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Abstract

The aim of this thesis work has been to develop signal analysis methods for a com-
puterized cardiac auscultation system, the intelligent stethoscope. In particular,
the work focuses on classification and interpretation of features derived from the
phonocardiographic (PCG) signal by using advanced signal processing techniques.

The PCG signal is traditionally analyzed and characterized by morphological prop-
erties in the time domain, by spectral properties in the frequency domain or by
nonstationary properties in a joint time-frequency domain. The main contribution
of this thesis has been to introduce nonlinear analysis techniques based on dynamical
systems theory to extract more information from the PCG signal. Especially, Tak-
ens’ delay embedding theorem has been used to reconstruct the underlying system’s
state space based on the measured PCG signal. This processing step provides a geo-
metrical interpretation of the dynamics of the signal, whose structure can be utilized
for both system characterization and classification as well as for signal processing
tasks such as detection and prediction. In this thesis, the PCG signal’s structure
in state space has been exploited in several applications. Change detection based
on recurrence time statistics was used in combination with nonlinear prediction to
remove obscuring heart sounds from lung sound recordings in healthy test subjects.
Sample entropy and mutual information were used to assess the severity of aortic
stenosis (AS) as well as mitral insufficiency (MI) in dogs. A large number of, partly
nonlinear, features was extracted and used for distinguishing innocent murmurs
from murmurs caused by AS or MI in patients with probable valve disease. Finally,
novel work related to very accurate localization of the first heart sound by means of
ECG-gated ensemble averaging was conducted. In general, the presented nonlinear
processing techniques have shown considerably improved results in comparison with
other PCG based techniques.

In modern health care, auscultation has found its main role in primary or in home
health care, when deciding if special care and more extensive examinations are
required. Making a decision based on auscultation is however difficult, why a simple
tool able to screen and assess murmurs would be both time- and cost-saving while
relieving many patients from needless anxiety. In the emerging field of telemedicine
and home care, an intelligent stethoscope with decision support abilities would be
of great value.
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Populärvetenskaplig sammanfattning

Att bedöma hälsotillst̊andet hos en patient genom att lyssna p̊a ljud fr̊an kroppen är
en av de äldsta diagnostiska metoderna. Tekniken kallas auskultation och beskrevs
av den grekiske läkaren Hippokrates redan 400 år f. Kr. Metoden har sedan dess
förfinats, men de bakomliggande principerna är fortfarande desamma.

Under senare tid har bildgivande metoder som ultraljud och magnetresonanstomo-
grafi blivit allt vanligare. Dessa ger mer tillförlitliga resultat än auskultation, men
de kräver ocks̊a dyr utrustning och kvalificerade operatörer. B̊ade av kostnadsskäl
och av praktiska skäl behövs det därför en preliminär undersökningsmetod som kan
hitta de personer som behöver undersökas vidare p̊a en specialistklinik. Som ett
viktigt verktyg i denna första sovring har auskultationen hittat sin roll i dagens
v̊ardkedja. Problemet med auskultation är att det kan vara sv̊art att särskilja ljud
som uppkommer av patologiska orsaker fr̊an normala eller oskyldiga ljud. Denna
problematik behandlas i detta avhandlingsarbete. Mer specifikt har avancerad sig-
nalanalys utvecklats för att tolka hjärtats ljud p̊a ett objektivt sätt.

Hjärtats ljud kan i huvudsak delas in i hjärttoner och bl̊asljud. Hjärttonerna hörs
i samband med klaffstängning medan bl̊asljud uppkommer genom virvelbildningar
d̊a blodet passerar genom hjärtat. Tonerna är korta och av l̊ag frekvens medan
bl̊asljuden är mer l̊angdragna och av lite högre frekvens. De patologier som vanligen
kopplas till bl̊asljud är vitier (läckande eller förtätnade klaffar) och duktusprob-
lematik (h̊al i väggen mellan hjärtats högra och vänstra sida). Bl̊asljuden kan ocks̊a
vara helt normala och det är en av orsakerna till att auskultation är sv̊art. Större
delen av denna avhandling beskriver signalbehandlingsmetoder som kan användas
dels för att särskilja normala bl̊asljud fr̊an patologiska bl̊asljud och dels för att
bestämma graden av läckaget eller förträngningen. Tidigare har detta gjorts utifr̊an
signalens utseende (morfologi) i tidsdomänen, dess karaktäristik i frekvensdomänen
eller utifr̊an en kombination av dessa. Inom ramen för avhandlingen har förbättrad
metodik utvecklats vilken utnyttjar ljudens olinjära egenskaper. Speciellt har inspi-
ration hämtats fr̊an kaosteori och olinjära dynamiska system. Arbetet har fokuserat
p̊a att särskilja normala bl̊asljud fr̊an bl̊asljud orsakade av förträngning i aortak-
laffen eller läckage i mitralisklaffen (de tv̊a vanligast förekommande vitierna) samt
p̊a gradering av de tv̊a sistnämnda. Graderingen av mitralisläckage är extra intres-
sant eftersom signalbehandling av bl̊asljud aldrig tidigare använts för denna typ av
bedömning.

Avhandlingen beskriver även tv̊a angränsande problemställningar där signalbehan-
dling appliceras p̊a hjärtljud. Den första handlar om hur ljud fr̊an lungorna kan
göras mer lättolkade genom att ta bort de, i det här fallet, störande hjärttonerna.
Eftersom hjärttonerna tagits bort m̊aste tomrummet fyllas med lungljud. Detta har
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gjorts med en olinjär predikteringsmetod som helt enkelt fyller i det ljud som saknas
baserat p̊a hur den omkringliggande ljudsignalen ser ut. Den andra fr̊ageställningen
handlar om att hitta hjärtats förstatons precisa läge i tiden med hjälp av wavelets
och matchade filter. Anledningen till att man vill detektera förstatonen s̊a noggrant
är att man d̊a kan mäta tidsintervallet mellan hjärtats elektriska och mekaniska ak-
tivering. Detta tidsintervall p̊averkas av olika fysiologiska parameterar och möjliggör
bland annat att andning och blodtrycksförändringar kan monitoreras kontinuerligt,
icke-invasivt och utan störande sensorer i ansiktet.

I takt med en allt mer åldrande befolkning, en befolkning som ställer högre krav
p̊a sjukv̊arden och som vill ta mer ansvar för sin egen hälsa kommer den moderna
sjukv̊arden att förändras. Därför eftersträvas metoder som till̊ater att patienter
i högre utsträckning kan diagnostiseras och v̊ardas i hemmet. Resultatet av detta
avhandlingsarbete innebär ett viktigt steg mot ett datorbaserat intelligent stetoskop
utrustat med beslutstöd. Med ett s̊adant instrument skulle auskultationstekniken
bli ett ännu kraftfullare verktyg i hjärtsjukv̊arden.
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• Ahlstrom C, Höglund K, Hult P, Häggström J, Kvart C, Ask P: Distinguishing
Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence
Quantification Analysis. 3rd International Conference on Biosignal Processing
(ICBP 2006), Vienna, Austria, 2006. [4]

v



• Ahlstrom C, Hult P, Ask P: Detection of the 3rd heart sound using recurrence
time statistics. 31st International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2006), Toulouse, France, 2006. [5]

• Johansson A, Ahlstrom C, Länne T, Ask P: Pulse wave transit time for moni-
toring respiration rate. Medical & Biological Engineering & Computing. 2006.
44:471-478. [6]

• Ahlstrom C, Johansson A, Länne T, Ask P: Non-invasive Investigation of
Blood Pressure Changes using Pulse Wave Transit Time: a novel approach
in the monitoring of dialysis patients. Journal of Artificial Organs. 2005.
8:192-197. [7]

• Ahlstrom C, Hult P, Ask P: Wheeze analysis and detection with non-linear
phase space embedding. 13th Nordic Baltic Conference, Biomedical Engineer-
ing and Medical Physics (NBC05), Ume̊a, Sweden, 2005. [8]

• Ahlstrom C, Johansson A, Länne T, Ask P: A respiration monitor based on
electrocardiographic and photoplethysmographic sensor fusion. 26th Annual
International Conference of the Engineering in Medicine and Biology Society
(EMBC 2004), San Francisco, US, 2004. [9]

vi



Acknowledgements

To my lovely sunshine Anneli. You are all I want and everything I need. Thank you
for keeping me happy.

This work would not have been possible without my supervisors; Per Ask, for hav-
ing faith in my ideas and for allowing me to go where it was sometimes hard to
follow, Peter Hult for introducing me to the intelligent stethoscope and the world
of bioacoustics, and Anders Johansson for counseling me in the best possible way
even after he left the department.

To all of my coauthors: I would have been lost without your knowledge in this inter-
disciplinary research field. Special thanks to Katja Höglund and Ingrid Ljungvall for
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Aims

Phonocardiography and auscultation are noninvasive, low-cost and accurate meth-
ods for assessing heart disease. However, heart diagnosis by auscultation is highly
dependent on experience and there is a considerable inter-observer variation. The
primary aim of this work is therefore to develop objective signal processing tools
to emphasize and extract information from the phonocardiographic signal. More
specifically, the aims of this thesis are to:

• Investigate and develop linear and nonlinear signal processing tools suitable
for phonocardiographic applications.

• Classify and assess heart murmurs and relate the obtained information to
different heart valve pathologies.
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1
Introduction

“Let your heart guide you. It whispers so listen closely.”
Land before time (1988)

The stethoscope is a recognized icon for the medical profession, and for a long time,
physicians have relied on auscultation for detection and characterization of car-
diac disease. New advances in cardiac imaging have however changed this picture.
Echocardiography and magnetic resonance imaging (MRI) have become so domi-
nating in cardiac assessment that the main use of cardiac auscultation is nowadays
as a preliminary test in the primary health care. Basically, all patients present-
ing anything but normal auscultatory findings are sent to a cardiology clinic for
further investigations. In a world where modern health care is striving for cost
contained point-of-care testing, it is now time to bring cardiac auscultation up to
date. Decision support systems based on heart sounds and murmurs would improve
the accuracy of auscultation by providing objective additional information, and the
overall aim of this thesis is to develop signal processing tools able to extract such
information.

This introductory chapter will provide a peak preview of upcoming chapters. Heart
sounds and murmurs will be introduced and a number of phonocardiographic (PCG)
signal processing examples will be given. Terminology and methodology will be
used rather carelessly in this chapter, but every example contains pointers to other
chapters where more information is available.

There are six data sets which this thesis relies upon. Some of these data sets are
used more than once why they will all be surveyed in this chapter. Also included in
this chapter are an outline of the thesis and a listing of the main contributions of
this research.

1.1 Preliminaries on cardiac sounds

Aristotle found the heart to be the seat of intelligence, motion and sensation. Other
organs surrounding the heart, such as the brain and the lungs, merely existed as
cooling devices [10]. Since the fourth century BC, our understanding of the heart
has changed its role from an all-embracing organ towards a highly specialized device

1



CHAPTER 1. INTRODUCTION

Fig. 1.1: Early monaural stethoscopes (top left), Cummann’s and Allison’s stetho-
scopes (lower left), a modern binaural stethoscope (middle) and a modern electronic
stethoscope, Meditron M30 (right).

whose purpose is to propel blood. Knowledge about auscultation has evolved along-
side with discoveries about heart function. Robert Hooke (1635–1703), an English
polymath, was the first to realize the diagnostic potential of cardiac auscultation:

I have been able to hear very plainly the beating of a man’s heart . . .Who
knows, I say, but that it may be possible to discover the motion of the
internal parts of bodies . . . by the sound they make; one may discover the
works performed in several offices and shops of a man’s body and thereby
discover what instrument is out of order.

When René Laennec (1781–1826) invented the stethoscope in 1816, cardiac aus-
cultation became a fundamental clinical tool and remains so today. A selection of
stethoscopes from different eras is presented in figure 1.1.

Normally there are two heart sounds, S1 and S2, produced concurrently with the
closure of the atrioventricular valves and the semilunar valves, respectively. A third
and a fourth heart sound, S3 and S4, might also exist. Additionally, a variety of
other sounds such as heart murmurs or adventitious sounds may be present. Heart
murmurs can be innocent or pathologic, and they are especially common among
children (50-80% of the population has murmurs during childhood, but only about
1% of these murmurs are pathological [11]) and in the elderly (prevalence estimates
range from 29%–60% [12,13]). Most common are murmurs originating from the left
side of the heart, especially aortic valve stenosis (AS) and mitral insufficiency (MI).
A more thorough review of the origin of heart sounds and murmurs can be found in
chapter 2.

It is often during auscultation that murmurs are detected. Performing auscultation is
however difficult since it is based on the physician’s ability to perceive and interpret
a variety of low-intensity and low-frequency sounds, see figure 1.2. Auscultation
is also highly subjective and even the nomenclature used to describe the sounds
varies amongst clinicians. Unfortunately, the auscultatory skills amongst physicians
demonstrate a negative trend. The loss has occurred despite new teaching aids such
as multimedia tutorials, and the main reasons are the availability of new diagnostic
tools such as echocardiography and MRI, a lack of confidence and increased concern

2



1.2. PRELIMINARIES ON PCG SIGNAL PROCESSING

about litigations [11]. An automatic decision support system able to screen and
assess the PCG signal would thus be both time and cost saving while relieving
many patients from needless anxiety.

Fig. 1.2: Relationship between the acoustic range of cardiac sounds and the threshold
of audibility of the human ear. Figure redrawn from Leatham [14].

1.2 Preliminaries on PCG signal processing

The PCG signal discloses information about cardiac function through vibrations
caused by the working heart. In the early days of PCG signal analysis, manual in-
terpretation of waveform patterns was performed in the time domain. Heart sounds
were identified as composite oscillations related to valve closure and heart murmurs
seemed to derive from malfunctioning valves or from abnormal holes in the sep-
tal wall. When the Fourier transform became practically useful, it provided further
information about periodicity and the distribution of signal power. In many biomed-
ical signals, the Fourier transform showed that sharp frequency peaks were rare, and
when they did exist, they often indicated disease [15]. The PCG signal turned out
to be different. Murmurs possessed characteristics similar to colored noise, and with
increasing disease severity, the frequency spectrum became more and more compli-
cated. In an attempt to disentangle the frequency spectrum, joint time-frequency
analysis was employed [16]. In later studies, it could be shown that heart sounds
consisted of several components where each component had a main frequency that
varied with time. This short introduction basically brings us up to date regarding
the tools used for PCG signal analysis. In this thesis, nonlinear techniques will be
investigated as means to explore the PCG signal even further.

Heart sounds and murmurs are of relatively low intensity and are band-limited to
about 10–1000 Hz, see figure 1.2. Meanwhile the human auditory system, which is
adapted to speech, is unable to take in much of this information. An automated
signal processing system, equipped with a sound sensor, would be able to exploit
this additional information. In a clinical setting, the main tasks for such a system
would be to:

• Emphasize the audibility of the PCG signal.

• Extract or emphasize weak or abnormal events in the PCG signal.

• Extract information suitable for assessment and classification of heart diseases.

3



CHAPTER 1. INTRODUCTION

Emphasize the audibility of the PCG signal
Noise is a big problem in PCG recordings. The sensor, the sensor contact surface,
the patient’s position, the auscultation area, the respiration phase and the back-
ground noise all influence the quality of the sound. In practice this means that
the recordings often contain noise such as friction rubs, rumbling sounds from the
stomach, respiratory sounds from the lungs and background noise from the clinical
environment. Most of these noise sources have their frequency content in the same
range as the signal of interest, why linear filters are not very suitable. In figure
1.3a, a very noisy PCG signal is shown. Wavelet denoising, which will be intro-
duced in section 3.7 and used on PCG signals in chapter 4, somewhat emphasizes
the heart sounds (figure 1.3b), but the signal is still covered in noise. When trying
to emphasize S1 alone, a matched filter can be employed to improve the results, see
figure 1.3c. A problem with this approach is that even though S1 occurrences are
emphasized, the actual appearance of S1 is lost. Matched filtering relies on finding
a representative template of, in this case, S1. Since S1 is basically triggered by the
R-peak in an electrocardiogram (ECG), event related processing techniques (section
3.7) can be used to obtain this template. In chapter 4, very accurate localization of
S1 is achieved by using this technique.

Fig. 1.3: Example of a very noisy PCG signal (a) and the result of wavelet denoising
(b). In (c), occurrences of S1 are emphasized by employing a matched filter.

A particular noise cancellation problem is transient noise removal. Potential use in
a PCG setting is to remove disturbances such as friction rubs. A related problem,
where the heart sounds themselves are considered as noise, is the task of removing
heart sounds with the aim to make lung sounds more audible (lung sounds is often
the first resource for detection and discrimination of respiratory diseases, see chapter
6). Again, the frequency content of the noise (heart sounds) and the signal (lung
sounds) are heavily overlapping. Instead of trying to filter out the heart sounds, it
is possible to locate the heart sounds (chapter 4), remove them altogether and fill
in the missing gaps based on time series forecasting (section 3.8). An example of a
lung sound signal before and after heart sound cancellation (section 6) is given in
figure 1.4.

Extract or emphasize weak or abnormal events in the PCG signal
A typical example of finding specific components in the PCG signal is the task of
automatically locating S3 (section 4.5). Since S3 is of low amplitude, short duration
and low frequency, it is sometimes difficult to detect during auscultation. One
automatic method to extract S3 is to look for changes in a so called recurrence time
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1.2. PRELIMINARIES ON PCG SIGNAL PROCESSING

Fig. 1.4: Example of a lung sound signal before and after heart sound cancellation.
The results from a heart sound localization algorithm are indicated by the bars. In
this case, the patient has a third heart sound and there are also some false positive
detections. In the lower plot, an error caused by the prediction algorithm can be
found just before 58 seconds.

statistic (section 3.6.2). This statistic is sensitive to changes in a reconstructed state
space (section 3.4), and is particularly good at detecting weak signal transitions such
as S3. An example is given in figure 1.5.

Fig. 1.5: Example of a PCG signal from a patient with a third heart sound (a). An
image showing a recurrence time statistic as a function of time and a neighborhood
radius clearly indicates instances of S3 (arrows in subplot b).

Extract information suitable for assessment and classification of heart
diseases
The third item in the list is about finding signal representations that facilitate sep-
aration or grouping of data. Figure 1.6 shows a feature space spanned by two
parameters, the correlation dimension (section 3.4.1) of a systolic murmur and the
duration that the murmur has a frequency content exceeding 200 Hz. Clearly, these
two parameters are almost capable of separating PCG signals containing innocent
murmurs from murmurs caused by AS. The line trying to separate the groups was
derived with a linear classification technique called linear discriminant analysis (sec-
tion 3.9). This example shows an application with emphasis on AS classification
(section 5.1). Also included in this thesis are methods for MI classification (section
5.2) and for classifying murmurs from different valvular diseases (section 5.3).
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CHAPTER 1. INTRODUCTION

Fig. 1.6: Example of a feature space spanned by the two parameters correlation
dimension and duration above 200 Hz. The circles represent murmurs caused by aortic
stenosis while the stars represent innocent murmurs. The line trying to separate the
two groups was derived with linear discriminant analysis.

1.3 Data sets

A number of data sets have been used in this thesis. The data sets, summarized in
table 1.1, will be referred to by their roman numerals as data set I–VI. Data set I–V
are used in paper I–V, whilst data set VI has been used in previous studies in our
research group [5, 17].

Since the aims of this thesis are focused on developing PCG signal processing tech-
niques, full clinical trials were neither intended nor carried out. Nevertheless, to
emulate the clinical situation where the system most likely will be used, the major-
ity of the data sets were recorded in a clinical environment.

Data set I
Contains ECG, PCG and photoplethysmography (PPG) signals from ten healthy
subjects (8 male, 2 female, mean age 28 years). Two measurements were however
aborted because of difficulties for the subjects to adapt to the measurement situation.
Data from these two subjects were excluded from the data set. The purpose of
recording this data set was to investigate the correlation between certain cardiac
time intervals and blood pressure as well as respiration rate, why also blood pressure
and respiration were measured. The acquisition protocol consisted of five phases; a
five minute resting phase, about five minutes of hypotension, five minutes of rest,
about two minutes of hypertension and finally another five minutes of rest. Lower
body negative pressure (LBNP) was applied to invoke hypotension [18] and isometric
muscle contraction to invoke hypertension [19]. The test subjects were instructed
to relax and breathe naturally throughout all measurement phases.

The ECG (Diascope DS 521, S&W Medicoteknik AS, Albertslund, Denmark, stan-
dard 3-lead placement), the PCG (Siemens E285E microphone amplifier with a
Siemens EMT25C microphone, Solna, Sweden, located at the second intercostal
space along the right sternal border), the PPG (Nellcor Puritan Bennett, NPB-295,
Albertslud, Denmark) and the respiration reference (Optovent system, Accelerator
AB, Linkoping, Sweden) were recorded and digitized with a DAQ-Card 700 from
National Instruments (Austin, TX, USA, fs = 2 kHz). Blood pressure was mea-
sured with either an automatic oscillometric instrument (Datascope Accutor Plus,
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CHAPTER 1. INTRODUCTION

Paramus, NJ, USA, located on the upper left arm, n = 8) or a cannula (Becton
Dickinson, Franklin Lakes, NJ, USA) positioned in the left radial artery connected
to a blood pressure transducer (Abbott Critical Care Systems, Chicago, IL, USA)
and connected to a monitor (Medimatic, Genoa, Italy, n = 2). The measurement
setup is illustrated in figure 1.7.

All subjects were normotensive with (mean ± SD) systolic blood pressure 119 ± 8
mmHg and diastolic blood pressure 71 ± 9 mmHg (n = 8). LBNP reduced upper
body systolic blood pressure by 24 ± 14 mmHg and the static muscle contraction
increased it by 18 ± 12 mmHg.

Limitations: Intra-arterial continuous measurements of blood pressure would have
been preferable in all test subjects. It would also have been interesting to measure
respiration with other non-intrusive techniques such as transthoracic impedance.

Application of
negative pressure

Pressure
monitor

ECG

Phono-
cardiograph

Pulse oximeter

Oscillometric
cuff Intra-arterial

cannula

Respiration
reference Airtight

box

Fig. 1.7: Measurement setup for data set I.

Data set II
Contains PCG signals with various degrees of aortic stenosis present. Signals from
27 boxer dogs (15 females, 12 males, mean age 2.15±2.18 years) were recorded with
an electronic stethoscope (M30, Meditron AS, Oslo, Norway) and a standard 3-lead
ECG (Analyzer ECG, Meditron AS, Oslo, Norway) was recorded in parallel as a time
reference. For characterization purposes, all dogs underwent an echocardiographic
examination. The peak aortic flow velocity, measured by continuous wave Doppler,
was used as a hemodynamic reference to assess AS severity. The murmurs ranged
from physiological murmurs to severe aortic stenosis murmurs (flow velocities 1.5−
5.5 m/s).

The dogs were divided into two groups (A and B), each of which were further divided
into two subgroups of increasing stenosis severity. Group A showed no morphologic
evidence of AS via 2D echocardiography and consisted of subgroup A1 (Vmax < 1.8
m/s) and A2 (Vmax ≥ 1.8 m/s). Group B showed morphological evidence of AS
on 2D echocardiography and were allocated to subgroup B1 (Vmax ≤ 3.2 m/s [mild
AS]) and B2 (Vmax > 3.2 m/s [moderate to severe AS]). The subgroup classifica-
tion was based on categorization described in the veterinary medical literature [20].
Echocardiographic and auscultatory information about this data set is presented in
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1.3. DATA SETS

Table 1.2: Echocardiographic and auscultatory data for all dogs in data set II. The
group denomination was based on peak aortic flow velocity, as outlined in the main
text.

Class A1 A2 B1 B2

Number of dogs 8 8 5 6
Degree of heart murmur (0-VI) 0–II 0–II II–IV III–V
Aortic flow velocity, mean ± SD (m/s) 1.65 ± 0.09 2.02 ± 0.19 2.82 ± 0.36 4.68 ± 0.57
Aortic flow velocity, range (m/s) 1.52 − 1.73 1.84 − 2.41 2.40 − 3.20 4.00 − 5.50
2D morphological aortic stenosis No No Yes Yes

table 1.2.

Limitations: The gold standard for diagnosis of subvalvular AS in dogs is necropsy,
a procedure that, for obvious reasons, was not possible to perform for research
purposes. The best clinical diagnostic method available to date is echocardiography.
Nevertheless, there is no single value of velocity, gradient or valve area that is able
to assess AS severity alone. Of these measures, aortic flow velocity is the most
reproducible and the strongest predictor of clinical outcome [21]. Further, patients
with significant AS and left-sided congestive heart failure have a diminished and
sometimes undetectable murmur. This important patient group is not represented
in this data set.

Data set III
Contains PCG signals with various degrees of mitral insufficiency present. Signals
from 77, mostly Cavalier King Charles Spaniels (CKCS), dogs (41 females, 36 males,
mean age 8.60±0.34 years) were recorded with an electronic stethoscope (M30, Med-
itron AS, Oslo, Norway) and a standard 3-lead ECG (Analyzer ECG, Meditron AS,
Oslo, Norway) was recorded in parallel as a time reference. Based on auscultation,
the dogs were divided into the following murmur groups: absent (no audible heart
murmur), mild (grade 1–2), moderate (grade 3–4) and severe (grade 5–6). The most
commonly recruited breeds were CKCS (n=59) and Dachshund (n=5). Thirteen
other breeds with one dog each were also represented in the data set.

For characterization purposes, all dogs underwent an echocardiographic examina-
tion. Assessment of mitral valve structures was conducted from the right paraster-
nal long-axis view and the left apical four-chamber view. The same views were also
used for assessing the degree of mitral regurgitation by color Doppler. Further, the
left atrial to aortic root ratio (La/Ao-ratio) was quantified from a right 2-D short-
axis view and M-mode measurements of the left ventricle were made. The M-mode
values were used to derive the fractional shortening (FS) and the percent increase in
left ventricular internal dimensions in diastole (LVIDdinc) and in systole (LVIDsinc)
according to Cornell et al. [22]. The dogs were then classified as normal if no signs
of anatomical or functional cardiac pathology could be found. Estimation of MI
severity (mild, moderate and severe) was based on the obtained echocardiographic
information regarding La/Ao-ratio and severity of regurgitation into the left atrium
(table 1.3). More information about assessing MI in dogs can be found in Häggström
et al. [23].
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CHAPTER 1. INTRODUCTION

Table 1.3: Echocardiographic and auscultatory data for all dogs in data set III. The
group denomination was based on the echocardiographic results, as outlined in the
main text.

Normal Mild MI Moderate MI Severe MI
LA/Ao < 1.5 LA/Ao < 1.5 LA/Ao < 1.8 LA/Ao > 1.8

No regurgitation Mild regurg. Moderate regurg. Severe regurg.

Number of dogs 5 38 17 17
HR (bpm) 103.5–167 97-121.3 93.5-135.5 115-150
LA/Ao 1.09–1.16 1.16–1.26 1.48–1.7 1.97–2.35
LVIDs (mm) 1.75–1.96 1.94–2.35 2.04–2.76 2.05–2.6
LVIDs inc (%) -9.45–6.34 2.02–21.5 3.37–21.8 7.03–29.4
LVIDd (mm) 2.6–2.81 2.91–3.43 3.21–4.21 4.05–4.77
LVIDd inc (%) -11.2– -4.97 -1.89–11.1 7.05–29.4 27.7–55.2
FS (%) 26.8–37.1 27.7–36.7 31.7–42.2 43.1–47.7
Auscultation Absent Absent–Moderate Mild–Severe Moderate–Severe

Limitations: Characterization of regurgitant valve lesions is among the most diffi-
cult problems in valvular heart disease. Contributing to the difficulty of assessing
mitral regurgitation is the lack of a gold standard [24]. For example, an increase
in blood pressure causes an increase in the parameters used to assess MR. Here,
the main parameter for MI assessment was the La/Ao-ratio which was derived from
2D echocardiography. Complementary parameters based on Doppler measurements
such as the jet area, the diameter of vena contracta and the proximal isovelocity sur-
face area (PISA) method could have been used to get a more comprehensive picture
of the disease state. However, none of the Doppler parameters have been shown to
be more accurate in assessing MI compared to the LA/Ao-ratio in dogs [23, 25].

Data set IV
Contains PCG signals with systolic murmurs present. Signals from 36 patients (19
male, 17 female, mean age 69 years) with probable valvular heart disease (as de-
tected with auscultation) were included in the study (7 physiological murmurs, 23
aortic stenosis and 6 mitral insufficiency, all with native heart valves). An electronic
stethoscope (theStethoscope, Meditron AS, Oslo, Norway) was used to acquire the
PCG signals and a standard 3-lead ECG (Analyzer ECG, Meditron AS, Oslo, Nor-
way) was recorded in parallel as a time reference. Both signals were digitized at
44.1 kHz with 16-bits per sample using a sound card (Analyzer, Meditron AS).
PCG data were recorded successively for 15 seconds from the four traditional areas
of auscultation [26]. Based on signal quality, one of the four signals was selected af-
ter visual and auditive inspection. The diagnosis and the assessment of valve lesions
were based on an echocardiographic examination according to clinical routine and
recommended standards [27]. The PCG signals were acquired in association with
this examination.

Limitations: The severity of the disease in the AS and MI patients ranged from
mild to severe, and further subdivision of these groups would have been interesting.
However, the limited amount of patients in this data set prevent such groupings.
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Data set V
Contains PCG signals in the presence of lung sounds. Signals from six healthy male
subjects aged 28 ± 4 years were recorded with a contact accelerometer (Siemens
EMT25C, Sweden), connected to a microphone amplifier (Siemens, E285E, Sweden).
A standard 3-lead ECG was also recorded as a time reference (S&W, Diascope
DS 521, Denmark). Both signals were digitized at 6 kHz with 12-bits per sample
(National Instruments, DAQCard-700), after passing an anti-aliasing filter with a
cut-off frequency of 2 kHz. The recording site was the second intercostal space along
the left sternal border, and the sensor was fixed with an adhesive elastic tape. The
acquisition protocol consisted of three phases: 30 s of tidal breathing, about 60 s of
breathing with continuously increasing breath volumes up to vital capacity, and 10
s of breath hold (respiration rate was not controlled).

Limitations: Air flow measured with a pneumotachograph should have been ac-
quired along with the sound signals. Controlled breathing with a predefined air
flow target is essential for performance comparisons at different flow rates. Further,
only healthy subjects with known cardiac (no additive sounds or murmurs) and
respiratory (no crackles or wheezes) states were included in the data set.

Data set VI
Contains PCG signals with a third heart sound present (S3). Signals from ten
healthy children (5 male, 5 female, mean age 10.5 years) were recorded with a contact
accelerometer (Siemens, EMT 25C, Sweden) connected to a microphone amplifier
(Siemens, E285E, Sweden). A standard 3-lead ECG was also recorded as a time
reference (S&W, Diascope DS 521, Denmark). Both signals were digitized at 2.5
kHz with 12-bits per sample (National Instruments, DAQCard-700), after passing
an anti-aliasing filter with a cut-off frequency of 1.25 kHz. The signals were recorded
over the apex in a soundproof room. The sensor was fixed with a belt around the
body. 30 seconds of data was acquired during breath hold, and the presence of S3
was determined by visual inspection of the recordings (an S3 occurrence was marked
if a signal component with low frequency was present in a time window 120 − 200
ms after S2).

Limitations: Ten healthy children were included in the data set since third heart
sounds with high signal quality are common in this group. Patients with heart
failure would have been a more appropriate study population. Another limitation
is the lack of an objective and quantitative reference method for detection of S3
occurrences.

1.4 Outline of the thesis

The papers which this thesis is based upon is not entirely (chrono)logically ordered.
For example, the studies on AS and MI in papers II and III should have preceded
paper IV. This transposed time line also resulted in that the auto mutual information
(AMI) feature was not part of the AS assessment study and that AMI, sample
entropy and the correlation dimension were “left out” from paper IV. Clearly, it
would have been very interesting to include all of the features in paper IV, but I
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CHAPTER 1. INTRODUCTION

simply did not know of these techniques back then. This is also the reason why the
study underlying paper IV precedes both paper II and paper III and why human
experiments were conducted before studies on dogs were performed.

In an attempt to get some order in this chaos, the outline of this thesis is ar-
ranged somewhat differently. Chapters 1–3 provides introductory information about
anatomy, physiology, PCG signals and signal processing theory. The emphasis in
chapter 3 is on signal analysis and especially on the task of extracting descriptive
features. Related issues such as noise reduction, classification, feature selection and
system evaluation are also mentioned. This chapter is written in a general manner
free from cardiac sound examples, so if the reader is familiar with the material it is
possible to skip it altogether. Chapter 4 describes direct and indirect heart sound
localization (paper I) and briefly mentions heart sound segmentation. A rigorous
survey of available indirect heart sound localization methods is given and a compara-
tive performance evaluation is presented. A section on S3 detection is also included.
Segmentation of PCG signals into S1, systole, S2 and diastole is an important pre-
processing step in most PCG signal processing applications. Chapter 5 describes
murmur classification and assessment, starting with AS (paper II) and MI (paper
III), and concluding with classification of MI, AS and physiological murmurs (paper
IV). Chapter 6 makes use of methodology introduced in chapter 4 to find and remove
heart sounds to make lung sounds more audible (paper V). More specifically, recur-
rence time statistics and nonlinear prediction are used for the actual heart sound
cancellation process. Chapter 7 also makes use of methodology from chapter 4 to
derive cardiac time intervals (paper I). The time intervals reflect certain processes in
the cardiovascular system and facilitates indirect tracking of blood pressure changes
and monitoring of respiration in a noninvasive, non-obstructive and non-intrusive
manner. Chapter 8 contains a discussion about PCG signal processing in general,
particularly regarding future aspects.

1.5 Contributions

Waveform fractal dimensions were introduced for heart sound localization by Gnitecki
et al. [28] and nonlinear dynamical analysis of sounds from obstructed coronary ar-
teries was introduced by Padmanabhan [29]. The main contribution of this thesis
has been to introduce nonlinear signal analysis tools based on dynamical systems
theory to the field of heart murmur processing. The results have lead to descriptive
features that facilitate classification of heart murmurs (papers II–IV).

Analysis of respiratory sounds based on waveform fractal dimensions was first in-
troduced by Yap et al. [30]. These ideas were extended within this thesis work to
also incorporate nonlinear dynamical systems theory. The basic methodology be-
hind these extensions was first reported at an annual meeting with the International
Lung Sound Association [31] and later expanded in [3] and [8]. These preliminary
works lead to the nonlinear heart sound cancellation approach presented in paper
V. It should be noted that contemporary work on nonlinear lung sound analysis was
performed by Vena and Conte [32, 33].
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1.5. CONTRIBUTIONS

Chapter 4 provides a novel comparison of heart sound localization techniques. There
is a large amount of scientific publications presenting methods for heart sound lo-
calization. None of these do however compare the method suggested in the paper
against previously published methods using the same data sets. This chapter was
written in an attempt to shed some light on this field of research.

A recent interest has emerged in portable, noninvasive, non-obstructive and non-
intrusive devices able to monitor various physiological parameters. The underlying
reasons are the need to monitor the health status of patients in their homes as well
as of soldiers in the field. This has lead to a rebirth of old knowledge by merging
it with recent developments in portable computing. One example is the pulse wave
velocity, which has been revived as a mean to monitor blood pressure changes and
respiration rate. A novel method to accurately estimate the timing of S1, presented
in paper I, was developed along this line of thought. By using the occurrence of
S1, it would be possible to investigate the subcomponents of the pulse wave transit
time (PTT) and by that to improve the correlations between PTT, blood pressure
and respiration.

The practical contribution in each paper can be summarized as follows:

• Paper I: Participated in designing the measurement protocol and in acquiring
the data. Implemented the analysis software, analyzed the data and had the
main responsibility for writing the paper.

• Paper II: Introduced sample entropy in PCG signal processing. Implemented
the analysis software, analyzed the data and had the main responsibility for
writing the paper.

• Paper III: Implemented the analysis software, analyzed the data and partici-
pated in writing the paper. This is the first attempt ever to assess the severity
of mitral insufficiency by means of PCG signal processing.

• Paper IV: Participated in planning the study. Acquired most of the data,
implemented the analysis software, analyzed the data and had the main re-
sponsibility for writing the paper.

• Paper V: Designed the measurement protocol and acquired the data. Came
up with the analysis approach, implemented the software, analyzed the data
and had the main responsibility for writing the paper. Preliminary work was
performed in cooperation with Olle Liljefelt during his MSc thesis work [34].

This thesis is an extension and a continuation of the work previously presented in
my licentiate’s thesis [35].
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2
Origin of Heart Sounds and Murmurs

“Hey, I don’t have a pulse. Cool. Can we eat a doctor so
I can get a stethoscope and hear my heart not beating?”

Buffy the Vampire Slayer (1997)

Heart sounds and murmurs arise as a consequence of turbulent blood flow and
vibrating cardiovascular structures. This chapter reviews the principles of anatomy
and physiology that are necessary to understand how the cardiac sounds are related
to physiological events. The electrical and mechanical operation of the healthy
heart is reviewed in section 2.1 along with the most important interactions within
the cardiovascular system. The coupling between the cardiac system, the vascular
system and the respiratory system is very interesting since it renders continuous,
non-invasive and non-intrusive monitoring of respiration and blood pressure changes
possible (these particular applications will later be discussed in chapter 7 as well as
in paper I).

The most important parameters governing mechanical activity are blood pressure,
tension in the heart or in adjacent vessels, ventricular volume, blood flow velocity
and movement as well as deformation of the heart wall [36]. Many of these pa-
rameters can only be measured with sophisticated equipment. However, since the
mechanical events cause vibrations that are propagated to the chest surface, in-
formation about the working status of the heart can be obtained by auscultation
(section 2.3). There are basically two types of sounds originating from the heart,
heart sounds and murmurs. A preliminary example showing a recorded PCG signal,
containing the two normal heart sounds S1 and S2, is illustrated in figure 2.1 along
with an ECG. Information about the ECG signal will be given in section 2.1.2 and
the flow induced sounds giving rise to the PCG signal will be discussed in section
2.5.

Murmurs can be of both pathological or physiological origin and arise as a conse-
quence of increased blood flow velocities in the heart. High flow velocities can be
completely normal, especially amongst children, but it may also be due to a patho-
logical narrowing in the blood’s pathway. A common cause of such obstructions
is valvular heart diseases, why the cause and pathophysiology of the most common
valvular dysfunctions will be described in section 2.2. The concept of sounds induced
by turbulence is introduced in section 2.5.2, and these ideas provide a foundation
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CHAPTER 2. ORIGIN OF HEART SOUNDS AND MURMURS

Fig. 2.1: An electrocardiogram (ECG) and a phonocardiographic (PCG) signal from
a healthy person without murmurs. The ECG signal, which will be introduced in
section 2.1.2, reflects electrical activity in the heart. Details about the PCG signal,
here including the first heart sound (S1) and the second heart sound (S2), will be
discussed in section 2.5.1.

to the methodology used in papers II–IV. These topics will also be elaborated in
chapters 3 and 5.

Auscultation and phonocardiography are introduced in sections 2.3 and 2.4, together
with a short survey of recording techniques. Finally, mathematical models for the
two heart sounds as well as animal models for AS and MI are presented in section
2.6. The mathematical models are used in paper I as well as in the simulation studies
in chapters 4, while the animal models1 are used in papers II–III.

2.1 Cardiovascular anatomy and physiology

The cardiovascular system is designed to establish and maintain a mean systemic
arterial pressure sufficient to transport nutrients, oxygen and waste products to
and from the cells, while preserving regulatory flexibility, minimizing cardiac work
and stabilizing body temperature and pH to maintain homeostasis [37]. The main
components of the cardiovascular system are the heart, the blood, and the blood
vessels.

The primary task of the heart is to serve as a pump propelling blood around the
circulatory system. When the heart contracts, blood is forced through the valves.
First from the atria to the ventricles and then from the ventricles out through the
body, see figure 2.2. There are four heart chambers, the right and left atria and
the right and left ventricles. From a simplistic2 point of view, the two atria mainly
act as collecting reservoirs for blood returning to the heart while the two ventricles
act as pumps ejecting blood out through the body. The pumping action of the

1Paper III is actually written for a veterinary journal why it is questionable if the animals
should be considered as models.

2The contraction of the heart is actually very intriguing, where the pumping action is a complex
3D motion involving effects such as valve plane motion and wall thickening.
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2.1. CARDIOVASCULAR ANATOMY AND PHYSIOLOGY

heart is divided into two phases; systole when the ventricles contract and ejects
blood from the heart, and diastole, when the ventricles are relaxed and the heart
is filled with blood. Four valves prevent the blood from flowing backwards; the
atrioventricular valves (the mitral and tricuspid valve) prevent blood from flowing
back from the ventricles to the atria and the semilunar valves (aortic and pulmonary
valves) prevent blood from flowing back towards the ventricles once being pumped
into the aorta and the pulmonary artery, respectively. Deoxygenated blood from
the body enters the right atrium, passes into the right ventricle and is ejected out
through the pulmonary artery on its way to the lungs. Oxygenated blood from the
lungs re-enter the heart in the left atrium, passes into the left ventricle and is then
ejected out through the body.

Fig. 2.2: Anatomy of the heart (left figure) and the blood flow pathways through left
and right side of the heart (right figure).

2.1.1 The heart valves

The atria are separated from the ventricles by the fibrous skeleton of the heart [37].
There is one fibrous ring around each of the four valves, but the rings are fused
together into a single fibrous framework. The skeleton has several physiological
functions; it provides a foundation to which the valves and the great arteries attach,
it prevents overstretching of the valves as blood passes through them and it electri-
cally isolates the atria from the ventricles3 (see also section 2.1.2). All four heart
valves have flaps, called leaflets or cusps, which open to let the blood flow through
and close to prevent it from flowing backwards. The valves and their leaflets are
illustrated in figure 2.3.

The mitral and tricuspid valve leaflets are connected via the chordae tendineae and
papillary muscles to the ventricular wall. The papillary muscles contract at the same
time as the ventricles contract, thus pulling the chordae tendineae downwards and
preventing the valve leaflets from everting into the atria. The semilunar valves both
have three cusps consisting of connective tissue reinforced by fibers. These valves

3The only electrical conduction link between the atria and the ventricles goes through the
atrioventricular bundle which penetrates the fibrous skeleton in a location between the mitral,
aortic and tricuspid valves [37].
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CHAPTER 2. ORIGIN OF HEART SOUNDS AND MURMURS

Aortic valvePulmonary valve

Tricuspid valveMitral valvePapillary muscles

Chordae
Tendineae

Fig. 2.3: Illustration of the mitral valve and its associated chordae tendineae and
papillary muscles (left) and the heart valves and the fibrous rings surrounding each
valve (right).

do not have chordae tendineae, instead the shape of the cusps prevent any form of
prolapse.

2.1.2 The cardiac electrical system

Cardiac muscle cells can possess at least four properties: automaticity (the ability
to initiate an electrical impulse), conductivity (the ability to conduct electrical im-
pulses), contractility (the ability to shorten and do work) and lusitropy (the ability
to relax) [38]. Cells in different areas of the heart are specialized to perform different
tasks; all cells possess the conductivity property, the working cells are mainly able
to contract and relax while the cells governing the electric systems are adapted to
automaticity and conductivity. The pumping action of the heart is synchronized by
pacemaker cells, concentrated in the sinoatrial node (located in the right atrium), the
atrioventricular node (located in the wall between the atria) and in the His-Purkinje
system (starting in the atrioventricular node and spreading over the ventricles), see
figure 2.4.

