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Abstract
Networks connected to the internet are under a constant threat of attacks. To protect against
such threats, new techniques utilising already connected hardware have in this thesis been proven
to be a viable solution. By equipping network switches with lightweight machine learning models,
such as, Decision Tree and Random Forest, no additional devices are needed to be installed on the
network. When an attack is detected, the device may notify or take direct actions on the network
to protect vulnerable systems. By utilising container software on Westermo’s devices, a model has
been integrated, limiting its computational resources. Such a system, and its building blocks, are
what this thesis has researched and implemented. The system has been validated using multiple
different models using a range of parameters. These models have been trained offline on datasets
with pre-recorded attacks. The recordings are converted into flows, decreasing dataset size and
increasing information density. These flows contain features corresponding to information about
the packets and statistics about the flows. During training, a subset of features was selected using
a Genetic Algorithm, decreasing the time for processing each packet. After the models have been
trained, they are converted to C code, which runs on a network switch. These models are verified
online, using a simulated factory, launching different attacks on the network. Results show that the
hardware is sufficient for smaller models and that the system is capable of detecting certain types
of attacks.
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1. Introduction

The Internet is growing at an exponential pace and with this, advanced security threats emerge.
Cyberattacks are evolving and exploiting the weakest parts of the Internet’s defences. One such
weak spot is the Internet of Things (IoT) branch, which consists of simple devices, e.g. smart
lamps, coffee machines, and door locks, which are common targets of attacks. The IoT business
consists of tens of billions of devices and is steadily growing [1]. To ensure that networks with
an increasing number of vulnerable devices stay secure, defence mechanisms must adapt quickly
to these new threats [2], [3]. With this and an increased reliance on our networks, improving
cybersecurity and protecting critical systems is essential. For an organisation, cyberattacks can
lead to lost revenue and damage to its reputation. Cyberattacks can also be dangerous to societies
if for example, the attacks cause power outages or if national security breaches are revealed [4].

The complexity of cyber threats is rising, but at the same time, devices connected to the Internet
have become more powerful. This may leave a surplus of computational power such that it could
be possible for more advanced defensive algorithms to be hosted. A subset of the possible defensive
algorithms is based on Artificial Intelligence (AI). The success and accuracy of AI algorithms are
linked to the computational power of the host device [5]. Therefore this performance increase
in devices has opened a market for even smaller units such as routers and switches to host an
AI. Such systems could increase cybersecurity and lower the impact of cyberattacks when they
occur. But an AI operating in a network should not be limited to only detecting cyber threats,
but could also be used to detect device malfunctions or configuration mistakes. For example, an
AI could notice if a device in an industrial environment malfunctions and starts to send irrelevant
packets [6]. With these new opportunities, it is appropriate to research how such a method should
be implemented for optimal performance. This is where this thesis, in collaboration with Westermo
Network Technologies AB (Westermo)1, aim to increase cybersecurity in an industrial control
network. This has been explored by developing a Machine Learning (ML) model which operates
from the inside of a container, running on a layer 3 switch. The container runtime chosen in this
thesis is Linux Container (LXC), because of support from Westermo’s devices. Operating from
within the container, the ML algorithm monitors packets flowing through the switch and classifies
if these are part of an anomaly or normal operation of the network [7].

1.1 Problem Formulation
This thesis proposes to answer questions regarding the detection of anomalies, using ML. The ML
model will operate from a layer 3 switch that is connected to a network. From previous studies in
this field, Random Forest (RF) has proven to give high accuracy in network anomaly detection,
while also being lightweight in terms of computational resources. This suggests RF to be a suitable
algorithm for the proposed system. The switches that the system will operate from are provided
by Westermo. Based on the problem described in the Introduction, the following questions are
stated.

1. Is it possible, and if so, how well does random forest perform anomaly detection in a resource-
constrained setting?

2. Which actions are required in order to implement an anomaly detection system for network
traffic on a switch with limited computational resources?

3. What information, features, in network traffic, help to improve the performance of the net-
work traffic classification system?

1.2 Thesis outline
This thesis is organised in the following layout: Section 2. states the relevant background that is
needed for a complete understanding of this thesis, i.e., network anomalies, and ML algorithms.
Section 3. brings up related works, similar projects that have been done before. Section 4. states the
research method that has been followed during the thesis. Section 5. contains a detailed description

1https://www.westermo.se

1
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of the implementation. Section 6. contains the results that have been produced throughout the
project. Section 7. discusses the results of the thesis and interprets the significance and meaning of
the results. Section 8. concludes the thesis work. Section 9. suggests steps for future work, where
the authors propose potential additions for future projects.

2
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2. Background

In this section, the relevant background for the thesis is presented. The theory is required for
a deeper understanding of the subject of cyber threats and common risks for a network. Then,
network flows and feature selection is described. Later in the section, the ML algorithms used are
described. The section is concluded with information about intrusion detection datasets, containers
and the host device.

2.1 Threats
Cyberattacks have been on the rise, and the complexity of their techniques is increasing. Addi-
tionally, new advanced tools require less knowledge of their targets. In Table 1, a multitude of
common attacks is listed. Many of these may cause a significant disruption in the operation of a
network [8]–[10]. There exist numerous methods for hackers to achieve their goals, no matter their
objectives. The methods may be divided into two categories, either passive or active. A passive
attack only monitors the target without any interference or modification to collect information,
while an active attack causes direct damage.

Attack Description Type

Denial of Service A DoS attack overloads a network to prevent others access to the service. Active
Distributed DoS A version of DoS where multiple machines are used for a more powerful attack. Active
Code injection Running unauthorised code by injecting code into a user interface. Active
Spoofing When a device or node masks its identity for something else. Active
Modification Increases communication delay by modifying the routing of a network. Active
Wormhole Exploiting tunnelling of packets between two points in a network. Active
Sinkhole Modifying or dropping packets to prevent correct information from arriving. Active
Cryptojacking Causing a system to mine cryptocurrency in the background. Active
Remote-to-Local (R2L) Unauthorised access from a remote machine, e.g. password guessing. Active
User-to-Root (U2R) Unauthorised access to local root privileges, e.g. buffer overflow. Active
Password cracking Using techniques such as brute force, dictionary or phishing. Active
Buffer overflow Exceeding an inputs capacity to write in another piece of memory. Active

Probing Surveillance or other information gatherings, e.g. port scanning. Passive
Traffic analysis Collecting data about communication transceiving between two or more nodes. Passive

Insider Threats Someone inside a network disturbing or listening in on a network. Both
Man in the Middle An attacker may hijack information between two communicating parties. Both

Table 1: Common network attacks.

2.1.1 DoS and DDoS

A Denial of Service (DoS) attack may target either the provider of a service or the user, to deny
access to a service. This is often accomplished by exhausting the resources of either party. This
may involve resources such as Central Processing Unit (CPU), storage, or network on the server as
well as network, router, or bandwidth of the client. Such exhaustion may be achieved by sending
a large number of packets to a single address. The packets could use different protocols and flags
to trigger a response. Other methods exist, depending on the receiver. For example, if a web
server is the target of the attack, a large number of requests of the site may be transmitted to
overload the server. Today, because of the increased capabilities of devices, a majority of DoS
attacks are Distributed Denial of Service (DDoS) attacks. What makes DDoS different from DoS
is that instead of only one device trying to overload a service, multiple devices coordinate an attack
simultaneously. The recruitment of these devices is often achieved by using other types of attacks.
This kind of attack is often harder to detect and trace [11], [12]. An example of a DDoS attack is
shown in Figure 1.

2.1.2 Spoofing

Spoofing is the act of disguising a communication from an unknown source as being a known trusted
source. There are multiple targets of information that are possible to spoof. Transmission Con-

3
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DDoS
Bots

Attacker
Target

Client

Figure 1: A representation of a DDoS attack. In this case, the attacker has control of a set of bots,
that is commanded to transmit a large number of packages towards the target.

trol Protocol (TCP) spoofing is one example, which builds upon modifying the attached transmit
address that is included in the header. Such that the assumed transmitter’s identity is incorrect.
This makes the receiving computer respond incorrectly. A similar technique is Domain Name
Server (DNS) spoofing where the attacker has control over the information about devices’ corres-
ponding addresses. A more powerful version of spoofing, called web spoofing, is where the attacker
has control over all the data that is transmitted between a client and the spoofed web. This is ac-
complished by providing a copy of the requested, real website, and listening and possibly modifying
the communication to the copied site [13], [14].

2.1.3 Port Scanning

Port scanning does no harm on its own and is more of a recognisance technique than an attack. It
is often used to locate potential targets, which is why the technique is still a threat. A port scan
could be executed both vertically and horizontally. In a vertical attack, one host is scanned on all
ports of interest. While in a horizontal scan, multiple hosts are targeted on a specific port. The
former is often used when there is a specific target, while the latter is more relevant when trying to
exploit a common weakness. The complexity ranges from a more simple brute force attack to more
complex methods that focus on stealth to avoid detection and prevention. A brute force attack
tries to establish a connection to each port in a range. Depending on the connection, the scanner
assumes the state of the port. Stealth attacks avoid establishing a connection which makes them
a little harder to detect. These attacks vary in the type of protocol and flags that are used [15],
[16]. An example of a port scan is shown in Figure 2.

Port Scan

Network

Network

Network

Attacker
Ports

Ports

Ports

Figure 2: An example of a port scan attack. An attacker sends packets to multiple separate
networks while looking for entry points.
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2.1.4 Man in the Middle

Man-in-the-Middle (MITM) is mostly suited for an attack on a Local-area network (LAN). There
exist multiple ways of initialising this kind of attack e.g. Address Resolution Protocol (ARP)
poisoning. Each device in a network has an ARP table. The ARP table is a method used to
store discovered pairs of MAC and IP addresses. When this table is poisoned, MAC and IP pairs
may not match such that packets are sent to the wrong devices. Regardless of technique, the
attacker establishes a network connection such that all communication between the two parties is
transported via the attacker. This results in full access to unencrypted information and possible
modification to the communication [17]. An example of a MITM attack is shown in Figure 3.

Man in the Middle
Client

Attacker

Server

Original Connection

Figure 3: A MITM attack shown. The attacker has hijacked the connection between a client and
a web server.

2.2 IP Flow Information Export
The IP Flow Information Export (IPFIX) is a protocol designed for network administration and
monitoring. The basis of the standard originates from Cisco Net-Flow [18]. IPFIX makes it possible
to collect network traffic going through an interface. Its main purpose is to compile a large amount
of network data in the form of individual packets into a more compact format, namely, flows [19]–
[21].

When analysing traffic and sorting packets, there are a few features that determine if a packet is
part of a flow. These are listed in Table 2 with a short description.

Attribute Description

src ip Source address of the flow
dst ip Destination address of the flow
dport Destination port of the flow
protocol Protocol (UDP, TCP, ARP, ...)

Table 2: The basis features for IPFIX.

