessary because the plot reading was insufficient to 

identify the best model variant. 

5.3.2 Future research 

A potentially exciting extension of this project may be to investigate the 

parameter choices of the models. This means studying the effect of arbitrarily 

chosen parameters such as ARIMAs order, deep learning neurons and 

seasonality periods. Due to limited computing power or time, these 

parameters may be difficult to determine. Therefore, it can be interesting to 

see which models are less vulnerable to random parameters. 

If the ARIMA model were hyper-parameter-tuned, it might have resulted in 

a higher order. This would, in turn, increase the rolling window size and could 

potentially lead to interesting results.  
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6. Conclusion 

Deep learning models have demonstrated remarkable effectiveness in 

producing accurate results across various datasets. However, the efficacy of 

these models frequently relies upon the availability of large amounts of 

training data and a significant investment of time to optimise their 

performance. Despite their efficiency in single-step and multi-step 

forecasting, deep learning models may face limitations when applied to 

datasets with strong overarching trend components without sufficient pre-

processing. This can pose a challenge for practitioners seeking to achieve 

optimal results with these models in domains characterised by high levels of 

trend variability. Therefore, it is essential to carefully consider the 

characteristics of the data and the problem at hand when evaluating the 

suitability of deep learning models for a particular task. 

Statistical models have proven their ability to make precise forecasts in 

single-step forecasting. Nevertheless, statistical models typically fall short of 

deep learning models in performance regarding multi-step forecasting.  

This is partly because statistical models demand much work to establish the 

definitive collection of parameters that can accurately forecast the specific 

dataset. On the other hand, deep learning models are more desirable since 

they can learn to detect relevant characteristics and patterns from the input 

data without needing assumptions or prior information about the underlying 

process.
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