An action potential generated in the sinoatrial node (which normally controls the
heart rate) will spread through the atria and initiate atrial contraction. The atria
are electrically isolated from the ventricles, connected only via the atrioventricular
node which briefly delays the signal. The delay in the transmission allows the atria
to empty before the ventricles contract. The distal part of the atrioventricular node
is referred to as the Bundle of His. The Bundle of His splits into two branches,
the left bundle branch and the right bundle branch, activating the left and the
right ventricle, respectively. The action potential spreads very quickly through the
ventricle due to the fast His-Purkinje cells, causing almost immediate synchronous
excitation of the entire ventricular wall [39].

The electrocardiogram (ECG)
Cardiac action potentials are conducted to the body surface, where they can be
measured as an electrical potential that varies with the current flow through the
heart. Action potentials associated with different cardiac regions are illustrated in
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Fig. 2.4: Morphology and timing of action potentials from different regions of the heart
are illustrated in the right-hand side of the figure. Also illustrated is the related ECG
signal as measured on the body surface. Redrawn from Sörnmo and Laguna [39].

figure 2.4 along with a typical ECG waveform measured from the body surface.
The ECG can be seen as a projection of a dominant vector (represented by the
summation in time and space of the action potentials from each muscle cell) onto a
lead vector, whose direction is defined by the position of the measurement electrodes
in relation to the heart [39]. The ECG describes the different electrical phases of the
heart, where depolarization of the atria gives rise to the P-wave, depolarization of
the ventricles combined with repolarization of the atria results in the QRS-complex
and repolarization of the ventricles results in the T-wave.

2.1.3 The cardiac cycle and the pressure-volume loop

The blood pressure within a chamber increases as the heart contracts, generating a
flow from higher pressure areas towards lower pressure areas. The work diagram of
the heart, illustrated in figure 2.5 for the left ventricle, is referred to as a pressure-
volume (PV) loop [37]. The following discussion applies to the left side of the heart,
but the key concepts are similar for the right side.

When left atrial pressure exceeds the pressure in the left ventricle, the mitral valve
opens (A) and the atrium empties into the ventricle (filling). During the rapid filling
phase, venous blood from the lungs enters the atrium, and as the pressure gradient
between the atrium and the ventricle levels out (reduced filling phase), a final volume
of blood is forced into the ventricle by atrial contraction. When tension develops in
the ventricular wall, increased intraventricular pressure will force the mitral valve
to shut (B). The pressure stretching the ventricle at this moment is called preload.
The amount of pressure exerted is determined by the duration of ventricular diastole
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CHAPTER 2. ORIGIN OF HEART SOUNDS AND MURMURS

together with the venous pressure. Within limits, the more the heart is stretched
during diastole, the more vigorous the contraction will be in systole. Since the
heart is contracting while all valves are closed, ventricular pressure will increase
whereas the volume remains unchanged (isovolumic contraction). The first heart
sound originates from events related to the closing of the mitral valve (B) and the
opening of the aortic valve (C). The ventricular pressure required to open the aortic
valve is called afterload, a parameter which, consequently, is affected by arterial
blood pressure.

As blood is ejected from the heart, ventricular pressure decreases, and when it falls
below the aortic pressure, the aortic valve closes again (D). In association with valve
closure, S2 is heard. The end-systolic pressure-volume ratio is a clinical measure
of cardiac muscle performance referred to as myocardial contractility. Again all
valves are closed, but this time the pressure will decrease while the volume remains
unchanged. This phase, called isovolumetric relaxation, will complete the loop and
start a new heart cycle.
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Fig. 2.5: Work diagram (pressure-volume loop) of the left ventricle.

The PV-loop illustrates the changing pressures and flows within the heart, however,
it has no time scale. Wiggers diagram, see figure 2.6, demonstrates the temporal
correlations between electrical and mechanical events in the left side of the heart over
one cardiac cycle [37]. The electrical R-wave, representing ventricular depolariza-
tion, precedes the beginning of ventricular contraction. The ventricular contraction
causes a rapid rise in the left ventricular pressure. As soon as the ventricular pres-
sure exceeds the atrial pressure, the mitral valve closes (B in the PV-loop). This is
when S1 is heard. When the ventricular pressure exceeds the aortic pressure, the
aortic valve opens (C in the PV-loop), and the blood flows from the ventricle to
the aorta. At the end of blood ejection, the pressure in the ventricle falls below the
aortic pressure, and the aortic valve closes (D in the PV-loop), giving rise to S2. The
pressure in the ventricle drops steeply, and when it falls below the atrial pressure,
the mitral valve opens (A in the PV-loop), and the rapid filling phase begins. The
rapid filling phase might cause an impact sound, the third heart sound (S3), when
blood collides with the ventricular wall. Similarly, atrial systole may also produce
an audible forth heart sound (S4). S3 and S4 will be described more carefully in
section 2.5.
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Fig. 2.6: Wiggers diagram, showing pressures and flows in the left side of the heart
over one heart cycle and how they relate to electrical (ECG) and mechanical (PCG)
activity.

2.1.4 Coupling in the cardiovascular system

As stated before, the main task of the cardiovascular system is to efficiently maintain
an arterial pressure which is high enough to meet the flow demands of the body’s
tissues. Blood pressure refers to the force exerted by circulating blood on the walls of
blood vessels, and is directly determined by the arterial blood volume and arterial
compliance [38]. These physical factors are in turn affected primarily by cardiac
output and peripheral vessel resistance (whose product approximately equals mean
arterial pressure).

Cardiac output is defined as the heart rate times the stroke volume. The cardiac
electrical system is the main rate controller, whose task is to synchronize the cardiac
mechanical system. The most important regulators of heart rate are the autonomous
nervous system (sympathetic activity increases heart rate while parasympathetic
activity decreases heart rate) and the hormonal system [38].

The cardiac mechanical system is mainly regulated by the three factors controlling
stroke volume: preload, afterload and myocardial contractility (see section 2.1.3).
Heart rate and contractility are strict cardiac factors while preload and afterload
depend on both cardiac and vascular factors. These latter two provide a functional
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Fig. 2.7: Diagram surveying different interactions between the systems involved in
cardiac activity along with various measurable signals. The illustration should not be
considered complete, it rather functions as a facilitator of the main text. The abbre-
viated measurable signals at the bottom are the electrocardiogram (ECG), phonocar-
diogram (PCG), echocardiogram (ECG), Doppler ultrasound (Doppler)and magnetic
resonance imaging (MR).

coupling between the heart and the blood vessels since both preload and afterload
are important determinants of cardiac output. However, at the same time, they are
also determined by cardiac output [38].

The respiratory system causes periodic changes in the intra-thoracic pressure, effect-
ing blood flow, venous pressure and venous return [38]. Amongst others, changes in
diastolic filling of the heart lead to rhythmic variations in cardiac output (the heart
rate is increased during inspiration and decreased during expiration, a phenomenon
called respiratory sinus arrhythmia). A schematic illustration of interconnections in
the cardiovascular system is given in figure 2.7.

In physics, two systems are coupled if they are interacting with each other. The car-
diovascular system is interconnected through many different feedback control loops,
why coupling is an innate and natural property of the system. Unfortunately, since
most components are interdependent on each other, it is very difficult to elucidate
these interactions. In fact, most of these interconnections are not understood. Some
possible (and probable) interactions are the ones illustrated in figure 2.7.

From figure 2.7, it can also be seen that the vascular mechanical system is affected by
both the respiratory system and the cardiac system. These interactions can be used
to gain information about physiological parameters that are not directly measured.
For example, in paper I (chapter 7), information gained from the ECG and the PCG
are utilized to track blood pressure changes and to monitor respiration via cardiac
time intervals.
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2.2. VALVULAR HEART DISEASES

2.1.5 Fractal physiology

It has been suggested that the regulation of the heart possesses fractal characteristics
[15]. A fractal can be described in at least three contexts: geometrical, temporal and
statistical. Common for the three is that the object/signal should be self-similar.
This means that the fractal consists of subunits that resemble the larger scale shape,
or, similarly, when zooming into a fractal you end up with something that looks like
what you started out with. Examples of cardiac anatomical structures that appear
self-similar are the coronary arterial and venous trees, the chordae tendineae and the
His-Purkinje network. These are all examples of geometrical fractals. A modern,
and somewhat controversial, hypothesis is that the regulation of heart rate is also a
fractal process. Creating a time series of interbeat intervals, it can be shown that the
fluctuations in the series have a broadband spectrum following a 1/f-distribution [15].
Whether this hypothesis of fractal physiology is valid remains to be seen, but it is
an interesting approach in the pursuit of an explanation of cardiovascular control.

2.2 Valvular heart diseases

Valvular heart diseases are more common in the mitral and aortic valves since the
left side of the heart sustains higher pressures and greater workloads. There are
two major problems that may compromise the functionality of the valves, stenosis
and insufficiency [40]. In stenosis the leaflets become rigid, thickened or fused
together, reducing the opening through which the blood passes from one chamber to
another. The obstructed flow gives rise to an accumulation of blood in the chamber,
forcing the heart to work harder in order to pump the blood. In insufficiency (or
regurgitation) the valves fail to close properly why a portion of the ejected blood
flows backward. For example, if the mitral valve is unable to close properly, some
of the blood will leak back into the left atrium during systole.

Valvular stenosis and insufficiency gradually wear out the heart. At first, the heart
muscle thickens (hypertrophy) and the heart enlarges (dilatation), thus compensat-
ing for the extra workload and allowing the heart to supply an adequate amount
of blood to the body. Over time, the overdeveloped heart muscle may lead to a
functional degradation and heart failure.

Aortic stenosis (AS) is an obstruction between the left ventricle and the aorta,
see figure 2.8. The obstruction may be in the valve (valvular), above the valve
(supravalvular) or below the valve (subvalvular). The most common causes are con-
genital abnormality, rheumatic fever, or calcific degeneration or deposits of calcium
on the valve. In the presence of an obstruction, a pressure gradient develops be-
tween the left ventricle and the ascending aorta. As a response to the increased left
ventricular pressure, hypertrophy is developed. Since left ventricular hypertrophy
offers increased resistance to filling, preload is elevated (through strong atrial con-
tractions). Eventually, the increased left atrial pressure produces pulmonary edema,
leading to increased pressures in the right side of the heart, increased systemic ve-
nous pressure and peripheral edema [40].
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Aortic valve stenosis Mitral insufficiency

Fig. 2.8: Schematic illustration of the left side of the heart in the presence of AS
(left) and MI (right). In AS, the passageway to aorta is narrowed, causing turbulent
flow distal to the valves. Hypertrophy is often seen as a consequence to the increased
flow resistance. In MI, the mitral valve is unable to close completely, causing blood
to leak back into the left atrium during systole.

Aortic insufficiency refers to an incompetent aortic valve allowing blood to flow back
into the left ventricle during diastole when the ejection is complete. In its acute
form, aortic regurgitation usually occurs as a result of infective endocarditis that
destroys the valve’s leaflets. The chronic form, which is more common, is usually a
consequence of widening of the aorta in the region where it connects to the valve. In
either case, the constant leaking of blood results in increased left ventricular diastolic
pressure, increased left atrial pressure and eventually heart failure and pulmonary
edema [40].

Mitral stenosis is a narrowing or blockage of the mitral valve, often as a result of
rheumatic fever. The narrowed valve causes blood to back up in the left atrium
instead of flowing into the left ventricle and results in an increase in the pressure
in the left atrium. This pressure is transmitted back through the pulmonary veins,
causing pulmonary edema and consequent problems in the right side of the heart [40].

Mitral insufficiency (MI) is an abnormal leaking of blood from the left ventricle into
the left atrium of the heart, see figure 2.8. The most common causes are myxomatous
degeneration of the valve, annulus dilatation, dysfunction of the papillary muscles
or rupture of the chordae tendineae. The amount of blood that flows back into the
atrium is called a regurgitant volume. The regurgitant volume depends on three
factors: the area of the leaking orifice, the pressure gradient between the chambers
and the regurgitant duration. Since blood is ejected into the left atrium instead
of out through the aorta, the forward stroke volume decreases. In response, the
heart compensates by increasing the total stroke volume and the heart rate, and by
eccentric hypertrophy. The atrium will increase its force of contraction in order to
maintain ventricular filling. The consequent increase in atrial pressure may lead to
pulmonary congestion and edema [40].

Tricuspid and pulmonic stenosis and regurgitation only account for a small amount
of the valve diseases and is most often secondary to disease in the left side of the
heart. Abnormalities of the tricuspid valve are generally caused by rheumatic fever
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or metabolic abnormalities. Edema and fatigue are the major symptoms produced
by tricuspid valve dysfunction. Pulmonary valve dysfunction is also rare and is
primarily due to congenital defects.

The causes of heart valve damage vary depending on the type of disease, but may
include [41]:

• Rheumatic Fever: an inflammatory condition that often starts with strep
throat or scarlet fever. Though the disease is rarely fatal during the acute
stage, it may lead to rheumatic valvular disease, a chronic and progressive
condition that causes cardiac disability or death many years after the initial
event [40]. The damage is not caused by the bacteria themselves, but by
an autoimmune response - a process in which the body mistakenly begins to
damage its own tissues.

• Infective Endocarditis: a disease caused by microbial infection of the endothe-
lial lining of the heart [40]. The infection can cause vegetations on the heart
valves, which sometimes conjures new or altered heart murmurs, particularly
murmurs suggestive of valvular regurgitation [26].

• Myxomatous degeneration: a pathological weakening, mainly affecting the mi-
tral valve. This dysfunction stems from a series of metabolic changes, causing
the valve’s tissue to lose its elasticity while becoming weak and covered by
deposits.

• Calcific degeneration: a hardening formed by deposits of calcium salts on the
valve. This type of tissue degeneration usually causes AS, a narrowing of the
aortic valve [40].

• Congenital anomalies: abnormal structures in the heart. The most common
congenital valve defect is bicuspid aortic valves (two leaflets instead of three).
Although not a valvular disease, septal defects (an abnormal passage between
the left and the right side of the heart) should also be mentioned since they
are also congenital anomalies which gives rise to murmurs. Ventricular septal
defect is generally considered to be the most common type of malformation,
accounting for 28% of all congenital heart defects [40].

Other causes include heart valve diseases that result from other heart diseases,
particularly coronary artery disease or myocardial infarction. These conditions can
cause injury to one of the papillary muscles that support the valves, or annulus
dilatation, so that the valve does not close properly.

2.3 Auscultation and phonocardiography

The technique of deciphering the sounds from the body based on their intensity,
frequency, duration, number and quality is called auscultation [42]. The acousti-
cal signal is affected by a chain of transfer functions before the physician’s actual
decision-making process starts. The signal transmitted from the sound source is
propagated through the human body, where the sound waves are both reflected and
absorbed. The most compressible tissues such as lung tissue and fat contribute most
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Fig. 2.9: The traditional auscultatory areas on the chest (M refers to the mitral area,
T the tricuspid area, P the pulmonic area, and A the aortic area).

to the absorption. Low frequencies are less attenuated compared to high frequencies,
but the high frequencies are easier to perceive (see figure 2.11 and the accompanying
text in section 2.5). The consequences of the attenuation are therefore hard to pre-
dict. To reduce the effect of thoracic damping, certain areas of cardiac auscultation
have been defined. In these locations, the sound is transmitted through solid tissues
or through a minimal thickness of lung tissue. The traditional areas of auscultation
(figure 2.9), where the radiated sound intensity from each of the four heart valves is
maximized, are defined as [26]:

• Mitral area: The cardiac apex.

• Tricuspid area: The fourth and fifth intercostal space along the left sternal
border.

• Aortic area: The second intercostal space along the right sternal border.

• Pulmonic area: The second intercostal space along the left sternal border.

Even though the definition of these areas came to life long before much understand-
ing of the physiology of the heart was available, they remain good starting positions.
Revised areas of auscultation, allowing more degrees of freedom, have however been
adopted [26].

Auscultation is usually performed with a stethoscope (figure 1.1), which constitutes
the second transfer function affecting the sound signal. A basic stethoscope consists
of three components: the earpieces, the tubing and the chest piece [26]. The chest
piece looks like a funnel, either covered by a membrane (diaphragm mode) or without
a membrane (bell mode). A wider chest piece conveys better signal transfers, but
the size is practically limited by the curvature of the body. It is important that
the chest piece fits tightly against the body because air leakage heavily distorts and
weakens the signal. The bell is used to pick up low frequency sounds such as S3 and
S4, whereas the diaphragm is used to pick up high frequency sounds such as lung
sounds and certain murmurs. From the chest piece the sound is propagated through
the tubing to the ear pieces. Due to the standing wave phenomenon, amplification
peaks arise when the length of the tuning coincide with the quarter wavelength of
the sounds. Binaural stethoscopes, where the tubing divides in two, gives rise to
very complicated resonance patterns. The electronic stethoscope was introduced to
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avoid the resonances introduced by the tubing. The bell and the diaphragm are then
replaced by a broad-band acoustic sensor and an amplifier, whereas the tubing and
the ear pieces are replaced by wires and head phones. The single most important
problem with electronic stethoscopes is that the physician does not recognize what
they hear when the resonances no longer alter the sounds.

The third and last transfer function which affects the sound is the physicians’ audi-
tory system. As will be mentioned in section 2.5, human hearing is nonlinear and
frequency dependent. Further, sound reception deteriorates with age. Fortunately
this age discrepancy mainly affects high frequencies above the bioacoustical range.

2.3.1 Terminology for describing cardiac sounds

Of the two normal heart sounds, S1 is louder, longer and lower pitched compared
to S2. While S1 and S2 are referred to as tones, murmurs are characterized by
a sound most easily described as “noise-like”. During auscultation, murmurs are
described by a number of factors: timing in the cardiac cycle, intensity on a scale of
I-VI, shape, frequency, point of maximal intensity and radiation. A grade I murmur
is very faint and heard only with special effort while grade VI is extremely loud
and accompanied by a palpable thrill. When the intensity of systolic murmurs is
crescendo-decrescendo shaped and ends before one or both of the components of
S2, it is assumed to be an ejection murmur. Murmurs due to backward flow across
the atrioventricular valves are of even intensity throughout systole and reach one
or both components of S2. If the regurgitant systolic murmur starts with S1 it is
called holosystolic and if it begins in mid or late systole it is called a late systolic
regurgitant murmur. Besides murmurs, ejection clicks might also be heard in systole.
They are often caused by abnormalities in the pulmonary or aortic valves. Different
murmurs, snaps, knocks and plops can also be heard in diastole, but such diastolic
sounds are beyond the scope of this thesis. [26]

2.3.2 Phonocardiography (PCG)

A graphical representation of the waveform of cardiac sounds is called a phono-
cardiogram, and the technique used to capture the sound signal is referred to as
phonocardiography. Examples of PCG signals have already been shown in chapter
1 as well as in figures 2.1 and 2.6. This technique allows a visual interpretation of
the cardiac sounds, thus allowing thorough investigation of temporal dependencies
between mechanical processes of the heart and the sounds produced. Today, PCG is
mainly used for teaching and training purposes [36], but since new electronic stetho-
scopes make the recording procedure much easier, PCG might make a comeback in
clinical practise.
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2.4 Acquisition of PCG signals

The audio recording chain involves a sequence of transformations of the signal: a
sensor to convert sound or vibrations to electricity, a pre-amplifier to amplify the
signal, a prefilter to avoid aliasing and an analogue to digital converter to convert
the signal to digital form. In addition, the chain can be complemented with an
analysis step and an information presentation step.

Sensors
Microphones and accelerometers are the natural choice of sensor when recording
sound. These sensors have a high-frequency response that is quite adequate for
body sounds. Rather, it is the low-frequency region that might cause problems [43].
The microphone is an air coupled sensor that measures pressure waves induced
by chest-wall movements while accelerometers are contact sensors which directly
measure chest-wall movements. For recording of body sounds, both kinds can be
used. More precisely, condenser microphones and piezoelectric accelerometers have
been recommended [44].

Electronic stethoscopes make use of sensors specially designed for cardiac sounds.
Compared to classical stethoscopes, electronic stethoscopes try to make heart and
lung sounds more clearly audible by using different filters and amplifiers. Some also
allow storage and the possibility to connect the stethoscope to a computer for further
analysis of the recorded sounds. The leading suppliers of electronic stethoscopes
are Cardionics, Thinklabs, Meditron (Welch-Allyn) and 3M (Littmann). Thinklabs
uses a novel electronic diaphragm detection system to directly convert sounds into
electronic signals. Welch-Allyn Meditron uses a piezo-electric sensor on a metal shaft
inside the chest piece, while 3M and Cardionics use conventional microphones. More
recently, ambient noise filtering has become available in electronic stethoscopes.

In this thesis, two different sensors have been used; paper I and V used the Siemens
Elema EMT25C contact accelerometer while paper II–IV used electronic stetho-
scopes from Welch-Allyn Meditron (M30 or theStethoscope, Meditron ASA, Oslo,
Norway).

Pre-processing, digitalization and storage
The preamplifier amplifies the low level transducer signals to line level. By doing
this, the full range of the analogue to digital converter is used, thus minimizing
quantization errors. In the digitalization of signals, aliasing will occur unless the
Nyquist-Shannon sampling theorem is fulfilled.

In this thesis, when using EMT25C, a custom-built replica of a PCG amplifier
(Siemens Elema E285E) was used. This amplifier included a low-pass filter with a
cut-off frequency of 2 kHz. The signal was digitized with 12-bits per sample using
analogue to digital converters from National Instruments (see paper I and V for
details). Acquisition of the data was conducted in a Labview-application (National
Instruments, Austin, Texas, US) after which the data were stored on a personal
computer.

For the electronic stethoscope, the associated acquisition equipment and software
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2.5. FLOW-INDUCED SOUND AND VIBRATIONS

were used (Analyzer, Meditron ASA, Oslo, Norway). According to the manufac-
turer, the digital recordings are stored without pre-filtering. An excessive sampling
frequency of 44.1 kHz was thus used to avoid aliasing and with the idea of post-
filtering in mind. The signals were stored in a database on a personal computer.
This approach was used in paper II–IV.

A comparison of different sensors and sensor designs is out of the scope of this thesis.
However, this is an important matter. The developed signal processing methodology
might be affected by the frequency response of the sensors, and if this is the case,
these issues must be elucidated. It is however unlikely that the sensor characteristics
influence the results to any greater extent. For example, the heart sound localization
approaches that will be described in chapter 4 were not noticeably affected by the
two different sensors used to collect the test signals (EMT25C and Meditron M30).
Considering that the frequency characteristics of these two sensors are very different
(M30 has a nearly linear frequency response in the full audible range while EMT25C
attenuates frequencies below 100 Hz and above 1 kHz), the developed methods seem
quite robust when it comes to the choice of sensor characteristics. Nonetheless, this
issue should be investigated further.

2.5 Flow-induced sound and vibrations

Sounds are generated by vibrating objects and propagate as waves of alternating
pressures. The vibrating source sets particles in motion, and if the sound is a pure
tone, the individual particle moves back and forth with the frequency of that tone.
Each particle is thus moving around its resting point, but as it pushes nearby parti-
cles they are also set in motion and this chain effect results in areas of compression
and rarefaction. The alternating areas of compression and rarefaction constitute
a pressure wave that moves away from the sound source, see figure 2.10. These
pressure variations can be detected via the mechanical effect they exert on a mem-
brane (the diaphragm of a stethoscope, the tympanic membrane in the ear etc.).
If the sound source vibrates in a more irregular manner, the resulting sound wave
will be more complex. Usually, sound is described by its intensity, duration and
frequency [45]. If the sound is nonstationary (see section 3.6), these variables have
to be analyzed as a function of time to give relevant information.

Frequency is a physical entity, and what humans perceive as frequency is called pitch
(unit mel). The two are closely related, but the relationship is not linear. Up to 1
kHz, the measured frequency and the perceived pitch are fairly the same. Above 1
kHz, a larger increase in frequency is required to create an equal perceived change
in pitch. For example, if you are listening to a 2 kHz tone which suddenly changes
frequency to 4 kHz, you will not perceive a doubling in frequency, but merely an
increase by a factor of about 1.5. This is due to the human auditory system which
is optimized to have high accuracy in the frequency range below 1 kHz (speech).

Intensity is determined by the amplitude of the vibrations, the distance the wave
must travel and the medium through which it travels. Similar to frequency, intensity
also has a perceived correspondence, named loudness (unit phon). Intensity and
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Fig. 2.10: The left figure is a schematic drawing of twelve particles in simple harmonic
motion at twenty-two moments in time. The sound source is located on the left side
and the pressure wave, indicated by clustering of three adjacent particles, moves from
left to right. Note that each particle moves relatively little around a rest position.
The traveling wave phenomenon is also illustrated in the right figure, note the regions
of compression and rarefaction that are present in both subplots.

loudness are not linearly related, and figure 2.11 shows curves of equal loudness at
different frequencies. For example, a frequency shift from 50 Hz to 30 Hz requires
the sound to be amplified with about 10 dB to be perceived as equally loud. This
phenomenon has great impact on auscultation since heart sounds are of very low
frequency.

2.5.1 Heart sounds

The relationship between blood volumes, pressures and flows within the heart de-
termines the opening and closing of the heart valves. Normal heart sounds occur
during the closure of the valves, but how they are actually generated is still de-
bated. The valvular theory states that heart sounds emanate from a point source
located near the valves, and that the valves are the generator of all the ensuing vi-
brations [47]. One reason for the popularity of this theory in the clinical community
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Fig. 2.11: Loudness level contours derived by Fletcher and Munson. Each curve
represents a sound which is perceived to have equal loudness for all frequencies. The
loudness in phons is indicated on each curve. Redrawn from Fletcher and Munson [46].
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is the correlation between valve vibrations as seen with echocardiography or cine-
matography and the occurrence of the sound [47]. However, no single structure such
as a heart valve can vibrate independently without affecting the blood [48]. Blood
is an incompressible fluid, so motion in one cardiac structure will quickly propagate
to neighboring structures. This observation led to the cardiohemic theory, stating
that the heart and the blood represent an interdependent system that vibrates as a
whole [47]. A combination of the valvular and the cardiohemic theory, suggesting
that intracardiac PCGs result from individual cardiac structures (valvular theory)
while thoracic PCGs result from the mixing of several sources (cardiohemic theory),
has also been suggested [49].

S1 is heard in relation to the closing of the atrioventricular valves, and is believed
to include four major components [48], see figure 2.12. The initial vibrations occur
when the first contraction of the ventricles accelerate blood towards the atria, just
before closure of the atrioventricular valves. The second component is caused by
the momentum of the moving blood as it overstretches the atrioventricular valves
and recoils back towards the ventricles. The third component involves oscillation of
blood between the root of the aorta (and the pulmonary artery) and the ventricular
walls, and the fourth component represents the vibrations caused by turbulence in
the ejected blood flowing out through aorta. Even though S1 is a composite sound
arising due to events in both the right and the left side of the heart, activities from
the higher pressurized left side will probably dominate the sound.

Fig. 2.12: Schematic drawing illustrating the underlying physiological causes of S1, S2
and S3. Only the left side of the heart is shown. Image redrawn after Rushmer [48].
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S2 signals the end of systole and the beginning of diastole, and is heard at the time
of the closing of the aortic and pulmonary valves. S2 contains two components, one
originating from aortic valve closure and the other from pulmonary valve closure.
These two coincide with the ending of left and right ventricular ejection. Since right
ventricular ejection ends after left ventricular ejection, the pulmonary sound com-
ponent occurs slightly after the aortic sound component. The splitting between the
two components increases during inspiration because blood-return to the right heart
increases, vascular capacitance of the pulmonary bed increases and blood return to
the left side of the heart decreases [26]. The opposite occurs during expiration, plac-
ing the two components tightly together. S2 is probably the result of the momentum
of moving blood as it overstretches the valve cusps, recoils, and initiate oscillations
in both the ventricular cavities and in the arteries [48]. This causes the entire heart
to move away from the arteries. The resulting vibrations, while being triggered by
the valves, are also very dependent on the properties of the heart muscle.

There are also a third and a fourth heart sound (S3 and S4), both connected to
the diastolic filling period. The rapid filling phase starts with the opening of the
atrioventricular valves. Most investigators attribute S3 to the energy released with
the sudden deceleration of blood that enters the left ventricle throughout this period
[50]. A fourth heart sound may occur during atrial systole when a final volume of
blood is forced into the ventricles. If the ventricles are stiff, the force of the entering
blood is more vigorous, resulting in an impact sound in late diastole [26]. S3 and
S4 are perhaps the best examples that heart sounds do not radiate from the valves
but from vibrations in the cardiohemic system [47].

2.5.2 Murmurs and bruits

While heart sounds arise due to vibrations from acceleration and deceleration of
blood and other structures in the heart, murmurs or bruits are the result of turbu-
lence developing in rapidly flowing blood4. This means that a murmur can arise in
a healthy heart if the blood is flowing faster than usual or if an increased amount of
blood is flowing through the system. These murmurs are called innocent, normal,
functional or physiological since they are completely harmless. There are mainly
five factors involved in murmur production [26]:

• High rates of flow through the valves.

• Flow through a constricted valve (stenosis).

• Backward flow through an incompetent valve (insufficiency or regurgitation).

• Abnormal shunts between the left and right side of the heart (septal defects).

• Decreased blood viscosity.

The hemodynamic principles are essentially the same regardless if turbulence is
produced in a vascular stenosis, a valvular stenosis or a valvular insufficiency [51].

4The term murmur is preferred when the turbulence originates from the heart (e.g. aortic valve
stenosis) while the term bruit is used when the turbulence originates from a vessel (e.g. arterial
stenosis).
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Fig. 2.13: Streamlines of flow through and distal to an orifice stenosis. The fluid flow
contracts in the entrance region and reaches a minimal area in vena contracta. Image
redrawn after Ask et al. [52].

Flow through an obstructed tube is thus a suitable model for the theoretical survey
in this section.

Stenoses can produce large changes in local velocity due to the law of mass conser-
vation. The reduced area at the obstructed site causes an increased flow velocity
and a contraction of the fluid in the entrance region, thus creating a jet through
the stenosis, see figure 2.13. Distal to the obstruction, instabilities will arise in the
shear layer between the jet and surrounding fluids, introducing vortices and turbu-
lent flow [52]. The flow regime can be described by the Reynolds number, R, which
is defined as the ratio of inertial forces (ρu) to viscous forces (η/D), see equation
2.1 where ρ is the density of the fluid, D is the characteristic length, u is the mean
fluid velocity and η is the viscosity of the fluid.

R =
ρDu

η
(2.1)

Laminar flow is characterized by smooth (streamlined) fluid motion and occurs at
low Reynolds numbers where viscous forces are dominant. If the flow contains ran-
dom eddies, vortices and other random flow fluctuations it is called turbulent. Tur-
bulent flow is seen at high Reynolds numbers where inertial forces are dominating.
The border-line between laminar and turbulent flows is characterized by a critical
Reynolds number. The transition is however not immediate. Partly turbulent flows,
with time-dependent and complicated flow patterns, usually appear well before full
turbulence is developed [53]. When the transition occurs depend on geometrical
parameters. For example, in a long cylindrical tube, the characteristic length in
equation 2.1 equals the diameter of the tube and the critical Reynolds number is
typically taken as 23005.

At normal velocities in the cardiovascular system, the Reynolds number is low and
the flow is nearly laminar. However, in the presence of obstructions such as arterial
stenoses, turbulence develops at Reynolds numbers well below the traditional value

5In tubes with very smooth surfaces the critical Reynolds number can be as high as 40000. For
blood vessels, the critical number is often estimated to about 2000. It is however possible that
turbulence is present in unobstructed arteries for Reynolds numbers as low as 800− 1200 [53].
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of 2300. In the presence of a stenosis, the characteristic length is typically chosen as
the ratio between the diameter or the length of the obstruction and the unobstructed
tube area. In practise, the critical Reynolds number depends on both the geometry
of the obstruction and the frequency of the pulsatile blood flow [54]. Typically, the
critical value decreases with the ratio between the obstructed orifice area and the
unobstructed tube area.

Turbulent flow consists of velocity fluctuations that are superimposed on the main
velocity, thus inducing pressure fluctuations. These pressure fluctuations affect the
vessel wall and cause vibrations in the acoustical frequency range [52]. The wall
pressure amplitude reaches a maximum at the reattachment point of the jet [55],
see figure 2.13, where the pressure fluctuations are mainly caused by vortices shed
from the jet area [56]. At this location, the distribution of vortex sizes contains
information about the diameter of the jet area, why the spectrum of the fluctuations
is related to the severity of the stenosis [57]. This relation has been manifested
through a Strouhal number [58] as defined in equation 2.2, where fb is a break
frequency, d is the diameter of the stenotic orifice and umax is the flow velocity of
the jet.

S =
fbd

umax
(2.2)

The relationship between break frequency, flow velocity and lumen diameter has
been found valid over a wide range of values [59]. However, the Strouhal number
requires that the recorded signal is acquired close to the obstruction site. Further
downstream, information about the initial conditions of the jet is lost [56]. Also,
since the break frequency varies with the pulsatile and unknown flow velocity [60],
the Strouhal number becomes rather difficult to apply in a clinical situation.

Kolmogorov6 suggested that large low frequency vortices are generated at the onset
of turbulence [63]. With increasing flow velocity, these large vortices pass on their
energy to faster but smaller-sized vortices in a cascade of ever smaller sizes and ever
higher frequencies until the smallest vortices finally vanish and turn into heat by
dissipation. The size of the largest vortices is set by the overall geometry of the flow
while the smallest scales are set by the Reynolds number. The spectrum of eddies,
plotted as the turbulent energy contained in particular sizes of eddies versus the
eddy frequency, can be described in terms of regions, see figure 2.14. In order of
decreasing vortex size these regions consist of [51]:

I. Large permanent eddies (slope 0).

II. Energy containing eddies (slope -1).

III. Kolmogorov inertial, smaller size eddies (slope -5/3).

IV. Kolmogorov microscale eddies (slope -7).

6In fact, since Kolmogorov’s (or actually Landau’s [61]) route to turbulence has not been ob-
served experimentally, it is now considered incorrect [62]. Alternative accounts for the onset of
turbulence have been suggested, see chapter 5.
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Fig. 2.14: Turbulent energy density spectrum described in terms of regions I-IV. See
the text for details. Figure redrawn from Nygaard et al. [51].

In stenotic tube flow, a similar but somewhat different phenomena occurs [64]. Mo-
mentum causes the jet to persist for some time before diverging and reattaching to
the vessel wall. In the separated flow region that arises between the jet and the vessel
wall, slower moving and recirculating flow emerges. With increasing flow velocities,
the formed vortices are shed downstream [52]. As these shedded vortices flow away
from the stenosis, they break up into smaller and faster vortices very much like
a Kolmogorov cascade. Examples of pulsatile flow through symmetric stenoses at
50%, 57% and 70% obstructions are illustrated in figure 2.15, where the obstruction
is defined as 100 · (D−d)/D [65]. It can be seen that for low flow velocities, a rather
stationary vortex develops downstream of the stenosis. At higher flow velocities, an
array of traveling vortices forms, rotating in opposite directions.

Numerous studies have correlated acoustic measurements with associated patholo-
gies, see Ask et al. and references therein [52]. Common observations are that the
sound intensity as well as the amount of higher frequencies generally increase with
stenosis severity and that the recorded sound signal varies with the geometry of the
obstruction. It has also been noted that the tube-wall vibration spectra can dif-
fer significantly from the turbulence spectra due to the tube’s frequency dependent
mobility. Further insight is limited, and more research is necessary [66].

Using bioacoustical techniques, stenotic vessels with occlusions as small as 25%
have been detected [67]. Figure 2.16 indicates the onset of vascular murmurs as a
function of Reynolds number. If peak systole produces a Reynolds number of 2000,
then almost any degree of stenosis is capable of producing an audible murmur. On
the other hand, if peak systole only reaches a Reynolds number of 500, a stenosis
of less than 50% can not produce a murmur. It should however be noted that very
severe obstructions (more than 95%) may not produce any sounds at all due to low
blood flow [68].
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Fig. 2.15: Instantaneous streamline patterns at different time instances (indicated by
numbers on the right-hand side) over systole and early diastole (top to bottom) and at
increasing severity of the stenosis (50%, 57% and 70%). The image is the result from
a simulation study using the finite volume method [65]. It should be noted that this is
just an illustrative example. As mentioned in the main text, the onset of turbulence
depends not only on the geometry of the stenosis, but also on the frequency of the
pulsatile flow. Here the heart rate was 1 Hz, with flow velocities ranging from −0.04
to 0.26 m/s, see Jung et al. [65] for details. Image adopted from Jung et al. [65], with
permission.
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Fig. 2.16: The onset of vascular murmurs as a function of Reynolds number and
percent stenosis measured in the aorta of a dog. The white area represents a flow
condition capable of producing murmurs whereas flow conditions represented by the
grey area will not produce murmurs. The curve is the least squares parabola best fit
to the measured data points. Figure based on data and diagram from Sacks et al. [68].

2.6 Models of cardiac sound

The main motivation for model construction is to gain understanding about the
physical world. A model is often realized by a set of equations that summarize
available knowledge and set up rules for how this knowledge interacts. Modeling the
cardiovascular system requires multi-variate, multi-scale, multi-organ integration of
information, making it an extremely difficult task. The purpose of this section is not
to delve into these details but rather to look at two simple models able to reproduce
S1 and S2. Neither of the models is able to explain the genesis of the heart sounds.
However, they do provide adequate representations of the PCG signal, and as such,
the models can be used to simulate heart sounds. A model for S1 was used in paper
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I to investigate robustness to noise, and a composite PCG model containing both
S1 and S2 was used to define design parameters in chapter 4.

A different kind of model with a different area of application is the animal model.
The purpose of these models is usually to perform provocations which are not eth-
ically justifiable in humans. In this thesis, animal models are used for a more
benevolent reason: the prevalence of certain heart diseases is very high in certain
species, and the progression of the disease is often accelerated compared to humans.
Dog models were used in paper II and III.

2.6.1 Modeling the first heart sound

Models of S1 are somewhat ad hoc since the underlying mechanisms of the sound are
not fully understood. Based on observations from thoracic surface recordings, Chen
et al. [69] suggested a model consisting of two valvular components with constant
frequency and one myocardial component with instantaneously increasing frequency.
The basic idea is that harmonic oscillations associated with atrioventricular valve
closure are dampened by the acoustic transmission to the thoracic surface. The
valvular components sv(t) are modeled as a set of transient deterministic signals
according to equation 2.3, where N is the number of components, Ai is the amplitude
and ϕi is the frequency function of the ith sinusoid.

sv(t) =
N∑

i=1

Ai(t) sin(ϕi(t)) (2.3)

The myocardial component, associated with myocardial tension, is modeled with an
amplitude modulated linear chirp according to equation 2.4. Am(t) is the amplitude
modulating wave and ϕm(t) is the frequency function. The frequency of the signal
increases during myocardial contraction and levels out as the force plateau is reached
[69]. Since the valves close after contraction, the valvular components and the
myocardial component are separated by a time delay t0 before attaining the final S1
model (equation 2.5). Figure 2.17 shows an example of the two valvular components,
the myocardial component and the resulting synthesized S1 signal.

sm(t) = Am(t)sin(ϕm(t)) (2.4)

S1(t) = sm(t) +

{
0 0 ≤ t ≤ t0
sv(t− t0) t ≥ t0

(2.5)

For theoretical simulation of S1, Chen et al. [69] suggest the following functions
(N = 2, 0 ≤ t ≤ 100 ms, t0 = 10 ms):

sv(t) = e−60t sin (2π(50)t− π) + 0.5e−60t sin (2π(150)t− π)
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Fig. 2.17: Basic characteristics of the two valvular components, (a) and (b), and the
myocardial component (c) of a simulated S1 signal (d).

Am(t) =







0.275(1.1 − 0.9 cos(83.4πt)) 0 < t ≤ 12
0.55 12 < t ≤ 30
0.275(1 − cos(34πt)) 30 < t ≤ 60
0 t > 60

ϕm(t) =

{
2π (60 − 40 cos(34πt)) t 0 < t ≤ 30
2π (100) t− 2π

5
30 < t ≤ 60

2.6.2 Modeling the second heart sound

Compared to S1, the underlying mechanisms associated with S2 are more widely
accepted. The aortic component (A2) is produced during the closure of the aortic
valve while the pulmonary component (P2) results from the closure of the pulmonary
valve. Each component usually lasts for less than 80 ms. During expiration the two
components come closer together (<15 ms) while during inspiration, A2 and P2 are
separated by 30–80 ms [70]. The separation between the two components is mostly
due to different durations of ventricular systole for the left and the right side of the
heart, which is modulated by respiration (see section 2.5.1).

As indicated by Bartels et al. [71] and Longhini et al. [72], the resonance frequencies
of A2 and P2 are proportional to the pulmonary artery pressure and the aortic
pressure, respectively. This is reasonable since these pressures cause tension in the
cardiac structures and the tension affects the frequency of the vibrations. With
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decreasing pressure in end systole and early diastole, it is thus expected that the
instantaneous frequency will decay. According to this hypothesis, A2 and P2 should
be composed of short duration frequency modulated transient signals [73], giving an
S2 model consisting of two narrow-band chirp signals, see equation 2.6. A(t) and
ϕ(t) are instantaneous amplitude and phase functions, and t0 is the splitting interval
between the onset of A2 and P2.

S2(t) = AA(t) sin (ϕA(t)) + AP (t− t0) sin (ϕP (t)) (2.6)

For theoretical simulation of S2, Xu et al. [70] suggest the following parameter values
(0 ≤ t ≤ 60 ms):

AA(t) = 1.5
(

1 − e
−t
8

)

e
−t
16 sin

(−πt
60

)

ϕA(t) = 2π
(
24.3t+ 451.4

√
t− 1

)

AP (t) =
(

1 − e
−t
8

)

e
−t
16 sin

(−πt
60

)

ϕP (t) = 2π
(
21.8t+ 356.3

√
t− 1

)

The first and second terms of AA(t) and AP (t) control the attack and decay of
the instantaneous amplitude, while the third term ensures a finite duration of 60
ms. Taking the derivative of the instantaneous phase, it is clear that the frequency
component of the two components decay very rapidly over the first 10 ms after which
the decay slowly levels out. Figure 2.18 shows an example of a synthesized S2 signal
using a splitting interval of t0 = 30 ms.

2.6.3 Animal models and veterinary applications

The cardiovascular system in companion animals is similar to that in humans. The
methods and theories of this thesis are therefore applicable for veterinary use as
well. Due to breeding, some canine breeds have very specific diseases. For exam-
ple, if a severe murmur is found in a boxer dog, it is very likely that the murmur
stems from AS. The same situation occurs in the Cavalier King Charles Spaniel
(CKCS), but here the murmur is most certainly from a leaking mitral valve. The
high prevalence of certain diseases, in combination with the striking cardiovascular
similarity between the dog and the human, has turned dogs into excellent research
models [74]. Regarding canine heart sounds and murmurs, it has been indicated
that they show great similarity to their human counterparts [75]. Another major
advantage with dog models is that the progression of heart diseases is accelerated
compared to humans. For example, CKCS dogs often develop MI during a relatively
short period of time. Monitoring the progression of a disease during its development
from a physiologically insignificant state to a severe state is thus practically feasible.