By grouping packets into flows, administrators can collect vital information on larger networks
without collecting and storing data about each packet. This saves storage space without discarding
key information. The IPFIX standard is flexible in what type of data, and features are exported
from the device. This enables specifying the exported data to fit the configuration of the network,
requirements from the analyses, and the capacity of the storage. In most cases, only a few features
are exported, but all possible features are listed at [22]. An example of a setup implementing flow
export is shown in Figure 4. This setup includes a flow server, connected to a small network that
includes clients, a router, and an exporting device.
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Router

AdminClients

Modem

Flow Storage

InternetExported Flows

Exporting Device

Figure 4: An example setup of a network that supports the export of flows. To the left is a set
of network clients, that is connected either wired or wireless to a modem. Between the modem
and the router is a device connected so that all data passes through the device before reaching the
router and later the internet. This allows the device to process all packets and converts them into
flows. This data is later exported to a server for storage and processing.

2.3 Feature selection
When packets are grouped into flows, the comprehensive data that all packets contain are converted
into features. Because of the considerable amount of packets that may travel through a network
device, it is essential to constrain the number of features. This is exceptionally important due to
the limited amount of computational power of a network device. Therefore, only the most vital
features should be calculated. Feature selection is a comprehensive subject, and there exists a
large number of different strategies. Some of the more common methods are complete search,
heuristic, and random. In the complete search category, there are algorithms like breath-first and
depth-first. These are exhaustive methods, extensively trying all the methods until a stop criterion
is met. While in the heuristic category, more efficient algorithms are found that settle on a solution
that may not be the best possible, but instead is good enough [23]. This thesis focuses on the last
category, random, or more specifically, a Genetic Algorithm (GA), to deduce which features are
more important.

2.4 Genetic algorithm
GAs are inspired by natural selection and other biological processes such as mutation and crossover.
A GA can be used to solve optimisation problems and search problems. The pseudo-code for a
traditional GA can be found in Algorithm 1.

Algorithm 1 GeneticAlgorithm(population_size)

population = InitializePopulation()
CalculateFitness(population)
while True do

if Termination criteria is satisfied then
Return best_individual

else
parents = SelectParents(population)
offspring = Crossover(parents)
Mutate(offspring)
CalculateFitness(offspring)
new_population = Replace(population,offspring)

end if
end while
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The first step in a GA is to initialise all the individuals in a population. The individuals are different
depending on how they are represented. The individuals can be for example binary arrays, arrays
with real numbers, or arrays with integers representing an order. The individuals can then be
initialised randomly or individuals from a previous search can be used. After a population is
created, the fitness value of each individual in the population is calculated. How the fitness values
are calculated depends on the application of the GA.

Once all the fitness values are calculated, it is time to select the parents if the termination criterion
is not met. The termination criterion can be a certain number of generations that have passed or
generations without any improvement. There exist various methods to do this, but in all methods,
the selection depends on the fitness values. The methods that are described here are Roulette
selection and Tournament selection. In Roulette selection, each individual gets a probability of
being selected. This probability is proportional to the fitness value of the individual. Equation 1
shows how to calculate the probability of an individual being selected as a parent. Figure 5 shows
the principles of Roulette selection.

Figure 5: An example showing the principles of Roulette selection. The higher the fitness value of
an individual, the greater its area in the roulette wheel and the more probable for that individual
to be selected.

px =
fx

Σn
i=1fi

(1)

1: fx is the fitness value of individual x, n is the number of individuals in the population and px
is the probability of individual x to be selected as a parent.

In Tournament selection, k individuals are randomly selected for the tournament. From the tourna-
ment, the best individuals are selected as parents. After selecting parents a crossover is performed
in order to create offspring. How the offspring are created depends on the representation of the
individuals. If binary representation is used one or multiple crossover points are selected. An
example with one crossover point can be seen in Figure 6. If a real number representation is used,
the crossover can be performed using arithmetic recombination or BLX-α [24]. To create one off-
spring using arithmetic recombination the mean values of the parents are used. Element i of the
offspring is equal to the mean of element i of parent1 and element i of parent2. The algorithm
BLX-α can also be used in a real number representation. See Figure 7 for a visual explanation of
the algorithm.

After creating offspring they can be mutated. How often the offspring are mutated depends on
the mutation rate. There are different ways to mutate an offspring. If a binary representation is
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0 1 1 0 1 1 1 0 0 1 0 1parent1:

crossover point

0 0 1 1 1 0 1 1 0 0 0 0parent2:

0 1 1 0 1 1 1 0 0 01 0offspring1:

0 0 1 1 1 1 0 0 1 00 1offspring2:

Figure 6: Single point crossover using binary representation. Offspring1 gets its first seven elements
from the first seven elements of parent1 and the last four from the last four of parent2. The same
goes for offspring2 but the first elements from parent2 and the last elements from parent1.

Lower
Bound parent1[i] Upper

Bound
parent2[i]

IαI αI

Figure 7: Element i of each offspring is taken randomly from the interval between the upper and
lower bound.

used, one or multiple bits can be flipped. With a real representation, the normal density function
is used such that offspring1[i] = offspring1[i] + N(µ,σ)

After mutation and calculating the fitness of the offspring, the offspring are ready to replace the
population. In a generational GA, offspring replace the entire population or a certain number of
best individuals are kept. In a stationary GA, only the worst individuals are replaced.

2.5 Supervised learning
In supervised learning, the goal is to learn a mapping function that maps an input to an output by
observing input and output pairs. The outputs that are observed are called labels. For example,
in anomaly detection, the labels can be either normal or attack. The dataset contains cases which
consist of a certain number of attributes and one output. Supervised learning problems can be
divided into two types: classification and regression. In classification, the output is a class. In
regression, the output is a continuous-valued output. There exist multiple ML algorithms that learn
in a supervised manner. The following subsections will describe a selection of these algorithms,
with a focus on their classification problem-solving capabilities [25].

2.5.1 Decision trees

A Decision Tree (DT) can be used for classification. The DT model is used to predict the target
value by learning decision rules deduced from the data attributes. A DT begins with a root with
branches leading to either an internal node or to a leaf. Each leaf contains a class label. Each
internal node splits the instance space into subspaces according to a splitting function and the
corresponding branches to that node are the outcome of the splitting function. In most cases, a
node splits the instance space according to the value of one attribute. At every node in a DT,
the value of one of the parameters, the branching variable, is compared against a threshold. The
branching variable and the threshold are parameters that the algorithm learns [26]. The DT
algorithm searches for the attribute which gives the best split. There are various ways to search
for this attribute. The most common way in literature is the impurity-based criteria [27].

Impurity-based criteria: If P = (p1, ..., pk) is the distribution of a random variable with k
discrete values, where k is the number of classes. The function ϕ : [0, 1] → R defines an impurity
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measure if the following conditions are satisfied:

1. ϕ(P ) ≥ 0

2. If pi = 1 for some i then ϕ(P ) is minimum

3. If ∀i, 1 ≥ i ≥ k, pi =
1
k then ϕ(P ) is maximum

4. ϕ(P ) is symmetric with respect to p1, ...pk

5. ϕ(P ) differentiable everywhere in its range.

For example, one impurity measure is Information Gain (IG). The DT algorithm compares every
possible split and takes the one that maximises the IG. To calculate IG, the entropy needs to be
calculated first. Entropy can be described as a measure of disorder. In general, the entropy of the
nodes decreased as the tree is traversed. This means that attributes considered at the beginning of
a tree are in general more important as these splits can lead to higher IG. IG specifies the impurity
in class elements and is defined as the difference between entropy before and after a split:

Entropy(current_node) = Σk
i=1(−Pi ∗ log2(Pi)) (2)

Where Pi is the proportion of class i after a split in the current node and k is the number of classes.

IG = Entropy(parent)− Σk
i=1vi ∗ Entropy(child) (3)

Where vi ∈ [0, 1] is the fraction of data affected. A DT is constructed by choosing the attribute
and threshold that maximises the IG. A simple way to choose the thresholds is to first order the
values of the attributes in numerical order. Then consider only the average values of the numeric
attributes where the value of the target switches [27]. Figure 8 shows how the IG is calculated.

OR

Dataset
Decision Node Decision Node

Figure 8: Example showing how to calculate the IG. In this example, k = 2 and when pi = 1/k
the entropy is 1, which is the maximum. This is a binary classification to determine if an input is
a star or a moon. Here the attribute x1 and the threshold 0 will be chosen as IG1 > IG0. IG1 is
greater since performing the split, x1 < 0 gives a more ordered set. The leaf to the left has only
one class and this gives the minimum disorder.

If looking at Figure 8 and the equations for entropy and IG, it can be seen that the function for
calculating IG satisfies the conditions of the impurity-based criteria.

The pseudo-code for growing a DT is based on the algorithm [27] and can be seen in Algorithm 2.
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Algorithm 2 TreeGrow(S,A,y)

S = Training set
A = Input Attribute Set
y = Target
Create a new tree T containing only a root node
if one of the stopping criteria is satisfied then

The root in T becomes a leaf with the most common value of y in S as a label
else

Find a ∈ A that gives the best split of S
i = 1
for each possible value of a (v1, ..., vn) do

S = the subset of S where a has value vi
Remove a from A
Subtreei = TreeGrow(S,A,y)
Connect the root node of T to Subtreei with an edge labelled vi
Incremenet i

end for
end if
Return T

In Algorithm 2, A is the attribute set of S. (v1, ..., vn) are all the possible values that the attribute
a can have and a is the attribute that best splits S according to some impurity based criteria.
For example, if the attribute a is protocol, then the possible values of that attribute are all the
protocols considered. Or if the attribute is the total number of bytes in a flow, then the values
could, for example, be the number of bytes greater than 100 or the number of bytes less than or
equal to 100. After splitting S a subtree is grown from each edge, (v1, ..., vn). The new training set
S for a subtreei is all the samples x, where the attribute a of x has value vi. The new attribute set
used as input to the recursive call to the function TreeGrow is the set of all attributes A, excluding
a.

There exist multiple methods of growing a DT. Because finding the optimal tree is an NP-hard
problem a heuristic strategy is primarily used. Some of these strategies build on a best-first or a
divide-and-conquer basis. These recursive strategies will then grow a tree based on their respective
rules. The strategies and their performance vary greatly depending on the data, which is why
numerous methods exist [28]. The drawback with DTs is that they are highly sensitive to their
training data which results in high variance. This can cause DTs to be unable to generalise [29].

2.5.2 Random Forest

A RF consists of multiple randomised DTs. In RF, each tree gets its own fraction of the dataset with
entries taken randomly with replacement from the original dataset. Since it is with replacement the
fractions of the dataset each tree gets can overlap. This process of creating new random datasets
is called bootstrapping. Each DT will train on each of the bootstrapped datasets independently.
When training a tree, not all the features are used, only a randomly selected subset. When using RF
to classify the input each individual DT in the forest outputs one class prediction. The RF-model’s
prediction is the class which receives the most votes. Figure 9 shows an example illustrating this.
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x1 x2 x3 y

a1 b1 c1 0

a2 b2 c2 0

a3 b3 c3 0

a4 b4 c4 0

a5 b5 c5 1

a6 b6 c6 1

a7 b7 c7 1

Training dataset

x1 x2 y

a2 b2 0

a7 b7 1

x2 x3 y

b1 c1 0

b6 c6 1

Majority
voting

Bootstrapped datasets Decision trees

Figure 9: x1, x2, x3 are the attributes of the dataset and y is the target, specifying which class
the sample belongs to. After randomly sampling attributes and entries from the training set, the
first bootstrapped dataset consists of attributes x1, x2 and entries 2 and 7. The last bootstrapped
dataset is made up of attributes x2, x3 and entries 1 and 6. Each bootstrapped dataset points to
a DT created by training on the corresponding bootstrapped dataset.