In this thesis, the boxer breed was used as a model for AS (paper II). The prevalence
of heart murmurs in the adult boxer population has been reported to be up to
80% [76], a high figure compared to other breeds of dogs. A proportion of the
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Fig. 2.18: Basic characteristics of the A2 (c) and P2 (d) components of a simulated
S2 signal (e). Also illustrated are the normalized amplitude function (a) and the
instantaneous frequency function of A2 (solid line) and P2 (dashed line) (b).

murmurs are caused by AS [77], but many of them are of uncertain origin. In contrast
to humans, canine AS is not of degenerative origin, but a congenital disease affecting
the aortic valves and/or the left ventricular outflow. There are also anatomical
differences between the species. The human chest is flat while dogs have narrow
deep chests. Therefore the heart is positioned closer to the thoracic wall in dogs
and the heart sounds and murmurs are more easily distinguished. The differences
in thoracic anatomy lead to different damping of the sound between the species.
The amount of subcutaneous fatty tissue might also affect the damping of sound,
a problem which is more prevalent in humans compared to dogs. However, the
recording situation may be more difficult in dogs compared to adult humans due to
practical reasons.

The Cavalier King Charles Spaniel was used as a model for MI (paper III). Mitral
valve disease is the most commonly acquired cardiac disease in adult dogs and it is
the third most common cause of death in dogs under ten years of age [78]. Highest
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incidence of the disease is found in small to medium-size breeds, such as the Poodle,
the Chihuahua, and the CKCS. Practically all CKCS have developed cardiac mur-
murs due to MI by the time they reach ten years of age. MI is commonly caused by
myxomatous degeneration in the CKCS as well as in humans, and the compensatory
mechanisms are also similar between the species [79]. The main differences in heart
sounds and murmurs should thus be related to anatomical differences. Humphries et
al. [75] suggest that the changed anatomy gives canine heart sounds a higher pitch,
similar to what can be found in the human child.
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3
Signal Processing Framework

– Hey Mr. Cochran, just what is the final processing?
– Oh, I assure you it’s just a little bit of this and a little bit of that.

Halloween III: Season of the Witch (1982)

The underlying assumption of many signal processing tools is that the signals are
Gaussian, stationary and linear. The greater part of this chapter (sections 3.2–3.6)
will introduce methods suitable for analyzing signals that do not fall into these
categories. Two short examples are included in this introduction to illustrate the
problems at hand.

Distinguishing signals with similar spectra: In many traditional linear methods it
is assumed that the important signal characteristics are contained in the frequency
power spectrum. From a stochastic process perspective, the first and second order
statistics of the signal are represented by this power spectral information. How-
ever, there are many types of signals, both theoretical and experimental, for which
a frequency domain representation is insufficient to distinguish two signals from
each other. For example, signals generated by processes described by nonlinear
differential or difference equations typically exhibit broadband spectral characteris-
tics that are difficult to interpret and compare. Two signals with indistinguishable
power spectra are presented in figure 3.1. The signal in subplot (a) is the logistic
map while the signal in subplot (b) is its phase randomized correspondence. Even
though they have the same frequency spectrum, the logistic map has structure in
its phase portrait while the phase randomized signal does not (a phase portrait is
basically the signal plotted against a time delayed version of itself). To distinguish
between the two, or for that matter, to find the structure in the logistic map, it is
obviously not enough to study the spectra of the two signals. This example was
adopted from Povinelli et al. [80].

When putting together current analysis techniques and arranging them in a space
spanned by nonlinearity and stochasticity, it becomes clear that this method space
is quite sparsely populated, see figure 3.2. Periodic oscillations are found in the
lower left corner (linear and deterministic), and these signals are usually analyzed
with the power spectrum or by autocorrelation. This family of analysis tools will
be presented in section 3.1. Linear dynamical rules, influenced by random external
noise sources, are found in the lower right corner (linear and stochastic). Common
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Fig. 3.1: The logistic map, s(t + 1) = c · cos(t)[1 − s(t)], where c is a constant, is often
used as a model in population studies. Here a logistic map with c = 4 and s(0) = 0.1
is presented in (a) and a phase randomized correspondence is shown in (b). Their
respective frequency spectra, which are almost identical, are shown in (c) and (d).
Finally, in (e) and (f) their corresponding phase portraits are shown.

approaches for dealing with these types of signals are linear parametric models such
as the autoregressive (AR) model. Parametric signal processing techniques will be
briefly mentioned in the end of section 3.1. Deterministic chaotic systems are found
in the top left corner (nonlinear and deterministic). Such systems are controlled by
strict mathematical rules, but even though the signals emanating from them might
look abstract, an underlying order is inherently present. These signals are analyzed
in a reconstructed state space and characterized by invariant measures such as the
fractal dimension or the largest Lyapunov exponent. Analysis tools will be pre-
sented in section 3.4. When a system is driven away from the linear deterministic
corner, higher order statistics are often more appropriate compared to spectral or
state space representations [81]. Higher order statistics will be introduced in section
3.2. The linear parametric models in the lower right corner assume Gaussianity,
but deviations from Gaussianity often contain pertinent information about the un-
derlying system. Non-Gaussian statistics and various complexity measures are used
to investigate the right border of the nonlinearity-stochasticity space, and such ap-
proaches will be introduced in section 3.3. The three corners containing periodic
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Fig. 3.2: Illustration of available types of analysis methods applicable to a variety of
dynamical systems. Figure inspired by Quyen et al. [81] and Schreiber [82].

oscillations, linear dynamics with external random noise and deterministic chaos
rest upon a solid mathematical foundation where reliable and robust analysis tools
are available. However, this doesn’t mean that these areas are of particular interest,
it only means that there are known methods to deal with them.

Changes in dynamics during the measurement period introduce nonstationarity in
the signals. While these changes are often very interesting, most analysis tools
ignore them altogether. This mismatch between the reality and the tools complicates
the analysis. In the past, this problem was often dealt with by making sure that
stationarity was established before the measurement phase begun. If nonstationary
segments were detected in the data, these segments were either removed or the signal
was split up into short quasi-stationary segments. A method able to investigate both
linear and nonlinear nonstationary signals is described in section 3.6.

Time-varying frequency characteristics: A signal with multiple frequency compo-
nents with changing frequencies is shown in figure 3.3. The signal consists of three
components; a sinusoidal frequency modulation followed by a pure tone simulta-
neously with a chirp component. Using the Fourier transform to investigate the
signal’s frequency content, it can be seen that the signal contains a rather wide
frequency peak. However, much more information can be obtained by investigat-
ing how the frequency content varies over time. As can be seen in the figure, all
three signal components can successfully be detected using the joint time-frequency
analysis tools that will be introduced in section 3.6.

The remainder of this chapter will deal with the two related topics of denoising and
prediction (sections 3.7–3.8). A brief survey on classification (section 3.9), feature
selection (section 3.10) and system evaluation (section 3.11) is also included.
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signal’s Fourier transform reveals little of the three components (b). However, the
combined time-frequency representation clearly exposes the individual constituents
(c).

3.1 Linear correlations and the power spectrum

Irregular data sequences can be seen as stochastic processes, where the occurrence
of a certain measurement at a certain time is regarded as a value drawn from a
probability density function. The probability distribution is not known beforehand,
but it may be estimated from the data, for example by a histogram. Descriptive
measures of stochastic processes include the expected value and the variance. For
a signal s(t), t = 1, 2, . . . , N , the expected value is estimated according to equation
3.1 whereas the variance is defined in equation 3.2. The standard deviation, σ, is
defined as the square root of the variance.

〈s〉 =
1

N

N∑

t=1

s(t) (3.1)

σ2 =
1

N − 1

N∑

t=1

(s(t) − 〈s〉)2 (3.2)

The time order of samples in s(t) does not affect the mean or the variance, and to
study time dependence, the autocorrelation function c(τ) is often used (equation
3.3). If s(t) correlates with a time delayed version of itself, s(t−τ), the autocorrela-
tion function will have a large value at c(τ). Similarly, a negative correlation gives
a negative value of c(τ) while uncorrelated data gives c(τ) = 0.

c(τ) =
1

σ2
〈(s(t) − 〈s〉)(s(t− τ) − 〈s〉)〉 =

〈s(t)s(t− τ)〉 − 〈s〉2
σ2

(3.3)

If the signal is periodic, the autocorrelation function will be periodic as well. How-
ever, when studying oscillations and periodicity, the Fourier transform (equation
3.4) is often a preferable method. In time series analysis, the Fourier transform
converts the time domain signal into a frequency domain signal.

S(f) =
1√
N

N∑

t=1

s(t)e2πi tf

N (3.4)
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The power spectrum (the Fourier transform of the autocorrelation function) is typ-
ically used to analyze and identify peaks which occur at the system’s dominant
frequencies and at their integer multiples (harmonics). For time-discrete signals,
the power spectrum can be estimated by squaring the absolute value of S(f),
P (f) = |S(f)|2. This estimate, called the periodogram, has a number of weak-
nesses; (i) the discrete Fourier transform has finite frequency resolution, which leads
to leakage (broadened spectral peaks) and (ii), the presence of noise causes statisti-
cal fluctuations which are of the same order as S(f) itself [83]. A number of spectral
estimation methods have been developed to circumvent these problems. Averag-
ing adjacent frequency bins in the periodogram is one approach (Blackman-Tukey’s
method), but, if there is enough data available, averaging over several periodograms
is preferable (Welch’s method) [83].

Assuming that s(t) can be obtained by linear filtering of a zero mean white Gaussian
noise sequence, v(t), power spectrum estimations can be obtained by parametric
modeling. The most general linear model within this setting is the autoregressive
moving average model (ARMA), which is a composite model based on both the
autoregressive (AR) and the moving average (MA) models (see equations 3.5–3.7).

sARMA(t) = −
N∑

u=1

αus(t− u) +

M∑

u=0

βuv(t− u) (3.5)

sAR(t) = −
N∑

u=1

αus(t− u) + v(t) (3.6)

sMA(t) =
M∑

u=0

βuv(t− u) (3.7)

The MA model equation describes a convolution filter, where the new signal s(t)
is generated by an M-order filtering of the input signal v(t). The name MA comes
from the fact that the filter smooths v(t) by averaging its last M values. This
procedure is also called a finite impulse response (FIR) filter. The AR model, also
called an infinite impulse response (IIR) filter, uses feedback to represent the system.
The next sample in s(t) is determined by the N previous samples in s(t) plus an
innovation sample determined by v(t). Depending on the application, v(t) could
either be a controlled input or noise.

The ARMA model is most easily understood via the z-transform1, equation 3.8.
Since the convolution in equation 3.5 can be expressed as a multiplication in the
z-domain, the ARMA model can be interpreted as in equation 3.9. The transfer
function will diverge at poles due to the AR-term while vanishing at zeros due to
the MA-term. The number of poles and zeros determines the degree of freedom of
the system.

S(z) =

∞∑

t=−∞
s(t)z−t (3.8)

1The discrete Fourier transform is a special case of the z-transform where z = e−i2πf (the unit
circle).
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S(z) = A(z)S(z) +B(z)V (z) =
B(z)

1 − A(z)
V (z) (3.9)

Power spectral estimates derived from the three models are determined by the
weights αu and βu, according to equations 3.10–3.12. The AR model is appro-
priate for modeling power spectra with sharp peaks while the MA model is able
to represent deep valleys. The more general ARMA model can handle both sharp
peaks and deep valleys. How to determine the coefficients and selecting the model
order is out of the scope of this thesis, but details can be found in any book on
digital signal processing, for example Ljung [83].

PARMA(f) = σ2

∣
∣
∣
∣

β0 + β1e
−i2πf + . . .+ βMe

−i2πMf

1 + α1e−i2πf + . . .+ αNe−i2πNf

∣
∣
∣
∣

2

= σ2

∣
∣
∣
∣

B(f)

A(f)

∣
∣
∣
∣

2

(3.10)

PAR(f) =
σ2

|1 + α1e−i2πf + . . .+ αNe−i2πNf |2 =
σ2

|A(f)|2 (3.11)

PMA(f) = σ2|β0 + β1e
−i2πf + . . .+ βMe

−i2πMf |2 = σ2|B(f)|2 (3.12)

ARMA coefficients, power spectra and autocorrelation coefficients essentially contain
the same information. This means that linear models are sufficient only when the
power spectrum contains enough information. Weaknesses in the power spectrum to
discover underlying patterns in nonlinear data were exemplified in the introduction
of this chapter. Another example is provided by a signal consisting of randomly
spaced unit impulses of random sign. The power spectral density of such a signal is
constant. By removing every other sample and multiply the remaining samples with√

2, the same power spectrum is retained. By repeating this process over and over
again, the power spectrum continues to remain the same while the signal becomes
very different from the original signal. Clearly, information about phase and relative
time delays is missing from the power spectrum.

3.2 Higher order statistics

In power spectral analysis, the signal is treated as a superposition of uncorrelated
harmonic components. For this assumption to be valid, the signal has to be lin-
ear (superposition) and Gaussian (independent frequency components). The power
spectrum derives from the autocorrelation function, which is a second order func-
tion (since the signal enters the equation twice). By generalizing the autocorrela-
tion function into higher orders, higher order statistics are obtained. In contrast
to second-order statistics, higher order statistics are based on averages over prod-
ucts of three or more samples of the signal, thus allowing nonlinear dependencies
among multiple signal samples to be evaluated. Assuming zero mean signals with
unit standard deviation and limiting the order to four, the order moments (m) and
their corresponding cumulants (c) are defined as equations 3.13–3.17 [84].
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m1
s = c1s = 〈s(t)〉 = 0 (3.13)

m2
s(τ) = c2s(τ) = 〈s(t)s(t+ τ)〉 (3.14)

m3
s(τ1, τ2) = c3s(τ1, τ2) = 〈s(t)s(t+ τ1)s(t+ τ2)〉 (3.15)

m4
s(τ1, τ2, τ3) = 〈s(t)s(t+ τ1)s(t+ τ2)s(t+ τ3)〉 (3.16)

c4s(τ1, τ2, τ3) = 〈s(t)s(t+ τ1)s(t+ τ2)s(t+ τ3)〉 − 3 (〈s(t)s(t+ τ)〉)2 (3.17)

If the signal is Gaussian, it is fully described by its first and second order statistics,
and higher orders are equal to zero. On the other hand, if the signal is non-Gaussian,
the cumulants represent higher-order correlations. As such, they also provide a
measure of distance from Gaussianity. Interesting special cases in equations 3.14–
3.17 are c

(2)
s (0), c

(3)
s (0, 0) and c

(4)
s (0, 0, 0), which represent the variance, skewness and

kurtosis of s(t).

The Fourier transforms of the cumulants, called polyspectra, are defined accord-
ing to equations 3.18–3.20. The Fourier transform of the second, third and fourth
cumulants are called the power spectrum, the bispectrum and the trispectrum, re-
spectively. An example of a bispectrum is shown in figure 3.4. The bispectrum
quantifies the presence of quadratic phase coupling between any two frequency com-
ponents in the signal. Two frequency components are said to be quadratically phase
coupled when there exists a third frequency component whose frequency and phase
are the sum of the frequencies and phases of the first two components. Basically,
the power spectrum represents the product of two Fourier components with the
same frequency, whereas the bispectrum represents the product of three Fourier
components where one frequency equals the sum of the other two [85]. Interesting
properties of the bispectrum, besides its ability to detect phase couplings, are that
the bispectrum is zero for Gaussian signals and that it is constant for linear signals.
These properties have, for example, been used as test statistics to rule out the hy-
pothesis that a signal is Gaussian or linear [86]. Due to symmetries, only a small
part of the bispectral space has to be analyzed [87], see figure 3.5.
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Fig. 3.4: Example of phase coupling. The frequency spectrum of a signal composed
of three sinusoids with frequencies λ1, λ2 and λ3 = λ1 + λ2 is shown in (a). The
corresponding bispectrum is shown in (b). Since λ3 is caused by phase coupling
between λ1 and λ2, a peak will appear in the bispectrum at f1 = λ1, f2 = λ2 (another
peak will also emerge at f1 = λ2, f2 = λ1).
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C(2)
s (f) = FT [c2s(τ)] (3.18)

C(3)
s (f1, f2) = FT [c3s(τ1, τ2)] (3.19)

C(4)
s (f1, f2, f3) = FT [c4s(τ1, τ2, τ3)] (3.20)
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Fig. 3.5: Symmetry regions of third order cumulants (left) and third order polyspectra
(right).

3.3 Waveform complexity analysis

There is an ongoing philosophical discussion about how complexity should be de-
fined. An example of this quandary is that random noise has no structure at all, yet
the term random perfectly describes the signal why it is easily described. Similarly,
nonlinear equations such as Lorenz equations (see equation 3.32) are completely de-
terministic even though they might look obscure. Hence these types of signals are
also simple. Thus, a system is simple when its dynamics are regular and described by
a few variables. It is also simple when its dynamics are completely random. In be-
tween these extremes, where the system is a mixture of regularity and randomness,
the complexity reaches a peak value [88]. From here on, this philosophical issue
is left and complexity measures are merely considered as attempts to distinguish
signals from each other.

In this section, a number of methods able to quantify complexity will be described.
The Hurst exponent H, a measure of smoothness in a signal, provides a link between
several of these complexity estimates. More precisely, it can be shown that the
Hurst exponent is related to the variance fractal dimension (VFD) of the s(t) versus
t curve by V FD = 2 − H [89] and to the slope of the curve’s power spectrum by
α = 2H − 1 [90].

3.3.1 Waveform fractal dimension

There are two principal approaches to estimate the fractal dimension of a time series,
one that operates directly on the waveform and one that operates in a reconstructed
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state space [91]. Waveform fractal dimension estimates will be treated here while
state space based estimates will be described in section 3.4.2. Note that the fractal
dimension, measured in a reconstructed state space, is normally different from the
waveform fractal dimension. The waveform is looked upon as a planar set in R

2

where it is considered a geometric object. A line is a 1D object, a square is a 2D
object and a typical time series has a dimension somewhere in between (since it is
more complicated than a line but never covers the whole 2D space). Accordingly,
the waveform fractal dimension is limited to the range 1 ≤ D ≤ 2), where D is the
dimension.

Even though there are many ways to estimate the fractal dimension of a waveform
[91], only VFD is used here due to its robustness to noise [89]. VFD is calculated via
the Hurst exponent according to equation 3.21. E is the Euclidean dimension which
equals one for a 1D time series (thus reducing equation 3.21 to V FD = 2 − H).
In the VFD framework, H is determined via a power law relation between the
variance of amplitude increments and their corresponding time increments according
to equation 3.22, where s(t), t = 1, 2, . . . , N , is the signal and tj,k determines the j:th
sample at scale k. By rearranging equation 3.22, an expression for H is obtained via
equation 3.23, where C is a constant. If log var{s(tj+1,k)−s(tj,k)} is plotted against
log |tj+1,k − tj,k| for several different time increments k, H can be determined via the
slope of a linear regression line, see figure 3.6(a).

V FD = E + 1 − H (3.21)

var{s(tj+1,k) − s(tj,k)} ∝ |tj+1,k − tj,k|2H (3.22)

log var{s(tj+1,k) − s(tj,k)} = 2H log |tj+1,k − tj,k| + C (3.23)

The choice of the time increment depends on the application. A unit time increment
(tj+1,k − tj,k = k for k = 1, 2, 3, . . .) is preferred when separating a signal from noise
while a dyadic time increment (tj+1,k − tj,k = 2k−1 for k = 1, 2, 3, . . .) is preferred
for separating different components within the signal [89]. An illustration of the
amplitude and time increments is shown in figure 3.6(b).

Fig. 3.6: A typical log-log plot (a), where the markers indicate the variance of am-
plitude increments at different scales. The dyadic time increment is illustrated in
(b) for tj+1,k − tj,k at scale k = 3 along with the corresponding amplitude increment,
s(tj+1,k) − s(tj,k).
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3.3.2 Spectral slope

If the power spectrum is inversely proportional to the frequency f according to
some power law 1/fα [62], α can be interpreted as a complexity measure since
a large proportion of higher frequencies makes the signal look more complicated.
In practice, the spectrum is plotted in a log-log scale, and α is estimated from
the slope of the spectrum. For example, white noise is proportional to 1/f 0, pink
noise is proportional to 1/f 1 and Brownian motion is proportional to 1/f 2. Since
α = 2H − 1, the spectral slope is related to VFD as α = 3 − 2 · V FD.

3.3.3 Entropy

Entropy describes system randomness and predictability, where greater entropy is
associated with more randomness and less system order. As with the fractal dimen-
sion, entropy can be estimated either on the waveform or in a reconstructed state
space, where the latter topic will be discussed in section 3.4.4.

There are a number of definitions available to estimate entropy. The Shannon en-
tropy is defined in equation 3.24, where S is a discrete random variable with a set
of possible values Υ and probability function p(s(i)) = P{S = s(i)}, s(i) ∈ Υ. Ba-
sically, entropy describes how many binary (yes/no) questions that are required to
find out the particular value of s(i). The i:th value has an uncertainty −log2p(s(i)),
and the sum provides the weighted average uncertainty. H(S) can range from 0,
if there is only one possible value, to log2N , if all values of s(t) are equally proba-
ble [92]. For experimental data, the probability density function has to be estimated,
for example with a histogram.

H(S) = −
∑

s(i)∈Υ

p(s(i))log2p(s(i)) (3.24)

Approximate entropy and sample entropy
Approximate entropy and sample entropy are two alternative measures of system
regularity. Given the time series s(t), t = 1, . . . , N , a sequence of vectors y(t) =
[s(t), . . . , s(t+d−1)] is created. Each vector thus represents d consecutive samples,
or patterns, in s(t). The amount of vectors similar to y(i) is determined as Cd

i (ε)
according to equation 3.25, where Θ is the Heaviside function and ε is a tolerance
level. The average amount of similar patterns of length d is accordingly given by
Cd(ε) in equation 3.26. This leads to the definition of sample entropy, equation
3.27, which measures the likelihood that patterns that are similar for d samples
remain similar for d+1 samples [93]. Sample entropy was introduced as an unbiased
successor to approximate entropy, which is similarly defined according to equations
3.28 and 3.29 [94]. In practice, these two complexity measures are nearly identical.
More details about both of them will be revealed as the definitions are recapitulated
in a reconstructed state space setting in section 3.4.4.

A short example showing how sample entropy values are calculated for a time series
is illustrated in figure 3.7. A simulated time series s(t) is used together with d = 2
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and a tolerance level ε as symbolized by the dashed lines. Samples similar to s(1) are
symbolized by filled circles, samples similar to s(2) are symbolized by filled squares
and samples similar to s(3) are symbolized by filled stars. Consider the two-pattern
filled circle - filled square (s(1)−s(2)) and the three-pattern filled circle - filled square
- filled star (s(1) − s(2) − s(3)). There are three occurrences of the two-pattern
and two occurrences of the three-pattern, but since we do not count self-matches,
they are reduced to two and one, respectively. These calculations are repeated for
all two-pattern and three-pattern sequences, and the result enters equation 3.27 to
determine the ratio between the total number of two-pattern sequences and the total
number of three-pattern sequences. The sample entropy with d = 2 thus reflects
the probability that sequences that match each other for two data points will also
match for three points.

Cd
i (ε) =

1

N + d+ 1

N−d+1∑

j=1

Θ(ε− ‖y(i) − y(j)‖) (3.25)

Cd(ε) =
1

N + d+ 1

N−d+1∑

j=1

Cd
i (ε) (3.26)

HSE(d, ε) = −lnC
d+1(ε)

Cd(ε)
(3.27)

Φd(ε) =
1

N + d+ 1

N−d+1∑

j=1

lnCd
i (ε) (3.28)

HAE(d, ε) = Φd(ε) − Φd+1(ε) (3.29)
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Fig. 3.7: Example of patterns analyzed by sample entropy. See the main text for
details.

3.4 Reconstructed state space analysis

Dynamical systems theory is an important ingredient in nonlinear signal process-
ing. A dynamical system is a system whose state changes with time. In continuous
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time, the system is described by differential equations and in discrete time by iter-
ated maps. Since sampled data is used in this thesis, only iterative maps will be
considered.

The dynamics of a time discrete system is often described in state space, a conceptual
space spanned by the dependent variables of the system. As time evolves, the system
moves from state to state, tracing out a trajectory which provides a geometrical
interpretation of the dynamics. If the trajectory is drawn to a particular set, this
set is called an attractor. Examples of different attractors are given in figure 3.8.
The transitions between the states can be described by vectors according to equation
3.30, where x(t) is the state of the system, t is the time index, φ is a mapping function
such that φt : M → M and M is the true state space.

x(t + 1) = φ(x(t)) (3.30)

(a) (b) (c)

Fig. 3.8: Examples of a fixed point attractor (a), a limit cycle (b) and a strange
attractor from a Lorenz system (c). A physical example of a fix point attractor is
a pendulum, where all initial states will converge to a single point. Modifying this
example so that the pendulum has a driving force, thus creating a simple oscillation,
a periodic attractor is obtained. Chaotic systems like the Lorenz system have been
used to describe weather, and give rise to strange attractors, where the trajectories
never cross or touch each other.

The true state space (M) thus contains the true states x, whose time evolution is
described by the map φ, x(t) = φt(x(0)). Now suppose that the only information
available about this system is a scalar measure s(t) = h(x(t)), where h : M → R

and t = 1, 2, . . . , N . If s(t) is a projection from M , it might be possible to undo this
projection. That is, given a measured signal s(t) in R, is there a way to create a map
from an unknown state x(t) in M to a corresponding point y(t) in a reconstructed
state space in R

d?

The problem of moving from observable quantities to theoretical notions was first
solved by Packard et al. [95] who managed to reconstruct the state space based on
a single scalar time series. A mathematical justification of this approach was later
given by Takens [96], who proved that it is possible to reconstruct, from a scalar
time series only, a new state space that is diffeomorphically equivalent to the original
state space of the experimental system.

There are essentially two methods available for state space reconstruction, delay
coordinates and derivative coordinates. Derivative coordinates were used by Packard
et al. [95] and consist of higher-order derivatives of the measured time series. This
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approach is motivated by the fact that any ordinary differential equation can be
written as a set of coupled first-order equations. The system in equation 3.31 can
easily be transformed into three first-order equations by setting ψ = dξ/dt and
ζ = dψ/dt. In a Newtonian system, ξ, ψ and ζ would be the displacement, velocity
and acceleration, respectively. The term d3ξ/dt3 is called the jerk [62]. The Greek
variables should here be interpreted as the dependent variables spanning M , where
one state is represented by the vector x(t) = [ξ(t), ψ(t), ζ(t)].

d3ξ

dt3
= f

(
d2ξ

dt2
,
dξ

dt
, ξ

)

(3.31)

Even though the opposite is not necessarily true, some chaotic systems can be rewrit-
ten in jerk form. As an example, the Lorenz equations whose attractor was shown
in figure 3.8 can be written in jerk form according to equations 3.32 and 3.33, where
σ, r and b are model parameters. The bottom line is that a single variable ξ and
its time derivatives can be used to describe the whole system. Unfortunately, since
derivatives are susceptible to noise, derivative coordinates are not very useful for
experimental data.

dξ

dt
= σ(ψ − ξ)

dψ

dt
= −ξζ + rξ − ψ (3.32)

dζ

dt
= ξψ − bζ

d3ξ

dt3
=

(
1

ξ

dξ

dt
− 1 − σ − b

)
d2ξ

dt2
[

(1 + σ)
dξ

dt
− b(1 + σ + ξ2)

]
dξ

dt
(3.33)

+ bσ(r − 1 − ξ2)ξ

In rapidly sampled data, derivation can more or less be replaced by differentiation.
An approximation of the derivatives in equation 3.31, expressed in delay coordinate
terms, is given in equation 3.34.

d3ξ

dt3
= f

(
ξ(t) − 2ξ(t− τ) + ξ(t− 2τ)

τ 2
,
ξ(t) − ξ(t− τ)

τ
, ξ(t)

)

(3.34)

This is the starting point for Takens’ delay embedding theorem, equation 3.35, where
τ is a delay parameter, d is the embedding dimension and F is the map from the
true state space to the reconstructed state space. A schematic illustration of Takens’
delay embedding theorem is given in figure 3.9. This applies to almost every choice
of φ(x(t)), h(x(t)) and τ as long as d is sufficiently large (about twice the number
of active degrees of freedom in the system), φ(x(t)) depends on at least some of
the components of x(t) and the remaining components of x(t) are coupled to y(t)
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via F [92]. Since the dynamics of the reconstructed state space contains the same
topological information as the original state space, characterization and prediction
based on the reconstructed state space is as valid as if it was made in the true
state space. However, if the coupling between the observable and the system or
between the dependent variables of the system is weak, the resolution available in
an experimental setup will not be sufficient to rebuild the attractor [92].

F : M → R
d (3.35)

x(t) → y(t) = F (x(t)) = [s(t), s(t+ τ), . . . , s(t+ (d− 1)τ ] (3.36)

Measured time series

Reconstruction of the
attractor in 

Delay coordinates

 

y t( ) = s t( ),...,s t + d −1( )τ( )[ ]  

s t( )  

ℜd
 

Attractor in the
unknown space M

Measurement
observable  s t( ) = h x t( )( ) 

h : M → ℜ 

F

h

x t( )  

y t( )  

y t( ) = F x t( )( ) 

F : M → ℜd
 Embedding

Fig. 3.9: Delay reconstruction of states from a scalar time series (example using the
Lorenz system in equation 3.32). Redrawn from Parlitz [97].

These ideas might sound far-fetched, but the same principles are used in the linear
models introduced in section 3.1. Both the AR and the ARMA models use time
lagged variables of s(t). It seems like delay vectors are not just a representation of
the state of a linear system – delay vectors can also be used to recover the geometrical
structure of a nonlinear system. If the governing equations and the functional form
of s(t) are known, the Kalman filter is the optimal linear estimator of the state of
a system [98]. However, when none or little information about the origin of s(t)
is known, state space reconstruction may help deducing clues about the underlying
system.

Construction of the delay vector
The construction of y(t) suggests that the coordinates of a point in state space
correspond to the lagged amplitudes of s(t). Regions in state space with similar
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coordinates will hence represent recurring patterns in the time series. It is possible
though, that if the dimension of the state space is too low, states end up close to
each other due to projection into a lower dimensional space instead of through the
dynamics. An example is given in figure 3.10. The state y(t1) is close to the state
y(t2) in the two dimensional space due to projection rather than dynamics. When
the same attractor is represented in 3D, it is obvious that the two states are false
neighbors in 2D. It is necessary to ensure that states in state space lie close to each
other because of the dynamics and not due to projections. This process is referred
to as attractor unfolding.

Fig. 3.10: Unfolding of the Lorenz attractor. In 2D there are false nearest neighbors
in state space due to projection. In 3D, the former neighbors are far apart.

The selection of τ and d in equation 3.35 affects how accurately the embedding
reconstructs the system’s state space. However, for many practical applications the
product dτ is more important than the individual parameters since the product
represents the time span of the embedding vector y(t) [99]. This time window
provides a snap-shot of the dynamics, representing one row in an embedding matrix
according to equation 3.37.

S =








s(1) s(1 + τ) . . . s(1 + (d− 1)τ)
s(2) s(2 + τ) . . . s(2 + (d− 1)τ)

...
...

. . .
...

s(N − (d− 1)τ) s(N − (d− 1)τ + 1) . . . s(N)








(3.37)

In this thesis, τ will be determined independent of d, after which d will be determined
based on the selected lag value. How to choose d and τ is not obvious, and one
should be aware that there are no bullet-proof methods available to determine the
two embedding parameters.

The time delay
If τ is too short, each data point is too close together and the attractor tends
to stretch out along the diagonal of the embedding space. On the other hand,
taking τ too long leads to excessive folding of the attractor, see figure 3.11. The
time delay τ should hence be long enough to make s(t) and s(t + τ) independent
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Fig. 3.11: The auto mutual information function along with the Lorenz attractor
embedded for different time lags. The first local minimum in I(τ) facilitates a recon-
struction where the attractor is properly unfolded.

and short enough so that the connection between s(t) and s(t + τ) is maintained.
Choosing τ as the first zero-crossing of the autocorrelation function (equation 3.3)
is one approach, but this only establishes linear independence. A method able to
detect both linear and nonlinear statistical dependencies is mutual information [100].
Mutual information quantifies the average information gained about one system, R,
from the measurement of another, S, see equation 3.38. H(R) in equation 3.39 gives
the uncertainty of r(t) in isolation, while H(R|S) in equation 3.40 is the uncertainty
of r(t) given a measurement s(t). The mutual information is thus a measurement
of how much the knowledge about s(t) reduces the uncertainty in r(t). Since the
logarithm is taken to the base 2, the unit of I(R, S) is in bits.

I(S,R) = H(R) −H(R|S) (3.38)

H(R) = −
∑

t

PR(r(t))log2PR(r(t)) (3.39)

H(R|S) = −
∑

t,u

PSR(s(t), r(u))log2
PSR(s(t), r(u))

PS(s(u))
(3.40)

Usually, mutual information is measured between two different systems R and S.
When investigating the mutual information within one system, but at different time
instants, it is called auto mutual information (AMI). AMI thus quantifies the amount
of information we possess about s(t+ τ) based on knowledge from s(t). When AMI
is calculated as a function of τ , the AMI function I(τ) is obtained. AMI can be seen
as a measure of the mean predictability of future points from past points in a time
series and is often considered a nonlinear analog to the autocorrelation function [100].
The first local minimum of I(τ) represents a value of τ where s(t+ τ) adds maximal
information to the knowledge based on s(t), and this value is often used to construct
the delayed vector.
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Both the autocorrelation function and the auto mutual information function are
useful when determining the time delay, but neither of them are consistently suc-
cessful in identifying optimal time windows [101]. Essentially, none of them works
for embedding dimensions greater than two since there are only two time instants
that are compared. Further, the time lag does not have to be constant for each
additional dimension. In fact, nothing but the complexity of determining adjustable
time lags prevents delay vectors with variable τ . Such embedding procedures are
out of the scope of this thesis, and a constant time lag will be used throughout this
work.

The embedding dimension
The embedding dimension d should be chosen as twice the box counting dimension2,
but we have no idea how large this dimension is. One approach to estimate d is
the false nearest neighbors routine [99]. The basic idea is that if the attractor is
not unfolded, two points can be near in state space due to projection rather than
to actual closeness, see figure 3.10. To identify false neighbors, one compares the
distance between neighboring states in dimension d, ‖yd(t) − yd

NN (t)‖, with the
distance between the same states in dimension d+1, ‖yd+1(t)−yd+1

NN (t)‖, where ‖ · ‖
is some Euclidean distance measure. A false nearest neighbor is found if the ratio
between the two distances, equation 3.41, is large. To determine the embedding
dimension, the fraction of false neighbors is plotted for increasing dimension values,
and a d-value is chosen where there are essentially no false neighbors left [62].

R(t, d) =
‖yd+1(t) − yd+1

NN(t)‖
‖yd(t) − yd

NN(t)‖ (3.41)

This method is subjective since a threshold value has to be chosen to decide whether
a neighbor is close or not. Cao [102] therefore suggested an extension to the nearest
neighbor approach. By taking the mean value of R(t, d) over all t, equation 3.42, a
measure which is only dependent on τ and d (and not on the threshold) is obtained.
Cao states that E1(d) stops changing when the number of nearest neighbors is
constant, and this value of d is suitable for the embedding dimension. An example
of E1(d) plotted over a range of d-values for the Lorenz attractor is shown in figure
3.12. The knee-value where E1(d) stops changing is at d = 3, which coincides with
the theoretical value for the Lorenz attractor.

E(d) =
1

N − dτ

N−dτ∑

t=1

R(t, d) (3.42)

E1(d) =
E(d+ 1)

E(d)
(3.43)

2Actually, if the underlying system has n degrees of freedom, the embedding dimension required
to recover these dynamics can be anywhere between n and 2n, depending on the geometry [92].
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Fig. 3.12: Cao’s method for determining the embedding dimension applied to the
Lorenz system. A proper value where E1(d) does not change any more is d = 3, which
coincides with the true value.

3.4.1 Characterizing reconstructed state spaces

It is always possible to use the method of delays to reconstruct a state space from
any time series, but this does not mean that all time series provide meaningful
structure in the embedded data. Because of the mapping between the true state
space and the reconstructed state space, see figure 3.9, the precise values of y(t)
are not very interesting. However, the embedding F (x(t)) is smooth and invertible,
so many important parameters about the system are preserved by the mapping.
These parameters include invariant measures of the attractor such as dimensionality
and the Lyapunov exponents (see the upcoming sections). Nonlinear deterministic
analysis tools are rather different from their linear analogues, and a brief comparison
between linear and nonlinear methods can be found in table 3.1.

Before applying these nonlinear analysis tools to an experimental time series, it
should be tested whether it is likely that the data is nonlinear or not. A popular
approach is the method of surrogate data, which can be summarized in the following
steps [99]:

1. Specify a null hypothesis. Possible tests are that the experimental time series
does not come from a distribution of independent random numbers or from a
linear stochastic process with Gaussian inputs.

2. Specify the level of significance. A common choice is to use p ≤ 0.05, meaning
that the experimental time series should be different from the surrogate data
in nineteen out of twenty cases.

3. Create the surrogate data. Surrogate data for the two tests in paragraph one
could be created by a random permutation of the data or by randomizing the
phase of the Fourier transform [103], respectively.

4. Compute the test statistic. The test statistic is a descriptive measure that
is able to distinguish the nonlinear time series from the surrogate data. A
simple nonlinear statistic is the higher order autocorrelation 〈s(t)s2(t + 1) −
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Table 3.1: Comparison of linear and nonlinear signal processing techniques. The table
is adapted from Abarbanel [105].

Processing
task

Linear processing Nonlinear processing

Finding the
signal

Separate broadband noise from nar-
rowband signal using spectral char-
acteristics. Method: Matched filter
in frequency domain.

Separate broadband signal from
broadband noise using the determin-
istic nature of the signal. Method:
Manifold decomposition or statistics
on the attractor.

Finding the
space

Use Fourier space methods to turn
difference equations into algebraic
forms.
s(t) is observed and

S(f) = 1√
N

∑N
t=1 s(t)e

2πi tf
N is used.

Time lagged variables form coordi-
nates for a reconstructed state space
in d dimensions.
y(t) =
[s(t), s(t+ τ), . . . , s(t+ (d− 1)τ)]
where d and τ are determined by
false nearest neighbors and mutual
information.

Classification Use sharp spectral peaks and reso-
nant frequencies of the system

Use Lyapunov exponents, fractal di-
mension measures, unstable fixed
points, recurrence quantifications,
statistical distributions of the at-
tractor, etc.

Prediction Find parameters αk consistent with
invariant classifiers - location of
spectral peaks.
s(t+ 1) =

∑
αks(t− k)

Find parameters ai consistent with
invariant classifier - Lyapunov expo-
nents, fractal dimensions.
y(t) → y(t+ 1)
y(t+ 1) = F [y(t), a1, a2, . . . , ap]

s2(t)s(t + 1)〉 which measures time asymmetry or the sample bicovariance
(Hinich’s test [86]). Other common choices are the dimension estimates that
will be introduced in section 3.4.2.

These tests for signal nonlinearity are based on rigid assumptions such as the ex-
istence of a strange attractor. For real-world signals that are subject to noise and
uncertainties, the rejection of the linearity null hypothesis have to be interpreted
with due caution [104].

3.4.2 Dimension analysis

There are quite a few spaces and dimensions to keep track of when dealing with
systems, attractors, embeddings and projections. There is a configuration space
where the state equations live. It specifies the values of all potentially accessible
physical degrees of freedom of the system. This space is often infinite dimensional.
There is a solution manifold where the solution lives. This is the subset of the
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configuration space that the system actually populates as the dynamics unfolds.
Due to unexcited or correlated degrees of freedom, the solution manifold usually has
a much smaller dimension compared to the configuration space. Lorenz equations
provide one example, where the infinite physical degrees of freedom of a convecting
fluid are reduced to three coupled differential equations. Thus, the manifold lives
in a three-dimensional Euclidean space. Looking at the geometrical attractor of
the Lorenz system (see for example figure 3.9, 3.10 or 3.11), it is also apparent
that the attractor does not seem to fill the entire three-dimensional space. In fact,
the attractor is very close to two-dimensional, or at least somewhere in between
two and three dimensions (the Lorenz attractor has a fractal dimension of about
2.06). So far, we have been looking at the true system and the true attractor. As
stated in the previous section, we observe this system via a (usually) one-dimensional
measurement. This could be the velocity at one point in a fluid or the vibrations from
a mechanical system. This observable is used to create a reconstructed state space,
usually via the method of delays, in a space defined by the embedding dimension.

The fractal dimension of an attractor is invariant, even under different initial con-
ditions. This explains why it is widely used for system characterization [91]. The
fractal dimension cannot be calculated exactly from experimental data, but there
are several estimation techniques, a few of which are:

1. box counting dimension.

2. information dimension.

3. correlation dimension.

Box counting dimension
The box counting dimension is based on how many d-dimensional hypercubes with
side-length ε that are needed to cover the attractor. The required number, N , is a
measure of how space-filling the attractor is. If the attractor has the hypervolume
V , then the box counting dimension DB can be determined from equation 3.44.
Rewriting equation 3.44 into equation 3.45, a straight line with slope DB is obtained.
In practice, N is calculated for a range of ε, and DB is estimated as the best fit
line [106].

V = NεDB (3.44)

log(N) = DB log(
1

ε
) + log(V ) (3.45)

DB = lim
ε→0

d log(N)

d log 1
ε

(3.46)

Information dimension
The information dimension, DI , is basically an extension of the box counting method.
In both cases, the attractor is covered with elements of side length ε. However, where
box counting just counts the number of hypercubes containing the attractor, the in-
formation dimension weights its count by measuring how much of the attractor that
is contained within each hypercube [106]. The information dimension is defined ac-
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cording to equation 3.47 where I(ε) is the Shannon entropy (equation 3.48). The
probability function describes the probability of finding the attractor within the
ith hypercube, so, if Pi(ε) = 1/N , the information dimension reduces to the box
counting dimension.

DI = lim
ε→0

I(ε)

log 1
ε

(3.47)

I(ε) = −
∑

i

Pi(ε)logPi(ε) (3.48)

Correlation dimension
The correlation dimension, D2, is computationally more efficient and practically
more feasible compared to the dimension estimates described above [106]. The cor-
relation dimension is a measure of how the number of neighbors in the reconstructed
state space varies with decreasing neighborhood sizes ε (equation 3.49). In theory,
equation 3.49 should also contain a limit from N → ∞, but in practice, N is limited
by the sample size. This convey a lower limit on ε as well, since there will be a lack
of neighbors on short time scales.

D2 = lim
ε→0

d logC(ε)

d logε
(3.49)

C(ε) is the correlation sum as defined by equation 3.50. Θ is the Heaviside func-
tion, ε is the radius of a d-dimensional hypersphere centered on each point of the
attractor y(t) for t = 1, . . . , N and ‖·‖ is some distance measure. Basically, the sum
determines the number of pairs of points in state space whose distance is smaller
than ε.

C(ε) =
2

N(N − 1)

N∑

t=1

N∑

u=t+1

Θ (ε− ‖y(t) − y(u)‖) (3.50)

There are some practical aspects involved when determining the correlation sum
from a time series. Firstly, the estimation in equation 3.50 is biased towards small
dimensions because the data points entering the equation are not statistically inde-
pendent [99]. This is due to temporal correlations, meaning that samples in the time
series end up close together in the reconstructed state space, see figure 3.13. The
neighbors that are not due to recurrent dynamics but rather from temporal corre-
lations should be excluded from the correlation sum. This is easily taken care of by
requiring a certain temporal distance between the states y(t) and y(u) in equation
3.50. A so called space-time separation plot has been introduced as guidance to
determine a sufficient temporal distance, see Kantz and Schreiber [99] for details.

Secondly, when calculating the actual dimension value (equation 3.49), it is custom-
ary to determine the correlation sum for several values of ε as well as for several
values of d [99]. The results are plotted in a log-log plot according to figure 3.14,

with d logC(ε)
d logε

versus logε. Three different scaling regions are commonly found in
these plots. For large ε, the power law scaling turns invalid when the size of the
attractor becomes small in comparison to the size of the hypersphere. This range
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A

B

Fig. 3.13: A 2D-projection of a reconstructed attractor. The circles represent hy-
perspheres with different radii ε around two different states A and B. State A have
neighbors on dynamically independent trajectories while state B only have neighbors
due to temporal correlation.

of ε is called the macroscopic regime. Similarly, the noise regime explains the spu-
rious results found for low values of ε. In the presence of noise, data points will be
smeared out in the reconstructed state space, and for small ε this results in large
errors. Even without the presence of noise, quantization errors and finite sampling
will introduce errors in the correlation sum for small enough ε. In between these
two regions, we find the true scaling region, and this is where we can calculate the
correlation dimension. The larger the noise level, the smaller the plateau in the
true scaling range will be. In the figure, it can be seen that d logC(ε)

d logε
saturates at a

value just above two in the true scaling region. This coincides with the true fractal
dimension of the Lorenz system, which is about 2.06.

The problem of automatically choosing a scaling region is partially resolved by
Takens’ estimator, see equation 3.51. The sums are over all pairs of points closer
than ε, so the equation is simply an average dimension for scales smaller than ε
(with higher weights for the more nearby states). Takens’ estimator offers better
results compared to equation 3.49 for sparse, high-dimensional and noisy data [62].
The biggest issue with Takens’ estimator is that the noise regime is included in the
estimation [107], why it is better suited for distinguishing signals than for estimating
their actual dimension.

T2(ε) =

∑
Θ (ε− ‖y(t) − y(u)‖)

∑
log
(

ε
‖y(t)−y(u)‖

)

Θ (ε− ‖y(t) − y(u)‖)
(3.51)

Thirdly, it requires a large amount of data to estimate the correlation dimension.
There are no exact rules to determine how much data is enough since the necessary
amount depends on the structure of the attractor. If the trajectories rarely visit
some area of the state space, a very large number of points will be necessary to
populate that region of the space. This applies to all kinds of fractal dimension
estimates, not only the correlation dimension. Nonetheless, some rules of thumb
have been suggested. If N is the number of relevant samples in the time series,
the estimated correlation dimension should not exceed 2logN [108]. If the obtained
estimate is larger than this limit, then the results are probably a reflection of noise
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Fig. 3.14: Correlation dimension for the Lorenz attractor calculated for various em-
bedding dimensions.

and insufficient data rather than of a low dimensional hypothetical attractor [108].
Another suggestion for the necessary amount of data required to populate a state
space is N = 102+0.4D2 [62].

There are many more approaches available to estimate the dimension of an attractor,
and most of them are described by Addison [106]. However, it is the correlation
dimension which is used in practice. This is mainly because it is relatively easy to
estimate, it provides a good measure of the complexity of the dynamics and it is
computationally efficient [107]. Throughout this thesis, the correlation dimension
will be used to estimate the fractal dimension of an attractor.

3.4.3 Lyapunov exponents

Maybe the most characteristic property of chaotic systems is their sensitive depen-
dence on initial conditions. The most severe implication of this is that small causes
do not necessarily have small effects. Lyapunov exponents quantify the average rate
of convergence or divergence of nearby trajectories in a global sense. Positive expo-
nents imply divergence, negative exponents imply convergence and zero exponent
indicates a stable fix point (infinite exponents is a sign of noise). Since Lyapunov
exponents are not used in this thesis, they will not be described further. Details can
be found in any book on nonlinear dynamics such as [99] or [62].

3.4.4 Entropy

Entropy has been both mentioned and used in previous sections already, but so far
without a proper introduction. There are many interpretations of entropy, a few of
which are; the amount of energy in a system that is unable to do work, the energy
dispersal at a specific temperature or the amount of information in a process [109].
Although there is a full family of entropies (the order-q Renyi entropies), only orders
1 (Shannon entropy) and 2 will be considered here. Accurate high-dimensional
entropy estimates require tremendous amounts of data due to the high-dimensional
probability distributions. One way to estimate the probability distributions is to
partition the space into equally sized boxes (similar to the box counting approach
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for dimension estimation), thus constructing high dimensional histograms. This
approach results in the Kolmogorov-Sinai entropy according to equation 3.52, where
p(k1, . . . , kN) is the probability that the system is in hypercube k1 at time δ, in cube
k2 at time 2δ and so on. ǫ is the content in each hypercube. The last equality in
equation 3.52 derives from assumptions of stationarity and after application of the
chain rule.

HKS = lim
δ→0

lim
ǫ→0

lim
N→∞

1

δN

∑

k1,...,kN

p(k1, . . . , kN)log2p(k1, . . . , kN)

= lim
δ→0

lim
ǫ→0

lim
N→∞

1

δN
HN

= lim
δ→0

lim
ǫ→0

lim
N→∞

HN+1 −HN (3.52)

Partitioning the state space into boxes introduces severe edge effects and poor scaling
[99]. Instead, estimates of KS entropy, more or less based on the correlation sum,
have been developed [110]. In these approaches, overlapping boxes (or spheres)
are used, and the partition elements are not uniformly distributed in space but
centered on each measured state. Two main courses of action have been chosen, one
developed by Eckmann and Ruelle [110] which is based on Renyi entropy of order 1
and another developed by Grassberger and Procaccia [111] based on Renyi entropy
of order 2. Let’s start with some preliminary equations:

Cd
i (ε) =

1

N + d+ 1

N−d+1∑

j=1

Θ(ε− ‖y(i) − y(j)‖) (3.53)

Cd(ε) =
1

N + d+ 1

N−d+1∑

j=1

Cd
i (ε) (3.54)

Φd(ε) =
1

N + d+ 1

N−d+1∑

j=1

lnCd
i (ε) (3.55)

Equation 3.53 is the probability that a state y(j) is close to the state y(i) in dimen-
sion d, and equation 3.54 is the average amount of neighbors to any state. Equation
3.55 is similar to equation 3.54, with the difference that Φd(ε) is the average of the
natural logarithm of Cd

i (ε).

Eckmann and Ruelle’s entropy estimate is defined in equation 3.56. The expression
is approximately 1/(N + d)

∑
ln(Cd

i (ε)/Cd+1
i (ε)), or in words, the average of the

natural logarithm of the probability that states that are close to each other in di-
mension d are also close in dimension d+1. From a 1D perspective, this corresponds
to the probability that patterns of length d continues to match when a new sample
is added to the pattern (new length = d+ 1).

HER = lim
N→∞

lim
d→∞

lim
ε→0

Φd(ε) − Φd+1(ε) (3.56)

Grassberger and Procaccia’s entropy estimate is defined in equation 3.57. This ex-
pression is similar to the approximate value of equation 3.56, so the two estimates
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are closely related. However, the limits make both estimates cumbersome to cal-
culate. In a real data set, the estimates can be reduced to statistic measures by
limiting the amount of data (N). Further, the finite resolution of recorded signals
and the presence of noise restrict both d and ε. In practice, the estimates should be
stable over a range of d and ε values, otherwise the analysis is not reliable [99].

HGP = lim
N→∞

lim
d→∞

lim
ε→0

−lnC
d+1(ε)

Cd(ε)
(3.57)

Approximate entropy and sample entropy
The entropy estimates in equations 3.56 and 3.57 (as well as the dimension estimates
in section 3.4.2 and the Lyapunov exponent estimates in section 3.4.3) require careful
statistical examination. For example, convergence of the correlation dimension does
not necessarily imply chaos, but may also arise from an insufficient amount of data.
Pincus [94] tried to somewhat relieve the constraints on the data when estimating
entropy. This resulted in a measure, the approximate entropy, which is unable to
certify chaos, but which is able to distinguish low-dimensional deterministic systems,
chaotic systems, stochastic systems and mixed systems [94]. This rather strong claim
is achieved by fixing the d and ε parameters in equation 3.56, resulting in a family
of system equations, HAE(d, ε), equation 3.58. In practice, the amount of data is
obviously limited, resulting in the family of statistics HAE(d, ε, N).

HAE(d, ε) = lim
N→∞

Φd(ε) − Φd+1(ε) (3.58)

Since the approximate entropy measure is biased, the slightly modified sample en-
tropy measure was introduced by Richman and Moorman [93], see equation 3.59.
The main differences are that sample entropy is based on equation 3.57 instead of
equation 3.56, that self-matches are excluded and that Cd(ε) and Cd+1(ε) are de-
fined to have the same length. The practical implications of these modifications are
that sample entropy is less dependent on the time series length and that it shows
better consistency over a broader range of possible ε, d and N values [93]. It should
be noted that if the correlation sum defined in equation 3.50 is used, self-matches
will automatically be excluded.

HSE(d, ε) = lim
N→∞

−lnC
d+1(ε)

Cd(ε)
(3.59)

Changes in approximate entropy and sample entropy generally agree with changes
in Eckmann and Ruelle’s entropy estimate as well as Grassberger and Procaccia’s
entropy estimate [112]. Approximate entropy and sample entropy do, however, have
four major advantages compared to the other entropy measures when used as a
statistical measure to distinguish different systems [112]:

1. They are nearly unaffected by noise of magnitude below ε. For ε-values smaller
than 0.1 times the standard deviation of the time series, one usually achieves
poor probability distribution estimates, while for ε-values above 0.25 times the
standard deviation, too much system information is lost. However, within this
range, a suitable ε-value operates as an effective filter for noise cancellation.
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2. They are robust to short bursts of both large and small artifacts since they
have little effect on the probability distributions.

3. They give meaningful information with a reasonable number of data points.
Sufficient estimates of the probability distributions require at least 10d sam-
ples and preferably 30d samples. This is similar to the data requirements for
calculating the correlation dimension, however, for distinguishing systems by
approximate entropy and sample entropy, d = 2 is a common choice.

4. They are finite for both stochastic and deterministic processes. This is in con-
trast to the Kolmogorov-Sinai entropy which gives infinite results for random
data. This difference is important since it allows approximate entropy and
sample entropy to distinguish stochastic processes from each other.

3.5 Neural networks

Understanding the underlying dynamics of a time series by exploring its geometrical
structure in a reconstructed state space is a possible route when such structures exist.
When no typical structures or models can be found, neither from the linear methods
in section 3.1 nor from the dynamical systems approach in section 3.4, it is possible
to use a neural network to model the signal at hand [92]. A neural network (or
some similar machine learning approach) can adaptively investigate a large space of
possible models to find a working model which relates the input data to the output
data. A drawback with neural networks is however that it is very difficult, if at all
possible, to find out what the models really represent.

Neural networks are typically used for classification or pattern recognition where the
task is to assign a number of inputs or features to one or more classes. This area of
application will be treated further in section 3.9. In the time series setting, a number
of old samples are presented to the network while the subsequent samples are used
as target data. The task of the network is then to adapt itself to the dynamics of
the system so that future data results as a function of previous data. An interesting
observation is that temporal data is presented spatially as a time-lagged vector, just
as in the previous sections. The network is thus trying to build a model of the
reconstructed attractor.

A number of ingredients are needed to specify a neural network [92]:

• The interconnection architecture.

• Activation functions that relate the input of a node to its output.

• A cost function that evaluates the progress of learning.

• A training algorithm that updates the interconnections, or weights, of the
network to minimize the cost function.

Figure 3.15 illustrates the most common network architecture which is based on three
layers, an input layer, a hidden layer and an output layer. Each layer consists of a
number of processing units, or nodes. The nodes in the input layer are passive (they
do not modify the data), while nodes in the hidden layer and in the output layer are
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Fig. 3.15: Architecture of a feed-forward neural network with one hidden layer (left).
A processing unit, or node, can be visualized as a flow diagram (right).

active (they modify the data according to the right-hand illustration in figure 3.15).
Each active node can be seen as a correlation, where the weights α are adjusted to
maximize the output when a certain pattern appears on the inputs. That is, the node
calculates a weighted linear superposition of d inputs, out =

∑d
u=1 αus(t+uτ). If the

inputs are lagged values of the time series and the output is the prediction for the
next value, each active node is equivalent to the AR(d) model in equation 3.6. This
also gives a hint on how to determine the weights. In the AR model, the coefficients
are chosen to minimize the squared error [83], and the same approach can be utilized
in the neural network setting. In defining the error E = (out − target)2, learning
is achieved by iteratively updating the weights in the direction that minimizes the
error, by following the negative local gradient. This way, the new weights can be
expressed as a function of the old weights according to equation 3.60, where η is the
learning rate (or the step size taken in the direction of the negative gradient).

αnew
u = αold

u − η
dE

dαold
u

= αold
u + 2η s(t + uτ)

︸ ︷︷ ︸

activation

(out− target)
︸ ︷︷ ︸

error

(3.60)

When putting together several nodes into a network, it is possible to model more
complicated functions. If each node represents a certain pattern in the input data,
then subsequent layers look for patterns among the patterns. This is a very flexible
structure since nonlinear interactions between the inputs are easily constructed [92].

Updating the weights in a multi-layer network is achieved by backpropagation, where
each node is updated recursively using the chain rule of derivation. Even though
more computations are necessary compared to the single node in the previous para-
graph, the principle remains the same. Move in the direction of the negative gradient
until you find the minimum of the cost function [113].

The sigmoid function in figure 3.15 is important for the network. It limits the output
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of the node by “squashing” the output from the weighted sum into a finite range. By
doing so, the computing power of the network increases considerably [113]. Without
the nonlinearity, an entire network with several hidden layers can be replaced with
a single-layer network, thus reducing the network’s modeling abilities to a simple
linear AR-model [92]. Actually, any nonlinear “squashing function” can be used, but
the sigmoid function is very convenient to use since its derivative can be calculated
in an efficient manner.

In this section, we have only considered feed-forward neural networks, or more pre-
cisely multi-layer perceptrons. The network structure could be extended to not only
send information forward, but to also include feedback paths. It is also possible to
change the layout of the processing unit. One such possibility is the radial basis
network. These matters are however out of the scope of this thesis.

3.6 Analysis of nonstationary signals

Stationarity requires that all parameters that are relevant to a system’s dynamics
are constant over time. Since the true system is unknown in most real applications,
stationarity statements are often based on data from the system instead of from
the system itself. Making stationarity statements based on data from the system
instead of from the system itself is cumbersome since many stationary systems ap-
pear nonstationary when studied over a finite time period. How long a sufficient
time duration of the measured signal is depends on the characteristics of the sys-
tem under observation. As a first requirement, the duration of the signal should be
much longer than the longest characteristic time scale relevant to the measurement
situation.

Many signal analysis techniques presume stationarity. However, nothing prevents
misuse of the algorithms by applying them to non-stationary data sets. Such abuse
of the methodology does, however, cause results without physical meaning. For
example, the Fourier transform has no time resolution and is thus unable to ana-
lyze nonstationary data. A solution to this problem is to use joint time-frequency
analysis methods. Another example is that estimates of the correlation dimension
suffer severely from nonstationary data sets. A simple drift increases the dimension
(since all fractal structures are destroyed) while other nonstationarities or insufficient
sampling rates yield spuriously low dimension estimates [99]. Tools to analyze both
nonlinear and nonstationary data are not very well developed, but the recurrence
plot in section 3.6.2 is one possibility.

Stationarity is a property which can never be positively established. However,
the hypothesis of stationarity can be rejected by showing that the signal is non-
stationary. Examples of tests include computations of the running variance or the
running mean value of the signal [99]. Other important tests employ joint time-
frequency representations to see if the frequency content of the signal changes over
time [114].
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3.6.1 Joint time-frequency representations

The Shannon representation, equation 3.61, of a signal is perhaps the most natural
signal representation. The Dirac function δ(t) cuts out each observation of the signal
s(t), resulting in the waveform of the signal itself. In the Shannon representation,
δ(t) is called an analyzing function, and when δ(t) is used to analyze the signal,
perfect time resolution is obtained (see figure 3.16).

s(t) =

∫ ∞

−∞
s(u)δ(u− t)du (3.61)

A dual representation is the Fourier representation, equation 3.62, which was intro-
duced in section 3.1. While the Shannon representation has perfect time localization
and infinite frequency support, the Fourier representation has exactly the opposite
qualities, i.e. perfect frequency localization and unlimited time support. The an-
alyzing function in the Fourier transform is the exponential function. The time-
frequency resolutions of the Shannon representation and the Fourier representation
are illustrated in a combined time-frequency plane in figure 3.16.

S(f) =

∫ ∞

−∞
s(u)e−i2πfudu (3.62)
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Fig. 3.16: Schematic illustration of the Shannon representation (perfect time local-
ization) and the Fourier representation (perfect frequency localization) of a signal in
the time-frequency plane.

In order to capture nonstationary frequency components in a signal, the instan-
taneous frequency φ(t) needs to be defined. This is usually done via the analytic
signal, xA(t). The continuous analytic signal is composed by the original signal and
its Hilbert transform according to equation 3.63 where sH(t) is the Hilbert transform
(equation 3.64).

sA(t) = s(t) + i · sH(t) (3.63)

sH(t) =
1

π

∫ ∞

−∞

s(τ)

τ − t
dτ (3.64)

The Hilbert transform can be interpreted as a convolution between the signal and
−1/πt, or as a rotation of the argument with π/2 for positive frequencies and −π/2
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for negative frequencies. Similarly, the analytic signal can be obtained by remov-
ing the negative frequencies and multiplying the positive frequencies by two. The
analytic signal possesses many interesting properties. For instance, the instanta-
neous envelope (equation 3.65), the instantaneous phase (equation 3.66) and the
instantaneous frequency (equation 3.67) can easily be computed [115].

sE(t) = |sA(t)| =
√

s2(t) + s2
H(t) (3.65)

φ(t) = arg (sA(t)) = tan−1

(
xH(t)

x(t)

)

(3.66)

f(t) =
d

dt
φ(t) (3.67)

Instantaneous frequency is a one-dimensional function of time, and as such it can
only be defined for one value at each time instant. This implies that signals that
contain more than one simultaneous frequency component cannot be analyzed prop-
erly using instantaneous frequency. Clearly, two dimensional signal representations
with two dimensional analyzing functions are necessary.

The short time Fourier transform (STFT)
The short time Fourier transform, or the compressed spectral array as it is sometimes
called, belongs to a group of atomic joint time-frequency representations (equation
3.68). The name comes from the two dimensional analyzing function g(t, f), which
is well-localized in both time and frequency, thus constituting an isolated island or
atom in the time-frequency plane. As this analyzing function moves over the time-
frequency plane, the signal’s time-frequency content is gradually analyzed within
the limits determined by the atom. The joint time-frequency transforms included
in this thesis can all be interpreted as correlations between the signal and the ana-
lyzing function. In principle, the analyzing function represents one frequency, and
the correlation procedure determines where in the signal this particular frequency
exists. Next, the analyzing function is adjusted to represent a new frequency and
the correlation procedure is repeated.

TFR(t, f : g) =

∫ ∞

−∞
s(u)g(t, f)du (3.68)

The STFT is defined as a windowed Fourier transform (equation 3.69). The an-
alyzing function g(t, f) consists of an exponential function (just as in the Fourier
transform) and a time localized window function g0(t), which is used to limit the
time support. In practice, the Fourier transform is applied to short (possibly over-
lapping) segments of the signal, and the resulting spectra are stacked next to each
other to obtain time dependency.

STFT (t, f : g) =

∫ ∞

−∞
s(u) g∗0(u− t)e−i2πfu

︸ ︷︷ ︸

g(t,f)

du (3.69)
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The STFT, along with all other time-frequency decompositions, suffer from some
uncertainty principle3. This basically means that it is not possible to know a signal’s
exact frequency content at a certain time instant. The frequency-resolution of the
STFT is proportional to the effective bandwidth of the analysis window g0(t). Con-
sequently, there is a trade-off between time and frequency resolutions: accurate time
resolution requires a short window g0(t) while accurate frequency resolution requires
a narrow-band filter, i.e. a wide window g0(t). If the time resolution is given by ∆tg
and the frequency resolution is given by ∆fg, the uncertainty principle states that
∆tg · ∆fg ≥ 1/(4π) [116]. The relation between time and frequency resolution is
represented graphically in figure 3.17. Clearly, the area or the time-frequency atom
is always the same whereas the height and width can be changed. Equality in the
uncertainty equation is only achieved if g0 is chosen as a Gaussian window function,
see equation 3.70. The variance σ controls the width of the window and thus the
shape of the time-frequency atom. This particular time-frequency representation is
called the Gabor transform.

ggabor(t) =
1

σ
√

2π
e−

t2

2σ2 (3.70)
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Fig. 3.17: The area of a time-frequency atom is always the same, however, it is possible
to vary its width and height. The wavelet transform adjusts the shape of the atom
depending on the frequencies that are currently under investigation.

Wavelets
It is not possible to change the area of the time-frequency atom, but nothing prevents
us from changing the width and height adaptively over the time-frequency plane,
see figure 3.18. One idea is to analyze low frequencies with long time windows while
analyzing high frequencies with short time windows. The Gabor transform uses a
Gaussian window g0(t). By changing σ in the Gaussian function adaptively with
frequency, a two dimensional analyzing function g0(t, f) is obtained. The width
of g0(t, f) is of short duration for high frequencies and of long duration for low
frequencies. This particular time-frequency representation is called the Stockwell
transform or the S-transform [117], and is defined in equation 3.71. The analyzing
windows for three different regions of the time-frequency plane are illustrated in

3There are more than one uncertainty principle. The one mentioned here is valid for atomic
time-frequency representations. Other uncertainty bounds apply for quadratic time-frequency
representations [39].
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figure 3.19.

ST (t, f) =

∫ ∞

−∞
s(u)

|f |√
2π
e−

(u−t)2f2

2 e−i2πfu

︸ ︷︷ ︸

g(t,f)

du (3.71)

The S-transform is very similar to the wavelet-transform, equation 3.72. The main
idea in wavelet analysis is that any signal can be decomposed into a series of dilata-
tions or compressions of a mother wavelet, denoted g0(t, a). Just as previous analyz-
ing functions, the mother wavelet is well-localized in time and frequency. However,
since the wavelet function may contain more than one frequency, the link to local
frequency is lost, and the term scale (a) is preferred instead of frequency. Each scale
corresponds to a pseudo-frequency, which is the best possible fit of a purely periodic
signal to the wavelet function, see figure 3.20. A number of standard wavelets are
available (see figure 3.20 for a few examples), and as long as signal analysis is the
main application, an appropriate choice is likely to be found in this library of known
wavelets. However, in certain detection applications, where a certain waveform pat-
tern is sought, custom made (matched) wavelets are useful. In this case, the mother
wavelet should resemble the sought waveform in the signal.

WT (t, a) =

∫ ∞

−∞
s(u)

1√
a
g0(

u− t

a
)

︸ ︷︷ ︸

g(t,a)

du (3.72)
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Fig. 3.18: Schematic illustration of the short time Fourier transform and the wavelet
transform and their typical time-frequency patterns.

The main difference between ”classic” wavelets and the S-transform is that the
S-transform uniquely combines frequency dependent resolution with absolutely ref-
erenced phase in each sample of the time-frequency plane. Absolutely referenced
phase means that the phase information is always referenced to time t = 0. This
is in contrast to a wavelet approach, where the phase of the wavelet transform is
relative to the center (in time) of the analyzing wavelet. Further, the S-transform is
sampled at the discrete Fourier transform frequencies, thus maintaining the notion
of frequency [117]. An example comparing STFT, WT and ST is given in figure
3.21.

74



3.6. ANALYSIS OF NONSTATIONARY SIGNALS

Fig. 3.19: The analyzing sinusoids e−i2πft at three different frequencies together with
their corresponding time-localized and frequency-dependent Gaussian windows g0(t, f)
are illustrated to the left. Their products provide the analyzing function g(t, f) at dif-
ferent time and frequency instants (middle plots). The area of the analyzing function
(right plot) defines the region in the time-frequency plane where information is gath-
ered about the signal.
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Fig. 3.20: Examples of standard wavelet functions (solid curves). Also included are
sinusoids defined by the pseudo-frequency corresponding to the scale of the wavelets
(dotted curves).

There are many other approaches available for joint time-frequency analysis. The
methods just described belong to the linear nonparametric group. The quadratic
nonparametric group, the parametric group etc., will not be treated in this thesis.

3.6.2 Nonlinear and nonstationary signal analysis

A joint time-frequency representation able to deal with both nonlinear and nonsta-
tionary data is the empirical mode decomposition [118]. Another approach is to
combine wavelet analysis with the bispectrum, thus adding time resolution to the
phase coupling information [119]. In this section, a third option will be described,
namely the recurrence plot.

Recurrence plots
Nonstationarities reveal themselves as a tendency that points closely located in space
are also close in time. Such observations can be analyzed by the recurrence plot,
which was introduced to visualize high-dimensional state space geometries [120].
Normally, if a high-dimensional data set is to be visualized, the data is projected
into two or three dimensions. Projecting the data into lower dimensional spaces do
however fold the attractor, something that destroys its structure. Recurrence plots
represent the recurrence of states of a system (i.e. how often a small region in state
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Fig. 3.21: Comparison of STFT, S-transform and wavelet transform based on the
same example as in figure 3.3.

space is visited). A recurrence is a simple relation which simply states that a point
in state space or a pattern in the time series repeats itself. Unlike other methods
such as Fourier or wavelets, recurrence calculations do not require a transformation
of the data [121]. Since no mathematical assumptions are made, recurrence plots
are applicable to rather short time series from both linear and nonlinear systems.

A recurrence plot is derived from a distance matrix, which is a symmetric N × N
matrix where a point (i, j) represents some distance between y(i) and y(j), ‖y(i)−
y(j)‖. Note that the distance matrix is invariant under isometries in state space
such as translations, reflections and rotations. Thresholding the distance matrix at
a certain cut-off value transforms it into a recurrence plot according to equation
3.73, where i, j = 1, . . . , N , ε is a cut-off distance, ‖ · ‖ is some norm and Θ(·) is the
Heaviside function. An example of a recurrence plot is shown in figure 3.22. States
that are close to each other in the reconstructed state space are represented by black
dots in the recurrence plot.

RP (i, j) = Θ (ε− ‖y(i) − y(j)‖) (3.73)

There are six parameters affecting the appearance of a recurrence plot; the embed-
ding dimension d, the time delay τ , the range (or length) of the time series under
investigation, the norm ‖ · ‖, the possibility to rescale the distance matrix and the
cut-off distance ε [122]. Since recurrence plots can be very difficult to interpret [82],
recurrence quantification analysis (RQA) has been introduced as a mean to quantify
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3.6. ANALYSIS OF NONSTATIONARY SIGNALS

Fig. 3.22: Similar patterns in the time series end up close to each other in the re-
constructed state space. This recurrence of neighbors is indicated by a black dot in
the recurrence plot. The lower triangle in the recurrence plot has been replaced by a
color coded distance matrix.

the plots. However, when the recurrence plot is summarized into a few scalar values,
all time information is lost (and so is the information about nonstationarities).

Measures used for RQA are often based on diagonal structures, vertical structures
and recurrence time statistics. Isolated recurrence points occur if states are rare, if
they do not persist for any time or if they fluctuate heavily. Diagonal lines occur
when a segment of the trajectory runs in parallel with another segment, i.e. when
the trajectory visits the same region of the state space at different times. Vertical
(horizontal) lines mark a time length in which a state does not change or changes
very slowly. The most common RQA parameters are [123–125]:

• Recurrence rate: The percentage of recurrence points (black dots) in the re-
currence matrix.

• Determinism: The percentage of the recurrence points that form diagonal
lines. Diagonal lines are associated with deterministic patterns in the dynam-
ics, hence determinism.

• Laver : The average length of the diagonal lines.

• Lmax : The length of the longest diagonal line. Lmax is inversely proportional
to the largest Lyapunov exponent which describes how fast trajectories diverge
in the reconstructed state space.
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• Entropy : The Shannon entropy of the distribution of the diagonal line lengths.
Measures the complexity of the signal.

• Laminarity : The percentage of recurrence points which form vertical lines.

• Trapping time: The average length of the vertical lines.

• Vmax : The length of the longest vertical line.

• T1 : Recurrence time of the first kind, see below.

• T2 : Recurrence time of the second kind, see below.

Nearest neighbors in the reconstructed state space can be divided into true recur-
rence points and sojourn points [124], see figure 3.23, where recurrence points of the
second kind (T2) are the black states while the recurrence points of the first kind
(T1) are all the states (black + white states). More formally, an arbitrary state,
y(ref), is chosen somewhere on the trajectory whereupon all neighboring states
within a hypersphere of radius ε are selected, see equation 3.74.

Bε (y(ref)) = {y(t) : ‖y(t) − y(ref)‖ ≤ ε}∀t (3.74)

T1 is defined as all the points within the hypersphere (i.e. the entire set Bε). Since
the trajectory stays within the neighborhood for a while (thus generating a whole
sequence of points), T1 doesn’t really reflect the recurrence of states. Therefore, T2
is defined as the set of first states entering the neighborhood in each sequence (these
points are commonly called true recurrence points). T2 is hence the set of points
constituted by Bε(y(ref)) excluding the sojourn points, see figure 3.23. Both T1
and T2 are finally defined as averages over all possible reference states.

y ref( )  

ε

Fig. 3.23: Recurrence points of the second kind (solid circles) and the sojourn points
(open circles) in Bε (y(ref)). Recurrence points of the first kind comprise all circles in
the set.

3.7 Noise reduction

Traditional linear filters are based on the assumption that the signal and the noise
have distinguished spectra. In cases where the signal is broad-band and hence
unseparable from the noise, other techniques might be more successful.
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3.7.1 Ensemble averaging

Welch’s spectral estimation method, based on averaging several spectra, was in-
troduced in section 3.1. The same principle is applicable to event-related signals
in the time domain. If interesting signal patterns are triggered by a measurable
event, then the signal can be divided into segments with appropriate length based
on information from the the trigger. By simply averaging the derived segments, the
maximum likelihood estimator for the pattern is obtained [39]. This assumes that
the noise is additive, independent and Gaussian. It also assumes that the shape,
duration and alignment of the signal pattern are constant. In the case when the
noise is Laplacian, the median rather than the mean is optimal [39].

Assuming that each realization of the pattern xi(t) is additively composed of the
true pattern s(t) and some noise vi(t), then xi(t) = s(t − θi) + vi(t). By including
a latency shift in the model (the random variable θi), some uncertainty is allowed
regarding the timing between the trigger and the onset of the signal pattern. The
estimated signal ŝ(t), equation 3.75, can also be calculated recursively according
to equation 3.76. The amount of new information that is recursively incorporated
in the ensemble average can be controlled by replacing 1/M in equation 3.76 by a
constant. Lower values of this constant implies that less new information is used
while higher values only use the most recent segments in the estimation [98].

ŝ(t) =
1

M

M∑

i=1

xi(t) (3.75)

ŝM(t) = t̂M−1(t)
1

M
(xi(t) − ŝM−1(t)) (3.76)

The latency shift θi can be determined with Woody’s method [126]. It operates
iteratively and start out by setting θi = 0. This means that an initial estimate of
ŝ(t) is obtained by simply calculating the average across the ensemble of available
segments. In the second step, each segment (or realization) of the signal pattern is
pushed into place by employing a matched filter. If the noise is white and Gaussian,
the best matched filter (in a maximum likelihood sense) is the time reversed ŝ(t)
estimate. Basically this means that the current segment xi(t) is cross-correlated with
ŝ(t), and the time lag giving the highest correlation determines θi, see equation 3.77.
Once every segment has been pushed into place, a new estimate of the signal pattern
ŝ(t) is determined. This process of translating and averaging is repeated until some
stopping criteria is fulfilled. An example of ensemble averaging is presented in figure
4.5 on page 100.

θ̂i = argmax
θi

(
∑

θi

xi(t)ŝ(t− θi)

)

(3.77)

In cases with large latency shifts, it might be advantageous to use a predefined initial
ŝ(t) such as a triangular waveform [39]. A data driven alternative would be to use
the most significant eigenvector of the ensemble matrix.
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3.7.2 Wavelet denoising

Wavelet denoising is a powerful approach to noise reduction, especially when the
amplitudes of the signal components are large compared to the noise amplitudes.
The idea is to decompose the signal into a number of frequency bands. The resulting
wavelet coefficients are then thresholded and transformed back into the time domain
to obtain the denoised signal. Compared to linear filtering, it is more or less possible
to preserve sudden changes in the signal while removing high frequency noise.

The definition of the continuous wavelet in equation 3.72 is highly redundant. By
using dyadic sampling of the time (t = k2−j) and scale (a = 2−j) parameters, a more
efficient signal representation is obtained. Instead of the two-dimensional time-scale
representation, the full decomposed signal can then be fitted in a vector no longer
than the signal itself. The discrete wavelet transform, with discretized time (k) and
scaling (j) parameters, is defined in equation 3.78. Wjk is the kth wavelet coefficient
at scale j, where j = 1, . . . , J , k = 1, . . . , N/2J−j+1 and J is the number of scales
that the signal is decomposed into.

Wjk =

∫ ∞

−∞
s(t)gjk(t)dt (3.78)

Selecting a proper threshold is a crucial step in the denoising process. The so-called
hard threshold function is defined in equation 3.79 and the soft threshold function
is defined in equation 3.80. The hard threshold might create discontinuities in the
results, something which is avoided by soft thresholding.

W̌jk =

{
Wjk |Wjk| ≥ η
0 |Wjk| < η

(3.79)

W̌jk =

{
sign(Wjk)(|Wjk| − η) |Wjk| ≥ η
0 |Wjk| < η

(3.80)

Another threshold was developed by Donoho and Johnstone based on the the as-
sumption of white noise [127], see equation 3.81. The factor

√
2 lnN is the expected

maximum value of white noise with unit standard deviation and length N , and σv is
the standard deviation of the measured noise. Various estimates of σv are available.
If a global threshold is to be used for all scales, then σv is estimated as 1.483 times
the median absolute value of the finest detail coefficients (this scale is assumed to
contain as little as possible of the signal). The threshold can also be determined
separately for each scale by using scale dependent estimates of σv, see figure 3.24.
These thresholds correspond to an assumption of non-white noise and are derived
by minimizing Stein’s unbiased risk estimator. For nonlinear and possibly chaotic
data, scale dependent thresholds should be used since uniform thresholding will
undoubtedly remove important signal components [128].

η = σv

√
2 lnN (3.81)
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Fig. 3.24: Example of wavelet denoising with separately determined thresholds for
each scale. The signal is decomposed into five scales using a Daubechies 4 wavelet,
and Stein’s unbiased risk estimator is used to calculate the standard deviation of the
noise in each scale. The threshold is illustrated with lines in the subplots.

Wavelet thresholding is simple and efficient but takes no advantage of the depen-
dence between wavelet scales. Signals and noise behave differently in the wavelet
domain, where sharp signal components evolve across scales while noise rapidly de-
cays4. Multiplying adjacent scales will thus amplify edge structures and dilute noise.
The multiscale products of Wjk, P

j2k
j1k , are defined as the product between adjacent

scales j1 to j2. Thresholding is now based on the multiscale products instead of
the wavelet coefficients, see equation 3.82. Note that for detection of transient sig-
nal components in noisy signals, the multiscale products themselves might be very
useful.

W̌jk =

{
Wjk |P j2k

j1k | ≥ η

0 |P j2k
j1k | < η

(3.82)

4This behavior can be formalized with the concept of Lipschitz regularity [129].
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3.7.3 State space based denoising

If the data lies on a manifold, its geometrical structure can be used for denoising.
This can either be done to smooth the manifold globally, or better, locally.

Global state space denoising
Singular spectrum analysis (SSA) is a method designed to extract information from
short and noisy time series and thus provide insight into the dynamics of the under-
lying system that generated the series [130]. The technique is much related to state
space reconstruction by the method of delays. In the method of delays, the recon-
structed state vector is defined as y(t) = [s(t), s(t+ τ), . . . , s(t+ (d− 1)τ)], while in
SSA, an initial state vector is defined as y(t) = [s(t), s(t+1), . . . , s(t+m−1)]. The
SSA vector usually contains more samples compared to the method of delays vector.
In the method of delays, the state vector spans a time window of length (d − 1)τ ,
and a window of similar length should be used in SSA. Since τ = 1, a rather large
m is needed to span a similar window.

From the initial state vectors, an embedding matrix with τ = 1 is created, see equa-
tion 3.83 (the normalization ensures that ST S produces a covariance matrix). In
the method of delays, the embedding matrix can be seen as a lag matrix multi-
plied by the identity matrix. Instead of multiplying with an identity matrix, any
transformation can be applied. One idea is to multiply the lag matrix with a dis-
crete Fourier transform, a low-pass filter and an inverse Fourier transform to get a
smoother embedding matrix [92]. In SSA a similar but data dependent approach is
used. By applying singular value decomposition to S, the attractor is rotated in the
embedding space so as to expose its largest face and reduce folding. In this way, the
temporal structures that account for the maximum amount of autocovariance in the
time series can be identified while additive uncorrelated noise can be suppressed.

S =
1√
N








s(1) s(2) . . . s(1 + (m− 1))
s(2) s(3) . . . s(2 + (m− 1))

...
...

. . .
...

s(N − (m− 1)) s(N − (m− 1) + 1) . . . s(N)








(3.83)

In singular value decomposition, S is decomposed into S = Q1DQT
2 , where the

columns of Q2 contain the eigenvectors of ST S and D is a diagonal matrix contain-
ing the square roots of the corresponding eigenvalues. If the signal is contaminated
by additive uncorrelated noise, the largest eigenvalues will represent components
containing signal plus noise while the smaller eigenvalues will represent components
containing only noise. The idea is thus to first decompose the signal and then recon-
struct it without the noise terms. This signal from noise separation is obtained by
plotting the eigenvalue spectrum (called a singular spectrum), illustrated in figure
3.25. In such plots, an initial plateau with high eigenvalues contains most of the
signal while the noise is characterized by much lower values. Hopefully these two
plateaus are separated by a steep slope.

To reconstruct the signal, the lag matrix is projected onto the eigenvectors (or
principal components), P = QT

2 ST . Noise suppression is achieved by only using
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Fig. 3.25: Singular spectra for the x-component of the Lorenz equations. In the
right-hand figure, white Gaussian noise corresponding to an SNR of 10 dB has been
added.

the columns in Q2 corresponding to largest eigenvalues. The final reconstruction is
achieved by summing up the reconstructed components in P (see figure 3.26 for an
example). It has been argued that SSA provides better smoothing abilities compared
to Fourier methods since SSA is data driven. Looking at the basis functions in figure
3.26, it becomes clear that the eigenvectors are very similar to Fourier modes, so
perhaps SSA is somewhat overrated. After all, SSA is nothing but a linear root
mean square fitting method, and Fourier analysis is optimal in the root mean square
sense [131].

SSA has been suggested as an alternative embedding procedure to the method of
delays. The steep slope in the singular spectrum indicates the embedding dimen-
sion, and the embedding matrix is constructed by using the corresponding number
of reconstructed principal components as columns in the matrix. Quantitative in-
terpretation of SSA results in terms of attractor dimensions has been heavily dis-
puted [132]. One explanation is that the manifolds which contain attractors are not
usually linear subspaces. Nonetheless, it has also been stated that these disputes
originate from careless choices of m, and that the SSA approach outperforms the
method of delays for noisy data [133]. Since SSA basically derives from the multiple
signal classification (MUSIC) algorithm for spectral estimation, it is obvious that the
reconstructed components are characterized by sharp spectral peaks. Consequently,
embedding with SSA typically results in attractors with fixed points or limit cycles.
An example comparing time delay embedding and SSA embedding in the presence
of noise is shown in figure 3.27.

SSA has also been suggested as a complexity measure. A trajectory with higher
dimension causes a spreading of the singular spectrum. To quantify this spreading,
the fractional spectral radius was developed [134], see equation 3.84, where λi is the
i:th eigenvalue.

FSR(j) =

∑j
i=1 λ

2
i

∑m
i=1 λ

2
i

(3.84)

Local state space denoising
SSA analyzes the embedding matrix in a global sense, but since the manifold where
the data lives is likely to be nonlinear, the linear principal components are not able
to make the most of the structure in the data. However, since a manifold can be
approximated locally by hyperplanes, other denoising approaches are conceivable.
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Fig. 3.26: The x-component of the Lorenz equations are illustrated along with the
same time series with 10 dB of additive white Gaussian noise. Three eigenvectors
corresponding to the three largest eigenvectors are shown in the lower left-hand plot.
The reconstructed time series was obtained by projecting the data onto the three
eigenvectors and summing up the result.

An extremely simple nonlinear noise-reduction method based on local averaging in
state space has been introduced by Schreiber [135]. The idea is to move each state
vector y(ref) to the center of a local neighborhood in state space. The neighborhood
can be defined as Bε (y(ref)) = {y(t) : ‖y(t)−y(ref)‖ ≤ ε}∀t, so the current state
vector y(ref) is replaced by the mean value of Bε (y(ref)) according to equation
3.85. The size of the neighborhood is determined by the threshold ε, and simulations
shows that ε should be set to 2–3 times the noise amplitude [99]. Each of the state
vectors is relocated using the original embedding matrix. Once all states have been
moved, the whole procedure can be applied repeatedly. Convergence is typically
achieved after 2–6 iterations [135].

ynew(ref) =
1

|Bε (y(ref)) |
∑

y(t)∈Bε(y(ref))

y(t) (3.85)

A slightly more sophisticated technique is to apply principal component analysis
to the neighborhood of states. Since the manifold can be approximated locally
with a hyperplane, the idea is that the main principal components lie along the
manifolds surface while the noise components are distributed in directions away
from the manifold. By projecting the noisy states onto the space spanned by the
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Method of delays SSA

Method of delays (noise) SSA (noise)

Fig. 3.27: Attractors reconstructed from the x-component in the Lorenz equations.
The first column is reconstructed using the method of delays and the second column
with SSA. The noisy embedding illustrates the effect of adding white Gaussian noise
(SNR=10dB).

main components, the noise is reduced. Examples of the two denoising methods
are illustrated in figure 3.28. It should, however, be noted that these methods only
perform well when there is a distinct structure in the reconstructed attractor.

Without noise Local averaging Local PCA

Fig. 3.28: Results from noise reduction using local averages and local principal compo-
nent analysis (PCA). The Lorenz attractors were reconstructed from the x-component
in the Lorenz equations with 10 dB white Gaussian noise added (gray).