Random attribute selection makes the trees in the RF less correlated. Usually, the number of
attributes to consider each time is the square root of the total number of attributes or the logarithm
in base 2 of the total number of attributes [30].

A problem that can occur with DT or RF is overfitting. Overfitting occurs when the algorithm,
instead of learning how to solve the task in general, adapts excessively to the training data. To
avoid this, two common strategies are bagging and boosting. Bagging is the process of using
bootstrapping and aggregation (majority voting). Bagging functions on the basis that the variance
of a sample may be decreased without significantly altering the mean. It is achieved by dividing
the sample into n random subgroups and calculating the mean of each group. This then makes
up a new smaller dataset where the mean should not have changed significantly but the variance
of the new set should be smaller, which should improve predictions. Whereas in boosting, instead
of generating multiple sets and averaging in a parallel process, the data is sequentially updated
to produce one final prediction. In this iterative process, each version will try to correct the last
error [30], [31].

When generating a RF, the amount of trees is a large factor, as the processing time for the
algorithm increases, but the improvement will converge. In a study conducted by Mayumi Oshiro
et al. [32], 29 datasets were analysed using RF. The model increased in population, from 2 to 4096,
doubling each step. The results show that the performance increased slowly up to 128 trees, after
which improvement ceased. Suggesting that for most problems in resource-limited environments,
a maximum of 128 trees should be grown.

2.6 Intrusion detection datasets
In this section, multiple intrusion detection datasets are described.

2.6.1 KDD99

The KDD99 [33] is a dataset that was made in the year 1999 for a competition (International
Knowledge Discovery and Data Mining Tools Competition). The task of the competition was
to distinguish between bad connections and normal connections. The dataset contains several
different simulated intrusions. The data (raw TCP dump) were acquired over 9 weeks in a military
network environment, simulating a U.S Air Force LAN. The LAN was operated as a true Air
Force environment except for the injected attacks. The training data was recorded for 7 weeks and
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contains approximately 5 million flows. A flow is a sequence of packets, flowing from a source IP
address to a destination IP address under some defined time interval and protocol. In the KDD99
dataset, each flow has a label and 42 features. The label is either a type of attack or normal. Each
attack can be categorised as either DoS, R2L, U2R or probing. See Table 1 for a description of
the attacks [33].

2.6.2 NSL-KDD

The NSL-KDD [34] dataset is a new version of KDD99. NSL stands for Network Security Labor-
atory. The entries in the training set are not redundant and there are no duplicates. This is to
prevent the learning algorithms from being biased towards more frequent entries. Being biased
towards more frequent records prevents the algorithms to learn less frequent records which can
be more dangerous, such as U2R and R2L attacks. The NSL-KDD dataset contains a total of
0.13 million entries in the training set and 0.023 million entries in the test set. The instances are
labelled as either normal or with the name of the attack. The dataset contains various types of
attacks, including DDoS, DoS and port scan [34].

2.6.3 UNSW-NB15

Compared to KDD99 and NSL-KDD, the UNSW-NB15 [35] is a more modern dataset. UNSW-
NB stands for University of New South Wales - Network Based. This dataset was created in 2015
and contains real normal traffic and synthesised network attacks. The dataset has 49 features,
9 different attack categories and 45 distinct IP addresses. The 49th feature is the label which is
either normal or attack. The 48th feature is the attack category. The entire dataset contains 2.2
million entries labelled as normal and 0.32 million entries labelled as attack [35].

2.6.4 CIC-IDS-2017

The CIC-IDS-2017 (Canadian Institute for Cybersecurity - Intrusion Detection System 2017) data-
set [36] was created in 2017 since most of the previous datasets are obsolete. Due to the evolution
of network attack strategies, datasets need to be updated from time to time. The dataset was
recorded for 5 days. On the first day, only normal traffic was recorded and the other days contain
both attacks and normal traffic. The dataset has 84 features and 2.8 million entries. The attacks
in the dataset can be categorised into DoS, DDoS, brute force, infiltration, port scan and Botnet
among others [36].

2.6.5 Westermo network traffic dataset

The Westermo network traffic dataset2 contains 1.8 million packets, that have been generated in
a simulated factory. The data is recorded over a span of 90 minutes and the network consists
of 12 devices. Multiple kinds of attacks have been recorded, as well as misconfigurations that
are not necessarily malicious but can cause the switch not to function as intended. The attacks
are as follows: login attempts using Secure Shell (SSH), port scan, MITM, and misconfiguration
simulating human mistakes. Assigning an incorrect IP address is a common human mistake when
configuring a device. These human mistakes include assigning an address that already exists on
the network (duplication) or assigning an address with changed order. In the dataset, there are
also non-malicious connections over SSH. Figure 10 shows the network topology Westermo used
when recording data for their dataset.

2.7 Containers
Virtual Machine (VM) is a technique in which a physical computer hosts a guest system. The VM
contains a complete operating system, but is isolated from the host device. In between the host
and the VM is a hypervisor, which role is to manage all VMs and keep them isolated from each
other. The hypervisor also allocates resources, such as memory, CPU, and disk space, to each VM
at the host device.

2https://github.com/westermo/network-traffic-dataset
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Figure 10: The network topology Westermo used when collecting data for the dataset. The data
are packets coming into or out from either the left, right or bottom device. The attackers are A1
and A2 (Westermo 2023 [37]).

Compared to VMs containerisation is an approach of isolation, where Docker is available as a
container platform. Docker3 runs on the host operating system as a program and operates one or
multiple containers. Docker isolates each container and therefore its content, the application, from
the hardware. Each container also contains the settings and library needed, which makes them
compatible with different machines independent of host systems.

Another approach is Kata Containers4, which is an open-source container runtime that brings
containers with larger isolation. Kata containers are a hybrid between the VMs and the contain-
erisation of Docker. Kata Containers implements a lightweight virtual machine containing its own
kernel that hosts multiple containers. This is implemented to isolate the containers from each other
and the physical hardware without the performance impact of a VM.

A main feature of a container is that it should isolate the different programs running inside con-
tainers, and with the host operating system. A security problem is container escape, e.g. CVE-
2019-5736, where it was possible to gain root access to the host from inside the container. This
exploit defeats the main purpose of using a container and undermines the security of the system.

Containers are a type of virtualisation technology. Unlike virtual machines, containers have low
usage of system resources, they do not emulate hardware and they share the same operating system
as the host.

The container interface used in this thesis is LXC. This is because of the support on the devices
that have been acquired, which builds upon a business decision of Westermo. LXC is an OS-
level virtualisation technology that can simultaneously run multiple Linux systems (containers) in
isolation on a single Linux kernel (LXC host). The building blocks for LXC are namespaces and
control groups (Cgroups). Namespaces are a Linux kernel feature that can isolate processes from
each other. Namespaces make partitions of the kernel resource such that one set of processes sees
one set of resources and another set of processes sees another set of resources. Cgroups are also a
feature of the Linux kernel. A Cgroup allows for the limitation of resource usage and prioritisation
of resources [38].

3https://docs.docker.com/
4https://katacontainers.io/
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2.8 Host - Device
The host device that is used for this thesis work is provided by Westermo. Westermo is a com-
pany that develops robust network devices that is to be deployed in harsh environments. Their
devices are both layer 2 and layer 3 switches, that are running Westermo’s operating system
WeOS.Throughout the thesis, a Lynx-3510 has been used as the test platform. The switch is
capable of handling both layer 2 and 3. The specific model used in this thesis work is a layer 3
switch. This enables it to not only act as a switch but is also capable of routing. The device has
eight Ethernet ports that support 1 Gbit/s. The device also includes a pair of Small Form-factor
Pluggable (SFP) connectors supporting the aforementioned speed. Equipped with Power over Eth-
ernet (PoE), a console port, and a micro SD card reader. The console port can be connected to
a computer through USB. This is used since the switch does not have a display and it makes it
possible to configure and manage it. As for software, the device runs WeOS 5, which is a modern
robust operating system that builds upon GNU/Linux. With this installed the device has support
for virtualisation, web interface, IP routing, and VPN. The device operating voltage, depending on
the model, is from 12 to 57 VDC. A more detailed list of specifications of the Lynx-3510 is listed
in Table 3 and the device can be seen in Figure 11.

Figure 11: One of Westermo’s devices, the Lynx-3510.

Family Architecture CPU Hz (GHz) Ram (MB) Flash (MB)

Lynx-3510-F2G-P8G ARMv8-A NXP i.MX8 (nano) 1.4 512 128

Table 3: Hardware specifications for the Lynx-3510. The listed amount of resources is the total
amount that is available on the device. Substantially less will be allocated to the container.
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3. Related Work

Methods using machine learning are gaining popularity in protecting the expanding Internet. The
papers presented in this section have utilised intrusion detection systems that can identify and flag
abnormal activities.

Experiments in previous work show that high accuracy, when detecting network intrusions, can be
achieved with RF. Ibrahim et al.[39] researched K-Nearest-Neighbour (KNN), RF, and Support
Vector Machine (SVM) for detecting DoS, Probe, R2L and U2R attacks. Experiments using the
NSL-KDD dataset show that RF has better accuracy for each attack tested and KNN resulted in
produced results with better accuracy than SVM. Lu Zhou et al. [40], discussed that the current
methods of classifying DDoS attacks have issues with privacy or inefficiency. The method used
in the research removes redundant features and introduces a threshold for each feature. The
algorithm applies an aggregated feature-based linear classifier to the features. Markovic et al. [41],
used RF in a federated learning approach. A comparative study was conducted in order to find the
best combination of hyperparameters, several DTs, splitting rule and ensemble method. The study
involved multiple clients and one server. Each client independently trains on a subset of the dataset
and sends the resulting model to the server that aggregates all the models. The intrusion detection
datasets KDD, NSL-KDD, UNSW-NB15, and CIC-IDS-2017 were used. Research shows that
combining independent RFs gives better accuracy than the average accuracy of each independent
RF. This approach is used when the dataset is too large to be used in one node, but with it, there
is a drawback of lower accuracy. Doshi et al. [42], conducted a study about detecting DDoS attacks
originating from IoT devices. Packets grouped after sender and timespan were binary classified
using different algorithms. All algorithms achieved good results and 99% accuracy, with RF being
the most precise but KNN not far behind.

Leon et al. [43] conducted a study about ML for intrusion detection. The algorithms studied were
of varied nature, both supervised learning and unsupervised learning.The validation was performed
on four datasets containing multiple different types of attacks. Their paper concluded that RF was
the best, based on accuracy, whereas KNN and SVM also gave promising results. The drawback
with KNN was the execution time when classifying new cases.

Another important part in Intrusion Detection System (IDS) is how to convert network traffic into
inputs for the ML model. Cirillo et al. [26], researched methods to classify packet flows as IoT traffic
or non-IoT traffic. The system used information such as packet rate, size, and round trip time to
combat encryption. The classification attributes focused on the number of acknowledged packets
and bytes that flowed in each direction. Both simulated and real traffic was used as datasets [44],
[45]. In the experiments, multiple different algorithms were evaluated with varying results with the
J48 Classification tree peaking with over 99% accuracy. Naïve Bayes performed greatly classifying
IoT but traditional traffic was often incorrectly classified as IoT.