3.8 Prediction

There are different sources of predictability in a time series. If the signal contains
linear correlations in time, linear models such as AR (equation 3.6), MA (equation
3.7) or ARMA (equation 3.5) are suitable. As noted before, at first sight the classic
AR model and the delay embedding might look similar since a prediction function
is sought based on time-lagged vectors in both cases. However, a global AR model
is designed to describe the data with a single hyperplane. If the data lies on a
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nonlinear manifold, the delay embedding can be used to describe, understand and
exploit the structure in a better way.

The linear AR model can be expanded to allow nonlinear dependencies between
previous outputs. Actually, a very general framework for predicting time series is
given in Ljung [83]:

ŝ(t|θ) =

N∑

k=1

αkgk(φ)

θ = [α1, α2, . . . , αn]T (3.86)

gk(φ) = κ (βk(φ − γk))

φ = [s(t− k), . . . , s(t− 1)]

All the gk are formed from dilated and translated versions of a mother basis function
κ. θ is a vector of weights and φ is a vector of known signal samples. α are the
coordinates or weights, β are the scale or dilation parameters and γ are the location
or translation parameters. A few examples of how this model framework can be
used are [83]:

• Autoregressive model : set most of the parameters to unity.

• Sigmoid Neural Network : κ is a ridge construction such as the sigmoid func-
tion.

• Radial basis networks : κ is a radial construction such as the Gaussian bell.

If the underlying system is high-dimensional, has stochastic inputs or is non-stationary,
neural networks are suitable for predicting nonlinear data. However, the hope that
the network might learn the underlying structure in the signal comes at a cost. Neu-
ral networks are hard to interpret, and it is sometimes difficult to anticipate their
behavior.

Returning to the reconstructed state space setting, it can be seen that φ in equation
3.86 is very similar to a reconstructed state vector. By inserting a delay parameter
τ , or setting τ = 1, φ becomes identical to y(t) in equation 3.35. One way to
look at the model in equation 3.86 is thus as a global function describing the whole
trajectory in a reconstructed state space. Usually, all parameters but the α:s are
design parameters that either vary in a predetermined way or are fixed. Inserted
into a cost function, equation 3.86 leads to linear equations when estimating the α:s,
thus simplifying their determination [99].

That being said about global models, we will now focus on local methods to exploit
the geometrical structure in the reconstructed state space. Local models can give
excellent short-term prediction results and they are conceptually simple, but due
to the dependence of nearest neighbor calculations they may be computationally
demanding.

Similar trajectories in state space share the same waveform characteristics in time
domain, and a way of predicting the future is thus to mimic the evolution of neigh-
boring trajectories, see figure 3.29. If the data are sampled with high frequency,
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many of the discovered nearest neighbors are likely to be neighbors due to temporal
correlations. A considerable improvement may thus be obtained by using nearest
trajectories instead of nearest neighbors, see figure 3.29.

Fig. 3.29: Three trajectory segments and a (forward) predicted trajectory in a two-
dimensional state space (a). The average change between the nearest neighboring
trajectory points (black stars) and their successors (white circles) are used to predict
the next point (white square). In (b), it can be seen that many of the nearest neighbors
to y(t), stars, are actually false due to temporal correlation. Using a nearest trajectory
algorithm instead of a nearest neighbor algorithm may improve the prediction results.

There are two approaches to predict p steps ahead, either using iterated prediction
or direct prediction. If the prediction is iterated, the algorithm predicts one step
ahead p times (the predicted values will then be used together with the other states
in the next iteration). In direct prediction, the evolutions of the nearest neighbors
are modeled and the resulting function maps p steps into the future. It is empirically
shown that iterated prediction is better on short term forecasts for a variety of non-
linear models. However, iterated predictions do not take the accumulated errors in
the input vector into account, and these errors grow exponentially [136]. In averaged
prediction, the average of the neighbors’ successors (white circles) are chosen as the
predicted value while in integrated prediction the next point is estimated as the
current point plus the average change amongst the neighbors. If the trajectory that
is to be predicted is an outlier, the mean of the nearest neighbors will always be
misleading.

3.9 Classification

The design of a classification system is summarized in figure 3.30. The sensor
and sensor data were described in chapter 2 and the feature generation has been
described throughout this chapter in sections 3.1–3.6. The choice of features and
the amount of features to use will be described in section 3.10. The selected features
span a feature space, where each class is (preferably) clearly separated. The classifier
design is about choosing and adapting a classifier able to draw boundaries between
the classes. These boundaries are later used to assign unseen data to the most
likely class. This could be done, for example, based on prior knowledge about the
distribution of the various classes or on machine learning where a discriminative
pattern is learned from the data. Different classifiers will be summarized in this
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section. Finally, when the classifier has been designed, system evaluation is the task
to assess the performance of the system. This step is described in section 3.11.

Fig. 3.30: The basic steps involved in the design of a classification system. Figure
redrawn from Theodoridis and Koutroumbas [137].

Maximum likelihood classification
Maximum likelihood classification uses the probability density function for each
class, and unseen data is simply assigned to the most likely class. A problem with
the maximum likelihood classifier is that it can not handle multidimensional feature
sets without estimating multidimensional probability density functions, and this
requires a huge amount of data. An example of the probability density functions
that a maximum likelihood classifier operates upon is illustrated in the right-hand
side of figure 3.31.

Linear discriminant analysis
Linear discriminant analysis (LDA) is a transform-based method which attempts
to minimize the ratio of within-class variance to the between-class variance. This
results in a linear projection of the data onto the line that gives the maximum
separation between the classes. Since the transformation reduces the feature space to
one dimension, maximum likelihood classification can be used for the final decision.

Fig. 3.31: Example with two features and two classes. The black line in the left-hand
figure indicates the optimal projection vector obtained with LDA. The distribution
of points after being projected onto the line is illustrated in the right-hand figure.

k Nearest Neighbor classification
The k Nearest Neighbor (kNN) classification procedure is both simple and intuitive.
Basically, unseen data is classified based on the behavior of its neighbors in the fea-
ture space. A distance measure is defined and the distance from the unseen observa-
tion to all other observations is calculated. The k nearest neighbors are determined,
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and the unseen observation is assigned to the class that most of its neighbors belong
to. A problem with kNN is that the computational complexity associated with near-
est neighbor searching is rather high, especially for high-dimensional feature spaces.
An example of kNN classification is illustrated in figure 3.32.

Fig. 3.32: Example with two features and two classes (boxes and circles). The un-
classified observation (×) is assigned to the box-class using kNN with k = 4 since a
majority of the four neighbors are boxes.

Neural networks
Neural networks were introduced for system modeling in section 3.5 and for predic-
tion in section 3.8. The most typical environment for neural networks is however in
the pattern recognition domain. A collection of features are presented to the net-
work, and the task is to adapt the weights so that the input features are nonlinearly
mapped to one or more target classes.

3.10 Feature selection

Too many features often result in classifiers with low generality, and there are many
potential benefits in reducing the number of features; facilitating data visualiza-
tion, reducing the measurement and storage requirements, reducing training and
utilization times and defying the curse of dimensionality [138].

3.10.1 Feature ranking

Scalar feature selection means that each feature is treated individually. A scoring
function is defined, and its outcome indicates the predictive power of the feature.
This way, all features can be ranked in decreasing order and the best ones are
selected for the classification task. The scoring function could, for example, be the
distance from the feature to the center of the distribution of the class it is supposed
to belong to. Selecting the individually most relevant features is usually suboptimal
for building a predictor, particularly if the selected features are correlated and thus
contain redundant information [137].
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3.10.2 Feature subset selection

A problem with scalar feature selection is that is does not account for combinations
of features that together have great predictive power. An optimal selection requires
an exhaustive search over all features, but this is practically infeasible. Instead
suboptimal search algorithms are employed, many of which uses greedy hill climb-
ing (hill climbing is a search algorithm where the current path is extended with a
successor node which is closer to the solution than the end of the current path).
A possible subset of features is then evaluated, and other features are successively
added or removed from this set to see if an improvement can be achieved [138].
A simple way to do this is to start with one feature (the one with highest ranking
according to scalar feature selection), say f1. Expand the set to contain two features
by forming all possible pairs, say {f1, f2}, {f1, f3}, {f1, f4}. The pair that maxi-
mizes some class separability criterion is selected as the new feature subset. More
features are then progressively added into larger and larger subsets until the desired
number of features is reached. This method is often used when the size of the final
subset is supposed to be small compared to the total amount of features. If the final
subset is supposed to be large, then all features could be included in a preliminary
subset which is progressively reduced. These methods are called sequential forward
selection and sequential backward selection, respectively. A common drawback for
both of these is that once a feature is included there is no way of getting rid of it
(and vice versa in backward selection). Pudil’s sequential floating forward selection
is a workaround to this problem, allowing features to be both included and excluded
several times [139]. A flow chart describing the algorithm is presented in figure 3.33.

3.11 System evaluation

Evaluation and algorithm design can be done either on simulated data or on real
data. Simulated data provides a controlled environment where everything is known
while real data needs some kind of expert method or opinion to use as a reference.

Using simulated data, different algorithms can be evaluated in a quantitative and
reproducible manner. Since the true signal is known, it is possible to add noise and
evaluate the robustness of the algorithm or classifier. Depending on the data and the
output of the developed algorithm, different performance measures are of interest.
For a change detector, mean time to detection, mean time between false alarms
and average run length are useful parameters [98]. In the corresponding off-line
application of signal segmentation, detection accuracy might be more revealing. For
noise reduction algorithms, the mean square error between the noise-free signal and
the denoised signal is a common criterion for minimization and the same criterion
is useful for evaluating prediction algorithms. Obviously, the criteria for algorithm
evaluation is highly dependent on the application at hand. The remainder of this
section will deal with evaluating classification systems, especially for the case where
representative data is hard to simulate.
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Fig. 3.33: Flow chart of Pudil’s sequential floating forward selection method, where k
is the current number of features in the subset. Figure based on a drawing by Pudil
et al. [139].

3.11.1 Estimating classifier accuracy

In supervised learning, overfitting is likely to occur in cases where learning was
performed for too long, where training examples are rare and/or where too many
feature vectors are used. This basically means that many different solutions are
consistent with the training examples, but disagree on unseen data. Hence, when
presenting new examples to the developed classifier, the predictions will not be
reliable. In order to avoid overfitting, it is necessary to use cross-validation to verify
the results. There are three basic schemes for estimating the classification error
probability [137]:

Resubstitution method : The same data set is used for training as well as for testing.
Obviously this leads to a very optimistic estimate of the error probability. In order
to get an accurate estimate, the number of test cases as well as the ratio between
the number of test cases and the number of features should be large.

Holdout method : The data set is split into a training set and a test set. This
approach requires a lot of data since only a subset of data is used in each step.

Leave-one-out method : All data but one case are used as training data, and data
from the excluded case are used for validation. This procedure, in which a different
case is excluded each time, is iterated for all cases. This means that basically all data
are used for training and, at the same time, independence is maintained between the
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training set and the test set. The major drawback is the increased computational
complexity.

Evaluating binary classifiers
To measure the performance of a binary classifier, the two concepts sensitivity and
specificity are often used. If the system tries to classify persons to see if they have
a certain disease, there are four possible outcomes. Persons with the disease can be
classified to have the disease (true positives) or they can be classified not to have
the disease (false positives). Persons who do not have the disease can be classified
to either have the disease (false negative) or not (true negative). Thus, the number
of true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN) covers the whole set. Sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) are defined in equations 3.87–3.90. In words,
these equations state that if the patient’s disease status is known, then sensitivity
means that “I know my patient has the disease. What is the chance that the test will
show that my patient has it?”. Specificity means that “I know my patient doesn’t
have the disease. What is the chance that the test will show that my patient doesn’t
have it?”. If, on the other hand, the test result is known but the patient’s disease
status is not, then PPV means that “I just got a positive test result back on my
patient. What is the chance that my patient actually has the disease?”. Similarly,
NPV means that “I just got a negative test result back on my patient. What is the
chance that my patient actually doesn’t have the disease?”.

Sensitivity =
TP

TP + FN
(3.87)

Specificity =
TN

FP + TN
(3.88)

PPV =
TP

TP + FP
(3.89)

NPV =
TN

TN + FN
(3.90)

The outcome from a binary classifier in terms of TP, TN, FP and FN depends on the
threshold which is used to separate the two probability distributions. A graphical
representation illustrating how different thresholds affect the sensitivity and the
specificity of the classifier is the receiver operating characteristics (ROC) curve, see
figure 3.34. A successful classifier will result in an ROC curve tending towards the
upper-left corner, while pure guessing results in a straight line at a 45◦ diagonal.
The area under the ROC curve (AUC) is often used as a summary statistic since it
relates to the Mann-Whitney U-test.
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Fig. 3.34: Illustration of a receiver operating characteristic (ROC) curve. By altering
the threshold, the amount of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) also change. The subsequent changes on sensitivity
and specificity are graphically illustrated in the ROC curve.





4
Heart Sound Localization and

Segmentation

I haven’t lost it, I just can’t find it. There’s a difference.
The Mummy Returns (2001)

Heart sound localization refers to the task of finding the normal heart sounds, but
without distinguishing the two from each other. The main applications of localiza-
tion are as a pre-processing step applied before heart sound cancellation (chapter
6) or before heart sound segmentation. Heart sound segmentation partitions the
PCG signal into cardiac cycles and further into S1, systole, S2 and diastole. Both
heart sound localization and segmentation can be divided into direct and indirect
approaches. Indirect methods (section 4.2) exploit multimodal sensor information
such as ECG and/or carotid pulse tracings [140], while direct methods (section 4.3)
are operating solely on the PCG signal.

The most robust automatic segmentation methods are based on ECG-gating and
are thus indirect. ECG-gating means that temporal information from the ECG is
used to segment the PCG signal into heart cycles [140]. This is very convenient
since the QRS complexes in the ECG are fairly easy to detect automatically. Since
the heart sounds occur in certain time intervals after the QRS complex, the detec-
tion procedure is immensely facilitated. For example, finding S1 in a narrow search
window where we know that it exists (but we do not know its exact location) is
much easier than finding S1 in a larger search window where there might be mul-
tiple occurrences of S1 as well as S2 or other signal components. ECG based heart
sound segmentation, which was used in papers II and IV, is addressed in section 4.2.
In some cases, when it is important to find the boundaries of a heart sound accu-
rately, manual segmentation by a phonocardiography expert is a viable alternative.
Both multisensor data and denoising techniques may then be used to facilitate the
segmentation decision. This approach was used in paper III.

A related topic to ECG-gated heart sound segmentation is accurate localization of
S1. The QRS complex is here regarded as a trigger for S1, making it possible to use
event related ensemble averaging for noise reduction. Very accurate localization of
S1 is necessary in certain clinical situations where the timing of events is important.
Measuring the fluctuations in cardiac time intervals is one such application which
will be discussed in chapter 7. The ensemble averaging method for accurate S1
localization, introduced in paper I, will be addressed in section 4.2.1.
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Table 4.1: Time and frequency properties for the heart sounds.

Sound Location (ms) Duration (ms) Freq. range (Hz)

S1 10–50 after R-peak in ECG 100–160 10–140
S2 280–360 after R-peak in ECG 80–140 10–400
S3 440–460 after R-peak in ECG or

120-180 after closure of semilunar
valves

40–80 15-60

S4 40–120 after beginning of P-wave
in ECG

30–60 15–45

Direct heart sound segmentation without the aid of an ECG is more complicated.
The most important step in direct heart sound localization is to find a transform
that takes the signal into a domain where S1 and S2 are emphasized. Several choices
of this transformation have been presented over the years. Shannon energy [141],
homomorphic filtering [142], frequency analysis [143], entropy analysis [144] and re-
currence time statistics (paper V) are a few examples. After the transformation, a
threshold is applied to locate the heart sounds. In section 4.3, several of these trans-
forms will be presented and compared, using simulated data as well as experimental
recordings. This comparison is unique for the thesis and has not been published
elsewhere. The basic concepts of direct heart sound segmentation are introduced in
section 4.4.

The focus of this chapter is on finding either S1 or S2. However, detection of S3 is
briefly discussed in section 4.5.

4.1 Properties of heart sounds

In healthy subjects, the frequency spectrum of S1 contains a peak in the low fre-
quency range (10− 50 Hz) and in the medium frequency range (50− 140 Hz) [145].
S2 contains peaks in low- (10− 80 Hz), medium- (80− 220 Hz) and high-frequency
ranges (220−400 Hz) [146]. S2 is composed of two components, one originating from
aortic valve closure and one originating from pulmonary valve closure. Normally,
the aortic component (A2) is of higher frequency than the pulmonary component
(P2) [147]. The peaks probably arise as a result of the elastic properties of the
heart muscle and the dynamic events that cause the various components of S1 and
S2 [145,146]. S3 and S4 are believed to originate from vibrations in the left ventricle
and surrounding structures powered by the acceleration and deceleration of blood
flow. 75% of the total energy in S3 is contained below 60 Hz [148] while S4 mainly
contain frequencies below 45 Hz [149]. The time and frequency properties of heart
sounds are summarized in table 4.1 and examples of two phonocardiographic (PCG)
signals and their frequency spectra are illustrated in figure 4.1.

There is a small delay between the aortic component and the pulmonary component
causing a splitting of S2 (since right ventricular ejection terminates after left ven-
tricular ejection). Normally, the splitting increases with inspiration due to increased
blood return to the right heart, increased vascular capacitance of the pulmonary bed
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Fig. 4.1: Heart sounds and their respective frequency spectra from a 13 year old girl
(top row) and a 36 year old male (bottom row). Data obtained from data set VI.

and decreased blood return to the left heart [26]. In certain heart diseases, this split-
ting can become wide, fixed or reversed (see further chapter 2). FFT analysis does
not take timing into consideration, so it cannot reveal which of the two valves closes
first. Meanwhile, it is hard to notice any difference between the two components in
the time domain. A tool able to investigate how the signal’s frequency content varies
over time is thus called for. An example showing the four heart sounds is presented
in figure 4.2. Note that the two components of S2 are merged, but that the higher
frequency aortic component precedes the lower frequency pulmonary component.

4.2 Indirect heart sound localization and segmen-

tation

S1 marks the onset of systole while S2 occurs at the start of diastole. The timing of
the sounds is thus related to ventricular depolarization and repolarization (section
2.1.3). Hence, the ECG provides information about where to search for heart sounds
(S1 occurs subsequent to the QRS complex and S2 occurs after the T-wave). This
procedure is often referred to as ECG-gating. QRS detection algorithms basically
follow a detector structure as outlined in figure 4.3. The purpose of each processing
block (within the ECG setting) is summarized below:

• The filter suppresses noise and unwanted ECG components such as the P-wave
and the T-wave. This is typically implemented with a bandpass filter (center
frequency 10 − 24 Hz, bandwidth 5 − 10 Hz).

• Transformation of the signal into a domain where QRS complexes are empha-
sized provides a distance measure which maximizes the distance between the
QRS complex and other signal components. The transformation is typically
rectification, squaring or differentiation.

• The detection rule might be broken down into averaging and thresholding.
Averaging is performed to ensure reasonable waveform duration and some
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Fig. 4.2: Example of TFR contour plots of S1, S2, S3 and S4 (note the different
scaling of the x-axis). The S-transform was used to calculate the joint time-frequency
distributions. Data obtained from data set VI.
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Fig. 4.3: Block diagram of a typical change detection setup. Figure adopted from
Gustafsson [98].

robustness to noise. The threshold decides whether a new QRS complex has
been found.

More information about ECG signal processing and robust QRS detection algo-
rithms can be found in Sörnmo et al. [39] or Köhler et al. [150]. Based on the ECG
signal, predefined search windows are used to locate the heart sounds, see figure 4.4.
A typical window choice for S1 detection is 0.05RR− 0.2RR, and for S2 detection,
1.2RT − 0.6RR, where RR is the interval between two R-peaks and RT is the time
interval from the R-peak to the T-wave [151]. How to actually find the heart sounds
within these windows can be accomplished in several ways. Looking for the maxi-
mum value in the selected window is one (rather naive) approach, and looking at the
time varying spectral content is another. ECG-gating in combination with Shannon
energy was used in papers II and IV. A thorough survey of different techniques able
to emphasize heart sound occurrences in the PCG signal will be presented in section
4.3.
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Fig. 4.4: Example of ECG-gating with defined search windows for S1 and S2, respec-
tively.

4.2.1 Accurate localization of S1

In some applications, such as when deriving cardiac time intervals (chapter 7), very
accurate temporal localization of the heart sounds is necessary (Paper I). The mor-
phology of S2 varies a lot with respiration, so averaging over many heart cycles is
inappropriate for noise reduction. In contrast to S2, the appearance of S1 changes
little over time. Furthermore, S1 is event-related and occurs within a fairly constant
time interval after the QRS complex in the ECG. These properties make S1 a per-
fect candidate for ensemble averaging (see section 3.7.1). An example showing S1
before and after denoising by ensemble averaging can be seen in figure 4.5. The noise
reduction abilities of ensemble averaging rest upon a number of assumptions [39],
whose validity in the PCG setting should be commented.

1. The noise should be zero mean. Since the PCG signal is a time series measuring
vibrations on the body surface, the DC level is irrelevant. High pass filtering
the signal or subtracting its mean is thus a safe operation which does not
influence the frequency content of the heart sounds.

2. The noise should be uncorrelated from heart cycle to heart cycle. This is
usually the case, but power line interference could present a problem. This
interference has a frequency content of 50 or 60 Hz which overlaps the fre-
quency content of the heart sounds. Possible solutions include notch-filters or
estimation-subtraction methods [39].

3. The morphology of S1 should be fixed from heart cycle to heart cycle. This
means that the alignment should be perfect and that the shape and width
of S1 should be constant. It has been argued that ensemble averaging is
inappropriate for noise reduction of PCG signals since the morphology of heart
sounds varies with physiological processes such as respiration [152]. However,
these variations in morphology mostly affect S2 while the appearance of S1 is
quite robust. Averaging techniques such as dynamic time warping or integral
shape averaging [153], which are able to compensate for time shifts and time
scale fluctuations, might however improve the S1 template.

4. There should be no correlation between signal and noise. Most noise sources are
additive and in these cases there are no correlations between the PCG signal
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(a) (b) (c)

Fig. 4.5: Example of one realization of S1 (a) and the effect of denoising by ensem-
ble averaging (b). The same example but derived with latency-corrected ensemble
averaging is also illustrated (c). The lower amplitude in (b) is due to smearing since
the time interval between the R-peak and S1 is not entirely constant. Figure adapted
from paper I.

and the noise. However, cardiac vibrations as well as other sound sources
such as respiratory, muscle and abdominal noise are mixed in the thorax on
their way to the body surface. This interaction probably causes correlations
between the signal and some of the noise sources.

5. The statistical distribution of the noise should be Gaussian. Ensemble aver-
aging is an optimal estimator if the noise is Gaussian, however, some results
indicate that the noise distribution is slightly subgaussian in PCG signals [144].
This implies that a more robust averaging technique such as using the median
instead of the mean might be beneficial.

Due to these issues, denoising by ensemble averaging might not be optimal. Nonethe-
less, ensemble averaging provided very good results when used for accurate S1 local-
ization. In paper I, it was assumed that each realization of S1, xi(n), was additively
composed of random noise, vi(n), and a deterministic signal component, S1(n), see
equation 4.1. The signal component was allowed to be shifted in time, and this
latency shift is accounted for by the random variable θi.

xi(n) = S1(n− θi) + vi(n) (4.1)

The ensemble was constructed by cutting out the different realizations xi(n) from
the PCG signal, using a 250 ms window starting with the R-peak in the ECG, see
figure 4.6. To get an initial estimate of S1(n), a constant time delay between the R-
peak and S1 was assumed. The maximum likelihood estimator of S1(n), assuming
fixed white Gaussian noise, will then result in the estimated Ŝ1(n), see equation
4.2, or its recursive counterpart, see equation 4.3. Note that the factor 1/M in
equation 4.3 can be replaced by a forgetting factor to only incorporate the latest
realizations in the estimate. Since the time delay between the R-peak and S1 is not
entirely constant, an algorithm developed by Woody [126] was applied to reduce the
influence of latency shifts. After the estimate Ŝ1(n) was obtained, it was used as a
patient specific template. By cross-correlating the template with the PCG signal,
an output with strongly pronounced peaks at each S1 occurrence was obtained, see
figure 4.6.
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(a)

(b)

(c)

Fig. 4.6: Example of the original PCG signal (a), the ECG (b) and the output from
cross-correlating the PCG signal with the template of S1 (c). The grey boxes indicate
the time windows where S1 is sought for. Figure from paper I.

(a)

(b)

(c)

Fig. 4.7: Example showing a simulated PCG signal (a) and the same signal with an
SNR of 0 dB and −5 dB, (b) and (c), respectively.

Ŝ1(n) =
1

M

M∑

i=1

xi(n) (4.2)

Ŝ1,M(n) = Ŝ1,M−1(n)
1

M

(

xi(n) − Ŝ1,M−1(n)
)

(4.3)

To evaluate an algorithm whose main purpose is to locate S1 accurately, it was
necessary to test it on a signal where the true occurrences were known. Aiming at
localization errors of just a few milliseconds, it was not feasible to use experimental
data, even with an expert marking the heart sounds. Instead, a simulated PCG
signal (section 2.6) with known S1 occurrences was created. The simulated PCG
signal contained 500 heart cycles, drenched in white Gaussian noise corresponding
to an SNR of −20, −15, −10 and −5 dB. An example of a simulated signal with
additive noise is given in figure 4.7.

The denoising abilities of ensemble averaging were analyzed in a mean square error
sense and as the percentage of correct detections. After a few heart cycles, the
localization algorithm provided excellent results at an SNR of −10 dB, see figure
4.8. At −15 dB, the algorithm stabilized at a detection ratio of about 96% after 40
heart cycles. Corresponding values for −20 dB were 100 heart cycles and a detection
rate of 45%. Similar convergence rates were also seen in a mean square error plot
(figure 4.8).
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Fig. 4.8: Mean square error (MSE) as a function of the number of heart cycles (M)
used in the calculation of Ŝ1(n) (a). The different lines correspond to an SNR of -20,
-15, -10 and -5 dB (top to bottom). Also shown is the percentage of correct detections
as a function of the number of heart cycles used for noise reduction (b). The different
lines correspond to an SNR of -20, -15, -10 and -5 dB (bottom to top, -10 and -5 dB
are on top of each other). Figure from paper I.

For comparison, the ensemble averaging algorithm was compared with a multi-
resolution approach [7]. This other algorithm operated according to the following
steps:

1. Emphasize S1 occurrences by wavelet denoising (4th level Daubechies 6th
wavelet using Stein’s unbiased estimate of risk threshold, fs = 2 kHz). Wavelet
denoising is explained in section 3.7.2.

2. Segment the denoised PCG signal into cardiac cycles using the QRS complexes
in the ECG signal.

3. Extract the envelope of the denoised PCG signal via the analytic signal. The
analytic signal was explained in section 3.6.1.

4. Roughly locate S1 in each heart cycle as the maximum value in the envelope
signal. This provides a coarse scale solution to the localization problem.

5. Derive a low-resolution (200 Hz low-pass filtered) and a high-resolution (400
Hz low-pass filtered) version of the denoised PCG.

6. Find the three largest peaks in the low-resolution signal in the vicinity of the
coarse scale solutions. Select the first peak as the occurrence of S1. The reason
for selecting several peaks is to increase robustness of the algorithm (due to
noise, it is not obvious that the largest peak is the true peak).

7. Find the final localization solution by searching for a maximum in the high-
resolution signal in the vicinity of the low-resolution solution.

The first step of this algorithm, wavelet denoising, may well be used in combina-
tion with ensemble averaging. In the following test, the above mentioned wavelet
denoising scheme was performed as a preprocessing step before applying ensemble
averaging. An example of the output from wavelet denoising and the consequent
output after correlation with the ensemble averaged S1 template, applied to very
noisy PCG data from one test subject in data set I, can be seen in figure 4.9.
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(a)

(b)

(c)

Fig. 4.9: Example of wavelet denoising (b) applied to a noisy PCG signal (a). After
correlation with a template for S1, obtained with ensemble averaging, S1 is even
further emphasized.

Fig. 4.10: The percentage of correct detections (a) and the localization error (b) as
a function of signal to noise ratio. The different lines in (a) correspond to two error
tolerances (±1 ms and ±3 ms, respectively) for the ensemble averaging (EA) approach
and the multi resolution approach, respectively. In (b), the bold solid line and the
dark grey area represent the mean ± std localization error for the ensemble averaging
approach, while the bold dashed line and the light grey area show corresponding
values for the multi resolution approach. Figure from paper I.

The two S1 localization approaches were compared in paper I. A simulated signal
with 1000 heart cycles was used, showing that very accurate results (95% correct de-
tections with localization errors of less than ±1 ms) were obtainable for the ensemble
averaging approach at an SNR of at least −3 dB, see figure 4.10. A corresponding
value for an accuracy of ±3 ms was −10 dB. Ŝ1(n) was here estimated recursively
with M = 20. For the multi resolution approach, accurate results were obtainable
at an SNR of -7 dB (±3 ms), while the best achievable detection rate was about
45% using an error tolerance of ±1 ms.

The two methods were also tested on experimental data containing a total amount
of 11398 heart cycles (data set I). The number of correct S1 localizations was calcu-
lated via a trace of RS1-intervals. The RS1-interval was defined as the time duration
between the R-peak in the ECG and S1, an interval with is is fairly constant between
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Table 4.2: Correct S1 detections (%).

Subject Multi resolution Ensemble averaging

1 96.5 98.5
2 86.7 87.9
3 89.2 96.0
4 98.6 99.6
5 94.5 99.5
6 95.5 100
7 86.4 99.0
8 77.7 100

Mean±std 90.6 ± 7.1 97.6 ± 4.1

heart cycles. To get a quantitative measure of a correct S1 localization, detections
that gave rise to RS1-intervals locally deviating more than three standard deviations
from its neighboring RS1-intervals were considered erroneous. The running standard
deviation was calculated in 5-second sliding windows. The RS1-traces were deter-
mined with the two S1 localization methods, and the averages used M = 50 heart
cycles. To avoid unnecessary false detections close to the border of the signals, Ŝ1(n)
was estimated in a noncausal manner so that 50 heart cycles was always used in the
estimation. The amounts of correct heart sound detections are presented in table
4.2.

The S1 template obtained by ensemble averaging can be used as a mother wavelet.
Multiplying the template with a window function so that the endpoints are smoothly
set to zero, both compact time support and differentiability are ensured. The tem-
plate is also absolute and square integrable, thus fulfilling the basic conditions of a
wavelet function. In paper I the template is only used as a matched filter. How-
ever, the next step would be to implement it as a patient-specific wavelet which
is automatically adjusted to fit the signal at hand. Performing wavelet denoising
with a customized mother wavelet would presumably increase the results further.
A motivation for patient-specific studies is that the morphology of S1 differs a lot
between patients. Based on the data in paper I, the cross-correlation coefficient
between templates from different patients was found to vary from 0.26 − 0.81. If
the cross-correlation is as low as 0.26, it is not a very good idea to use the same
analyzing function for all patients.

4.3 Direct heart sound localization

Heart sound localization algorithms operating solely on PCG data try to empha-
size heart sound occurrences with an initial transformation. These transformations
can roughly be classified into three main categories; frequency based transforma-
tions, morphological transformations and complexity based transformations. Most
algorithms can be fitted into the detection scheme illustrated in figure 4.11, that
is, filtering, applying a distance measure able to distinguish signal from noise, and
smoothing and thresholding to separate signal from noise.
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Filter
Distance 
measure

Smoothing
filter

Threshold

Preprocessor Detection rule

Fig. 4.11: Schematic description of heart sound localization. Noisy PCG data enters
the filter where excessive noise is removed. The distance measure tries to maximize
the distance between the heart sounds and the background noise, and the result is
smoothed and thresholded.

4.3.1 Algorithm components

The frequency range of heart sounds is about 10− 400 Hz [145,146]. Initial filtering
can thus be used to remove excessive noise. A zero-phase low-pass filter with a cutoff
frequency of 400 Hz was used throughout this section. Some distance measures,
particularly complexity based measures, make use of the less regular patterns in the
noise to separate them from the signal. It could thus be advantageous to add a small
amount of noise to the signal after filtering. An unfortunate trend in bioacoustic
signal analysis suggests that the signals should be acquired at a very high sampling
rate. The motivation is simply that nonlinear dynamic analysis tools show improved
results when applied to densely sampled signals. This is, however, unnecessary. The
damping of the signals as they pass through the thorax efficiently removes high
frequency components why the higher sampling rate merely samples the noise more
accurately. If high frequency noise is an inherent part of the analysis scheme, it is
preferable to add it later in a more controlled manner. Throughout this section, a
small amount of additive white Gaussian noise corresponding to an SNR of 30 dB
was added after the above mentioned filtering.

The distance measure is provided by the above mentioned transformations. The
main objective is to make the distance between signal and noise as large as possible.
Many of the distance measures are operating on a batch of data. This processing
is performed within a sliding window, resulting in a trace of calculated values over
time. All traces were normalized against the 99th percentile of their histograms. This
approach is less sensitive to extreme values and outliers compared to normalizing
against the maximum value of the feature trace. The traces were often somewhat
jagged, why a smoothing filter was applied. The smoothing filter is method depen-
dent and will be described in corresponding sections (4.3.4–4.3.6).

Another important design parameter is the threshold. A common threshold when
looking for transient changes is the mean of the calculated trace plus its standard
deviation according to equation 4.4. This approach was used throughout this section,
however, the mean value was subtracted from the trace so the threshold was reduced
to α · σtrace.

Threshold = µtrace + α · σtrace (4.4)
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4.3.2 Evaluation data

Both simulated and experimental data was used was used to evaluate the algorithms.
Design parameters and noise robustness were set and evaluated on simulated data,
while the methods’ suitability for clinical use was evaluated on experimental data. A
simulated PCG signal (section 2.6) consisting of 100 heart cycles and white Gaussian
noise, sampled at 2 kHz, was used in the simulations. Some of the results from the
simulation study will be presented along with the method descriptions in sections
4.3.4–4.3.6. This includes the determination of window size, threshold, positive and
negative predictive values as a function of SNR and receiver operating characteristic
curves. All signal examples in figures 4.13–4.26 are based on the simulated sound
signal. Remaining simulation results will be presented in section 4.3.8.

The experimental data was chosen from 25 test subjects or patients with five different
sources of noise in data sets IV and V on page 6. The chosen data set consisted
of 68 heart sounds from five test subjects during breath hold (from data set V),
90 heart sounds recorded from five test subjects during tidal breathing (from data
set V), 115 heart sounds recorded from five test subjects during forced respiration
(from data set V), 75 heart sounds recorded from five patients with severe aortic
stenosis (from data set IV) and 75 heart sounds recorded from five patients with
severe mitral insufficiency (MI, from data set IV). An example of the simulated PCG
signal at different noise levels was shown in figure 4.7, while examples of real data
from the five different groups are shown in figure 4.12. The reference method for
finding the true boundaries of the heart sounds in the experimental data set was
manual segmentation, aided by ECG data. Results from the experimental data set
are presented in section 4.3.8.

4.3.3 Determination of design parameters

The two design parameters threshold and window length are very important for the
results. In this section, the sliding window was shifted 5 ms, and each calculated
value was assigned to the midpoint of the window. The length of the window is a
compromise where short windows give many false positives while long windows give
smooth traces with many false negatives. Similarly, a low threshold provides many
correct detections but also a lot of false detections, while a high threshold might
miss many heart sound occurrences. To find optimal values of the threshold and
the window size, a global search was conducted. The optimum was determined via
the product of negative predictive values and positive predictive values by maxi-
mizing the surface spanned by different window sizes and thresholds. The product
between positive and negative predictive values gives high output when the two error
measures are high and a low output if either or both of the measures are low.

Some methods operate on a sample-per-sample basis, rendering the window size
inapplicable in the optimization procedure. In these cases, α was determined as
the crossing between the positive and negative predictive value curves as they were
plotted as a function of α. The smoothing filter and other method specific design
parameters will be described in their corresponding sections (4.3.4–4.3.6).
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(a)

(b)

(c)

(d)

(e)

Fig. 4.12: Examples of typical PCG signals from the data set used in the evaluation
of heart sound localization algorithms. Signals acquired from test subjects during
breath hold (a), tidal breathing (b) and forced respiration (c) as well as from patients
with aortic stenosis (d) and mitral insufficiency (e).

4.3.4 Frequencies and wavelets

The acoustic energy of S1 and S2 is mainly located in the frequency ranges 10−140
Hz [145] and 10 − 400 Hz [146], respectively. It is thus expected that the spectral
content in the PCG signal, measured over time in the range 20 − 300 Hz, will con-
tain more energy at time instants where heart sounds are present [154]. Measuring
the energy intensity in this range with the spectrogram is called the average power
method for heart sound localization [154]. An intricate adaptive threshold based
on the power of inspiratory and expiratory lung sounds and a patient specific ad-
justment parameter has been suggested for this method [154]. Here, the threshold
was simply set according to equation 4.4. An example from the simulation study
along with results from the simulation study are shown in figure 4.13. The design
parameters of the algorithm were determined using figure 4.13b and set according to
table 4.3 on page 118. From the figure, based on the positive and negative predictive
values, it can be seen that the method stabilized at an SNR of −7 dB. The area
under the ROC curve (at SNR = 0 dB) was found to be 0.90.

The average power wavelet coefficient method is an extension to the average power
method. The main differences are that the spectrogram is calculated on the fifth
approximation level of a Daubechies 4th wavelet (fs = 10 kHz), that the intensity is
calculated in the range 20−40 Hz and that the threshold is calculated automatically
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Fig. 4.13: Example of the time trace calculated by the average power method for four
heart cycles (a). Results from a simulated signal (SNR = −3 dB) showing negative
predictive value (NPV) multiplied with positive predictive value (PPV) for different
window sizes and thresholds (α) are shown in (b), where dark colors indicate high
performance values. Results showing PPV (solid line) and NPV (dotted line) as a
function of SNR are shown in (c). A ROC curve (SNR = 0 dB) is shown in (d).
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Fig. 4.14: Example and results from the simulation study for the average power
wavelet coefficient method. See figure 4.13 for details regarding the subplots.
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Fig. 4.15: Example of the time trace calculated by the multiscale product method
for four heart cycles (a). Results from a simulated signal (SNR = −3 dB) showing
negative predictive value (NPV, dotted line) and positive predictive value (PPV, solid
line) for different thresholds are shown in (b) while results showing PPV and NPV
as a function of SNR are shown in (c). A ROC curve (SNR = 0 dB) is shown in (d).

as the mean value of the energy of the noise [154]. Results from the simulation
study are shown in figure 4.14. The method stabilized at an SNR of −5 dB and
the area under the ROC curve (at SNR = 0 dB) was found to be 0.96. Using a
low-frequency band for segmentation purposes has also been described by Haghighi-
Mood et al. [155]. However, their work is based on ECG-gating as well as multiple
acoustical sensors.

In the wavelet approaches, methods suggested throughout the literature specify
a particular mother wavelet which should be used at a particular approximation
or detail. These specifications are, however, dependent on the sampling frequency.
Conversion to a more appropriate scale was done according to equation 4.5, where Fa

is the pseudo frequency at scale a that we want to preserve, Fc is the center frequency
of the wavelet and fs is the sample frequency. The most suitable approximation or
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detail was then chosen based on the extracted center frequency.

Fa =
Fc · fs

a
(4.5)

The product of adjacent wavelet decompositions can be used for noise reduction
as well as for emphasizing singular signal components. The underlying principle is
that Gaussian noise decreases while singular components increases when different
scales are multiplied [156]. In the setting of heart sound localization, this property
of multiscale products is very interesting since the “singular” heart sound will be
emphasized while the noise level is reduced. This understanding is the reasoning
behind the multiscale product method [157], where the product of the first three
approximation levels of the Symlet wavelet (order 5) is calculated. An appropriate
threshold can be set at the mean value plus five times the standard deviation of the
PCG signal where heart sound segments have been removed [157]. The multiscale
product often resulted in a jagged trace, why a smoothing filter (5th order zero
phase Butterworth low-pass filter with a cut-off frequency of 20 Hz) was applied.
An example of the multiscale product method is shown in figure 4.15. The method
stabilized at an SNR of −7 dB and the area under the ROC curve (at SNR = 0
dB) was found to be 0.84.

A somewhat different approach towards extracting interesting signal components
based on frequency behavior is homomorphic filtering. Assuming that the heart
sounds are approximately amplitude modulated while murmurs and other sounds
are either frequency modulated or both amplitude and frequency modulated, the
two modulations can be separated by mapping the (multiplicative) signal into an
additive domain. Hence, assume that the slowly varying heart sound envelope l(t)
is multiplied with a higher frequency signal h(t). By taking the logarithm of the
signal, equation 4.6, the non-linear multiplication changes into a linear addition,
equation 4.7. The low frequency contribution l(t) may then be extracted from the
high frequency contribution h(t) by a low-pass filter. Exponentiation takes the result
back to the original signal domain, equation 4.8. If the low-pass filter is properly
chosen, l(t) will be a good estimate of the envelope.

s(t) = l(t)h(t) (4.6)

ln s(t) = ln l(t) + lnh(t) (4.7)

eLP (ln l(t)+ln h(t)) = eLP (ln l(t))+LP (ln h(t)) ≈ eLP (ln l(t)) ≈ l(t) (4.8)

An advantage with homomorphic filtering is its scalable smoothness, which handles
the problem of S2 splits and serrated peaks by adjusting the low-pass filter [158].
The suggested threshold for the homomorphic filtering technique is to multiply the
maximal value of the extracted envelope by a factor of 0.35 [142]. An example of
the homomorphic filtering method applied to the simulated PCG signal is shown in
figure 4.16. In this section, a 5th order Butterworth low-pass filter with a cut-off
frequency of 20 Hz was used to extract the envelope. The method stabilized at an
SNR of −4 dB and the area under the ROC curve (at SNR = 0 dB) was found to
be 0.91.
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Fig. 4.16: Example and results from the simulation study for the homomorphic filter-
ing method. See figure 4.15 for details regarding the subplots.
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Fig. 4.17: Example and results from the simulation study for the Shannon energy
method. See figure 4.15 for details regarding the subplots.
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Fig. 4.18: Example and results from the simulation study for the Shannon entropy
method applied to a wavelet detail. See figure 4.15 for details regarding the subplots.
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Fig. 4.19: Example and results from the simulation study for the homomorphic fil-
tering method applied to the Shannon energy of a PCG signal. See figure 4.15 for
details regarding the subplots.
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Fig. 4.20: Example and results from the simulation study for the variance method.
See figure 4.13 for details regarding the subplots.
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4.3.5 Quadratic measures

The quadratic measures operate on the signal’s amplitude at a sample-per-sample
basis. Since the amplitude enters the equations twice, these nonlinear techniques
are related to the instantaneous energy of a signal. While the energy, equation
4.9, will bury low intensity sounds under high intensity ones, the Shannon energy,
equation 4.10, will emphasize medium intensities and attenuate low intensities. This
property is highly useful in emphasizing heart sounds, especially when murmurs are
not present [141]. An example of Shannon energy applied to simulated PCG data is
shown in figure 4.17. Shannon energy can be calculated in a sliding window, where
each window is assigned an averaged measure [141]. However, when the overlap
between consecutive windows is large, it is more efficient to calculate sample-per-
sample values and smooth the results with a moving average filter. In this section,
a 5th order zero phase Butterworth low-pass filter with a cut-off frequency of 30 Hz
was used to extract the envelope. The method stabilized at an SNR of −4 dB and
the area under the ROC curve (at SNR = 0 dB) was found to be 0.93.

Energy E(t) = s2(t) (4.9)

Shannon energy E(t) = s2(t) · log s2(t) (4.10)

Fig. 4.21: Comparison of different envelope estimation methods. The test signal is
presented in (a) and the smoothed results are shown in (b). The test signal was a 200
Hz sinusoid with amplitude ranging from 0 to 1 and sampled with 10 kHz. In this
comparison, the output was low-pass filtered by a 5th order Butterworth filter with
a cut off frequency of 150 Hz.

Two extensions have been suggested to the Shannon energy method. The first
approach is to apply Shannon energy to the sixth detail of a Daubechies 6th wavelet
(fs = 2 kHz, [159]) and the second approach is to apply homomorphic filtering to
the Shannon energy of the PCG signal [158]. Examples of these approaches are
illustrated in figures 4.18 and 4.19. The same smoothing filter as in the original
Shannon energy method was applied. The wavelet extension stabilized at an SNR
of −2 dB and the area under the ROC curve (at SNR = 0 dB) was found to be
0.71. For the homomorphic extension, the corresponding results were −2 dB and
0.87, respectively.
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4.3.6 Complexity based measures

Complexity is insensitive to absolute measures such as amplitude and frequency,
and it has been claimed that this new family of features present a paradigm shift
in biomedical signal analysis [134]. Complexity is an intuitive measure. When
quantifying PCG signals, normal heart sounds have a certain structure whereas
murmurs are more complex and background noise has no structure at all [160,161].
Heart sound localization should hence be feasible by quantifying the amount of
complexity in the PCG signal over time. Approaches for calculating complexity
include descriptive statistics, entropy and fractal dimensions.

Running variance is a very simple test for tracking changes in system dynamics [98].
In the bioacoustic setting, the onset of a heart sound can be modeled as such a
change in dynamics. However, since the DC level of a PCG signal is zero, the
variance calculation collapses into a measure of average energy – a measure we
opposed in the last paragraphs since it buries low intensity signal components under
high intensity components. Nonetheless, a variance based method for emphasizing
heart sounds has been suggested [162], and a signal example along with simulation
results are shown in figure 4.20. The method stabilized at an SNR of −7 dB and
the area under the ROC curve (at SNR = 0 dB) was found to be 0.90.

A Gaussian distribution can be fully described by its second order moments (mean,
variance and autocorrelation), leaving the higher order moments equal to zero. This
implies that, as long as the interesting signal components are not Gaussian, efficient
change detection algorithms can be developed which are very robust to Gaussian
noise. The third and fourth order correspondences to variance are skewness and
kurtosis, respectively. An example of a kurtosis based method for heart sound local-
ization is illustrated in figure 4.22. The kurtosis method stabilized at an SNR of −2
dB and the area under the ROC curve (at SNR = 0 dB) was found to be 0.84. In
contrast to skewness, kurtosis allows asymmetric distributions, making it a better
choice for heart sound localization.

Variance and kurtosis are two features that stem from the theory of stochastic
processes. An alternative way to conceptualize complexity is to plunge into the
theory of dynamical systems. Here the system can be characterized by invariant
measures such as fractal dimensions or entropy. There are two main approaches to
estimate these invariants; those that operate directly on the waveform1 and those
that operate in a reconstructed state space.

Entropy can be interpreted as the average rate at which predictability is lost, and
is thus a measure of system regularity [93]. There are several methods available
for entropy estimation, and a suitable choice for heart sound localization is the
Shannon entropy [144], see equation 4.11. Note the difference between this definition
of Shannon entropy (which is applied to the probability density function) and the
Shannon energy which was used to estimate the envelogram on a sample-per-sample

1Many waveform approaches are, strictly speaking, also stochastic in their nature [134].
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Fig. 4.22: Example and results from the simulation study for the kurtosis method.
See figure 4.13 for details regarding the subplots.
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Fig. 4.23: Example and results from the simulation study for the Shannon entropy
method, operating on the probability density function of the signal. See figure 4.13
for details regarding the subplots.

1 2 3

−0.5

0

0.5

1

(a)

V
ar

ia
nc

e 
fr

ac
 d

im

Time (s)

W
in

do
w

 s
iz

e

α

(b)

0 1 2

50

100

150

−10 −5 0 5
0

0.5

1
(c)

N
P

V
 &

 P
P

V

SNR (dB)
0 0.5 1

0

0.5

1
(d)

S
en

si
tiv

ity

1−Specificity

Fig. 4.24: Example and results from the simulation study for the variance fractal di-
mension method. Since the mean value of the fractal dimension trace was subtracted,
the signal is not limited to 1 ≥ dim ≥ 2. See figure 4.13 for details regarding the
subplots.
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Fig. 4.25: Example and results from the simulation study for the simplicity method.
See figure 4.13 for details regarding the subplots.
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Fig. 4.26: Example and results from the simulation study for the recurrence time
statistics method. See figure 4.13 for details regarding the subplots.
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basis in section 4.3.5.

H(p) = −
N∑

i=1

p(i) log p(i) (4.11)

Entropy calculations can be done in both the reconstructed state space and on the
waveform. In the reconstructed state space, the probability density function will be
of the same dimensionality as the embedding space. A lot of data is thus required
to when estimating these high dimensional probability density functions. In the
application of heart sound localization, the sliding window provides an upper limit
to the amount of data that can be used. State space based entropy measures are
thus out of the question. The probability density function may also be estimated
directly from the PCG signal to obtain a waveform entropy estimate. An example of
Shannon entropy from the simulation study is shown in figure 4.23. The waveform
Shannon entropy stabilized at an SNR of −7 dB and the area under the ROC curve
(at SNR = 0 dB) was found to be 0.92. Even when operating on the waveform, the
amount of data in a short window, 20 ms in this section, might not be enough. To
increase the accuracy of the probability density estimate, it is possible to replace the
classic histogram with improved kernel based estimators, see equation 4.12, where
K is the kernel, h is the kernel bandwidth, N is the number of observations s(i) and
p̂i(S) is the estimated probability density function. In Yadollahi et al. [144], a normal
kernel K(S) = (1/2π)e−S2/2 was used with the kernel bandwidth h = 1.06σ̂(S)N−0.2,
where σ̂ is the standard deviation of the input observations.

p̂i(S) =
1

N

N∑

i=1

1

h
K

(
S − s(i)

h

)

(4.12)

Another complexity measure is the fractal dimension, a statistical quantity that
conveys information on spatial extent (convolutedness or space filling properties),
self similarity (the ability to remain unchanged when the scale of measurement is
changed) and self-affinity (different scaling properties in different directions). Cal-
culating the fractal dimension in a reconstructed state space requires a lot of data,
why this approach was not applicable in the heart sound localization application
(due to the sliding window approach). In waveform fractal dimension analysis, the
signal is looked upon as a planar set in R

2 where the dimension is a measure of the
signal’s spatial extent. Note that the waveform fractal dimension is measured in R

2

and thus limited to the range 1 ≤ dim ≤ 2, and that it normally differs from the
dimension of the attractor (measured in the reconstructed state space). There are
several methods available for waveform fractal dimension estimation; the variance
fractal dimension [89] and Katz waveform fractal dimension [163] are two of them.
The variance fractal dimension was used in this section, and a signal example along
with simulation results are illustrated in figure 4.24. A dyadic time increment was
used since it is preferable for separating signal components [89]. The variance frac-
tal dimension stabilized at an SNR of −5 dB and the area under the ROC curve
(at SNR = 0 dB) was found to be 0.97. Since heart sounds have a lower frac-
tal dimension compared to background noise [160, 161], the fractal dimension trace
was inverted to get peaks at each heart sound occurrence instead of valleys. No
particular threshold has been reported for this technique [28].
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4.3. DIRECT HEART SOUND LOCALIZATION

So far, only waveform measures of complexity have been considered. We will now
look at two methods operating in the reconstructed state space. Both of these
methods have been developed to be applicable to short data sets, turning them
into suitable candidates for heart sound localization algorithms. The first method
is based on singular spectrum analysis [134] and the second method is based on
recurrence time statistics [164]. Heart sounds have a characteristic appearance in
state space, see figure 4.27, therefore it is not surprising that state space approaches
are suitable for heart sound localization. Some additional design parameters are
necessary in these two algorithms; the time delay τ and the embedding dimension
d. How to choose these parameters properly was described in section 3.4.

Fig. 4.27: State space trajectories (d = 3, τ = 12) of a PCG signal with heart sounds
present (b) and with heart sounds removed (a). The transition between the two at-
tractors is reflected in both the singular spectrum and in the recurrence time statistic,
hence indicating when a heart sound is present. Figure from paper V.

The complexity of the embedding matrix can be quantified through the eigenvalues
of the correlation matrix C = XTX, where X is the embedding matrix. If the
embedding dimension d is chosen large enough so that redundancy arises, the rank
of the embedding matrix is an upper bound to the trajectory dimension [134], a
finding that can be used for estimating system complexity. More precisely, the
Shannon entropy of the normalized eigenvalues is calculated and the complexity
value is determined as two to the power of the entropy. An embedding dimension of
d = 6 and a time delay of τ = 1 are suitable to create the embedding matrix [161],
and a simulated signal example of the technique applied to heart sound localization
can be seen in figure 4.25. This technique stabilized at an SNR of −5 dB and the
area under the ROC curve (at SNR = 0 dB) was found to be 0.94.

Recurrence time statistics are sensitive to changes in system dynamics. There are
two types of recurrence times, T1 and T2, where T1 is more robust to the noise
level while T2 is preferable for detecting transitions with very low energy [164].
T1 is related to the information dimension via a power law, which motivates its
ability to detect signal transitions based on signal amplitude, period, dimension
and complexity [164]. In heart sound localization, the heart sounds represent a
rather large transient change in the dynamics, why T1 was found to be the better
choice in this application (Paper V). T1 basically measures the average amount of
neighbors of an average state in state space. A parameter ε defines if two states
are close enough to be neighbors, and can thus be seen as a filter. In paper V, ε
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was defined adaptively as the slow varying envelope of the PCG signal (extracted
as the low-pass filtered output of a Hilbert filter). However, the running standard
deviation of a high-pass filtered signal was used in this section as it is more easy to
calculate while achieving the same effect (that is, to select ε so that noise is filtered
out). A cut-off frequency of 300 Hz was used to filter out most of the heart sound
energy, thus approximately setting ε to the variance of the noise. The embedding
parameters were determined via auto mutual information and Cao’s method, as
outlined in section 3.4. Note that τ , d and ε were all set automatically. An example
of T1 applied to the simulated heart sound signal is illustrated in figure 4.26. The
T1 measure stabilized at an SNR of −1 dB and the area under the ROC curve (at
SNR = 0 dB) was found to be 0.96.

4.3.7 Multi-feature heart sound localization

When comparing the simulation results from the last sections (summarized in table
4.4), it becomes clear that some methods are suitable for emphasizing heart sounds
in certain situations while other methods are preferable in other situations. An
obvious thought was to combine the output from different methods to make use
of their individual strengths. It would be possible to choose all the approaches in
the previous section, however, due to the curse of dimensionality, a smaller subset
of (preferably) independent features was selected. Even though there are methods
available to select the most efficient features (see section 3.10), a number of features
was picked more or less arbitrarily in this section. Based partly on intuition (trying
to include features based on independent measures) and partly on results from the
simulation study (excluding features with poor performance), the following feature
set was investigated:

• Average power wavelet coefficient

• Shannon energy

• Variance

• Shannon entropy

• Variance fractal dimension

• Simplicity

The output from different methods and different patients had different amplitude
ranges. Many classification techniques perform better when the features have similar
dynamic range because of the way the thresholds are adapted in multiple dimensions.
This can be achieved by normalizing the features. This is usually done by subtracting
the mean and dividing by the standard deviation, however, this approach is largely
affected by the signal content. For instance, both the mean value and the standard
deviation were larger in a feature trace where heavy respiration or murmurs were
present. Instead, the feature traces was normalized against the 99th percentile of
their histograms. This approach is less sensitive to extreme values and outliers
compared to normalizing against the maximum value of the feature trace.
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A fully connected feed-forward neural network (sections 3.5 and 3.9), with logarith-
mic sigmoid transfer functions and biased values throughout was adopted to measure
the performance of the combined feature set. Six input units were connected to two
hidden layers, where the number of units in the first hidden layer was set to three.
The number of units in the second hidden layer was also set to three and the number
of output units was set to one. The input to the network consisted of the traces
from the six distance measures listed above. Each example presented to the network
thus corresponded to the six trace values obtained at each time instant. An example
showing the structure of the neural network is illustrated in figure 4.28. The target
values were 0 (no heart sound) or 1 (heart sound). The network was thus set up for
heart sound localization, where the aim is to find heart sounds, not to distinguish
between the two. Since results from the simulation study was used for feature se-
lection, only data from the experimental data set was used in the evaluation of the
network.

The output from the network was thresholded at two times the standard deviation
and compared to the manual segmentation results. A leave-one-out approach (sec-
tion 3.11.1) was used for training and testing due to the limited amount of patients.
Since data from all five groups of data were used in the training procedure, a general
network was expected, able to handle signals recorded in many different situations
(ranging from very noisy data covered in respiratory sounds to PCG signals recorded
from patients with high intensity murmurs). If the minimum gradient was reached
before the performance goal or the maximum number of epochs was reached, the
training procedure was restarted with new initial conditions.

Fig. 4.28: Schematic description of the fully connected neural network with 6 inputs,
1 output and 3 + 3 neurons in the hidden layers. Transfer functions of logarithmic
sigmoid type and biased values are used throughout.

4.3.8 Comparison between methods

Simulations
Thresholds and window sizes were determined using the simulated data, so it is not
surprising that most methods performed well in the simulation study. In reality,
the heart sounds do not behave as predictable as the simulated data indicates, and
neither is the noise stationary nor entirely additive. The results from the simulation
study should thus be interpreted with caution, and the simulations should mainly
be seen as an approach to find proper values of the design parameters (table 4.3).
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Table 4.3: Design parameters for the different algorithms. The threshold is given as
a multiple of the standard deviation (α · σ) of the PCG signal according to equation
4.4.

Method Window length (ms) Threshold

Average power 30 0.8 σ
Average power WT 70 0.5 σ
Multiscale products — 0.3 σ
Homomorphic filtering — 0.3 σ
Shannon energy (signal) — 0.3 σ
Shannon energy (signal) + WT — 0.9 σ
Shannon energy (signal) + HF — 0.35 σ
Variance 20 0.4 σ
Kurtosis 20 0.1 σ
Shannon entropy (PDF) 20 1.0 σ
Variance fractal dimension 80 1.5 σ
Simplicity 30 1.5 σ
Recurrence time statistics (T1) 70 0.8 σ

The global search for optimal parameter values, see figures 4.13–4.26, resulted in
the parameters in table 4.3. The average power wavelet coefficient provided a very
complicated parameter space, see figure 4.14, and it is likely that the chosen values
are unstable. For recurrence time statistics, the maximum value indicated a window
size of about 30 ms. However, this value was not chosen in favor of a larger window
(70 ms) to provide more data for state space reconstruction. Some methods operate
on a sample-per-sample basis, in these cases the window size was obviously left out
of the optimization procedure.

Positive and negative predictive values were calculated as a function of SNR to
investigate the robustness of the methods to noise (figures 4.13–4.26). It is evident
that most methods do not perform well at an SNR < −5 dB.

The area under the ROC curve, at an SNR = 0 dB, for each method is shown in
table 4.4. Three methods provided very good results, the average power wavelet
coefficient, the variance fractal dimension and the recurrence time statistic. The
two refinements of Shannon energy, see figures 4.19 and 4.18, provided the worst
performance in the simulation study. It is interesting that these refinements per-
formed worse than the original Shannon energy algorithm. A likely reason is that the
wavelet detail of the PCG signal, even though it did emphasize the heart sounds, also
reduced the medium amplitude components that are brought forward by Shannon
energy, thus canceling out the expected performance gain. In the case of homomor-
phic filtering after applying the Shannon energy algorithm, difficulties arose when
the signal was rectified by the quadratic transform, thus destroying the frequency
modulated part of the signal which is one of the key components in homomorphic
signal analysis.

Accurate localization of the heart sound boundaries is important in some applica-
tions such as heart sound cancellation (see chapter 6). Locating the onset of the
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Table 4.4: Simulation results. Accuracy of onset and ending boundary detections,
area under the ROC curve and processing time for a simulated signal with 100 heart
cycles (74.1 s) at an SNR = 0 dB.

Method Onset (ms) Ending (ms) AUC (%) CPU time (ms)

Average power 6 ± 28 49 ± 37 90.1 2079
Average power WT 24 ± 50 34 ± 53 95.6 2371
Multiscale products 9 ± 5 45 ± 16 84.5 94
Homomorphic filtering 4 ± 3 42 ± 16 91.0 75
Shannon energy (signal) 6 ± 3 27 ± 15 92.6 340
Shannon energy (signal) + WT 144 ± 188 206 ± 212 71.3 340
Shannon energy (signal) + HF 14 ± 10 37 ± 15 86.8 342
Variance 3 ± 2 49 ± 37 89.6 861
Kurtosis 3 ± 2 49±29 83.5 1216
Shannon entropy (PDF) 2 ± 2 36 ± 18 91.7 8740
Variance fractal dimension 160 ± 220 158 ± 228 96.8 7972
Simplicity 9 ± 28 46 ± 34 93.6 15791
Recurrence time statistics (T1) 24 ± 57 34 ± 60 95.6 46287

sounds was easier compared to finding the slowly subduing endpoint of the sound
waves, why the performance for endpoint detection was nearly one order of mag-
nitude lower for most methods. Nonetheless, most methods provided very good
boundary detection performance, finding both the onset and the endpoint of the
heart sounds with an error marginal of only a few hundreds of a second. In the sim-
ulation study, the Shannon energy wavelet detail and the variance fractal dimension
performed considerably worse than the other methods.

The computational complexity of the methods is indicated in table 4.4. The absolute
values of these measures are not very interesting, but it should be noted that some
of the methods are really slow. Worst was the recurrence time statistic followed by
other complexity based measures such as simplicity, variance fractal dimension and
Shannon entropy. On the bright side, some of the top performers such as average
power wavelet coefficient and the Shannon energy were really fast.

Experimental data
When so many contemporary approaches are available to solve the same task, it often
implies that no good solution yet exists. Many methods in this section gave similar
overall performance results, and all in all, the detection results were acceptable on
low level noise data. However, results deteriorated in the presence of murmurs or
forced respiration. To put it another way, no standard solution for direct heart
sound localization is yet ready for clinical use.

The area under the ROC curves, see figure 4.29, indicated that the variance frac-
tal dimension provided the best detection results closely followed by the average
power wavelet coefficient method and Shannon entropy. The main performance dif-
ference became clear in the presence of MI where the variance fractal dimension
was considerably better. Combining various methods in a neural network classifier
did not improve the performance much. The distance between signal and noise was
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increased by the network, mostly by subduing the noise floor. However, this only
applied to signals with low SNR. In presence of murmurs or heavy breathing, the
output actually showed decreased performance compared to some of the features
that were fed to the network.
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Fig. 4.29: Area under the ROC curve. The five bars in different shades of gray
represents the five groups of experimental data; breath hold, tidal breathing, forced
respiration, aortic valve stenosis and mitral insufficiency.

Both Shannon energy and homomorphic filtering showed a pretty good overall per-
formance, however, the two refinements of these methods moved the ROC curves
towards the diagonal. These results agreed with the simulation study. Again, the
reason was that the wavelet detail used to bring out heart sounds and suppress
noise, gave the heart sounds higher amplitudes which were dampened by the sub-
sequent Shannon energy calculation. In the homomorphic filtering case, problems
were introduced when the Shannon energy transform rectified the signal.

Interestingly, variance attained better test results as compared to kurtosis. The sim-
ulation study, where white Gaussian noise was added to a simulated PCG signal,
was an ideal situation for the kurtosis method since kurtosis is zero for Gaussian
data. Unfortunately, the heart sounds were nearly Gaussian themselves and there-
fore considerably dampened by the method. On the experimental data set, the
rather noisy signal obstructed with forced respiration gave the best results when
using the kurtosis method. Accurate results were expected since the respiratory
signal is nearly Gaussian [144], but that the results should be worse on the other
types of data came as a surprise. Variance on the other hand showed stable results
across the different groups of experimental data.

The nonlinear complexity based measures Shannon entropy, variance fractal di-
mension, simplicity and recurrence time statistics all performed very well in the
presence of respiratory noise. Indeed, all of these methods (except simplicity) were
developed to operate on lung sound data where heart sounds are present, so the
methods should be capable to handle this kind of data. The performance of the
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state space based approaches of simplicity and recurrence time statistics strongly
deteriorated when applied to murmur data. In the MI group, the worst examples
sometimes performed worse than chance (this was also the case for the kurtosis,
Shannon entropy, multiscale products and the two refinements of Shannon energy).
Possibly, the amount of data in the short sliding windows was enough to separate
heart sounds from additive Gaussian noise as well as from respiratory noise, but
not to distinguish different cardiac sounds from each other. Nevertheless, nonlinear
analysis techniques still look promising for heart sound localization. For instance,
the variance fractal dimension gave the best performance in the whole test.

4.4 Heart sound classification

So far, methods able to emphasize occurrences of heart sounds have been investi-
gated. The final task would then be to label the detected peaks as S1, S2 or as a
false detection. Lehner et al. proposed an indirect algorithm for PCG segmentation
that estimates the onset of S1 with the QRS-complex in the ECG and the onset of S2
with the dicrotic notch in a carotid pulse tracing [140]. Other available approaches
are based on segmenting the PCG signal into heart cycles using QRS-complexes
followed by peak detection [155]. However, when an ECG (or other) recording is
not available, other approaches are necessary. The most common direct technique
is to use interval statistics [141, 158]:

1. Merge peaks that are very close (about 20ms apart).

2. If the peaks are too dispersed, lower the threshold and search for new local
maxima.

3. Assign systole to short intervals which do not vary much over time.

4. Assign diastole to the remaining intervals.

5. Assign S1 or S2 labels to each peak so that S1 signals the start of systole and
S2 the start of diastole.

The duration of systole and diastole is illustrated by the binominal distribution
in figure 4.30. The duration of systole and diastole is also shown as a function of
heart rate in figure 4.31. Clearly, classification algorithms associating the short time
interval with systole runs into trouble with tachycardiac patients. Throughout this
thesis, classification, when needed, is dealt with using either ECG-gating (papers
I, II and IV) or manual segmentation aided by an ECG (paper III). The main
argument for using ECG-gating was the indisputable advantages when it comes
to noise robustness and accuracy. For further details about direct heart sound
classification, the reader is referred to the works by Liang et al. [141] and Gill et
al. [158].

4.5 Finding the third heart sound

Heart sound localization usually deals with the task of finding S1 and S2. However,
there might also be a third or a fourth heart sound (see chapter 2). Especially
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Fig. 4.30: Histogram of the density distribution of heart sound occurrences based
on 273 heart cycles from the healthy subjects, i.e. the first three groups, in the
experimental data set. It can be seen that systole (the first peak) is nearly constant
and normally shorter than the duration of diastole (the second peak). The scaled
kernel density estimate (equation 4.12) is also included in the figure.
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Fig. 4.31: Duration of systole and diastole as a function of heart rate. Note that the
duration of diastole decreases heavily with increased heart rate while the duration for
systole remains fairly constant. Redrawn from El-Segaier et al. [151].

the third heart sound is clinically interesting due to its established connection with
heart failure [50]. Compared to the task of locating S1 and S2, finding S3 is harder
due to its low amplitude, short duration and low frequency [17]. The number of
available methods for automatic S3 detection is very limited. One approach is to
use a matched wavelet [17, 165] and another is based on the T2 statistic [5].

The matched wavelet is defined as a band-pass Bessel filter, which is morphologically
very similar to the third heart sound. The main idea is to decompose the PCG
signal into four frequency bands corresponding to 17, 35, 60 and 160 Hz. The key
observation behind the method is that S1 and S2 are present in all four frequency
bands whereas S3 can only be found in the three lower bands. A detection algorithm
is used to decide if a peak is present in a time window 130 ms after the heart sounds
(no separate identification of S1 and S2 is made, so S3 has to be sought after both
S1 and S22). If a peak is detected in any of the 17, 35, 60 Hz bands and if the peak is
large compared to the amplitudes found in the 160 Hz band, then an S3 occurrence
is marked. The algorithm along with signal examples is shown in figure 4.32.

2This limitation can be avoided by inclusion of an ECG recording, making it easy to differentiate
between S1 and S2.
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Fig. 4.32: Schematic description of the matched wavelet approach for S3 detection.
The incoming PCG signal is decomposed into four frequency bands: 17, 35, 60 and
160 Hz, where peaks in the 60Hz band are assumed to be either S1 or S2. If a peak
is present in a search window after S1 and S2 in either of the 17, 35, 60 bands, an S3
is assumed to be present. The output to the right in the figure indicates that two S3
occurrences were found in this example.

T1 was used in the previous section to locate S1 and S2. Here a related statistic, T2,
was used for detection of S3. T1 is more robust to noise while T2 is more sensitive
to changes in the signal. S3 is a very weak signal, so T2 statistics is the better choice
here. T1 was thus used to locate S1 and S2 whereas T2 was used to detect S3. As
in the matched wavelet approach, S3 was sought in a window after both S1 and S2.
Selecting the proper neighborhood for determining if two neighbors are close or not
can be a problem. In figure 4.33, T1 and T2 are plotted for a range of ε-values to
visualize their dependence on the neighborhood size. S1 and S2 were found using
a simple threshold, but finding S3 (in T2) was somewhat harder. A whole range
of ε-values were calculated resulting in a T2-matrix, see figure 4.33. The resulting
2D-image was then converted into 1D by an edge detection algorithm (implemented
by low-pass filtering and detection of the maximum value in each column). In the
1D signal, an S3 occurrence was marked if a peak was present within the previously
defined time window. The chosen detection rule compared the amplitude of the
peak with the amplitude of the base line level [5].

In a comparison between the matched wavelet method and T2 method (on data set
VI), the latter showed an improved detection rate, 98 % compared to 93 %. The
increased detection rate came at the expense of more false detections, 7 % compared
to 2 %. The lack of a proper analysis of the inherent thresholds, including receiver
operating characteristics, is a major weakness in this comparison. However, com-
bining the two methods, using T2 to locate S3 while the matched wavelet approach
excludes false detections, could be a sound way to improve the results.
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Fig. 4.33: Example of a PCG signal where S1, S2 and S3 are marked (a). T1, calculated
for a range of ε-values, is shown in (b) while a single T1 is shown in (c) for ε = 0.4.
T 1(0.4) is used to find S1 and S2. T2, calculated for a whole range of ε-values is shown
in (d). An edge detection algorithm is used to convert T2 to the 1D signal in (e)
which is used to detect S3 (marked as arrows by the detection algorithm).



5
Assessing and Classifying Systolic

Murmurs

“The first lesson a watcher learns is to separate truth from illusion.
Because in the world of magics, it’s the hardest thing to do.”

Angel (1999)

The main purpose of this chapter is to investigate whether information derived
from a reconstructed state space can be used to assess and classify heart murmurs.
Aortic stenosis (AS) will be investigated in section 5.1, mitral insufficiency (MI) will
be investigated in section 5.2 and an attempt to classify innocent murmurs, murmurs
caused by AS and murmurs caused by MI will be investigated in section 5.3.

Vibrations can be described by different time representations such as displacement
(m), velocity (m/s) and acceleration (m/s2). These classic PCG representations
basically contain the same information, but for visual interpretation or time signal
processing, they reveal different vibratory patterns [36]. Plotting these representa-
tions against each other, a reconstructed state space expressed in derivative coor-
dinates is obtained, see figure 5.1. By observing the cardiohemic system via the
PCG signal, the reconstructed state space is an attempt to recreate the dynamics
of the flow (compare with figure 3.9). In this chapter, information extracted from
the reconstructed state space will be investigated for murmur characterization.

5.1 Assessing and classifying systolic ejection mur-

murs

If the aortic or pulmonary valves become narrowed or constricted (stenotic), blood
has to be forced through the valve opening. The arising turbulent blood flow causes
vibrations in the cardiac structure which are perceived as murmurs. The murmur
peaks in mid-systole at the time of maximal ejection and produces a crescendo-
decrescendo shape in the PCG signal. As outlined in chapter 2, the severity of the
stenosis influences the shape of the murmur, where the intensity will increase and the
peak will occur later in systole as the stenosis becomes more severe. Since a boost
from the atrium might be necessary to help build up the pressure in the ventricle,
a fourth heart sound may be present. An ejection click may occur if the valves are
brought to an abrupt halt instead of opening completely when moving from their
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Fig. 5.1: Example of an embedded PCG signal. The heart sounds are encircling the
more complex murmur.

closed position in diastole to their open position in systole. The appearances of
murmurs caused by various degrees of AS are illustrated in figure 5.2.

0 500

−0.5

0

0.5

(a)

A
m

pl
itu

de
 (

V
)

Time (ms)
0 500

−0.1

0

0.1

(b)

A
m

pl
itu

de
 (

V
)

Time (ms)
0 500

−0.5

0

0.5

(c)

A
m

pl
itu

de
 (

V
)

Time (ms)
0 500

−0.4

−0.2

0

0.2

(d)

A
m

pl
itu

de
 (

V
)

Time (ms)
(e)

F
re

qu
en

cy
 (

H
z)

Time (ms)
0 500

0

200

400

600

(f)

F
re

qu
en

cy
 (

H
z)

Time (ms)
0 500

0

200

400

600

(g)

F
re

qu
en

cy
 (

H
z)

Time (ms)
0 500

0

200

400

600

(h)

F
re

qu
en

cy
 (

H
z)

Time (ms)
0 500

0

200

400

600

Fig. 5.2: PCG signals with different degrees of aortic stenosis (group A1, A2, B1
and B2 in data set II with aortic flow velocities 1.55 m/s, 1.85 m/s, 3.2 m/s and 4.4
m/s in (a)–(d), respectively). Corresponding joint time-frequency representations are
illustrated in (e)–(h). The grouping of data set II was defined on page 8. Note how
difficult it is to distinguish murmurs in group A2 from murmurs in group B1.

In pulmonic stenosis, a splitting in S2 is caused by increased capacitance in the
dilated pulmonary trunk. In severe stenosis, S2 is widely split but difficult to hear
since the pulmonary component is faint and the aortic component is obscured by
the murmur. The degree of stenosis correlates well with the width of S2 [166]. The
degree of pulmonarypulmonic stenosis also correlates significantly with both the
time interval from the cardiac electrical polarization to the ejection click and the
location of peak amplitude of the systolic murmur [166].
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In AS, there will be a paradoxical splitting of S2 that increases with expiration. If the
stenosis is severe the aortic component is attenuated or even missing. Unfortunately,
the width of the split is not significantly correlated with AS severity, and neither
are variations in the peak amplitude of the murmur nor the timing of the ejection
click [166].

The remainder of this section will deal with alternative methods to assess AS sever-
ity based on the PCG. Valvular disease is common in elderly humans. Mild sclerotic
thickening of the aortic valves affect 25% of adults above 65 years, and the condi-
tion causes AS in 2% [167]. The clinical standard for diagnosing and quantifying
AS severity is echocardiography, but it is often during auscultation that the disease
is initially detected. Distinguishing heart murmurs caused by mild AS from inno-
cent murmurs is a diagnostic challenge, and current murmur assessments as well as
echocardiographic evaluations are sometimes inconclusive in these patients. Finding
a simple and cost effective tool to find these patients during auscultation would thus
be very valuable.

PCG based assessment of AS severity has previously been based on timing and fre-
quency properties of the heart sounds and of the murmur. Classic time domain sig-
natures include duration of the murmur, the timing of peak intensity of the systolic
murmur and splitting of the second heart sound. However, according to Gamboa
et al. [166], these are not convincing parameters. Spectral properties seem more
reliable, and there is an established relationship between the murmur’s frequency
content and the severity of the stenosis [57]. For instance, the dominant frequency
of the murmur has been related to the jet velocity distal to the stenosis [168], the
percentage of higher frequencies has been related to transvalvular pressure differ-
ences [51] and a recent method, exploiting properties from joint time-frequency
analysis, have found good correlations between the duration of higher frequency
components and the peak pressure gradient [169]. In this section, properties going
beyond linear approaches will be investigated. The 27 boxer dogs from data set
II will be used for evaluation, and reported results are compiled from paper II as
well as from references [4] and [2]. The statistical tests have been slightly changed
compared to the original articles.

The features to be investigated are listed below. The cited references indicate where
the feature was originally introduced for AS assessment.

1. Dominant frequency [168].

2. Duration of the murmur with frequency components above 200 Hz [169].

3. Murmur energy ratio [51].

4. Correlation dimension [2].

5. Sample entropy (paper II).

6. RQA – Recurrence rate [4].

7. RQA – Determinism [4].

8. RQA – Mean diagonal line length [4].

9. RQA – Max diagonal line length [4].

10. RQA – Entropy [4].
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11. RQA – Laminarity [4].

12. RQA – Trapping time [4].

13. RQA – Max vertical line length [4].

5.1.1 Pre-processing

The PCG signals in data set II were segmented into S1, systole and S2 using ECG-
gated Shannon energy. The local maxima of the PCG signal’s envelope within
pre-defined time windows were determined as S1 and S2, and the first local minima
before and after S1 and S2 were used to determine the boundaries of the heart
sounds. The region of interest in this study, focusing on the systolic period, was
defined as the start of S1 to the end of S2. All time instances were checked manually
and erroneous heart cycles were removed to avoid timing errors at this stage.

Each heart cycle was normalized by its maximum amplitude value. The systolic part
of the heart cycle, defined as the period ranging from the end of S1 to the beginning of
S2, was used in the calculations. Since the discerning information for AS assessment
is located in the frequency region above 100 Hz [51], a 5th order Butterworth high-
pass filter with a cut-off frequency of 50 Hz was used to emphasize these parts
of the signal. The excessive pass-band was chosen to make sure that no valuable
information was removed. To reduce computational complexity, the recorded signals
were downsampled to 4.4 kHz. The filtering was performed by zero-phase digital
filters, processing the input data in both the forward and reverse directions.

5.1.2 Frequency based features

The large pressure difference across a severely stenotic aortic valve is associated
with high frequency murmurs. Conversely, a mild stenosis produces murmurs with
lower frequency content [168]. These clinical insights have been formalized in several
methods trying to assess the severity of AS using the PCG [51,168–170]. Based on
joint time-frequency analysis, Donnerstein [168] defined the dominant frequency of
the murmur as the highest frequency found during systole, see figure 5.3. The time-
frequency plane is thresholded at −25 dB of the sound intensity level, a level at which
murmurs are no longer considered to be present [170]. Increased AS severity not
only causes murmurs to contain a greater portion of higher frequency components, it
also prolongs the duration that the ensuing flow produces high frequency murmurs
[169]. Another measure of AS severity is consequently the duration for which the
murmur has a frequency content above a certain threshold frequency, see figure
5.3. According to Tavel et al. [170], the best separation between innocent and
pathological murmurs is provided by the duration that the murmur has a frequency
content exceeding 200 Hz. In this section, the joint time-frequency analysis was
performed by the S-transform, which was defined in section 3.6.1.

A third measure is the murmur energy ratio [51] which is defined as the energy
between 100 − 500 Hz (E2) divided by the energy between 20 − 500 Hz (E1+E2),
see figure 5.4 for further details. As the higher frequency content increases with the
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Fig. 5.3: Joint time-frequency representation of heart sounds and a murmur in a dog
with mild AS (allocated to subgroup B1). The standard PCG signal is superimposed,
showing the first heart sound (S1), the murmur, and the second heart sound (S2).
The gray scale represents adjusted (normalized) sound intensity. In the right-hand
subplot, the same joint time-frequency representation has been thresholded. The
dominant frequency and the duration of systolic frequencies exceeding 200 Hz are
marked. Figure based on Höglund et al. [2].

severity of the stenosis, the murmur energy ratio will produce a higher value. In this
section, the power spectral density estimate was calculated with Welch’s method,
see section 3.1. Basically, the murmur energy ratio is similar to measuring the slope
of the spectrum. As outlined in chapter 3, this slope is related to the Hurst exponent
and thus also to the signal’s waveform fractal dimension. Fractal dimensions and
other nonlinear measures will be treated more thoroughly in the next section.

Fig. 5.4: Heart sounds and a murmur in a dog with moderate AS (allocated to sub-
group B2 in data set II), together with a window function centered in systole (a).
The windowed signal is illustrated in (b). The mean systolic murmur energy is shown
in (c), separated into a lower frequency band E1 (20–100 Hz) and a higher frequency
band E2 (100–500 Hz). The murmur energy ratio is defined as E2/(E1+E2).

The three frequency based variables were automatically calculated for each heart
cycle and averaged over available heart cycles, providing a single mean value per
dog. Figure 5.5 presents notched box and whisker plots for the three frequency
parameters, plotted as four groups of increasing AS severity (the grouping is defined
on page 8). Clearly, there is a trend in all frequency based parameters with higher
values for increased AS severity. Using Cuzick’s non-parametric test for ordered
groups, the significance of this trend can be statistically quantified. There are
k groups with sample sizes ni, i = 1, 2, . . . , k and a total amount of N =

∑
ni

observations. Here, k = 4. Each group is given a score li according to their relative
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order. A1, A2, B1 and B2 could be given the scores 1–4, respectively. The outcome
from the signal processing algorithms, say the dominant frequency, should then be
ranked from 1 to N . The outline of Cuzick’s test is then given by equations 5.1–5.5,
where L is the weighted sum of the group scores, T is a statistic and Ri is the
sum of the ranks in each group. Under the null hypothesis of equal medians, the
expected value of T is E(T ) and its standard error is given in equation 5.4. The final
test statistic is then given by z, which is approximately normally distributed why a
corresponding p-value for z may be found in a table over normal distributions with
two-tailed areas. Using Cuzick’s test, significant trends (p < 0.05) were found for the
duration above 200 Hz, see table 5.1. Since the murmur energy ratio did not show
a significant relation with the ordered groups, this parameter was excluded from
further studies. Based on the nonparametric Mann-Whitney U-test with Bonferroni
adjustment (p ≤ 0.01), differences between the subgroups were analyzed in a pair-
wise manner. The dominant frequency was able to distinguish A2 from B1–B2 and
the duration of the murmur above 200 Hz could distinguish between groups B2 and
A1–A2.

L =

k∑

i=1

lini (5.1)

T =
k∑

i=1

liRi (5.2)

E(T ) =
1

2
(N + 1)L (5.3)

std error(T ) =

√
√
√
√n+ 1

12

(

N
k∑

i=1

l2i ni − L2

)

(5.4)

z =
T −E(T )

std error(T )
(5.5)
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Fig. 5.5: Box and whisker plots with the dominant frequency (a), the duration above
200 Hz (b) and the murmur energy ratio (c) on the y-axes and one box for each group
of the murmur on the x-axis. The boxes have lines at the lower quartile, median
and upper quartile values, and the notches illustrate the 95% significance level. The
whiskers show the extent of the rest of the data and crosses (+) indicate outliers.

It should be noted that AS severity is not a discrete variable but a continuous entity,
and dogs with similar obstructions might end up in different groups. For example,
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Table 5.1: Regression equations and R-values for all investigated AS assessment al-
gorithms. Also included in the table are p-values obtained from Cuzick’s test for
ordered groups.

Parameter Regression equation R-value p-value

1 Dominant frequency 94.2Vmax + 40.6 0.58 0.02
2 Duration (200 Hz) 22.83e0.34Vmax 0.63 0.001
3 Murmur energy ratio 0.03Vmax + 0.05 0.41 0.11
4 Correlation dimension 1.35 log(1.28Vmax) + 1.76 0.69 < 0.001
5 Sample entropy 0.45 log(0.74Vmax) + 1.29 0.70 < 0.001
6 Recurrence rate 1/(Vmax + 31.4) − 0.03 0.56 < 0.001
7 Determinism 0.004 log(0.6Vmax) + 0.97 0.09 0.16
8 Mean diagonal line −0.18Vmax + 36.05 0.02 0.53
9 Max diagonal line −109.5Vmax + 1802 0.41 0.07

10 Entropy 0.03Vmax + 0.21 0.42 0.02
11 Laminarity −0.01Vmax + 1.01 0.36 0.15
12 Trapping time 1/(Vmax − 1.29) + 6.97 0.44 < 0.001
13 Max vertical line −4.16Vmax + 39.9 0.51 0.001

a dog with a maximum aortic flow velocity of Vmax = 3.1 m/s belongs to group B1
while a dog with Vmax = 3.3 m/s belongs to group B2. It is thus not surprising that
the groups are somewhat overlapping. As an alternative to dividing the dogs into
groups, the whole material can be investigated as a function of Vmax. In agreement
with the original papers [51, 168], the dominant frequency and the murmur energy
ratio were assessed with linear regression (using a first order polynomial) while the
duration above 200 Hz was assessed with exponential regression. The obtained R-
values were 0.58, 0.63 and 0.41 for the dominant frequency, the murmur duration
and the murmur energy ratio, respectively. See table 5.1 for details and figure 5.6
for illustrations of the regression lines.
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Fig. 5.6: Dominant frequency (a), duration of frequencies above 200 Hz (b) and
murmur energy ratio (c) plotted against the aortic flow velocity Vmax for each dog.
The lines illustrate the regression curves calculated for the whole material, and the
different markers indicate the four subgroups A1 (◦), A2 (∗), B1 (�) and B2 (⋄).

The obtained R-values for the frequency based AS assessment methods are gener-
ally lower than what was reported in the original papers [51, 168, 169]. Plausible
explanations for these sometimes large differences could be the amount of noise in
the data or the differences in canine and human anatomy and etiology. Another
reason could be the use of different reference methods, aortic jet velocity compared
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to transvalvular pressure gradients. However, they both reflect the same physio-
logical phenomenon. Doppler ultrasound measurements of peak aortic flow velocity
have also been shown to give excellent correlation with invasive measurements in
dogs [171] and are considered appropriate for diagnosis and assessment of AS in
humans [172]. In the case of duration of higher frequency components, it is ques-
tionable whether the exponential model suggested by Kim et al. [169] is a good
choice when applied to the data in this study. Using a first order polynomial gave
an R-value of 0.69 compared to 0.63 for the exponential model. Finally, a few modi-
fications were made to the previously defined methods. In the murmur energy ratio,
the periodogram was replaced by Welch’s power spectral density estimate and in
the duration of the high frequency content, the spectrogram was replaced with the
S-transform to improve the time resolution. Both these modifications are however
improvements compared to the original works.