Since IoT devices are becoming increasingly popular, much research has been done on how to
protect these devices from cyber attacks. To protect IoT devices a Lightweight Intrusion Detection
System (LIDS) is needed in these resource-constrained devices. Fenanir et al. [46] constructed a
ML-based LIDS. They used three different datasets: KDD99, NSL-KDD and UNSW-NB15. Before
sending the data to a ML algorithm they did feature selection. For the feature selection, they used
a filter method, meaning that features are selected using a correlation matrix, Only the features
where the correlation is greater than a threshold are selected. Their results show that DT and
KNN performed better than other algorithms they used. KNN performed better but required more
time to classify than the DT.

Leon et al. [47] studied another method to reduce features, namely, feature encoding. This approach
builds upon an autoencoder, which is an Artificial Neural Network (ANN), designed for dimensional
reduction. The autoencoder is trained so that it reduces the number of features that are calculated
from the dataset before the data is sent to ML intrusion detection system. This system was
validated using six different ML algorithms and different levels of reduction. The paper found
that by reducing the number of features, time consumption decreased considerably, and without
impacting accuracy too much.
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RoyML et al. [48] proposed a new approach for a LIDS. The proposed model is based on an
adaptive combination of boosting and stacking. The model consists of two levels. The first level is
a simple classifier such as KNN, RF or Extreme Gradient Boosting (XGboost). The output of the
first level is probabilities or predicted values. These values are then fed to the second-level classifier,
which uses them as features in its training. On the CIC-IDS-2017 test dataset, the accuracy was
99.2%. While performing the classification, an Intel Core TM i5-9400F CPU 2.90GHz with 8GB
RAM was used and the model consumed 272MB RAM (3.4%) and 1.5% to 2.9% utilisation of the
CPU.
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4. Method

In the following section, the research method is presented and the steps and methods taken in order
to answer the research questions stated in Section 1.1. This study follows a comparative research
methodology. In Figure 12, there is an overview of the steps taken to answer the research questions.
In the beginning, this thesis focused on studying the state-of-the-art and trying to set up an LXC.
During the study of the state-of-the-art, research papers focused on resource-constrained machine
learning algorithms, anomaly detection, and network flows were examined.

Research State of
the Art and industry

needs

Keep the  
 algorithm?

Propose
implementations Analyse resultsImplement

algorithms
Evaluation &

testing

Are 
the results 
fulfilling?

START

Modify the
algorithm

No

YesNo

Yes

Finished

Figure 12: A flowchart visualising the workflow which is to be followed in order to answer the
research questions.

The methodology flow is depicted in Figure 12, it is based on the research methodology presented
in [49]. The methodology presents an approach that closely integrates the industry and its require-
ments into the steps taken. The first step is to identify the actual problem in the industry, which
helps to improve the relevance and applicability of the research questions that are to be developed.
A comparative methodology is appropriate because of the close relationship between this paper’s
research and Westermo’s requirements.

A comparative research methodology emphasises the contrast in performance between various
algorithms, rather than focusing solely on the outcome of a single algorithm. This also implies
that the priority of the study is a quantitative analysis contrary to a qualitative one. Whereas
the focus is to ensure that the results of the study are enough to be able to differentiate which
algorithm applies to the kind of environment where it will be placed in.

From the basis of the previously mentioned research, multiple algorithms are studied and, de-
pending on the outcome, implemented. Each implementation is then tested and evaluated. The
testing should validate the logic of the models and ensure that their desired behaviour is consist-
ent. Evaluation refers to calculating metrics, such as accuracy and precision on the validations
set. Measurements of the allocated resources, such as execution time and memory, should also be
evaluated during runtime. After evaluation, the algorithm will be modified and re-evaluated or, in
case of a poor model, a new one will be created. This process continues until all the results are
fulfilled or the time is out.

Throughout the work, a large portion of the results will be produced only by simulation. This
is because the research that will be conducted builds upon the performance of ML. Due to that,
the model does not need to run directly on hardware to validate the performance of the said
model. Even if the models do not need to be evaluated on the switch, some models will be tested
on the hardware in order to see how the models perform with live network traffic. The focus
during this stage is not to validate the accuracy of the model, but instead, on the performance and
functionality. This ensures that the program is working as intended, that the program function
properly given the limited resources, and that the program is compatible with the system.
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5. Implementation

The final implementation consists of numerous steps which are divided into two different programs.
The first program, Flow Classification, is implemented in C and is developed to run inside the
container on the network switch. The second program is developed in Python 3 and will train the
classifiers on a desktop PC to produce a model. In Figure 13, a visual representation of this system
is shown. Described below is a short summary and the following sections contain a more detailed
description of each step.

1. Reading packets - The program supports reading packets from a PCAP file, that is, a file
with pre-recorded packets, or live packets from a Network Interface Card (NIC).

2. Converting packets into flows - The program looks at the header of each packet that is read,
to see if there exists a flow that the packet belongs to. If there is not, the packet becomes
part of a new flow.

3. Calculating features - Here features are calculated for each flow. All features that may be
calculated are listed in Table 4. This step also includes labelling, if exporting features.

4. Exporting the featured flows to a file - This step is optional. It is only active when the
program is meant to generate a dataset. Therefore, the program does not export the flows if
a model is loaded, and the classification is active. In this step, the flows with their features
are exported to a file. The flows and their features are what make up a dataset.

5. Training a model - After the featured flows have been exported, they are used to train a
model. Before training, a feature selection process and then a parameter tuning process is
used. This step is programmed in Python 3 and is meant to run on a desktop PC.

6. Online dataset - When training, the program may use features from online datasets to train
and generate a model, used as a substitute for the earlier steps.

7. Importing the model - The model that has been trained is imported back into the C program.
The model includes a list of features that was decided during feature selection.

8. Classification - Classifying featured flows using the imported model on the device.

9. Act - The program responds by blinking with an LED when an attack is detected.

Flow Classification (C)

Model

Packets Flows Features

Classified
Flows

2.

8.

3.

9.

Host

Desktop PC

Online Features
From Databases

Model

Features

Live Packets

Train AI (Python)

Model

5.

PCAP

1. 6.

7.

4.

Figure 13: A visual representation of the implementation. Each number represents a step that is
explained in the text.

For efficiency, the implementation developed during this thesis builds on multiple open-source
libraries.

• Scikit Learn - A comprehensive Python 3 library, Scikit Learn5, that is used extensively in
the implementation when training the ML models. Scikit supports multiple algorithms, such

5https://scikit-learn.org/stable/
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as DT, RF, and ANN providing easy access to train advanced models. Their implementa-
tion focus on maintainability and simplicity written in Python, building upon the NumPy
library [50].

• Libpcap - An open-source library providing functions for reading packets and capturing
network traffic from a wire. It is written in c, targeting c/c++ implementations supporting
packet sniffing, modification, and transmission of packets. It is also implementing full support
for reading and writing data to a PCAP file in offline mode [51].

5.1 Reading packets
Reading packets is accomplished using Libpcap. The implementation may either read from a file or
directly from a NIC. In the former mode, a PCAP file should be provided containing pre-sampled
packets. Each packet is then processed one at a time until the end of the file is reached. To
read directly from a network interface and sample live packets, the program first lists all interfaces
available and then asks the user from which one to read. From the chosen interface, packets are
read until halted. It is possible for both configurations to specify the maximum amount of packets,
which will terminate the reading when the said amount of packets has been reached.

Due to the program being placed in a container, additional configuration is needed to be set up
for reading packets. Therefore a software bridge has been configured. The container inside the
device possesses an external and an internal virtual port. The external port is then configured
such that it is connected to the software bridge. Only ports that are connected to this bridge are
in a position to forward their packets to the container. Therefore, each port that the model should
listen to is connected to the bridge. Figure 14 is an example of such a configuration. In that case,
all physical ports are connected, but other ports may exist that are not connected to the bridge,
and are therefore not monitored by the model.

Host

Host

Container

Model

Bridge

veth0 veth1eth1

eth2

eth0

Figure 14: How the ports are configured on the Lynx-3510. The model is placed inside a container
with a virtual network interface. Another virtual interface is then connected to the network bridge
inside the device.

Inside the container, only a single network interface is visible, the virtual internal port, named
veth1 in Figure 14. This port is bridged together with the external veth0 port and when configured
correctly, all packets sent to the bridge, are forwarded to this interface.

5.2 Flows
The target device have limited computational resources. To reduce the load, packets are classified
into flows. This is accomplished by looking at certain values in the packet header, namely: source
IP address, destination IP address, destination port, and protocol as described in Section 2.2. If
each value in a newly read packet is equal to an active flow, the packet is accounted to said flow.
If this is not the case, and the new packet does not belong to an existing flow, the packet is placed
in a new flow. When a new flow is created, the timestamp is saved. This sets the criteria for when
a flow should end, and when no more packets will be appended to the flow. There are two reasons
for ending a flow; flow idle timeout and flow active timeout. The former ends a flow when no more
packets have been appended to the flow during a certain time span. On the other hand, the latter,
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ends a flow after a certain time has passed from when the flow was created. This is to avoid a flow
spanning an exaggerated time span due to the consequent transmission of packets.

5.2.1 Labelling Strategies

Two labelling strategies were implemented. The first is called interval and the second is called
attacks only.
Interval is an implementation which depends on a log file that is provided with the dataset. When
the program reads from a PCAP file, it is possible to label the data using this log file. The log
file contains the timestamp of when an attack starts and ends. The program then labels all flows
that contain packets transmitted during an interval as an attack. A visualisation of the process is
shown in Figure 15.

Attack Period

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Time

Attack
No Attack

Figure 15: When labelling a flow, the program reads from a file containing the timestamps of the
attacks. If a packet that is part of a flow, was transmitted during an attack, the flow is labelled as
an attack. The flows in the figure marked as red are labelled as an attack, whereas the blue ones
are not.

Attacks only is a more sparse labelling method. Instead of marking every packet that is trans-
mitted during an attack as part of an attack, the strategy is to identify malicious packets and only
mark those as part of an attack. The attacks are identified using a log file. If just a single packet in
a flow is flagged, the flow is also flagged as an attack. This implementation depends on knowledge
of the source of the attacks when labelling.

5.3 Datasets
Multiple datasets that are open source have been described in Section 2.6, but only the CIC-
IDS-2017 dataset [36] and the Westermo dataset6 were used. The CIC dataset is selected as it
is the most recent one of those described in Section 2.6. Because the dataset is large, not all of
the data was used, just the data recorded from one of the five days. Only the data from Friday
is used which amounts to 8.3GB. This data only contains three types of attacks, Botnet, DDoS,
and port scan. The CIC dataset is labelled and ready to be imported directly to train a model.
But, because the features in the CIC dataset are already computed, there may be differences in
how those features were calculated. If that is the case, it is hard to use the model trained in the
classification program and still do a valid comparison between the models that was trained using
the CIC dataset with the models trained on the Westermo dataset. Because of this, the raw data
in PCAP format of the CIC dataset and the log files containing the timestamps of the attacks
were used. The log files are used to label the data. Using the PCAP files made it possible to use
the implemented features and create datasets based on those features. Before using the PCAP
file, some preprocessing was applied. The preprocessing consists of converting packets into flows.
From the CIC PCAP file, datasets were created using different flow duration and different labelling
strategies. The flow duration was either 0.1s, 1s or 10s and the labelling strategy was either the
interval labelling strategy or the attacks-only labelling strategy:

• CIC interval 10

• CIC interval 1

• CIC interval 0.1
6https://github.com/westermo/network-traffic-dataset
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• CIC attacks only 10

• CIC attacks only 1

• CIC attacks only 0.1

From the PCAP files and log files that Westermo created, 18 datasets were derived using the
packets recorded by the left device, the right device and the bottom device. For each of the three
PCAP files, the flow duration is either 10s, 1s or 0.1s and uses either the interval labelling strategy
or the attacks-only labelling strategy. To summarise, the following datasets were created:

• Bottom interval 10
• Bottom interval 1
• Bottom interval 0.1
• Bottom attacks only 10
• Bottom attacks only 1
• Bottom attacks only 0.1

• Right interval 10
• Right interval 1
• Right interval 0.1
• Right attacks only 10
• Right attacks only 1
• Right attacks only 0.1

• Left interval 10
• Left interval 1
• Left interval 0.1
• Left attacks only 10
• Left attacks only 1
• Left attacks only 0.1

5.4 Features
When a flow is complete, which happens after a certain time interval called flow duration mentioned
in 5.2, the flow is exported or classified depending on the current configuration. The current im-
plementation supports numerous features, building upon the IPFIX standard referenced in Section
2.2. All implemented features are listed in Table 4.

5.5 Exporting features
When exporting the features, the program produces a file with all the flows that have been read
during the operation. The file begins with a number containing the number of features that have
been computed and then a list of those features. Then each line contains the features for the
corresponding flow in the order they have been completed. All features are listed in Table 4.
Later, when training a model, features that are deemed unnecessary by the GA are removed.
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Application

ID Feature Description

1. src port Source port of the packets
2. dst port Destination port of the packets
3. protocol identifier protocol field in the IPv4 header
4. ip class service Value of the type of service field

Statistical

ID Feature Description

5. octet delta count Total number of bytes
6. packet delta count Total number of packets
7. flow duration Delta time of first and last packet
8. min ip total length Smallest ip header + payload packet in the flow
9. max ip total length Largest ip header + payload packet in the flow
10. ip header length Length of the ip header
11. flow byte rate Amount of bytes per second
12. flow packet rate Amount of packets per second
13. packet length min The smallest packet in the flow
14. packet length max The largest packet in the flow
15. packet length mean The mean packet length
16. packet length std The standard deviation of the packet size
17. flow IAT min The minimum inter-arrival time of packets
18. flow IAT max The maximum inter-arrival time of packets
19. flow IAT mean The average inter-arrival time of packets
20. flow IAT std The standard deviation inter-arrival time of packets
21. flow IAT total The total inter-arrival time of packets
22. mcast packet delta count The amount of multicast packets
23. mcast octet delta count The total size of multicast packets

Flags

ID Feature Description

24. tcp control bits Flags contained encoded bit fields
25. igmp type The Internet Group Management Protocol field
26. icmp type code ipv4 Internet Control Message Protocol type and code field
27. FIN flag count Number of packets with "No more data from sender"
28. SYN flag count Number of packets with "Synchronise sequence numbers"
29. RST flag count Number of packets with "Reset the connection"
30. PSH flag count Number of packets with "Push Function"
31. ACK flag count Number of packets with "Acknowledgement"
32. URG flag count Number of packets with "Urgent"
33. CWR flag count Number of packets with "Congestion window reduced"
34. ECE flag count Number of packets with "ECN Echo"
35. ipv4 Options ipv4 option encoded in bit fields
36. minimum TTL The minimum time to live for the packets
37. maximum TTL The maximum time to live for the packets
38. fragment offset The data starting position for the packets
39. fragment flags Fragmentation properties of the packets
40. ethernet type The MAC client protocol of the payload

Table 4: List of features implemented. These are calculated for each flow and are exported to
either the dataset for model training, or to classification.
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5.6 Model Training
The training phase of the process is written in Python 3. This decision was made because of the
larger availability of ML libraries. The implementation of the training is sustained using the library
Scikit Learn described in Section 5.

Before training the model feature selection and parameter tuning is performed using a GA.
Whereas before the GA is executed the dataset is randomly divided into a training set, valid-
ation set and test set. The training set composes 70% of the dataset, the validation set makes up
10% and the test set is 20%. Figure 16 shows a flowchart of the implemented GA. In this section,
each step in the algorithm will be further described.

2. Compute fitness of
each individual

No

Yes

Iteration > max?
1. Create initial

population 3. Select parents 4. Generate
offsprings

5. Mutate offsprings6. Replace individuals

Return the best
individual

Figure 16: A flowchart of the implemented GA.

1. In the first step, an initial population of size 20 is created. The size of the population is
specified as one of the input arguments. Each individual in the population is an array which
can be used as input for the DT or RF classifier. The individuals are either binary arrays used
for feature selection or an array with categorical values and real numbers used for parameter
tuning. See Figure 17 for an example of the two individuals. The binary array used for
feature selection has 40 elements since there are 40 features. Each element is either 1 or 0,
where 1 means that the feature is to be used in the DT or RF and 0 means that the feature
is not to be used. When an individual is initialised each element is assigned a 1 or a 0 with
50% probability.

0 1 1 0 1 1 1 0 0 1 0 1

Individual Feature
Selection

RandNone 20 1232 195 0.1

Individual Parameter
Tuning

Figure 17: An example of the individuals in the implementation where feature selection and para-
meter tuning are carried out separately. In this example, there are 12 features in the dataset and
the features 1, 2, 4, 5, 6, 9 and 11 are used in the DT/RF. In reality, the individual in feature
selection has 40 elements and the individual in parameter tuning has 10 or 7 elements, 10 if the
GA is used for tuning RF parameters and 7 if it is used for DT.

When using the GA for parameter tuning, the elements of the best individual are used as
parameters for the DT or RF. Each element in that array is determined based on the range
of the possible values on the hyperparameter. Also here the values are sampled randomly
within the possible ranges. An individual used for parameter tuning of RF, XRF , is the set
of variables and DRF is the domain of those variables. Any combination of values on the
variables is allowed, so there are no constraints.
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XRF = {class_weight,
max_features,
n_estimators,
max_depth,
min_samples_split,
min_samples_leaf,
max_leaf_nodes,
max_samples,
min_impurity_decrease,
min_weight_fraction_leaf}

DRF = {{′balanced′,′ balanced_subsample′, None},
{′sqrt′,′ log2′, None},
{x|x ∈ N, 8 ≤ x ≤ 256},
{x|x ∈ N, 10 ≤ x ≤ num_samples},
{x|x ∈ N, 2 ≤ x ≤ 40},
{x|x ∈ N, 1 ≤ x ≤ 20},
{x|x ∈ N, 2 ≤ x ≤ num_samples},
{x|x ∈ N, 10 ≤ x ≤ num_samples},
{x|x ∈ R, 0.0 ≤ x ≤ 0.01},
{x|x ∈ R, 0.0 ≤ x ≤ 0.01}}

The array for parameter tuning of DT has the following variable and domains:

XDT = {splitter,
class_weight,
max_features,
max_depth,
min_samples_split,
min_samples_leaf,
max_leaf_nodes}

DDT = {{′best′,′ random′},
{′balanced′, None},
{′sqrt′,′ log2′, None},
{x|x ∈ N, 1 ≤ x ≤ num_samples},
{x|x ∈ N, 1 ≤ x ≤ 40},
{x|x ∈ N, 1 ≤ x ≤ 20},
{x|x ∈ N, 2 ≤ x ≤ num_samples}}

2. Before calculating the fitness values each individual needs to be passed as input for the
DT/RF classifier in order to determine the accuracy when using the individual’s features
and hyperparameters values. The fitness value of an individual is calculated by using that
individual as input for the classifier. The classifier is either a random forest or a decision
tree. If the genetic algorithm is to be used for feature selection, the accuracy of an individual
is calculated by first removing the features not included in that individual. For example,
if element i of the individual array is zero then column i in the training set and validation
set is removed. This is repeated for all zero elements. Then, the classifier model is trained
using the training dataset with removed columns and the fitness value of the individual
becomes the accuracy that the model gets on the validation set with removed columns. Since
bootstrapping is used for the random forest, each decision tree in the forest gets its own
training dataset. These are taken randomly with replacement from the dataset the random
forest uses as input. When doing feature selection, the dataset the random forest gets as
input is the training set with removed columns. See the psuedo-code in Algorithm 3 for a
description of this code implementation and the rest of the genetic algorithm. If the genetic
algorithm is used for parameter tuning, the process is similar, were the difference is how
the classifier is trained and which parameters it uses. In this case, the values of each of the
elements in the individual is used as parameters for a classifier. Then the classifier is trained
on the whole training set without removing columns, and the fitness value is the accuracy on
the validation set.

Then if this iteration is greater than the maximum number of iterations the best individual
array will be returned, otherwise the next step is executed. The maximum number of itera-
tions is 100.

3. The next step is to select parents. The parents are selected using Roulette selection. In
Roulette selection, individuals with higher fitness values have a higher probability of being
selected.

4. Two offspring are generated when doing a crossover. If the individual is a binary array or
an array with categorical values, a single-point crossover is performed, otherwise BLX-α is
used.

5. Mutation is done differently depending on the type of individual. If the individual is a
binary array, a bit is flipped. If the element to be mutated is instead a categorical value,
the value will be selected randomly from the domain of that element. All categorical values
have the same probability of being selected. If the element is an integer or a float value, the
mutation is carried out by adding a disturbance sampled from a normal density function. In
this implementation, offspring1[i]=offspring1[i] + N((xmax-xmin)/2+xmin,xmax−xmin

6 ), where
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xmax and xmin are the maximal and minimal values for element "i" of the individual. The
mean is equal to (xmax-xmin)/2+xmin and the standard deviation is equal to xmax−xmin

6 to
get a normal distribution like the one in Figure 18. In this Figure, the most probable value
is the mean and min, max being the approximated boundaries.

The mutation rate is 1 divided by the length of the individual. Such that on average only
one element mutates. In a later implementation, the mutation rate is 3 divided by the length
of the individual.

min=μ-3σ μμ-σμ-2σ μ+σ μ+2σ max=μ+3σ

μ=(max-min)/2+min

σ=(max-min)/6

Figure 18: The normal distribution, N((xmax-xmin)/2+xmin,xmax−xmin

6 ), the disturbance is
sampled from when mutating a real number element. σ = xmax−min

6 since µ + 3σ − (µ − 3σ) =
6σ → max−min = 6σ → σ = xmax−xmin

6

6. The two offspring replace the two individuals with the lowest fitness values.

In this implementation, parameter tuning is first executed and then feature selection. During
parameter tuning, all features are used each time the RF or DT is executed. Once the best
individual from parameter tuning and the best individual from feature selection is obtained, a RF
or DT classifier is trained with the values of the parameters as specified by the best individual
from parameter tuning and the features selected as specified by the best individual from feature
selection. Then this model containing one or several trees is exported as a text file. This text file
is then imported to the classification program as described in Subsection 5.7.