5.1.3 Nonlinear features

Based on Landau’s theory of turbulence [61], fluid flow develops increasing numbers
of Fourier modes as the flow velocity increases. At first a few modes dominate, but
with stronger forcing the modes become power-law distributed, producing a broad
spectrum of eddies at multiple scales. Landau’s theory can be used to motivate
the spectral measures for AS assessment. As the stenosis become more severe, the
flow velocity will increase and so will the amount of Fourier modes. Smaller sized
eddies will give rise to higher frequency vibrations, and these are quantified by the
spectral based methods mentioned above. An alternative account for the onset of
turbulence, the Ruelle-Takens-Newhouse model [173], suggests that turbulence can
be described by strange attractors in state space. Strange attractors are commonly
characterized by their Lyapunov spectrum, fractal dimension or entropy, and such
analysis tools will be investigated in the upcoming sections.

Surrogate data analysis was used to test the adequacy of applying nonlinear tech-
niques. 500 surrogate data sets were created from each murmur data set by random-
izing the phases of the original signal’s Fourier spectrum [103]. A test statistic for
higher order moments [103] was applied and the result from the original data were
compared to the result from the surrogate data using a two-tailed Mann-Whitney
U-test (p < 0.05). This analysis showed that the PCG signals could be assumed
nonlinear in 24 out of 27 dogs.

Correlation dimension
It has been suggested that the multiscale structure associated with turbulence in
fluids can be described by fractals [174] and that there is a strong interaction between
the turbulence and its radiated sound field [175]. It is thus reasonable to assume that
the flow behavior causing the murmur can be characterized by the fractal dimension
as measured from the PCG signal. Here the correlation dimension D2, as defined
in section 3.4.2, was used to estimate the fractal dimension. An example obtained
from one dog with mild AS is illustrated in figure 5.7, where D2 was calculated using
a time delay τ = 3.3 ms and increasing embedding dimensions (d = 1 . . . 15). There
is a clearly defined scaling region ranging from 0.03 − 0.1 wherein the correlation

132



5.1. ASSESSING AND CLASSIFYING SYSTOLIC EJECTION MURMURS

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

ε

d
lo

g
C

(
ε
)

d
lo

g
ε

D
2
=3.66

Fig. 5.7: The correlation dimension for one dog from group B1 calculated for embed-
ding dimensions d = 1, . . . , 15. Note the scaling region from ε = 0.03 − 0.1.

dimension can be determined as D2 = 3.66.

Determining the correlation dimension in this way requires some manual meddling
before a value of the dimension is obtained. Takens’ estimator T2(ε), defined in
equation 3.51, partially resolves the problem by choosing the scaling range semi-
automatically. In this section, T2(ε) was calculated using ε = 0.13 as an upper
limit of the scaling range, d = 5 as the embedding dimension (estimated with Cao’s
method [102]) and τ = 3.3 ms as the time delay (estimated with average mutual
information [100]). The effect of temporal correlations were reduced by omitting
samples that were temporally located less than 1.8 ms apart. The obtained T2(ε)-
value was then used as a measure of AS severity.

All available murmur segments were concatenated into one large set of murmur data
for each dog to obtain data sequences of long duration (thereby providing a single
value of the signal’s fractal dimension per dog). This is important to facilitate the
estimation of the correlation sum C(ε), which requires stationary data of long dura-
tion and with high signal to noise ratio. A problem with the correlation dimension
measure is that the PCG signal is inherently nonstationary. However, to obtain a
“more” stationary signal, only the systolic segments were considered in the analysis.
Further, a high pass filter at 50 Hz was applied to remove long range correlations
and to emphasize interesting signal properties. It should be noted that high pass
filtering the data is similar to bleaching, a processing step that has been advised
against when it comes to nonlinear or chaotic data analysis [176].

Figure 5.8 presents a notched box and whisker plot for the correlation dimension as
determined by Takens’ estimator. Based on the Mann-Whitney U-test with Bonfer-
roni adjustment (p < 0.01), significant differences were found between subgroup B2
and A1–A2. As the obstruction becomes more severe, more complex flow conditions
will appear, causing a sound signal with higher fractal dimension. The relation-
ship between the correlation dimension and Vmax, modeled with a logarithmic fit, is
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presented in figure 5.8. The regression line was defined according to table 5.1, and
resulted in an R statistic of 0.69. The logarithmic model was chosen in accordance
with the turbulence hypothesis. At the onset of turbulence, larger vortices transfer
their energy to faster but smaller sized vortices. With increasing flow velocity, ever
smaller vortices of ever higher velocities are created until they finally turn into heat
by dissipation. The large vortices that are dominant at low flow velocities cause low
frequency vibrations that are transmitted to the chest surface. With increasing flow
velocities (more severe stenoses), higher frequency vibrations are introduced. These
vibrations are also transmitted to the chest surface, but they contain less energy
to start with and are further dampened by the tissue. It is thus conceivable that a
measure reflecting the amount of turbulence, estimated through the recorded sound
signal, will saturate similarly to a logarithmic model.
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Fig. 5.8: Box and whisker plot with the correlation dimension versus AS severity (a).
In (b), the correlation dimension is plotted against the aortic flow velocity Vmax for
each dog. The line illustrates a logarithmic regression curve, R = 0.69, as calculated
for the whole material. The different markers indicate the four subgroups A1 (◦), A2
(∗), B1 (�) and B2 (⋄). See figure 5.5 for further explanations.

Among eleven dogs with significant AS (group B), seven dogs had subvalvular lesions
and four had valvular changes. Because there was no difference in aortic flow velocity
between these dogs, disease severity was considered similar. When comparing the
murmur characteristics of the two groups, the correlation dimension was found to be
significantly higher in dogs with subvalvular AS. The small sample size should give
rise to caution when interpreting these results. However, from a fluid dynamic point
of view, subvalvular AS is likely to cause more complex flow patterns than valvular
AS. Because subvalvular stenoses are often asymmetric, dynamically changing jets
adhere to one or several of the leaflets, causing interactions between the flow and
several anatomic structures. If the correlation dimension is able to reflect these
differences, it is a very interesting observation. However, a thorough investigation
of this finding requires a controlled in vitro investigation, which is out of the scope
of this thesis.

The greatest problems when using chaos based signal analysis tools are that the
results are almost always open for interpretation, that nearly noise free data is
required and that the amount of data should be large. PCG data is rather cyclo-
stationary than nonstationary, so by concatenating stationary segments, large data
sets can be obtained. In this thesis, these segments were simply concatenated in
the time domain. A better approach would have been to append the reconstructed
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state space matrices to each other. An extra flag could then be appended to each
coordinate to keep track of the last coordinate in each segment. In this way, false
neighbors due to the concatenation procedure could have been excluded from the
calculations.

Sample entropy
Estimation of the correlation dimension requires long data sets with very high sig-
nal to noise ratio [94]. In fact, convergence of the correlation dimension does not
necessarily imply chaos, but may instead be a result of an insufficient amount of
data. Sample entropy (SampEn) was originally introduced as an unbiased measure
of regularity, or complexity, applicable to finite and noisy data sets [93]. Since its
introduction, SampEn has successfully been used to classify various biological data
such as heart rate variability signals [93,177] and EEG signals [178]. In the original
definition of SampEn, see equation 3.59 on page 67, the time delay was set to τ = 1.
However, according to dynamical systems theory, this choice is not optimal due to
strong time correlations between successive samples. Therefore, a modified version
of SampEn [177]) was developed to investigate AS severity. In paper II, auto mutual
information was used to determine the time delay compared to the auto correlation
function which was used by Govindan et al. [177]. This provides a novel approach
to determine SampEn.

The embedding dimension was set to d = 2 when calculating SampEn. This value
is too low to unfold the attractor properly, but the limited amount of data does
not allow a higher embedding dimension. In fact, Cao’s method suggests that an
embedding dimension of d = 5 is necessary to unfold the attractor properly. It
requires a large amount of data to sample such a reconstructed state space dense
enough, more data than is available in data set II. To avoid problems (such as
false convergence of the correlation dimension and underestimated entropy values)
that may arise when the state space is insufficiently covered, a lower embedding
dimension was chosen in paper II. Even though d = 2 is not enough, such a choice is
still useful since entropy measures converge with fewer data points while still being
able to quantify changes in system dynamics for lower d-values [179]. Based on the
results in this thesis, it is not possible to claim that the PCG signal stems from a
low-dimensional deterministic system or that SampEn represents “true” entropy,
but the results do show that SampEn is a parameter able to classify physiological
murmurs from murmurs caused by mild AS.

Figure 5.9 presents a notched box and whisker plot for SampEn. Based on the
Mann-Whitney U-test (p < 0.01), significant differences were found between group
B1 and A1–A2 and between B2 and A1–A2. The significant difference between
subgroup B1 (those with mild AS) and A1–A2 is clinically very interesting. Dogs
in group B1 has auscultated murmur grades of II to IV, whereas murmur grades
in subgroups A1 and A2 were of either grade I or II. This overlap between the
auscultatory results means that in dogs with a grade II murmur, it is not possible
to determine the cause of the murmur via auscultation alone [180]. Sample entropy
is thus able to distinguish murmurs which are indistinguishable with auscultation.
This result is however based on a small number of dogs, and more data is necessary
to draw relevant conclusions.
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The relationship between SampEn and Vmax, modeled with a logarithmic1 fit, is
presented in figure 5.9. The regression line was defined according to table 5.1, and
resulted in an R statistic of 0.70.

A1 A2 B1 B2

1

1.2

1.4

1.6

1.8
S

am
pl

e 
en

tr
op

y

(a)

0 2 4 6
0.5

1

1.5

2

V
max

 (m/s)

S
am

pE
n

(b)

Fig. 5.9: Box and whisker plot with sample entropy versus AS severity (a). In (b),
sample entropy is plotted against the aortic flow velocity Vmax for each dog. The
line illustrates a logarithmic regression curve, R = 0.70, as calculated for the whole
material. The different markers indicate the four subgroups A1 (◦), A2 (∗), B1 (�)
and B2 (⋄). See figure 5.5 for further explanations. Part of the figure is from paper
II.

The same issues that affected the correlation dimension, described in the last sec-
tion, also apply to SampEn. The main difference between the methods is that ε
and d are fixed when calculating the correlation sum in SampEn. It is important
to realize that SampEn is an approximation of entropy which might not coincide
with actual entropy. It is however able to distinguish data stemming from different
dynamical conditions. When calculating the correlation dimension or when trying to
estimate the true entropy of a system, using high pass filters to preprocess the data
might not be very suitable. However, when using SampEn to differentiate between
different time series, it has been indicated that bleaching the data may improve the
classification performance [177].

Nonstationarities in PCG signals arise as an effect of pulsatile blood flow. In the
presence of a stenotic aortic valve, the systolic part of the signal becomes increasingly
more nonstationary with the severity of the stenosis. Both the amplitude and the
amount of higher frequencies increase in mid systole, and as a consequence, the PCG
signal becomes more complex. Under the present circumstances, this nonstationarity
will actually contribute to SampEn in a favorable manner.

Recurrence quantification analysis
Recurrence plots facilitate visualization of high dimensional spaces, see section 3.6.2.
Since recurrence plots can be used on rather short, both linear and nonlinear, non-
stationary time series [121], they are appropriate tools for analyzing PCG signals.

In agreement with the original reference [4], the data were downsampled to 14.7
kHz instead of the 4.4 kHz used in the other AS assessment methods presented in
this chapter. To get quantifiable measures of AS severity, recurrence quantifica-
tion analysis (RQA) was applied to the systolic period of each heart cycle in each

1A logarithmic fit was chosen for the same reasons as it was chosen in the correlation dimension
case.
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dog. The obtained RQA values were then averaged for all heart cycles within each
recording, resulting in eight feature values per dog (recurrence rate, determinism,
mean diagonal line length, maximum diagonal line length, entropy, laminarity, trap-
ping time and maximum vertical line length). Four parameters showed significant
relations with the four subgroups according to Cuzick’s test (p < 0.05), see table
5.1. Of these four features, three showed significant changes between some of the
subgroups according to the Mann-Whitney U-test test after Bonferroni adjustment.
Recurrence rate was significantly different between group A1 and B1–B2 as well as
between A2 and B1–B2, trapping time between group A1 and B1–B2 and between
A2 and B2 and finally maximum vertical line length between A1 and B2. Figure
5.10 provides box and whisker plots for the eight RQA parameters.
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Fig. 5.10: Box and whisker plots of the eight parameters obtained via recurrence quan-
tification analysis versus the severity of AS. See figure 5.5 for further explanations.
Figure from Ahlstrom et al. [4].

The four parameters that showed significant relations with the four subgroups ac-
cording to Cuzick’s test might be interpreted as follows. The recurrence rate cor-
responds to the probability that a specific state will recur, and as the turbulence
increases, the probability of recurring states decreases. This is in agreement with
figure 5.10a. Entropy reflects the complexity of the deterministic structure in the
system. As the turbulence increases, the complexity of the signal increases, see
figure 5.10e. Trapping time is related with the laminarity time of the system, i.e.
how long the system remains in a specific state. This measure should decrease with
increasing turbulence, as in figure 5.10g. The maximal vertical line length represents
the longest segment which remains in the same phase space region over some time.
This kind of structure in state space will also decrease with increasing turbulence,
in agreement with figure 5.10h.

Most of the RQA features seem to have an on/off property, where physiological
murmurs (group A) are separated from pathological murmurs (group B). Due to this
property, RQA is not a very good tool for assessing the severity of AS. Regression
statistics relating the RQA parameters with aortic flow velocity are nevertheless
reported in table 5.1 and in figure 5.11. The clinically interesting task of separating
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physiological murmurs from pathological murmurs will be further investigated in the
next section.
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Fig. 5.11: Recurrence quantification analysis parameters plotted against the aortic
flow velocity Vmax for each dog. The lines illustrate the regression curves, see table
5.1 for details. The different markers indicate the four subgroups A1 (◦), A2 (∗), B1
(�) and B2 (⋄).

5.1.4 Classifying AS from physiological murmurs

The task of differentiating physiological murmurs from murmurs caused by AS can
be approached with the same techniques as the AS assessment tools presented in
section 5.1. The main difference is that two groups are to be distinguished from each
other rather than trying to assign a continuous value as a measure of AS severity. In
data set II, group A contains murmurs from physiologically insignificant obstructions
while group B contains murmurs recorded from subjects with pathological lesions.
Successful separation between the two groups has great clinical significance. By
separating physiological murmurs from pathological murmurs, only a certain amount
of the patients has to be referred to the cardiology clinic. This would not only save
money, but it would also alleviate patients from needless anxiety.

Discrimination abilities of individual features
The probability that the two groups, A and B, comes from distributions with differ-
ent medians was calculated for each feature by the Mann-Whitney U-test (p < 0.05).
Results are reported in table 5.2, along with ranges for the feature values separated
as group A and group B. Significant differences between the groups, with 95% confi-
dence, were found for all features but the murmur energy ratio, determinism, mean
diagonal line length and laminarity. Receiver operating characteristic (ROC) curves
were also calculated for each feature, figure 5.12, and the area under the ROC curve
(AUC) is presented in table 5.2.

Since the main application for an AS classification device is screening, the threshold
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Table 5.2: Range, significance values (Mann-Whitney U-test), area under ROC curve
(AUC), sensitivity (%) and specificity (%) for the thirteen parameters when used to
distinguish group A from group B in data set II. Results reported as (–) indicates
that a negative predictive value of 100% was never achieved.

Parameter Range (A) Range (B) p-value AUC Sens Spec

Dominant frequency (Hz) 85–343 167–878 < 0.001 0.84 100 50
Duration (200 Hz) (ms) 0–98 20–145 < 0.001 0.86 100 44
Murmur energy ratio 0.05–0.21 0.06–0.46 0.09 0.71 100 25
Correlation dimension 1.70–3.78 2.94–4.71 < 0.001 0.93 100 50
Sample entropy 0.96–1.65 1.54–1.95 < 0.001 0.96 100 56
RQA: Recurrence rate 0.003–0.011 0.001–0.003 < 0.001 0.98 100 88
RQA: Determinism 0.933–0.987 0.908–0.986 0.09 0.70 – –
RQA: Mean diag line 23.0–63.1 22.3–51.7 0.54 0.58 – –
RQA: Max diag line 1238–2014 776–1988 0.05 0.72 100 6
RQA: Entropy 0.16–0.47 0.23–0.52 0.02 0.78 100 50
RQA: Laminarity 0.973–0.997 0.814–0.998 0.13 0.68 – –
RQA: Trapping time 6.3–18.1 5.1–8.3 < 0.001 0.93 100 63
RQA: Max vert line 17.4–60.3 13.8–29.6 < 0.001 0.87 100 63

for distinguishing group A from group B was chosen to obtain an optimal negative
predictive value. The sensitivity and the specificity of the different features, calcu-
lated to give a negative predictive value of 100%, are presented in table 5.2. Based
on these results, the best features for classifying AS are the dominant frequency, the
duration above 200 Hz, the correlation dimension, the sample entropy, the recur-
rence rate, entropy, trapping time and the maximum vertical line length. In the next
section, combinations of several of these features will be used in the classification
process.

Fig. 5.12: Receiver operating characteristic curves for all features. MER is the mur-
mur energy ratio and Duration is the duration for which the murmur exceeds 200
Hz.

Multi-feature discrimination
A simple ranking of each feature’s classification efficiency was obtained based on p-
values from Mann-Whitney U-test. Inserting these features in a linear discriminant
classifier and evaluating the results with a leave-one-out approach, a feature set with
five features (recurrence rate, sample entropy, trapping time, correlation dimension
and the duration above 200 Hz) gave the highest amount of correct detections, see
figure 5.13. This feature set is, however, far from optimal since some of the features
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are mutually correlated. A solution to this problem could have been to select the
second feature as a weighted sum of its ranking and its correlation with the first
feature. Additional features could then have been added in a generalized manner.

The classification rate obtained with an optimal feature set was also investigated,
see figure 5.13. The optimal set was found with brute-force, where all possible
combinations of features were evaluated. Already with two features, the optimal
feature set outperformed the best feature ranking set. With four features, perfect
classification results were obtained. However, when more features were added to
the feature set, the performance of the classifier started to decrease. The reason is
that many different solutions are consistent with the training examples, but disagree
on unseen data (overfitting). An example of the optimal three dimensional feature
space, constructed with the parameters sample entropy, duration above 200 Hz and
recurrence rate, is illustrated in figure 5.14.
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Fig. 5.13: The percentage of correct detections as a function of the number of features
used to classify physiological murmurs from murmurs caused by aortic stenosis.

This section highlights the importance of proper features and appropriate feature
selection. For comparison, Bhatikar et al. [181] uses 252 features and a nonlinear
classifier to achieve a sensitivity of 93% and a specificity of 90% when classifying
innocent murmurs from murmurs caused by ventricular septal defect. Here, the
optimal feature set gave better performance on a similar problem by use of a plain
linear classifier and a small amount of features.

5.1.5 Additional comments

The results obtained in this section on AS assessment were derived using all available
data in data set II, and should be cross validated accordingly. Another limitation
is that subjects with significant AS and left-sided congestive heart failure have a
diminished and sometimes undetectable murmur. This important patient group is
not represented in the data used for this study. Both these issues are currently under
investigation by our research group, where a larger data set recorded from human
patients is to be used.

All presented variables are invariant features of the murmur signal. However, mur-
murs stem from turbulent blood flow, which varies in time as a result of the pulsatile
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Fig. 5.14: Example of a three dimensional feature space spanned by the duration
above 200 Hz, SampEn and recurrence rate. The squares represent group A and the
circles represent group B.

flow. Tracking changes in various properties such as maximum and mean frequency
over time would provide additional information about the characteristic features
and the underlying dynamics of the murmur. Such time-variable properties would
probably be better suited for detecting subtle pathologic changes in anatomic struc-
tures; however, such time-variable features would be considerably more complicated
to interpret, both for the physician and in an automated computer analysis.

It should be noted that the requirements on a PCG classification system differ de-
pending on the age group or population under investigation. For example, different
age groups lead to the following scenarios:

1. Screening in a young population. Physiological murmurs are very common in
children, and a method able to separate physiological murmurs from patholog-
ical murmurs would be of great value. However, the performance requirements
are extremely high. For example, a physiological murmur has to be separated
from a very mild murmur caused by AS due to the latter’s implications on
choice of profession, insurance issues and whether follow-ups of a possible dis-
ease are needed or not. Due to the consequences of an incorrect diagnosis, the
tolerance for false positives and negatives is low and the performance require-
ments on the system are huge.

2. Measuring the degree of stenosis in the elderly. Pathological changes in the
aortic valves are common in the elderly. Usually this change has little physio-
logical importance when the stenosis is mild. However, it is important to find
those patients who really have a significant narrowing of the valve opening
since surgical correction may improve the prognosis considerably. The classi-
fication task is then to measure the degree of the stenosis and decide whether
the stenosis is mild or moderate to severe. This scenario is easier so solve since
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the grey area between a physiological murmur and a mild stenosis is out of
interest.

5.2 Assessing and classifying regurgitant systolic

murmurs

Regurgitant flow through the mitral or tricuspid valves causes a murmur that typi-
cally begins with atrioventricular valve closure and continues till semilunar valve clo-
sure. Because the pressure gradient between ventricle and atrium is large throughout
systole, the murmur tends to have a constant intensity throughout systole (holosys-
tolic). The appearance of a murmur caused by an insufficient mitral valve is illus-
trated in figure 5.15.
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Fig. 5.15: PCG signals with different degrees of mitral insufficiency (normal (N),
mild MI (M1), moderate MI (M2) and severe MI (M3) in (a)–(d), respectively).
Corresponding joint time-frequency representations are illustrated in (e)–(h).

The mitral valve apparatus consists of five different structures; mitral annulus,
leaflets, chordae tendineae, papillary muscles and the free wall of the left ventri-
cle. Malfunction in any of these may result in MI. Murmurs caused by MI begin
with systole and continues as long as the left ventricular pressure exceeds that of
the enlarged left atrium. The murmur often engulfs the aortic component of S2 but
stops before the pulmonary component. In acute MI the murmur might even be
diamond-shaped, loud (grade IV or more) and does not necessarily extend to the
end of systole. Since the valve closure is incomplete, blood is leaving the ventricle
through both the aorta and the left atrium. This causes a decrease in the rate of
rise of the ventricular pressure which weakens the intensity of S1. The presence of
an S3 suggests that the incompetence is significant, although it does not necessarily
imply systolic dysfunction or elevated filling pressure as it usually does.
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In tricuspid insufficiency, the holosystolic murmur increases with inspiration. Unlike
MI the murmur of tricuspid insufficiency engulfs the pulmonary component of S2.
In mild cases, S4 may be present.

The remainder of this section, which is based on results from paper III, will deal with
signal analysis methods attempting to assess MI severity. The 77 dogs from data
set III, see page 9 for details, were used for evaluation. The outline of this section
deviates somewhat from paper III as only the echocardiographic findings are used
as a reference for disease severity (in paper III, auscultation results were also used
as a reference). The dogs were classified as normal (N) if no signs of anatomical- or
functional cardiac pathology could be found. Estimation of MI severity was based
on the obtained echocardiographic information into mild (M1), moderate (M2) and
severe (M3). Another difference is that only the LA/Ao-ratio was used as a reference
in paper III while also the LVID-parameters are included here.

Previous studies have shown that the progression of mitral regurgitation is associated
with certain characteristic changes in the PCG signal. The murmur increases in
duration from early or late systolic to holosystolic, the amplitude of the murmur
increases, the duration of systole decreases regardless of heart rate, and there is a
shift in the amplitude ratio between S1 and S2 [26, 182, 183]. Previous attempts to
use signal analysis techniques to investigate MI have mainly focused on classification
between physiological and pathological murmurs [184] and on classification between
different cardiac abnormalities [185–187]. To my knowledge, this is the first attempt
to assess MI severity based on signal analysis of PCG signals. The features to be
investigated are listed below.

1. Energy in S1.

2. Energy in S2.

3. Duration for which the murmur exceeds 200 Hz.

4. First frequency peak.

5. Murmur energy ratio.

6. Sample entropy.

7. Auto mutual information.

5.2.1 Pre-processing

Aided by the ECG recording, all recorded PCG signals were manually segmented.
Four markers per heart cycle were determined; the beginning of the first heart sound,
the end of the first heart sound, the beginning of the second heart sound and the
end of the second heart sound. Noisy or corrupted signal segments, determined
by visual inspection, were excluded from further studies. To reduce computational
complexity and to remove high frequency noise, the data were downsampled to 4.4
kHz. A 5th order zero-phase Butterworth high-pass filter with a cut-off frequency
of 30 Hz was applied to emphasize the discerning information in the PCG and to
reduce low-frequency noise.
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5.2.2 Features

Seven different measures of MI severity were automatically derived based on the
segmented PCG signals. Many of these features are similar to the ones used for AS
assessment, and the descriptions will consequently be rather concise in this section.

In dogs, it is generally believed that S1 becomes louder while S2 decreases in intensity
with increasing MI severity [183]. To account for these changes, the energy of the
segments containing S1 and S2 were investigated. Unfortunately, each recording
depend on chest size, skin thickness and the interface between the skin and the
stethoscope. Direct comparison of sound intensity or energy is thus impossible. To
circumvent this problem, the energy in S1 and S2 was normalized against the energy
in diastole. Using diastole to estimate the noise level in PCG signals has previously
been employed by Durand et al. [188], and since the dogs in data set III were all
free from diastolic murmurs, this was a feasible approach. The energy in both
S1 and S2 was calculated as the normalized energy within the S1 and S2 segments.
These two values where determined in each heart cycle and averaged across available
heart cycles. From the boxplots in figure 5.16, it is obvious that the energy in S2
decreases with increasing MI severity. According to Cuzick’s non-parametric trend
test for ordered groups, it can be shown that this trend is significant (p < 0.001).
This also agrees with intuition (S2 decreases in intensity as forward stroke volume is
reduced) as well as with previous results [182]. More interestingly, there are no trends
that S1 should increase in energy. This is an interesting result since it contradicts
current beliefs when it comes to dogs. However, the understanding that S1 should
increase in intensity is mostly based on auscultatory findings [189]. Perhaps S1
merely sounds louder as an effect of decreased S2 intensity in combination with a
vigorous murmur. After all, the prevailing opinion in humans is that S1 decreases in
intensity with increasing MI severity [26]. Looking at the trend in figure 5.16, this
also seems to be the case in dogs. In contrast to the trend in S2, the decrease in S1
in not statistically significant (p = 0.14). In fact, according to Cuzick’s trend test,
the energy in S1 is the only feature in this study which does not show a significant
trend in relation to MI severity.
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Fig. 5.16: Box and whisker plots with the energy in S1 (a), the energy in S2 (b)
and duration of frequencies exceeding 200 Hz (c) on the y-axes and one box for each
group of the murmur on the x-axis. The boxes have lines at the lower quartile, median
and upper quartile values, and the notches illustrate the 95% significance level. The
whiskers show the extent of the rest of the data and crosses (+) indicate outliers.

The duration for which a murmur is present in systole changes with the severity of
MI as the murmur shifts from early or late systolic to holosystolic [190]. Since even
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a small regurgitant jet causes rather loud murmurs with high frequency content, this
duration can readily be measured as the percentage of systole where the murmur has
a frequency content exceeding 200 Hz. This particular feature has previously been
used to assess AS severity [169], and an illustration describing the feature extraction
methodology was shown in figure 5.3. As before, the duration was measured in each
cardiac cycle and averaged across available heart cycles. In the boxplot in figure 5.16,
it can be seen that the duration for which the systolic frequency content exceeds 200
Hz is nearly nonexisting in normal dogs. Mild MI is characterized by an early or
late systolic murmur of short duration while moderate and severe MI are associated
with a holosystolic murmur of long duration.

The first frequency peak is a measure of the murmur’s harshness [191]. This peak
could be estimated via Welch’s spectral estimate or any other non-parametric spec-
tral estimation technique. However, a more accurate power spectrum can be ob-
tained with a parametric model, especially when the signal is of short duration [39].
Here, a 4th order AR model was used (see section 3.1 for details on AR models).
AR models are good at representing peaks in the frequency spectrum. According
to Akaike’s information criterion2, this model order is slightly too small. However,
it was deliberately chosen on the small side to avoid spurious low-frequency peaks.
The poles corresponding to the AR coefficients determine where the peaks in the
estimated power spectrum will be located. The first frequency peak belongs to the
pole with the smallest angle, and can be determined as the minimum angle of the
complex roots of the AR polynomials. An example is shown in figure 5.17. The AR
model was constructed by concatenating all systolic segments within each record-
ing, and one frequency peak value was determined per dog based on this batch of
data. Figure 5.18 indicates that the frequency spectrum is shifted towards higher
frequencies with increasing MI severity, a result that agrees with previous work [192].
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Fig. 5.17: Pole/zero plot with complex conjugated poles corresponding to the roots
of the AR polynomials (a). The minimum angle to the roots determines the first
frequency peak, which is shown in (b) after scaling with the sample frequency (only
a portion of the spectral estimate is shown). Akaike’s information criterion, AIC(m),
indicates a model order higher than the one used, m=4 (c).

2Akaike’s information criterion is often used to estimate the model order [39]. It is defined as
AIC(m) = N ln(σ2

p) + 2m, where N is the length of the signal, σ2
p is the prediction error and m is

the model order. The model order is set to the m that minimizes AIC(m).
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The murmur energy ratio, see figure 5.4, quantifies the amount of higher frequencies
in the murmur [51]. A periodogram was calculated for each systolic segment, where
every segment was zero-padded to get the same length. Available periodograms
where then averaged to get a final spectral estimate per dog (note the resemblance
to Welch’s method). The murmur energy ratio was defined as the energy between
50-500 Hz divided by the energy between 20-500 Hz. With increasing severity of
valvular lesions, the larger retrograde volume and the decreased average regurgitant
velocity produce a murmur with a “harsher” quality. A hypothesis for this phe-
nomenon was put forward by Tavel [193], suggesting that the increased harshness
originates as an effect of much lower frequency contributions. From figure 5.18, the
murmur energy ratio increases with increasing MI severity. This indicates that it
is more likely an intensification of medium frequency components that causes the
altered sound.
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Fig. 5.18: Box and whisker plots with the first frequency peak (a), the murmur energy
ratio (b), the sample entropy (c) and the auto mutual information (d) on the y-axes
and one box for each group of the murmur on the x-axis. For other explanations see
figure 5.16.

Two nonlinear parameters were also investigated. Sample entropy and rate of de-
crease of the auto mutual information function. Sample entropy was derived accord-
ing to section 3.4.4, using sequences of length d = 2 and a tolerance level of ε = 0.2σ,
where σ is the standard deviation of the murmur signal. Results from figure 5.18
show that sample entropy increases with increasing MI severity. This can be ex-
plained by a more complex flow behavior that gives rise to more irregular murmurs.
The auto mutual information (AMI) represents the mean predictability of future
samples based on previous samples, and is often considered a nonlinear analogue
to the autocorrelation function [100], see section 3.4. A complicated signal is less
predictable compared to a straightforward signal, so the rate of decrease of the AMI
function will depend on the complexity of the signal [194]. Both sample entropy
and AMI attempts to estimate the complexity of a signal, but where sample entropy
is a statistic that quantifies the regularity in the time series, AMI tries to detect
nonlinear dependencies. Further, the AMI function is able to investigate time scale
dependence through τ [195]. Here the first local minimum of the AMI function was
used as a measure of the rate of decrease. Since the mean predictability decreases
with increasing signal complexity, the results from the AMI analysis (figure 5.18)
show lower values for more severe MI. Since both nonlinear measures perform better
with long time series, all systolic segments within each recording were concatenated
and one feature value per dog was determined based on this batch of data.
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5.2.3 MI assessment

In section 5.1, all PCG-derived variables were fit to the maximum aortic flow velocity
by regression models. This was a suitable approach since the flow velocity correlates
very well with AS severity. In MI assessment, the situation is more complicated
since there is no single parameter able to fully characterize the integrity of the
mitral valve [24]. To be able to investigate how the dependent variable (extracted
from the PCG signal) is affected by many different independent variables (such as
echocardiographic parameters), the usual regression model has to be generalized.
To investigate relations between several variables, a multiple regression model can
be used [196]. This model is defined in equation 5.6. The dependent variable Y is,
possibly, affected by the independent variables X1, X2, . . . , Xk when combined using
a set of regression parameters α1, α2, . . . , αk plus a constant α0. The values of Y are
also affected by a random variable e, which is assumed to be normally distributed
with zero mean.

Y = α0 + α1X1 + α2X2 + . . .+ αkXk + e (5.6)

Using gender, age, breed, body weight, heart rate and echocardiographic variables
(La/Ao-ratio, FS, percent increase in LVIDd and LVIDs above expected values) as
independent variables, multiple regression equations for each of the extracted sound
features were calculated, see table 5.3. The adjusted R2, see table 5.3, represents the
amount of variation in the dependent variable that the model is able to account for.
Adjusted basically means that the usual R2 value has been modified to account for
the number of independent variables in the model and for the number of independent
variables that the model is based upon. In table 5.3, the sound variables seem
to either correlate with an increase in LVIDdinc accompanied with a decrease in
LVIDsinc or with the La/Ao-ratio. This is actually not the case but rather an effect
of collinearity between the variables. Since there is an obvious correlation between
different measures of MI severity, only the best results are reported here.

When constructing a descriptive model, only a subset of the independent variables
is likely to be needed. A few basic approaches, similar to the feature selection
approaches introduced in section 3.10, are:

• Forward selection: The independent variable that explains most of the varia-
tions in the dependent variable is chosen first. The second variable is chosen
as the one that, together with the first, best describes variations in the de-
pendent variable. This process is continued until additional variables do not
significantly increase the accuracy of the model.

• Backward selection: Start with all the independent variables and remove the
least significant variables one at a time until only significant variables remain.

• Stepwise selection: Perform a forward selection, but remove variables which
are no longer significant after the introduction of new variables.

Here, the multiple regression analysis was performed in a backward stepwise manner
by starting with all variables included in the model and then step-wise removing the
variable with the highest p-value until all the remaining variables had a p-value
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Table 5.3: Summary of prediction formulas obtained from multiple regression analysis
when relating the sound features to the echocardiographic and signalment variables.

Parameter Prediction formula R2-value p-value

Energy in S1 26.2 − 7.5 · La/Ao 0.04 0.05
Energy in S2 32.7 − 14.1 · La/Ao 0.24 < 0.001
Duration above 200 Hz 0.4 + 0.01 · LVIDdinc − 0.01 · LVIDsinc 0.46 < 0.001
First frequency peak 70.7 − 0.24 · HR + 36.7 · La/Ao 0.40 < 0.001
Murmur energy ratio 0.1 + 0.2 · La/Ao 0.34 < 0.001
Sample entropy 1.6 + 0.01 · LVIDdinc − 0.01 · LVIDsinc 0.24 < 0.001
Auto mutual information 83.1 − 18.2 · La/Ao 0.36 < 0.001

Table 5.4: Summary of prediction formulas obtained from multiple regression analysis
when relating the echocardiographic and signalment variables to the sound features.

Parameter Prediction formula R2-value p-value

La/Ao-ratio 1.17 + 0.39 · Sample entropy − 0.0084 · Mutual information −
0.011 · Energy in S2 + 0.84 · Murmur energy ratio

0.53 < 0.001

LVIDdinc −35.4 + 16.9 · Sample entropy + 0.29 · First frequency peak−
0.47 · Energy in S2

0.39 < 0.001

LVIDsinc No model obtained – –
FS 24.8 + 14.2 · Peak frequency + 15.6 · Murmur energy ratio 0.44 < 0.001
HR 199 − 0.82 · Mutual information − 0.36 · First frequency peak 0.08 0.02

< 0.05. An interesting result is that the PCG-derived features showed an absence of
effect in all the included signalment variables (age, gender, breed and body weight).

A limitation with multiple regression is that only linear relationships between the
dependent and independent variables are investigated. For example, when plotting
the sample entropy against the La/Ao-ratio, it looks as though a logarithmic re-
gression would be more suitable. For other parameters such as the energy in S2, an
exponentially declining regression curve seems preferable. Investigating nonlinear
relations between variables is however postponed till future studies.

In table 5.4, the multiple regression was performed the other way around. The
results are more or less the same as the ones in table 5.3, but this representation
reveals the importance of the results in a better way. For example, variability in
the La/Ao-ratio is successfully modeled by an increase in sample entropy, a decrease
in auto mutual information, a decrease in the energy in S2 and an increase in the
murmur energy ratio. It is very encouraging that these four sound variables correlate
well with the La/Ao-ratio – the echocardiographic parameter that, if any, has been
found to reliably indicate MI severity in dogs [25].

5.2.4 Distinguishing severe MI

In a veterinary setting, the classification task at hand is to find dogs with severe
MI. The reason why this distinction is interesting is that affected dogs progress from
mild to severe MI over a rather long period of time, but demonstrate no outward
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Table 5.5: Range, significance values (Mann-Whitney U-test), area under ROC curve
values (AUC), sensitivity (%) and specificity (%) for the seven parameters when used
to distinguish dogs with severe MI.

Parameter Range (A) Range (B) p-value AUC Sens Spec

Energy in S1 0–76 3–17 0.20 0.53 29 78
Energy in S2 0–74 1–19 < 0.001 0.88 82 87
Duration above 200 Hz 0.07–0.98 0.07–0.99 < 0.001 0.78 83 73
First frequency peak 0–135 98–153 < 0.001 0.88 88 82
Murmur energy ratio 0.15–0.66 0.32–0.67 < 0.001 0.86 94 68
Sample entropy 0.77–1.97 1.33–1.99 < 0.001 0.82 76 83
Auto mutual information 37–81 11–62 < 0.001 0.87 71 88

clinical signs until the regurgitant valves cause heart failure in the last stages of
the disease. When this happens, heart failure therapy is needed. Following the
methodology used in the AS assessment setting (section 5.1), the Mann-Whitney U-
test showed excellent separability qualities for most features. In fact, only the energy
in S1 had a p-value exceeding 0.001, see table 5.5. The corresponding ROC curves
(figure 5.19) also indicate that most individual features had excellent classification
performance. For example, the first frequency peak reached a sensitivity of 88%, a
specificity of 82% and an AUC of 0.88. These results are, however, derived without
cross validation.

Fig. 5.19: Receiver operating characteristic curves for all features.

Cross validated results, obtained when combining several features in a leave-one-
out LDA classification scheme, showed similar performance as the unvalidated first
frequency peak (sensitivity=88%, specificity=82% and AUC=0.89). An exhaustive
search showed that the smallest feature set with the largest possible amount of
correct detections consisted of the first frequency peak, the energy in S2 and the
first minimum in the AMI function. For comparison, auscultation performed by
experienced veterinarians gave a sensitivity of 70% and a specificity of 97%.

As a complement to this regression-based statistical investigation, it is possible to
test differences based on the four ordered MI severity groups. Such analyses were
performed in paper III, but these details are left out from this section. A table
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Table 5.6: Results from Cuzick’s non-parametric trend test for ordered groups (p-
value) and the statistically different subgroups as determined with the Mann-Whitney
U-test with Bonferroni adjustment.

Parameter p-value Significantly different groups

Energy in S1 0.14 –
Energy in S2 < 0.001 M3↔N, M1, M2 and M2↔N, M1
Duration above 200 Hz < 0.001 N↔M2, M3 and M1↔M2,M3
First frequency peak < 0.001 M3↔N, M1, M2 and M2↔N, M1
Murmur energy ratio < 0.001 M3↔N, M1, M2 and N↔M2
Sample entropy < 0.001 M1↔M2, M3
Auto mutual information < 0.001 M3↔N, M1, M2

summarizing the results can be found in table 5.6. The reason for such an analysis
is of course the absence of a single continuous parameter able to describe MI severity.
By manually investigating the dogs, all possible data as well as the vast experience
of the sonographer is incorporated in the final grouping.

5.2.5 Additional comments

The classification task in this section aimed at distinguishing dogs with severe MI
from the other dogs included in the data set. In humans, the situation is somewhat
different since correction of MI should be performed well before left ventricular de-
compensation sets in [197]. A classification system intended for human patients
would definitely not be designed to only find severe MI but to also detect moderate
MI. The reason for not including mild MI in the pathologic group is that basically
all humans have a small but insignificant leakage through the mitral valve. Adjust-
ing the test to be more suitable for human applications, i.e. classification of dogs
which are normal or have mild MI from dogs with moderate to severe MI, a correct
detection rate of 88% was achieved.

5.3 Classifying murmurs of different origin

The task of classifying murmurs of different origin calls for modified features as well
as more advanced classification approaches. Up till now, the severity of the disease
could more or less be estimated with a single feature. For example, sample entropy
could be used to grade the complexity of the signal and the complexity of the sound
signal could be linked to disease severity.

Several authors have investigated the possibility to automatically classify cardiac
murmurs. The contribution of paper III is partly a survey of features already avail-
able for murmur classification and partly an introduction of several new features.
The survey is based on features from the literature, ranging from time domain char-
acteristics [198–201], spectral characteristics [187, 202, 203] and frequency represen-
tations with time resolution [142, 185–187, 201, 204–206]. The main contribution of
the present work compared to previous works is the incorporation of nonlinear and
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chaos based features, a source of information that has not previously been explored
in the context of heart murmur classification.

Compared to previous sections in this chapter, time dependent features will be
incorporated in the analysis. This is important in order to be able to pick up the
differences between crescendo-decrescendo murmurs and holosystolic murmurs. A
great number of features will be extracted and a feature selection algorithm will be
employed to determine which features are most useful. The derived feature set will
also be used in a neural network classifier to assess its discriminative qualities. The
evaluation will be based on data set IV, consisting of 36 patients with AS, MI or
physiological murmurs.

5.3.1 Features

A preprocessing step was used before deriving the different features. ECG-gated
Shannon energy was used to segment the PCG signals according to chapter 4. The
segmentation result was visually inspected and erroneously segmented heart cycles
were excluded from the study. Uncertain cases were rather rejected than kept to
avoid timing errors when creating the features. The feature extraction process ex-
tracted 207 scalar values per heart cycle, and each of these was averaged across
available heart cycles. All features were also normalized to zero mean and unit
standard deviation. A summary of the different features is given in table 5.7.

Time and frequency based properties
It is generally known that systolic ejection murmurs like AS are crescendo-decrescendo
shaped while regurgitant systolic murmurs, like MI, are holosystolic or band-shaped.
However, this is not always obvious when looking at actual recorded signals. Using
normalized Shannon energy as a measure of intensity, the shape of physiological
murmurs (PM) and murmurs caused by AS or MI are shown in figure 5.20. The
classical shapes are indicated, but having the standard deviation in mind, the differ-
ence in shape is not evident. In the AS and MI cases, the large standard deviations
are partly due to the severity of the disease, which is ranging from mild to severe
in data set IV. The nine presented instants were selected at times before S1, peak
S1, after S1, 1/4 into systole, 1/2 into systole, 3/4 into systole, before S2, peak S2 and
finally after S2. The features were derived as mean values of each heart cycle in one
patient.
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Fig. 5.20: Mean value of the Shannon energy calculated at nine time instants in
systole, the whiskers show the standard deviation.
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Table 5.7: Summary of all features. Column one through three represents the feature
names, the number of features and a short description of the extraction technique,
respectively. The stars indicate features not previously used for heart murmur clas-
sification.