5.7 Importing a Model
The model is read from the text file containing the trees and imported as binary search trees. The
file must contain the number of features and a list of their names in the correct order. The program
uses this information to match the information in the binary tree with its corresponding feature
calculation function. This ensures that the model will work no matter which features that need
to be calculated. It also ensures that the program does not calculate features that are not used.
This saves computational power and speeds up the execution time. When importing a tree from
the file, the program looks for either the end of the file or a marker that tells that a new tree is
beginning. This ensures that each tree is handled as a separate tree. It is possible to import any
amount and size of trees, as long as there is enough memory to load it into.
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Algorithm 3 Genetic Algorithm for Feature Selection. When computing the fitness value for each
individual, the columns of unwanted features are removed from the dataset. Then, the fitness for
each individual is derived from the accuracy of model trained on the prepared dataset.

population = initialise_population()
while max_iteration not reached do

for i = 0 i to size_population-1 do
individual = population[i]
selected_feat = find_all_zero_indexes(individual)
new_train = remove_columns(train_set, selected_feat)
new_val = remove_columns(val_set, selected_feat)
train_classifier(new_train)
y_predicted = predict(new_val)
fitness_population[i] = accuracy(y_predicted, y_validation_set)

end for
parents = select_parents()
offspring = crossover(parents)
mutate(offspring)
Remove the two individuals with the lowest fitness values
Add the two offspring to the population

end while
return individual with highest fitness value

5.8 Classification
When a flow is completed, which happens when the flow duration has been reached, it is classified.
When classifying, the program traverses the imported model using the features calculated for each
flow. When multiple trees are loaded, it computes the decision of each tree and then exports
the majority vote. Depending on the amount and size of the trees, the execution time will vary.
Increasing the amount of trees, or the number of nodes in the trees will impact performance
negatively. After the classification is done, the flow is deleted to free memory for new incoming
flows.

5.9 Act
Currently, when the program is running on the device and detects an attack, no preventative
action is taken. Instead, the device notifies the detection by using one of the LEDs next to the
Ethernet ports. In Figure 19, a Lynx-3510 can be seen blinking because an attack was detected.
For debugging purposes, when an attack is detected, the device uses the console port to transmit
that a flow have been flagged as an attack. With this, information about the flow, such as the
flow-defining attributes listed in Table 2, are also transmitted.
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Figure 19: In the figure, the Lynx-3510 can be seen connected to the simulated factory. In the left
picture is the Lynx-3510 during normal operation. But in the right picture, a LED is powered on
an unused Ethernet port. This is to indicate that an attack has been detected.

5.10 Experimental Setup
To validate the model when running inside a container on a switch, a network with 5 Raspberry
Pis, 2 Lynx-3510 and a PC was connected. The centre of the network is the Lynx-3510 loaded with
the model. Each device is then connected to a corresponding Ethernet port on that Lynx-3510.
See Figure 20 for the network topology that was used during the online validation.

Lynx - AI Lynx - Misconf.

Container

Model

SimFact PLC1 PLC2

Attacker
Laptop

Attacker
MITMHMI1

Figure 20: Topology of all devices included during the evaluation of the models. Included are five
single-board computers, two Lynx-3510 and a laptop. One of the Lynx-3510 is hosting the model
inside a container and all other devices are connected to this Lynx-3510 using Ethernet cables.

The attacks were launched from various devices during testing. Both port scan and the DoS
attacks were launched from the PC marked as Attacker Laptop in Figure 20. The MITM were
launched from the Raspberry Pi marked as Attacker MITM. The port scan was initialised using
Nmap7. This searches the complete subnet, including all devices connected to the network, for
ports that are open. The DoS attack was executed using Hping8. The virtual interface assigned to

7nmap -v 198.18.134.0/24
8sudo hping3 -S –flood -V -p 22 198.18.134.40
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the container was configured to use the address "198.18.134.40". The MITM was undertaken by
running a Python script from ICSSIM [52]. The misconfigurations were carried out by configuring
the other Lynx-3510, marked in Figure 20 as Misconf. First, this Lynx-3510 was configured to use
IP address 198.134.18.39 instead of 198.18.134.39 swapping the number in the middle of the IP
address. The other misconfiguration is initialised by configuring the Lynx-3510 to use an address
that already exists on the network. In this case, it was assigned to use the same address as one of
the Raspberry Pis.
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6. Results

Throughout the following chapter, all results are presented. The chapter is divided into three
sections, offline feature selection, offline classification results, and online classification and per-
formance. In the offline feature selection, results originating from the GA are presented. After
which, in offline classification results, accuracies, and other metrics from model training are given.
After these, the outcome from the online classification and performance of the models is presented.
Here the models have been imported on the network switch, and connected to a simulated factory
as described in Section 5.10.

6.1 Offline Feature Selection
The purpose of the results from training is to show how the fitness values or accuracies change
with each generation. Only plots for some models are shown in the results. These are the training
results from the model trained on data from the Westermo bottom with an interval labelling
strategy and a flow duration of 10. The model was trained on the Westermo left dataset with an
interval labelling strategy and flow duration of 10. The accuracy displayed in the graphs has been
calculated on the validation set. A more extensive set of plots can be found in Appendix B.

6.1.1 Feature Occurrences

Before each model was trained, feature selection was applied using a GA, described in Section 5.6.
Figure 21, shows how many times each feature was included in a model.
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Figure 21: A collection of the features used from all the models evaluated above. For example, if
a feature has 10 occurrences, it means that the feature has been used in 10 models.
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6.1.2 Evaluation of Model bottom interval 10

In Figure 22, each column shows the result after running the GA for 100 generations and having
a population size of 20 individuals. The dataset has been used for three different GAs. All the
columns show the best and the mean value of each generation’s accuracy and fitness value. The
first two columns are the results from the GA used for feature selection. In the first column, the
values of the weights are 0.85 and 0.15. These weights are used in the function that calculates the
fitness values, see Subsection 5.6 for a reminder of how the weights work. In the second column,
the values of the weights are 0.95 and 0.05. The last column shows the results from the GA used
for parameter tuning. The GA used in Figure 22 had a mutation rate of 1/len(individual).
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Figure 22: Evaluation of the GA for RF using the Bottom_Interval_10 dataset. The first row of
subplots shows the best and the mean accuracy of the population in each generation. The first
two plots in the row show the evaluation of the GA using different weights and the last plot in the
row shows to the accuracy when using the GA for parameter tuning. The second row follows the
same pattern but with fitness values instead of accuracies.

6.1.3 Evaluation model left interval 10

In the left subplots of Figure 23, 24, and 25, the GA is used for parameter tuning and in the
subplots to the right the GA is used for feature selection. Here, the weights have values 1.0 and
0.0 when calculating the fitness values, so the fitness values equal the accuracies. Therefore, no
plots of the fitness values are included.
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Figure 23: Evaluation of GA for feature selection and parameter tuning of a RF classifier. The
dataset was the Left_Interval_10 and a mutation rate = 1/len(individual)
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Figure 24: Evaluation of GA for feature selection and parameter tuning of a RF classifier. The
dataset was the Left_Interval_10 and a mutation rate = 3/len(individual)
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Figure 25: Evaluation of GA for feature selection and parameter tuning of a DT classifier. The
dataset was the Left_Interval_10 and a mutation rate = 1/len(individual)
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6.2 Offline Classification Results
This subsection presents various results gathered during training and testing of models on a PC. In
Table 5, results from offline testing of different DT and RF models are presented. In Appendix A,
a similar table presents additional information about the models, such as their size, the number of
trees and the number of features selected. To present the results, the following values, originating
from confusion matrices and derivations from the confusion matrices, are used:

• True Negative (TN), negative classified as negative

• False Positive (FP), negative classified as positive

• False Negative (FN), positive classified as negative

• True Positive (TP), positive classified as positive

• True Positive Rate (TPR), TPR = TP/(TP + FN)

• True Negative Rate (TNR), TNR = TN/(TN + FP)

• Balanced Accuracy (BA), BA = (TPR + TNR)/2

• Accuracy (Acc.), ACC = (TP + TN)/(TP + TN +FP + FN)

Even though the datasets in Table 5 are the same for different models, the division of the data-
sets into training set, validation set, and testing set is not the same. For example, a RF with
mutation rate 1/len(individual) trained on Bottom_Interval_10 and a RF with mutation rate
3/len(individual) does not have the same training set, validation set and test set because of the
random shuffle.

Evaluation Decision Tree, Mutation rate = 3/len(individual)

Dataset Labels FD TN FP FN TP TPR TNR BA Acc.

Bottom Interval 10 674 0 249 0 0.00 1.00 0.50 0.73
Right Interval 10 306 5 132 11 0.08 0.98 0.53 0.70
Left Interval 10 1312 239 522 340 0.39 0.85 0.62 0.68
CIC Interval 10 23804 4157 4895 26400 0.84 0.85 0.85 0.85

Bottom Interval 1 2811 0 742 0 0.00 1.00 0.50 0.79
Right Interval 1 582 0 183 0 0.00 1.00 0.50 0.76
Left Interval 1 2213 0 725 0 0.00 1.00 0.50 0.75

Bottom Attacks 10 841 7 67 8 0.11 0.99 0.55 0.92
Right Attacks 10 339 4 100 11 0.10 0.99 0.54 0.77
Left Attacks 10 2200 3 198 12 0.06 1.00 0.53 0.92

Bottom Attacks 1 3362 3 175 13 0.07 1.00 0.53 0.95
Right Attacks 1 675 0 90 0 0.00 1.00 0.50 0.88
Left Attacks 1 2728 3 196 11 0.05 1.00 0.53 0.93

Table 5: Evaluation of random forest and decision tree.
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Evaluation Decision Tree, Mutation rate = 1/len(individual)

Dataset Labels FD TN FP FN TP TPR TNR BA Acc.

Bottom Interval 10 679 0 244 0 0.00 1.00 0.50 0.74
Right Interval 10 304 11 126 13 0.09 0.97 0.53 0.70
Left Interval 10 1371 172 631 239 0.27 0.89 0.58 0.67
CIC Interval 10 24011 3860 5155 26230 0.84 0.86 0.85 0.85

Bottom Interval 1 2880 0 673 0 0.00 1.00 0.50 0.81
Right Interval 1 605 0 160 0 0.00 1.00 0.50 0.79
Left Interval 1 2210 0 728 6 0.01 1.00 0.50 0.75

Bottom Attacks 10 855 4 64 0 0.00 1.00 0.50 0.93
Right Attacks 10 353 8 92 1 0.01 0.98 0.49 0.78
Left Attacks 10 2167 12 222 12 0.05 0.99 0.52 0.90

Bottom Attacks 1 3355 4 185 9 0.05 1.00 0.52 0.95
Right Attacks 1 650 7 102 6 0.06 0.99 0.52 0.86
Left Attacks 1 2728 0 210 0 0.00 1.00 0.50 0.93

Evaluation Random Forest, Mutation rate = 3/len(individual)

Dataset Labels FD TN FP FN TP TPR TNR BA Acc.

Bottom Interval 10 612 24 248 39 0.14 0.96 0.55 0.71
Right Interval 10 317 3 132 2 0.01 0.99 0.50 0.70
Left Interval 10 1251 303 457 402 0.47 0.81 0.64 0.69
CIC Interval 10 24012 3867 5541 25836 0.82 0.86 0.84 0.84

Bottom Interval 1 2819 0 734 0 0.00 1.00 0.50 0.79
Right Interval 1 612 0 153 0 0.00 1.00 0.50 0.80
Left Interval 1 2223 0 709 6 0.01 1.00 0.50 0.76
CIC Interval 1 31782 4024 6009 40810 0.87 0.89 0.88 0.88

Bottom Attacks 10 856 0 67 0 0.00 1.00 0.50 0.93
Right Attacks 10 359 1 87 7 0.07 1.00 0.54 0.81
Left Attacks 10 2168 19 182 44 0.19 0.99 0.59 0.92
CIC Attack 10 58995 0 1 260 1.00 1.00 1.00 1.00

Bottom Attacks 1 3338 0 215 0 0.00 1.00 0.50 0.94
Right Attacks 1 657 7 95 6 0.06 0.99 0.52 0.87
Left Attacks 1 2724 0 214 0 0.00 1.00 0.50 0.93
CIC Attack 1 82255 0 4 366 0.99 1.00 0.99 1.00

Evaluation Random Forest, Mutation rate = 1/len(individual)

Dataset Labels FD TN FP FN TP TPR TNR BA Acc.

Bottom Interval 10 671 0 250 2 0.01 1.00 0.50 0.73
Right Interval 10 307 4 133 10 0.07 0.99 0.53 0.70
Left Interval 10 1436 106 714 157 0.18 0.93 0.56 0.66

Bottom Interval 1 2847 0 706 0 0.00 1.00 0.50 0.80
Right Interval 1 588 6 160 11 0.06 0.99 0.53 0.78
Left Interval 1 2159 31 697 51 0.07 0.99 0.53 0.75

Bottom Attacks 10 858 1 60 4 0.06 1.00 0.53 0.93
Right Attacks 10 365 0 89 0 0.00 1.00 0.50 0.80
Left Attacks 10 2193 8 190 22 0.10 1.00 0.55 0.92

Bottom Attacks 1 3348 4 194 7 0.03 1.00 0.52 0.94
Right Attacks 1 673 0 92 0 0.00 1.00 0.50 0.88
Left Attacks 1 2736 0 202 0 0.00 1.00 0.50 0.93

Table 5: Evaluation of random forest and decision tree. (Continued)
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6.3 Online Classification and Performance
In this section, results from when running some ML models on the switch, as presented in 5.10.
The result from this evaluation is summarised in Table 6. Only the models trained on the left
dataset managed to detect attacks. They only managed to detect port scans and DoS attacks. In
Figure 26, a diagram shows one of the attack sessions. Displayed are timings from when different
attacks were launched and when the model classified flows as attacks. Models larger then 80 MB
where not able to load into memory, and have therefor not been evaluated online.

Dataset Labels FD Port S. DoS MITM Misconf. N trees N feat. Size

Decision Tree

Left Interval 10 yes yes no no - 18 161kb
Bottom Interval 10 no no no no - 15 162kb
Right Interval 10 no no no no - 18 162kb

Random Forest

Left Interval 10 yes yes no no 79 17 1.20MB
Left Interval 1 yes yes no no 253 20 2.70MB
Left Attacks 10 yes yes no no 176 23 1.00MB
Left Attacks 1 yes no no no 119 14 28.5kB
Left Attacks 0.1 yes no no no 136 6 56.3kB
Right Interval 10 no no no no 67 19 13.0MB
Right Interval 1 no no no no 241 21 2.70MB
Right Attacks 0.1 no no no no 210 16 77.4MB
Bottom Interval 10 no no no no 111 19 46.0MB
Bottom Interval 1 no no no no 241 20 69.8MB

Table 6: The results from online verification on the device. The first column represents which
datasets that were used for training. Attacks and intervals indicated the labelling strategy used,
described in 5.2.1. Flow Duration (FD) refers to how long each flow is at max, in seconds. A yes
means that at least one flow was successfully detected during an attack, while a no means that the
model detected zero flows.
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Figure 26: A sample of attacks launched towards the system topology, displayed in Figure 20. The
model that was imported during the run was trained on Left_Interval_10. The timeline under the
attacks, red rectangles, is used to display the timestamps for when an attack started and ended.
The blue rectangles represent when the model classified attacks and the numbers inside are how
many flows that were classified. The numbers on top of the blue squares are timestamps for the
first and last detected flow.
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7. Discussion

The previous section presented the results produced during the thesis. This section discusses said
results and mentions decisions that were taken during the work, that could impact the results.

7.1 Genetic Algorithm
From the results, Section 6., it can be seen that the accuracy only increases a few percentage
points and then gets stuck. The best individual in each generation does not change considerably.
To lower the risk of getting stuck at a local minimum, the mutation rate and crossover can be
increased. Increasing crossover can be done by creating more offspring or increasing the crossover
points. Creating more than just two offspring that can replace the population would increase the
variation of the individuals. Furthermore, the results show that the mean of the fitness values of
the population increases more during the generations compared to the fitness value of the best
individual.

Even though the fitness value did not depend on the number of features used, the GAs generated
individuals using 50% of the features as the best individuals. This may depend on the fact that in
feature selection an element of an individual is either 0 or 1 with a 50% probability and as mentioned
before the individuals do not change that much. The results from the feature selections indicate
that IP header length is the most important feature for detecting anomalies. The least important
feature is flow duration, but the majority of the features seem to be of equal importance. In Figure
21 it can be seen that most of the features have a similar number of occurrences. Therefore, the
results from the feature selections may also be random.

In Figure 22, weights were used to control how much the fitness values increase when the number
of features decreased. One problem with this was that decreasing the number of features increased
the fitness values too much. This can make the fitness value increase while decreasing the accuracy.
This is bad for increasing accuracy. An example of this can be seen in Figure 22, where the first
column of the plots, where the weights have values of 0.85 and 0.15.

7.2 Offline classification
Sometimes the trained models decide to classify everything as the majority class, the class repres-
enting no anomaly. This results in a high number of false negatives, which can be seen in Table 5.
Many models result in a low TPR, less than 10%. These models can sometimes have high accuracy,
but since they are not able to detect any or a few attacks their balanced accuracy is low. The
models trained on the Westermo dataset that have a TPR greater than or equal to 10% are all the
models trained on the Left_Interval_10 dataset, the RF models trained on the Left_Attacks_10
dataset and the RF model trained on Bottom_Interval_10 dataset using an increased mutation
rate in the GA. The best-performing model is the RF model trained on the CIC dataset, with the
attack labelling strategy and flow duration of 10. The model only found a single false negative,
a balanced accuracy of 99.81% and an accuracy of 99.998%. That is a high accuracy compared
to some Related works in Section 3.. But this thesis project only utilised data from one of the
recorded days, which may have affected the results. The results in Table 5, suggest that the models
trained on the data recorded by the left device in the Westermo dataset are better compared to
the models trained on the data recorded by the other devices. This was expected since the bottom
and the right device do not get attacked directly like the left device. The results also suggest that
the model trained on datasets created using a flow duration of 10s performed better than models
with a lower flow duration.

7.3 Online classification
The results from the live classification show that it is possible to classify packets from a network
device using machine learning with some of the exported models. The only attacks that these
models detected were DoS and port scan. No model was able to detect MITM or misconfigurations.
This study compared random forest classifiers with decision tree classifiers and random forest
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managed to detect more attack flows and gave fewer false positives. If the exported models are
less then 80 MB, they are able to run inside the container. Otherwise, the program do not have
enough memory to function properly. If the random forest model does not have too many nodes
in the forest they are preferred for detecting anomalies in a resource-constrained setting.

7.4 Research Questions
In this section, the authors reflect on the research questions, stated in Section 1.1.

• Is it possible and if so, how well does random forest perform anomaly detection
in a resource-constrained setting?

This question may be divided into two smaller questions. First of all, is it possible to perform
anomaly detection in a resource-constrained setting? To be able to answer this question, the
system described in Section 5. has been developed. This system includes a network device,
that is limited in computational resources. During validation, multiple ML models were
trained and later loaded onto the device. This device was placed in a network, described in
Section 5.10, to validate the system. As documented in Section 6. results, online testing, both
DoS and port scan have been detected. Misconfigurations and MITM were never detected by
any model. Misconfigurations may be hard to detect because a misconfiguration is changing
the IP address and the IP addresses were never included as a feature in the datasets.

Secondly, how well does random forest perform anomaly detection in a resource-constrained
setting? As described above, the RF were able to classify certain anomalies in the resource-
constrained environment. Models larger then 80 MB could not load onto the device. There
are multiple factors that may impact a model’s size, but this suggests that smaller models
are preferable. Thus it is important to implement further optimisations to the models.

• Which actions are required in order to implement an anomaly detection system
for network traffic on a switch with limited computational resources? The main
required actions in order to implement an anomaly detection system for network traffic on a
switch with limited computational resources, are to find an appropriate dataset, preprocess
the dataset if needed and then train the ML model. In Section 5. implementation, a sugges-
tion for such a system has been developed. Another step that is important to save resources
is converting packets into flows instead of reading each packet one by one. This is essential
if there is a lot of traffic on the network.

When implementing an anomaly detection system with limited resources, feature selection is
another important step. When a RF model that had not done feature selection or parameter
tuning was loaded into the switch, the program was only able to read 19 out of 100 trees,
before it crashed because of insufficient memory available. Therefore, a necessary step in order
to implement an anomaly detection system with limited resources is to tune the parameters
or reduce the number of features. To reduce the number of features some feature selection
needs to be performed. It is not necessary to tune the parameters and select the features
with a GA, but that was the method used in this thesis project.

Thus it has not been proven that all the developed actions are required. But, the system has
been proven to be able to achieve classification for certain anomalies. But for the anomalies
that were not detected, further research is needed for if additional steps are needed for
detection or if the cause is elsewhere.

• What information, features, in network traffic, help to improve the performance
of the network traffic classification system? Throughout the implementation, a total
of 40 features were implemented as shown in Table 4. An essential tool used to narrow
down these features was a GA. Figure 21 show the number of times each feature occurred
in a model. Because the performance of each model is different, it is hard to tell, just from
looking at Figure 21 to discern how useful a feature is. But it is clear which features are more
frequently included, which points to these being more useful. It should also be noted that
there exist more features than the total of 40 implemented, and more should be included to
broaden the extent of the study.
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8. Conclusions

The thesis work aimed to answer, if it is possible to detect network anomalies using ML from
a network switch. The switches used in the study were modern, layer 3, devices provided by
Westermo. The switches have support for containers, which act as a limited environment, to
control and suppress the model’s access to hardware. It is inside of a container where the ML
model operates from.

Related works studied throughout the work pointed to the success of RF. This kind of algorithm
is a lightweight model adapted for binary classifications. Success has been shown in anomaly
detection and because of their basic nature, was chosen as a research subject for the thesis.

The system was developed into two separate programs with multiple subsystems. The two programs
were a model trainer and a packet classifier.

The packet classifier, written in C, reads packets from the network interface of the device. Packets
are then sorted into flows, and classified, using the basis attributes. For each flow, 40 different
features are calculated, where these feature ranges from statistic, such as bytes per second, to
attributes, like which protocol the packets follow. These flows and their corresponding features are
what are later classified using the model that has been trained in the model trainer.

The model trainer, containing the GA and RF or DT was developed in Python 3. The GA was
used for feature selection and for parameter tuning of the DT and RF. Features that are calculated
for each flow, are later used as information for the ML algorithm to classify the packets. Because
of this, fewer features are optimal to decrease processing time on the device. By implementing
features selection using a GA, the number of features a trained model needed could be kept down.

To validate the work that was produced, the trained models were verified both offline and online.
In the offline evaluation, confusion matrices and corresponding data have been analysed. During
the online validation, a simulated factory has been connected together with two network switches.
While the factory was running, a laptop launched different types of malicious attacks, including
Port Scan and DoS. Another device injected a MITM. Also, non-malicious misconfigurations of
IP addresses were executed.

Results from validation show that it is possible to run both DT and RF models directly on network
hardware. The models were able to classify certain attacks. This should motivate further studies
in increasing the accuracy, and optimise such a system.
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9. Future Work

In the following section, are the author’s own suggestions, according to their knowledge of the
subject. The suggestions range from improving the current work to larger implementations that
may deserve a project of their own.

The current implementation of the flow conversion and feature calculation processes described in
Section 5.2 is implemented in such a way that a flow is identified from the four parameters shown
in Table 2. This method does not take into account that packets flowing in the reverse direction
could be part of the same flow. This means that two-way communication between two devices is
organised as two distinct flows. If instead the packets were organised into a single flow such that
a flow consisted of the packets in both directions, more features could be included. For example,
features that compare the amount of data flowing in different directions. Because multiple attacks,
such as DoS, consists of a large amount of information just flowing one way, it may be easier to
distinguish such attacks if that information is included. The current implementation relies on the
ML model finding this information itself. This could make it easier for the classification process.

The exported trees can be optimised by removing redundant branches and nodes if they lead to the
same class. (Figure 27). This could decrease the size of the exported text file containing the model.
The model text file needs to be in RAM all the time if it is going to be used on a Lynx-3510. If
the text file is too big, the Lynx-3510 cannot read the whole file and the program in the container
does not get the amount of memory it needs to function. Another solution is to store the text file
on external memory like an SD card, but this would decrease the speed of the program.
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Figure 27: A proposed method of optimisation to the current implementation. The node "Feature
2" is removed since both leaves result in the same classification.

The GA can also be optimised. In the current implementation, the fitness values of the whole
population are calculated in each generation even though it would be enough to just calculate
the fitness values of the new offspring since the fitness of the other individuals has already been
calculated. Calculating an individual’s fitness value is a heavy operation because a classifier needs
to be trained and evaluated on the validation set. This takes a long time if the training set is
big. Since all the individual’s fitness values, except the offspring’s fitness values, are recalculated
every generation, the accuracy of the best individual can change even though the best individual
is the same. This is because the RF and DT contain randomness. This is why the accuracy
can go down even though in each generation two new individuals replace the worst two in the
population. Overall, the GA program needs to be improved. A bug was found in the mutation
function when mutating real number elements. The disturbance which is added when mutating
a real number element is sampled from a normal distribution with a different mean from the one
intended. The mean is -(xmax-xmin)/2 and not (xmax-xmin)/2+xmin as it should be. This affects
how the individuals are mutated in parameter tuning and may in turn affect the results.

An easy but time-consuming future work is to use more features. If there are more features the
feature selection using GA will have a longer execution time. But the feature selection algorithm
will have more features to choose from and this will increase the probability of selecting the features
that increase the accuracy of the ML-models.

Creating a distributed intrusion detection system is another idea for future work. A distributed
ML would be good in this case since no nodes in the network have all information required to
detect all anomalies. If there are multiple computing nodes there are a lot of ideas that could
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be implemented. For example, having one ML for each type of attack, such that each model is
specialised to find one kind of attack.

To expand the subject of operating an AI from a network device, it could be relevant to implement
more ML algorithms. Especially techniques that are more distinct from the currently implemented
models, such as ANN or KNN. This would not only be interesting as another method of detecting
anomalies but also to reveal resource requirements for those models.

As with many projects, the implementation would benefit from optimisation, both for the Python
3 implementation and the C implementation. The latter should be especially important because
the target system is a low-capacity device.

The current implementation has only been verified on the Lynx-3510. This may be enough to verify
the product, but it would be interesting to determine the performance on different systems. Both
systems with more resources, but also on systems with fewer resources to find lower limits. Also
on the Lynx-3510, because some of the larger models were not able to load, because of limitations
in system memory, it would be necessary to either optimise the load or use more powerful units.

As presented in Section 5., when an attack is detected, the model indicates this by blinking a LED
on an Ethernet port. This is certainly enough to validate the model, but there exists a multitude
of potential actions that could be taken. For example, the device should be able to take actions
accordingly to the attack detected, like disabling a port or filtering the flagged packets.
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10. Ethical and Societal Considerations

During this thesis, a large portion of the work revolves around analysing network data. There
have also occurred data collection from the local network and simulated networks. Due to this,
the work may have come in contact with personal data. Therefore it was important to take into
consideration how the data are handled. But because of the nature of this thesis, the analyses
of packets have not involved looking into the data that have been transmitted. Only the packet
headers are being looked into. Also, no publication of any of the collected data has occurred.

The system that has been developed is designed to detect anomalies. Currently, no noteworthy
action is taken when detection occurs, but that is a probable addition for future studies. Therefore,
it is important to take into consideration what could happen if that is the case. There are many
different ways to react to cyber intrusions. For example, notify the network manager, record
suspect sessions, using a honeypot, discard suspicious network packets, kill the suspect process, or
shut down the affected devices. If this authority is given to the program, other problems may occur
if the program is not accurate. For example, if normal traffic is incorrectly classified as an attack,
false positive. False positives can cause an unnecessary shutdown of a network or device. An
attacker may also convince a reactive defence model that an entire network is under attack. This
can result in a denial of service for innocent users. Or if this happens on critical infrastructure,
such as a hospital, it may result in serious consequences. The same reasoning can be done for false
negatives. If critical infrastructures are subject to cyber intrusion, this can cause serious harm as
well.
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A Additional Offline Results

Evaluation Random Forest, Mutation rate = 1/len(individual)

Dataset Labels Flow Duration Number of trees Number of features Size

Bottom Interval 10 31 21 28.4kB
Bottom Interval 1 98 17 2.2kB
Right Interval 10 26 15 32.7kB
Right Interval 1 39 16 318.3kB
Left Interval 10 89 21 1.1MB
Left Interval 1 79 21 19.7MB
Bottom Attacks 10 21 21 35.7kB
Bottom Attacks 1 28 21 1.9MB
Right Attacks 10 39 17 8.7kB
Right Attacks 1 94 21 8.9kB
Left Attacks 10 65 18 3.5MB
Left Attacks 1 39 18 2.3B

Evaluation Random Forest, Mutation rate = 3/len(individual)

Dataset Labels Flow Duration Number of trees Number of features Size

Bottom Interval 10 8 22 110kB
Bottom Interval 1 128 15 5.00kB
Right Interval 10 149 16 610kB
Right Interval 1 256 20 1.20MB
Left Interval 10 200 20 190MB
Left Interval 1 34 14 1.70MB
Bottom Attacks 10 8 16 78.2kB
Bottom Attacks 1 11 19 0.51kB
Right Attacks 10 68 20 175kB
Right Attacks 1 256 24 4.10MB
Left Attacks 10 103 16 20.8MB
Left Attacks 1 15 13 495MB
CIC Interval 10 9 16 152MB
CIC Interval 1 8 16 208.3MB
CIC Attack 10 8 25 71.5kB
CIC Attack 1 8 25 92.9kB

Evaluation Decision Tree, Mutation rate = 1/len(individual)

Dataset Labels Flow Duration Number of trees Number of features Size

Bottom Interval 10 - 16 352bytes
Bottom Interval 1 - 16 371bytes
Right Interval 10 - 13 9.4kB
Right Interval 1 - 18 1.0kB
Left Interval 10 - 18 47.8kB
Left Interval 1 - 16 327bytes
Bottom Attacks 10 - 17 36.1kB
Bottom Attacks 1 - 14 53.5kB
Right Attacks 10 - 19 4.3kB
Right Attacks 1 - 18 24.3kB
Left Attacks 10 - 19 36.3kB
Left Attacks 1 - 14 724bytes
CIC Interval 10 - 20 47.1MB

Table 7: Additional data from the Evaluation of random forest and decision tree models.

45



Authors G. Ingletto, P. Lidholm Resource Constrained Anomaly Detection

Evaluation Decision Tree, Mutation rate = 3/len(individual)

Dataset Labels Flow Duration Number of trees Number of features Size

Bottom Interval 10 - 20 404bytes
Bottom Interval 1 - 13 304bytes
Right Interval 10 - 16 1.5kB
Right Interval 1 - 15 315bytes
Left Interval 10 - 13 224.5kB
Left Interval 1 - 9 224bytes
Bottom Attacks 10 - 18 30.9kB
Bottom Attacks 1 - 13 52.1kB
Right Attacks 10 - 16 10.2kB
Right Attacks 1 - 17 2.0kB
Left Attacks 10 - 14 163.0kB
Left Attacks 1 - 20 354.1kB
CIC Interval 10 - 16 47.7MB

Table 7: Additional data from the Evaluation of random forest and decision tree models. (Contin-
ued)
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B Results on validation and test set

2.1 Evaluation models Westermo Right
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Figure 28: RF right interval 10, mutation rate = 1/len(individual)
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Figure 29: RF right interval 10, increased mutation, mutation rate = 3/len(individuals)
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Figure 30: DT right interval 10, mutation rate = 1/len(individuals)
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Figure 31: RF right interval 1, mutation rate = 1/len(individuals)
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Figure 32: RF right interval 1, increased mutation, mutation rate = 3/len(individuals)
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Figure 33: RF right attack 10, mutation rate = 3/len(individuals)
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Figure 34: RF right only attacks 1, mutation rate = 3/len(individuals)
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Figure 35: RF right attack 1

2.2 Evaluation models Westermo Bottom
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Figure 36: RF bottom interval 10, mutation rate = 1/len(individual)
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Figure 37: RF bottom interval 10, increased mutation, mutation rate = 3/len(individual)
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Figure 38: DT bottom interval 10, mutation rate = 1/len(individual)
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Figure 39: RF bottom interval 1
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Figure 40: RF bottom interval 1, mutation rate = 3/len(individual)
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Figure 41: RF bottom only attacks 10, mutation rate = 3/len(individual)
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Figure 42: RF bottom only attacks 1, mutation rate = 3/len(individual)
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2.3 Evaluation models Westermo Left
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Figure 43: RF left interval 1
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Figure 44: RF left interval 1, mutation rate = 3/len(individual)
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Figure 45: RF left attacks only 10
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Figure 46: RF left attack only 10, mutation rate = 1/len(individual)
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Figure 47: RF left attacks only 1
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Figure 48: RF left attack only 1, mutation rate = 3/len(individual)
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Figure 49: RF left attacks only 0.1

2.4 Evaluation models CIC
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Figure 50: RF cic interval 10, mutation rate = 3/len(individual)
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Figure 51: RF cic interval 1, mutation rate = 3/len(individual)
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Figure 52: RF cic attacks only 10, mutation rate = 3/len(individual)

0 20 40 60 80 100
Generation

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Parameter tuning

0 20 40 60 80 100
Generation

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
Feature selection

best
mean

Figure 53: RF cic attacks only 1, mutation rate = 3/len(individual)
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Figure 54: DT cic interval 10
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