Shannon energy 9 Envelope values derived from the normalized Shannon energy.
WT entropy 11* The Shannon entropy of each wavelet (WT) detail and the

wavelet approximation using a level 10 decomposition with
the Daubechies 2 wavelet.

WT detail 9 The 6th wavelet detail of a level 10 Daubechies 2 wavelet
discretized into 9 bins.

ST map 16 Joint time-frequency representation (calculated with the S-
transform) in the frequency range 0–150 Hz discretized into a
4x4-matrix.

Eigenvalue 8* The eight first eigenvalues to the joint time-frequency matrix.
Eigentimes and
eigenfrequencies

40* Two left eigenvectors and two right eigenvectors transformed
into distribution functions whose histograms (10 bins) are
used as features.

Bispectrum 16* First non-redundant region of the bispectrum (frequency
range 0-300 Hz) discretized into 16 equally sized triangles.

GMM cycle 40* Gaussian mixture Model (GMM) of the reconstructed state
space of the systolic period (including HS).

GMMx murmur 40* GMM of the reconstructed state space of the systolic period
(excluding HS).

VFD 8* Variance fractal dimension (VFD) values.
RQA 10* Recurrence Quantification Analysis (RQA).

Looking at the mean and standard deviation joint time-frequency representations
of all available AS, MI and PM cases, figure 5.21, distinct areas can be found in the
standard deviation plots. From the figure, it is obvious that there is great variability
between different patients within the same group. This is unfortunate when the aim
is to classify patients into different categories – ideally all patients with the same
disease would behave similarly. Focusing on differences between diseases, it can be
seen that the murmur do not change much over systole. The murmur in AS on the
other hand seems very unstable. Since the murmur in AS is crescendo-decrescendo
shaped, and the peak depends on the severity of the stenosis, it makes sense that
the mean of several AS murmurs deviates between patients. Finally, PM are known
to be of low frequency, which is verified by the figure.

Joint time-frequency representations are valuable tools when visually inspecting
signals, but the amount of information is immense. In a classification setting it
is necessary to find a compact representation consisting of a manageable number
of features. This issue has been solved in different ways. Gupta et al. [142] and
Ölmez et al. [186] chose to only consider one wavelet scale (the second wavelet detail
corresponding to 1120 Hz) and discretize it into 32 bins (the actual features are the
sum of the absolute values within each bin). Turkoglu et al. [206] used the entropy
of each detail and approximation in a complete wavelet packet decomposition and
Leung et al. [204] discretized the whole time-frequency matrix (the frequency content
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Fig. 5.21: Mean (top) and standard deviation (bottom) time-frequency representa-
tions (calculated with the S-transform) of aortic stenosis, mitral insufficiency and
physiological murmurs. The time scale was resampled to 2048 samples after calculat-
ing the S-transform, and is here represented in arbitrary normalized units.

was limited to 0–62 Hz) to a 4x4 matrix by downsampling.

All of these feature extraction methods were evaluated in paper IV. However, some
adaptations were necessary to adjust the methods in accordance with data set IV.
Daubechies second wavelet was used due to its similarity with S1 and S2, and a level
10 decomposition of the signal was performed. The systolic part of the 6th level
detail was divided into 9 bins, see figure 5.22. The wavelet entropy was calculated
for each decomposition (10 details and 1 approximation), not for every wavelet
packet as in the work by Turkoglu et al. [206]. Finally, the S-transform was used to
calculate the time-frequency matrix which was divided into a 4x4-matrix, see figure
5.23. However, a more generous frequency range was used, 0–150 Hz compared to
0–62 Hz as used by Leung et al. [204].

A different way to represent a time-frequency matrix in a compact manner is to
use singular value decomposition. Marinovic and Eichmann [207] simply extracted
the eigenvalues of the time-frequency matrix, and Hassanpour et al. [208] extended
the method to also incorporate information from the eigenvectors in an attempt to
classify EEG seizures. More specifically, the time-frequency matrix S is decomposed
according to S = Q1DQT

2 . Q1 and Q2 are called the left and the right eigenvectors,
or in this particular case eigenfrequency and eigentime, respectively. Here, eigen-
times and eigenfrequencies corresponding to the two largest eigenvalues were used to
derive the features. Since eigenvectors are orthonormal, the cumulative sum of their
squared elements can be considered as density functions. These density functions
are nondecreasing, and as can be seen in figures 5.24(d, g, j, m), they have no sig-
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Fig. 5.22: The 6th wavelet detail of one heart cycle from a patient with aortic stenosis.
The vertical lines are time markers equidistantly distributed over the region of inter-
est. The absolute sum between each marker constitutes the feature values. Figure
from paper IV.

Fig. 5.23: Time-frequency representation (calculated with the S-transform) of one
heart cycle from a patient with aortic stenosis (a), S1 can be seen at 5.3s and S2 at
5.8s. In (b) the same data has been discretized into a 4x4 map of features.

nificant changes in some areas. This can be quantified with histograms, see figures
5.24(e, h, k, n), where only a few of the bins have significant values. The final fea-
tures are thus constituted by these histograms. In the singular value decomposition
calculations, the time-frequency matrix was derived using the S-transform. These
features can be interpreted as the main components of the time-frequency matrix.
For example, the minima of the first eigentime in figure 5.24(i) correspond to S1, S2
and the murmur.

Higher order statistics
Since methods based on second-order statistics do not take nonlinearity and non-
Gaussianity into account, higher order statistics might provide more useful informa-
tion about the PCG signal. Bispectra for signals from various systolic murmurs are
presented in figure 5.25. First of all it can be seen that the bispectra are nonzero,
as it would be if the signals were Gaussian. Secondly, the bispectra are not con-
stant, as they would be for linear data. Thirdly, the main frequency content is well
below 300 Hz and exhibits distinct peaks. Forth, considerable phase coupling exists
between different frequencies. Finally it is also seen that the patterns revealed in
the bispectra differ between various pathologies. It has previously been indicated
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Fig. 5.24: The same time-frequency representation as in figure 5.23 is shown in (a)
and its first eight eigenvalues are shown in (b). (c) and (f) illustrate the first and
second left eigenvectors, respectively. To the right of the respective figures are their
probability distributions, (d, g), and their histograms (e, h). (i-n) are corresponding
plots for the first and second right eigenvectors.

that PCG signals are non-Gaussian [209, 210], but it has not been explicitly stated
that this is the case. When performing Hinich’s Gaussianity test on each heart cycle
in data set IV, it turns out that each and every one of the 445 heart cycles have
zero skewness with probability p < 0.05. This strongly suggests that the data are
non-Gaussian (nonzero skewness) and that higher-order statistics of PCG signals
will reveal new information compared to Fourier analysis. Similarly, a hypothesis
regarding linearity could be rejected using Hinich’s linearity test (for a nonlinear
process, an estimated statistic may be expected to be much larger than a theoret-
ical statistic, and in this case the estimated value is, on average, 3.4 times larger).
This motivates the use of the nonlinear techniques in the two upcoming sections.

The bispectrum can be discretized to make the number of quantifying units more
manageable [211], see figure 5.26. Due to symmetry, it is enough to investigate the
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Fig. 5.25: Examples of bispectra from one heart cycle in a normal person, from a
patient with aortic stenosis and from a patient with mitral insufficiency. One heart
cycle here roughly starts with S1 and ends after S2. All axes represent frequency in
Hz.

first nonredundant region [87]. Box and whisker plots for the bispectral features
are presented in figure 5.27. Unfortunately the features overlap and are more or
less useless for classification purposes (the Mann-Whitney U-test shows significant
differences (p < 0.05) for feature 2 between AS↔PM, feature 3 between AS↔MI
and AS↔PM and feature 7–8 and 11 between MI↔PM). The bispectrum is how-
ever still a useful tool and figure 5.25 does reveal a lot of information. There are
distinct differences between the various heart valve diseases in figure 5.25, but these
differences are clearly lost in the discretization. A different approach is thus needed
to extract this information. A few ideas are Gaussian mixture models or perhaps
some parametric models like the non-Gaussian AR model, but these issues are left
for future studies. If nothing more, the bispectrum can be used as a visualization
technique to support the physician’s decision.

Fig. 5.26: Example of a bispectrum from a patient with aortic stenosis. The different
regions of the bispectrum are plotted in (a) where the bold triangle shows the first non-
redundant region. In (b) the region of interest is highlighted. The smaller triangles
indicate 16 features obtained from the bispectrum, where each feature is calculated
as the mean intensity of each triangle. Figure from paper IV.

Waveform fractal dimensions
Considering the mere waveform of bioacoustic time series, it appears that these
signals possess valid characteristics for pursuing fractal dimension calculations:

• The signals do not self-cross.

• The waveform is often self-affine, i.e. in order to scale the signal, a different
scaling factor is required for each axis. In physical systems, this property is not
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Fig. 5.27: Box and whisker plots showing results from the bispectral analysis. The
16 features are illustrated in figure 5.26. The boxes have lines at the lower quartile,
median and upper quartile values. The whiskers show the extent of the data. Outliers
(+) are data with values beyond the end of the whiskers.

strict but probabilistic, and there are minimum and maximum scaling limits
(depending on the accuracy of the measurement, the sampling resolution etc.).

• The waveform exhibits clear quasiperiodicity (heart beats and breathing specif-
ically).

• The power spectral density is broad-band.

An example showing the acoustic waveform from a patient with AS is plotted along
with its variance fractal dimension (VFD) trace in figure 5.28. It can be seen that
the fractal dimension of the murmur is rather constant despite the large amplitude
variations (crescendo-decrescendo) in the time domain. The trace was calculated by
dividing the PCG signal into overlapping segments of 40 ms duration (20 ms over-
lap), and the VFD was calculated in each segment. Seven values along the trajectory
were selected as features, see figure 5.28. The quotient between the minimum of S1
and S2 and the minimum of the five systolic values was also used as a feature to
reflect the difference or strength of the murmur in relation to the heart sounds.

Estimation of fractal dimension characteristics should be based on large enough
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Fig. 5.28: Example of a PCG signal recorded from a patient with aortic stenosis (a)
along with the variance fractal dimension trace plotted over time (b). The seven
circles indicate the trace values that were used as features.

data sets [91]. This implies a trade-off between time resolution and accuracy in
the estimation of the time dependent fractal dimension (similar to the uncertainty
principle when calculating time-frequency representations). An example is given in
figure 5.29. As the investigated signal segment does not possess self-similarity over
an infinite range of scales, the self-similar properties of the segment are lost if the
sliding window is too short. Similarly, if the window size is too long, the different
characteristics of consecutive signal segments will be blurred together. Another
reason for not using too short windows is that the number of signal amplitude
increments used in the VFD algorithm must be greater than 30 to be statistically
valid [89].
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Fig. 5.29: The variance fractal dimension, encoded in gray-scale, plotted as a func-
tion of time and window size. If the window size is chosen too wide the trajectory
characteristics will be blurred together while too short windows introduce errors that
appear as peaks of low dimension.

Descriptive statistics for the VFD features are shown in figure 5.30. The variance
is rather large, especially in the AS case, but different murmurs are quite well sep-
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arated in their means. Hypothesis testing for the difference in median between the
groups (the Mann-Whitney U-test) shows significant differences (p < 0.05) between
AS↔MI, AS↔PM and MI↔PM, respectively. Boxplots of the same data are shown
in figure 5.31. In this plot, the VFD was calculated using a concatenation of all S1
segments, all S2 segments and all murmur segments from each patient. Focusing on
the murmur, the trends from figure 5.30 are recognized; MI has lowest dimension,
PM has highest dimension and AS is somewhere in between. The interpatient vari-
ability is mostly due to various degrees of disease severity, especially in the AS case.
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Fig. 5.30: Mean values of the variance fractal dimension at nine time instants in
systole, with whiskers showing the standard deviation. The data were normalized so
S1 had unit fractal dimension (for visual appearance).
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Fig. 5.31: Boxplots of the VFD when calculated for S1, murmur and S2 when concate-
nating all S1 data, all S2 data and all murmur data within each patient, respectively.
The boxes have lines at the lower quartile, median and upper quartile values. The
whiskers show the extent of the data and outliers are indicated by crosses (+).

Reconstructed state spaces
Proper embedding parameters were calculated via mutual information and Cao’s
method. The embedding dimension was found to be d = 4, which can be seen
by the clearly defined knee in figure 5.32. Determination of the delay parameter
was however less obvious. The mean value of the first minimum in the mutual
information function was τ = 233 ± 72 samples. Since roughly half of the patients
had a minimum in the vicinity of τ = 150, while the other half lacked an obvious
minimum in the range τ = 1, . . . , 500 samples, τ was set to 150.

Quantifying a trajectory in a four-dimensional state space is not easy. There are a
few common dynamical invariants that can be used. For example, when assessing
the severity of AS (section 5.1), the correlation dimension was used. Here another
approach will be investigated, namely direct modeling of the trajectory’s statistical
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CHAPTER 5. ASSESSING AND CLASSIFYING SYSTOLIC MURMURS

distribution in state space. Povinelli et al. [212] suggest that a Gaussian mixture
model (GMM) fitted to the trajectory using the Expectation-Maximization (EM)
algorithm provides an efficient estimate. Here a GMM with five mixtures, see figure
5.33, was fitted to the reconstructed state space. The centers of the mixtures and
the eigenvalues of their covariance matrices were used as to compactly represent
the trajectory in the reconstructed state space. Even so, the five mixtures still
required 40 parameters to be described. Using only five mixtures to estimate the
density function of the trajectory is most likely far from enough, but the number
of parameters increases rapidly with the number of mixtures. Due to the difficulty
of giving an overall summary of three groups (AS, MI and PM) and 40 parameters,
these results are not presented in this section. Two different sets of features were
calculated based on the systolic part of the heart cycle where the heart sounds were
either included in the analysis or not.
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Fig. 5.32: Average mutual information function (a) and Cao’s method (b) is used to
determine the time delay and the embedding dimension d. Figure from paper IV.

Fig. 5.33: A reconstructed state space (d = 2, τ = 150) of the systolic period from a
patient with aortic stenosis. The ellipses symbolize a Gaussian mixture model with
five mixtures. Note that d = 2 is not enough to unfold the trajectory properly. Figure
from paper IV.
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5.3. CLASSIFYING MURMURS OF DIFFERENT ORIGIN

Recurrence time statistics
In previous sections, high dimensional state spaces have mostly been visualized
by projection into lower subspaces. The recurrence plot has been introduced to
avoid this procedure by visualizing high dimensional trajectories through a two-
dimensional representation of its recurrences [125]. Examples of two recurrence
plots are presented in figure 5.34. Figure 5.35 shows boxplots for the RQA features
obtained from data set IV. Similar to the results in section 5.1, it is clear that several
of these parameters are good at separating physiological murmurs from pathologi-
cal murmurs (determinism, longest diagonal line, longest vertical line and trapping
time). Unfortunately, the difference between murmurs caused by AS and MI are
heavily overlapping.

Fig. 5.34: Example of recurrence plots for a normal PCG signal and for an AS case.

5.3.2 Feature selection

Due to the large amount of features, it is not possible to perform an exhaustive
search for the optimal feature set. Indeed, there are

(
m
l

)
different possibilities to

select l out of m features. Testing all combinations quickly becomes unfeasible. For
example, finding the best subset of 14 features from the total set of 207 features
requires about 1.9 · 1021 tests. Instead a suboptimal feature selection algorithm can
be used. Here Pudil’s sequential floating forward selection (SFFS) method, which
was described in section 3.10, was employed. Inclusion or rejection of features was
based on the error estimate of a 1-nearest neighbor leave-one-out classifier where
the performance criterion equaled the estimation error. The number of features in
the final set was chosen to maximize this performance criterion while keeping the
number of features as low as possible. In the end, the 207 features were reduced to
14, see figure 5.36. This feature set will be denoted the SFFS subset and it consists
of the following parameters:
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Fig. 5.35: Box and whisker plots showing results from the recurrence quantification
analysis. The boxes have lines at the lower quartile, median and upper quartile values.
The whiskers show the extent of the data. Outliers (+) are data with values beyond
the end of the whiskers.

• Wavelet detail : One feature representing the end of systole.

• Wavelet entropy : One feature describing the information content in the high
frequency range.

• Shannon energy : Three features in mid systole able to describe the shape and
intensity of the murmur and one feature after S2 revealing the noise level.

• S-transform: Two features giving a collected view of the low frequency content
over the heart cycle.

• Bispectrum: One feature indicating phase coupling and frequency content for
low frequencies.

• Reconstructed state space: Three features describing the width of the Gaussian
mixture model (probably located in the part of state space where the murmur
lives), two of these belong to the largest mixture.

• Variance fractal dimension: Two features, one giving the amplitude normal-
ized complexity of the murmur and the other describing S1.

Bearing in mind that the investigated murmurs are physiological or caused by either
AS or MI, the selected features are actually very reasonable. The wavelet detail
represents the end of systole, where it can be used to separate holosystolic MI
murmurs from physiological murmurs and AS murmurs which are of crescendo-
decrescendo shape. Three Shannon energy measures represent the signal’s intensity
in mid systole, thereby describing the shape of the murmur in the time domain. A
fractal dimension measure represents the complexity of the murmur in relation to
the heart sounds. This measure can be seen as the amplitude normalized complexity
of the murmur. Another fractal dimension measure, located at S1, represents the
change of S1 that is usually associated with MI. Remaining features are a bit hard
to explain in a physiologically meaningful way.
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Fig. 5.36: The evolution of Pudil’s sequential floating forward selection algorithm.
The solid line indicates classification performance while the dashed line indicates the
number of features in the present feature subset. The feature set with as few features
as possible is chosen under the condition that the performance criterion is maximized.
Figure from paper IV.

5.3.3 Classification

A fully connected feed-forward neural network with logarithmic sigmoid transfer
functions and biased values throughout was set up to test the SFFS feature set.
The number of input units was set to the nearest larger integer of the square root
of the number of features in the set, the number of units in the hidden layer was
set to three and the number of output units was set to two. The target values were
00 (MI), 01 (AS) or 10 (physiological murmur). Each output from the network was
thresholded at 0.5 and compared to the results from a clinical echocardiography
investigation. A leave-one-out approach was used for cross validation due to the
limited amount of patients. For comparison, each feature extraction modality was
also tested separately, i.e. the eleven feature subsets constituted by the Shannon
energy, the wavelet detail, the wavelet entropy, the discretized S-transform, the
eigenvalues of the time-frequency matrix, the eigentime and eigenfrequency features,
the bispectral features, the two sets of GMMs, the VFD values and the RQA results.
Confusion matrices showing classification results are presented in table 5.8.

Looking at the results in table 5.8, there is a tendency in several methods to classify
MI and PM as AS. The total number of MI + PM patients is thirteen, and out of
these patients, nine are classified incorrectly as AS using the VFD features, both
Gaussian mixture models and the eigentime/eigenfrequencies, eight are classified
incorrectly as AS using Shannon energy, WT entropy and bispectral features while
seven are classified incorrectly as AS using the discretized S-transform, the wavelet
detail and the eigenvalue features. Many of the features within each feature set are
similar despite being derived from different diseases, while only a few of the features
within the feature set contain the information needed to distinguish the different
diseases. It is thus easy to confuse the classifier with features containing insignificant
information. In the SFFS subset, only the most descriptive features from each set are
used, and it is not surprising that the error rates decrease. When only considering
physiological versus pathological murmurs, the percentages of correct classification
according to figure 5.37 were achieved. The SFFS subset gave the best classification
results while the VFD technique provided the best single-domain subset.
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Table 5.8: Confusion matrices showing the classification results from the different
feature subsets.

Shannon energy WT entropy WT detail ST 4x4
AS MI PM AS MI PM AS MI PM AS MI PM

AS 17 3 3 14 7 2 15 6 2 14 8 1
MI 4 2 0 3 2 1 5 0 1 4 1 1
PM 4 1 2 5 1 1 2 4 1 3 0 4

ST eigenvalue ST eigenvectors Bispectrum GMM cycle

AS MI PM AS MI PM AS MI PM AS MI PM
AS 15 2 6 18 4 1 14 8 1 13 3 7
MI 4 0 2 6 0 0 4 1 1 5 1 0
PM 3 1 3 3 2 2 4 1 2 4 1 2

GMM murmur VFD RQA SFFS

AS MI PM AS MI PM AS MI PM AS MI PM
AS 15 7 1 20 2 1 8 8 7 19 2 2
MI 3 2 1 4 2 0 3 1 2 1 5 0
PM 6 0 1 5 0 2 0 3 4 0 0 7

In this section, a straightforward multilayer perceptron network was chosen. This
is a powerful nonlinear classifier, yet there are many alternatives available. In the
murmur classification literature, support vector machines [213], decision trees [199],
linear discriminant analysis [187] and self organizing maps [214] have been utilized.
Most authors do however choose some implementation of an artificial neural network
such as the multilayer perceptron network [185, 198, 201, 202] or a grow and learn
network [142,186]. The choice of the actual classifier was thoroughly investigated in
this thesis. However, a good classifier should be used and considerable effort needs
to be spent on its design.

Ideally, data set IV should have been partitioned into four subsets. One subset for
selecting and tuning the feature extraction methods, one subset for feature selection,
one subset for training the classifier and a final subset for the validation. Unfor-
tunately, this set-up requires an extensive database of PCG signals which was not
available. Here, the full data set was used to design the feature extraction methods,
a leave-one-out approach was used for feature selection and the same leave-one-out
setup was used to train and test the classifier. This will, inevitably, affect the results
in one way or another.
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Fig. 5.37: Bar graph showing the number of correct classifications for each feature
subset when used as input variables to the neural network. Also presented are the
number of cases where pathological murmurs are erroneously classified as physiolog-
ical. The number attached to each bar represents the exact height of the bar in
percent.





6
Heart Sound Cancellation from Lung

Sound Recordings

“– If we knew the future in detail we could change it,
and so it wouldn’t be the future.

– Correct. That is the paradox of prediction.”
Blakes 7 (1978)

Auscultation of lung sounds is often the first resource for detection and discrimina-
tion of respiratory diseases such as chronic obstructive pulmonary disease (COPD),
pneumonia and bronchiectasis [215]. Changes in lung sounds due to disease are
characterized by abnormal intensity variations or by adventitious sounds. The ad-
ventitious sounds are commonly divided into continuous sounds (wheezes) and dis-
continuous sounds (crackles) [216]. Wheezes are probably caused by the interaction
between fluttering airway walls and the gas moving through the airways, while crack-
les arise due to pressure equalization when collapsed airways suddenly are opened.
Diagnosis based on lung sounds is difficult, and it is desirable to remove as much ob-
scuring noise as possible. Lung sound recordings contain noise from several sources
such as heart sounds, ambient noise, muscle contractions and friction rubs. The lat-
ter can be reduced with adequate and firm microphone placement and with sound
proof rooms, but heart sound noise is impossible to avoid.

There are many different methods available for heart sound cancellation from lung
sound recordings. High pass filtering is often employed to reduce the influence of
heart sounds. However, heart sounds and lung sounds have overlapping frequency
spectra why this approach results in a loss of important signal information [217].
Other techniques employed for heart sound cancellation include wavelet based meth-
ods [217], adaptive filtering techniques [218] and fourth-order statistics [219], all re-
sulting in reduced but still audible heart sounds [162]. Recent studies indicate that
by cutting out heart sound segments and interpolating the missing data, promising
results can be achieved (figure 6.1 illustrates the technique) [154,157]. The method
developed in paper V is based on this idea of removing and interpolating, but the
suggested signal processing techniques are fundamentally different and allow non-
linear behavior in the lung sound signal. This is an important difference since it has
been indicated that lung sounds are indeed nonlinear [3,32,33,220]. The evaluation
in this chapter is based on data set V.
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Fig. 6.1: Principle of removing a heart sound occurrence from a lung sound recording
followed by interpolation of the arising gap.

6.1 Heart sound localization

Different methods for heart sound localization were described in chapter 4. Here,
the method based on recurrence time statistics (section 4.3.6) will be evaluated
more thoroughly in the setting of lung sound interference. Heart sounds have a
transient waveform that is superpositioned/convolved upon/with lung sounds and
other disturbances. Since the heart sounds and the noise originate from different
sources, they have different attractors, see figure 4.27. These differences in signal
dynamics are reflected in the recurrence times of the first kind (T1). Two interesting
parameters are involved when T1 is used for change detection in an embedded signal;
the size of the neighborhood as determined by ε (see section 3.6.2) and the width
of a sliding window used to obtain time resolution.

• The window size has to be large to capture the underlying dynamics of the
signal, yet it has to be small to detect fast changes. A rule of thumb is that
at least a few oscillations should be included in the window.

• If ε is chosen too low, the hypersphere will be low on data and if ε is chosen
too high, the hypersphere will contain misleading information from disjoint
regions of the reconstructed state space. In fact, ε acts as a filter. If ε is
chosen reasonably large, noise can be completely filtered out, see figure 6.2.

T1, calculated as a function of the neighborhood size ε and time, is illustrated in
figure 6.3. The length of the sliding window was set to 200 ms and the overlap
was excessively set to 198 ms to obtain accurate time resolution. From the figure,
it is apparent that ε is a very important parameter in the detection algorithm.
Interestingly, it was found that ε-values suitable for heart sound localization varied
with respiration, and an adaptive algorithm for selecting a time-varying ε-value
was developed. In paper V, the slow varying envelope of the lung sound signal,
determined by the low-pass filtered output of a Hilbert filter, was used. The resulting
envelope had to be scaled and translated, and the choice of these parameters turned
out to be quite sensitive. Figure 6.3c shows the amount of false positives and false
negatives for the whole data set as a function of the translation parameter when

168



6.1. HEART SOUND LOCALIZATION

Fig. 6.2: The embedding of a pure sine wave and two noisy sine waves (SNR=30dB
and SNR=10dB, respectively) are plotted in gray. The black circles represent neigh-
borhood sizes with radii ε1, ε2 and ε3. All three neighborhoods are able to estimate
the period of the sinusoid in the noise free case, while a larger radius is necessary in
the cases where noise is present.

fixating the scaling parameter to 0.2. Fortunately, differences between various test
subjects were small, and the same parameters (translation = 0.11 and scaling =
0.2) were used throughout the whole data set. The resulting T1(ε) was normalized
to unity and a final threshold at 0.6 was used to detect the heart sounds (figure
6.3b). As already mentioned in section 4.3.6, an easier way to determine the time
varying ε-values would be as a multiple of the standard deviation in each sliding
window.

Fig. 6.3: An example showing how the recurrence time statistic indicates the location
of heart sounds. Note the deep breath in the beginning of the signal. In (a), T1 is
plotted over time for various ε-values, where the grey scale indicates the strength of
T1. Superimposed in the figure is the PCG signal (black waveform) and the adaptive
selection of ε (white). T1-values selected along the threshold are plotted in (b).
The right-hand plot shows the total amount of false positives (dashed line) and false
negatives (solid line) for different choices of the translation parameter used when
defining the threshold.

Since the application in paper V was to find and remove both S1 and S2, no attempts
were made to actually classify the two sounds. Table 6.1 summarizes the results from
the heart sound detection algorithm. A correct detection had to cover a whole heart
sound (determined by visual inspection aided by an ECG recording). The error
rates for the whole material were 4% false positives and 8% false negatives.
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Table 6.1: Results from the heart sound (HS) localization step.

Subject Number of HS False positives False negatives

1 208 3 9
2 174 8 23
3 168 5 17
4 220 3 34
5 140 15 11
6 298 17 5

Total 1208 51 (4%) 99 (8%)

Detection performance in the presence of adventitious lung sounds such as wheezes
and crackles has not been evaluated. The attractor of wheezing sounds has a similar
morphology as the attractor of heart sounds [8], and it is not inconceivable that
wheezes will disturb the detection algorithm. In data set V, the measurements
contained several friction rubs and one test subject had a distinct third heart sound.
Most of these extra sounds were detected and removed along with S1 and S2. It is
likely that explosive lung sounds like crackles will be marked by the method as well.
By including extra criteria, such as interval statistics or the degree of impulsiveness,
it is possible that these false detections could be avoided.

6.2 Prediction

Based on the heart sound localizations, all heart sound occurrences were simply
cut out. The resulting gaps were filled with predicted lung sounds using the local
nonlinear prediction scheme described in section 3.8. Six lung sound segments sur-
rounding a removed heart sound segment was used to reconstruct the state space,
and five nearest neighbors were used in the prediction. Both forward and backward
prediction was used to shorten the prediction horizon by dividing the missing seg-
ment in two parts of half the size. To avoid discontinuities in the mid point, the
number of predicted points was allowed to exceed past half of the segment. The
two predictions were then merged in the time domain close to the midpoint at an
intersection where the slopes were similar. An example of a lung sound recording
after removal of the heart sounds is illustrated in figure 6.4.

The results of the predictions were hard to evaluate since the true lung sound signal
was unknown in the segments that were predicted. However, the waveform similarity
between predicted segments and actual lung sound data was found to be very high,
showing a cross-correlation index of CCI = 0.997±0.004 (figure 6.5). It is, however,
not surprising that the CCI-results are good since the prediction scheme exploits
that trajectories in state space share the same waveform characteristics in the time
domain (i.e. the prediction tries to reproduce past parts of the signal).

When trying to fill the missing gaps in the lung sound signal, the most impor-
tant characteristic of the predicted data is that it appears similar to actual lung
sound data. Quantitative predictions are mathematically tractable, but for non-
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Fig. 6.4: Example of a recorded lung sound signal with heart sounds present (a) and
the same signal after removing the heart sounds (b). The bars indicate heart sound
detections. A zoomed in version showing the predicted lung sound (solid) and lung
sound including heart sounds (dashed), is shown in (c).

linear chaotic systems, it is impossible to gain accurate results since the prediction
error grows exponentially with the prediction length [99]. This is sometimes referred
to as predictive hopelessness [221]. However, chaos based prediction provides qual-
itative results, where the general properties of the system are maintained in terms
of periodicity and stability of orbits, symmetries and asymptotic behaviors, and the
structure of the underlying manifold [221]. In a lung sound setting, these qualitative
properties are actually very suitable.

The results were also evaluated by comparing power spectral densities between the
predicted signal and the original signal where the heart sounds had been cut out
(figure 6.5). Table 6.2 quantifies the differences between the original data (without
heart sounds) and the predicted lung sound data, divided into four sub bands; 20 to
40 Hz, 40 to 70 Hz, 70 to 150 Hz and 150 to 300 Hz (since heart sounds have most
of their energy below 300 Hz). Since the main objective of the developed method
was to give high-quality auditory results, a simple complementary listening test was
also performed. A skilled primary health care physician listened to the results, and
the impression was that most heart sounds had been successfully replaced, but that
some predictions had a slightly higher pitch than pure lung sounds.

There are a large number of methods available for heart sound cancellation from
lung sound recordings. This is quite interesting since heart sound cancellation has
limited clinical use (physicians are more or less able to ignore heart sounds while
tuning in on lung sounds during auscultation). However, the problem at hand is
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Table 6.2: Differences in dB/Hz (Mean ± std) between lung sounds (with removed
heart sounds) and predicted lung sounds. The three periods represent the measure-
ment phases in data set V (tidal breathing, forced respiration and breath hold).

Phase 20–40 Hz 40–70 Hz 70–150 Hz 150–300 Hz

Period 1 0.62±0.37 0.61±0.33 0.44±0.31 1.14±0.84
Period 2 2.55±0.52 3.00±0.67 2.59±0.44 2.36±0.67
Period 3 1.58±0.82 5.18±1.52 2.89±1.51 2.27±1.22
All 0.34±0.25 0.50±0.33 0.46±0.35 0.94±0.64

Fig. 6.5: The PSD (a) of the original signal (dash-dotted line), the original signal
with heart sounds removed (solid line) and the signal where heart sounds have been
replaced by nonlinear prediction (dashed line). The spectra showed are averages over
all subjects and all periods. The peak at 180 Hz and its accompanying harmonics are
due to a computer fan in the measurement equipment. Values of lower quartile, mean
and upper quartile (boxes) of the estimated cross-correlation index (CCI) of each test
subject are shown in (b).

a very intriguing engineering problem, and this is possibly one reason why it has
attracted so much attention. A justification of all these methods is that automatic
classifiers are confused by the heart sounds. When trying to separate different lung
diseases based on lung sounds, results tend to improve after removal of the heart
sounds.

The performance of the prediction algorithm in presence of adventitious lung sounds
has not been evaluated. It is noteworthy that not a single heart sound cancellation
method, neither the one presented here nor the ones presented in the scientific lit-
erature, has been evaluated in the presence of spontaneous artifacts. Most methods
have actually been investigated in a controlled (silent) environment and on healthy
subjects in known cardiac (no additive sounds or murmurs) and respiratory (no
crackles or wheezes) states [222]. This presents some very likely problems when
these methods are used in the clinic. If heart sounds are dampened, will crackles
be dampened as well? If heart sounds are removed and the missing gaps are filled
using interpolation, will there be enough surrounding data to facilitate the pre-
diction when long duration murmur segments have been removed? What happens
with the heart sound localization algorithms when the heart sounds are obscured
by wheezes? Many questions remain to be answered before any of these techniques
can be introduced in a clinical setting.
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7
Cardiovascular Time Intervals

“You have no pulse, your blood pressure’s zero-over-zero, you have no pupillary
response, no reflexes and your temperature is 70 degrees.”

The Return of the Living Dead (1985)

Altered cardiovascular time intervals are indicative of diseases such as heart failure
and valvular lesions [223]. These changes are however measured as trends over long
time scales. There are also faster variations which reflect physiological processes such
as blood pressure and breathing. These short-time effects will be investigated in this
chapter, especially with a noninvasive, non-occlusive and non-intrusive monitoring
device in mind. Time intervals relevant for this chapter are summarized in this in-
troduction and illustrated in figure 7.1. Included are the pre-ejection period (PEP),
the left ventricular ejection time (LVET), the isovolumic contraction time (IVCT),
the electromechanical activation time (EMAT), the vessel transit time (VTT) and
the pulse wave transit time (PTT). PEP, IVCT and LVET are not explicitly used
in this chapter why their descriptions are rather brief. For completeness, they are
however included in the figure and mentioned in the text.

Electromechanical activation time (EMAT)
EMAT is measured from the Q-wave in the ECG to the initial rise in left ventricular
pressure, and reflects the electromechanical activity required for the left ventricle
to close the mitral valve. S1 can be used to mark the end point of EMAT if the
pressure curve is unavailable. Factors affecting EMAT include conduction defects,
the integrity of the mitral valve and the rate of rise of ventricular pressure [223].

Isovolumic contraction time (IVCT)
This measure is derived as the time difference between S1 and the upstroke in an
aortic pressure curve. Since it is cumbersome to measure aortic pressure, a carotid
pulse recording is often used instead. A decrease in IVCT suggests a greater velocity
of cardiac contraction [223].

Pre-ejection period (PEP) and left ventricular ejection time (LVET)
PEP comprises EMAT and IVCT, thus ranging from electrical activation of the
heart to the opening of the aortic valve. Factors influencing PEP include preload,
afterload, ventricular contractility, valve lesions, ischemic heart disease, hyperten-
sion, cardiomyopathy, inotropic drugs and conduction defects [223]. For practical
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reasons, PEP is usually measured from the Q-wave or the R-peak in the ECG to
S2 minus LVET. LVET is in turn measured as the time interval ranging from the
upstroke of an aortic pressure curve to the incisura of the same pressure curve, see
figure 7.1.

There is some controversy regarding the relationship between the constituents of
PEP. Some state that EMAT remains constant under the influence of a variety
of mechanisms including changes in contractility, preload, afterload and heart rate
while all these factors affect ICVT (which consequently becomes highly correlated
to PEP) [224]. Yet again, others have claimed that the correlation between PEP
and heart rate is mostly due to changes in EMAT [225].

Changes in PEP and LVET are often related, where a decrease in PEP is accompa-
nied by an increase in LVET and vice versa. In fact, the PEP/LVET ratio is the most
widely used time interval index for assessing left ventricular dysfunction [226]. Due
to interaction and coupling in the cardiovascular system, this ratio reflects changes
in preload, afterload and contractility, which in turn reflect pathologic conditions
such as heart failure and valvular lesions.

Vessel transit time (VTT)
The vessel transit time is the time it takes for the arterial pulse pressure wave to
travel from the aortic valve to the periphery. The R-peak in the ECG is often used
as an estimate of aortic valve closure, not because it is very accurate, but because
it is robust to noise and easy to pinpoint in time. A more accurate onset time could
however be determined as the upstroke of the aortic pressure curve. The peripheral

Fig. 7.1: Illustration of cardiovascular time intervals in relation to the cardiac cycle.
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site could, for example, be the finger where the arrival time of the pulse can be
measured by a photoplethysmograph. The main factors influencing VTT are heart
rate and vessel compliance [227].

The more rigid the wall of the artery, the faster the wave travels. VTT is therefore
used as an index of arterial stiffness and an indicator of atherosclerosis [228]. VTT
has also been suggested as an indirect estimate of beat-to-beat blood pressure [19,
229–232]. Since VTT is dependent on the distance that the pulse wave travels, the
velocity is usually calculated instead. Arterial distances measured over the body
surface are however inaccurate why velocity calculations are cumbersome.

Pulse wave transit time (PTT)
PTT is the time from electrical activation of the heart to the arrival of the arterial
pressure pulse at a peripheral site [6]. The general definition of PTT is thus the sum
of PEP and VTT, see figure 7.1. In practise PTT is measured as the time difference
between the R-peak in the ECG and the upstroke of a photoplethysmographic curve
measured on the finger. Factors reflected in PTT are the same as in PEP and VTT,
respectively.

The long term variations described so far are not the focus of this chapter, instead
the short term effects will be investigated in more detail. The cardiovascular system
continuously adapts itself to secure the oxygen delivery to the body, see section 2.1.4.
These beat-by-beat adjustments cause short term fluctuations in the cardiovascular
time intervals, where both respiration and blood pressure changes are visible. An
introductory example showing how EMAT varies as a function of respiration and
blood pressure is illustrated in figure 7.2.

This chapter is restricted to cardiovascular time intervals as measured via ECG,
PCG and photoplethysmography (PPG). The main consequence of such a setup is
that the aortic pressure curve is not available. This means that the upstroke of
aortic pressure has to be estimated by S1 and that the incisura has to be estimated
by S2.

7.1 Continuous monitoring of blood

pressure changes

The velocity of the arterial pressure pulse depends on blood pressure why numerous
attempts have been made to estimate blood pressure based on the pulse wave velocity
[19, 229–232]. Although it may be difficult to extract an absolute value of blood
pressure without regular calibrations, tracking of changes in systolic blood pressure
seems feasible [7, 229].

Already in the 1920s, the velocity of the pulse wave and its effect on arterial exten-
sibility was investigated by Bramwell and Hill [233]. As blood pressure increases,
arterial compliance decreases and the pulse wave travels faster (VTT decreases).
Different analytical expressions describing the relationship between VTT and vessel
dynamics have been presented. Most common are Moens-Korteweg’s [229], Wom-
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Fig. 7.2: Introductory example of the electromechanical activation time (EMAT)
measured over a time period of 20 min. The inverse trace (beat-by-beat) of EMAT
(top left), measured from the R-peak in an ECG to S1, closely resembles the systolic
blood pressure trace (top right). Enlarging a small part of the trace reveals the
respiratory oscillations. The dotted vertical lines are breaths as determined by a
respiration reference. Figure from paper I.

erseley’s [19] and Bramwell-Hill’s [233] formulas. Provided that some variables are
considered constant, all of these expressions model the inverse relationship between
VTT and blood pressure by a linear regression. Moen-Korteweg’s formula, see equa-
tion 7.1, was used by Chen et al. [229] to relate VTT to the dimensions of the vessel
and the distensibility of the vessel wall. v is the pulse wave velocity, E is the elastic
modulus of the vessel, ρ is the density of blood, a is the wall thickness and d is the
interior diameter of the vessel. The elastic modulus increases exponentially with
increasing blood pressure according to equation 7.2. E0 is the elastic modulus at
zero pressure, P is the blood pressure (Pa) and γ is a coefficient ranging from 0.016
to 0.018 (Pa−1), depending on the particular vessel [229].

v =

√

Ea

dρ
(7.1)

E = E0e
γP (7.2)

By combining equations 7.1 and 7.2, and setting the velocity v = K/T , equation
7.3 is obtained. K indicates the distance for the pulse wave to transit within time
T . If the changes in a, d and E0 are considered negligible or slow, the first term
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on the right-hand side of equation 7.3 can be regarded as a constant during a short
time period. Taking the derivative with respect to T results in equation 7.4. From
equation 7.4 it can be seen that a pressure change has an inverse linear relationship
to T .

P =
1

γ

(

ln
dρK2

aE0
− 2lnT

)

(7.3)

dP

dT
= − 2

Tγ
(7.4)

For practical reasons, the pulse wave transit time is often measured as the time
between the R-peak of the ECG and the onset of the peripheral pulse detected
via the photoplethysmogram of a pulse oximeter (PTT = PEP + V TT ). High
correlations between PTT and systolic blood pressure (SBP) have been reported, but
the agreement with diastolic blood pressure is weak [234]. To improve the correlation
between PTT and SBP further, it has been suggested that PEP should be excluded
from PTT. After all, Moens-Korteweg’s theoretical framework only accounts for the
time that the pulse wave travels through the vessels. This suggestion have, however,
been disputed since PEP seems to be an important contributor to the correlation
between PTT and SBP [231,232].

PEP has been recognized as an estimate of preload (Weissler 1977, Mattar et al.
1991). As preload is affected by blood volume (pressure) it is conceivable that PEP
is modulated by blood pressure. Hypothesizing that this is the case, PEP and
VTT are both varying with blood pressure and their combined effect should make
blood pressure fluctuations more evident. This approach will, however, violate the
direct relationship between transit times and blood pressure suggested by Moens-
Korteweg’s equation. The remainder of section 7.1 will be spent investigating PTT
and PEP. Data set I, see page 6, was used in these investigations. Since a carotid
pulse recording was not available in data set I, the EMAT parameter was used as a
surrogate to PEP (preload is one of the determinants of EMAT, so this discrepancy
should not affect the results greatly). To quickly recapitulate the material in data set
I, it consists of five phases; resting, hypotension, resting, hypertension and resting.
Lower body negative pressure (LBNP) was applied to invoke hypotension [18] and
isometric muscle contraction was used to invoke hypertension [19].

The content in this section on monitoring of blood pressure changes is based on a
combination of the results from paper I and from another study performed by our
group [7].

7.1.1 Extraction of transit times

Three different transit times were calculated: PTT, EMAT(MR) extracted with the
multi resolution S1 localizer (see section 4.2.1) and EMAT(EA) extracted with the
ECG-gated ensemble averaging approach (see section 4.2.1). PEP and EMAT were
thus defined as (source signal in parenthesis):
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PTT = Time from R-peak (ECG) to onset of peripheral pulse (PPG)

EMAT = Time from R-peak (ECG) to S1 (PCG)

S1 was detected as outlined in section 4.2.1, and the R-peak in the ECG was detected
by simple thresholding. To find the onset of the peripheral pulse, the PPG signal was
segmented into heart cycles using the RR-intervals [7]. The onset was then marked
as the first local minimum to the left of the maximum value in each segment. The
detected onset points were used for creating continuous (beat-by-beat) traces of the
three transit times, see figures 7.3 and 7.4. In cases where the algorithms failed
to detect accurate onsets, the incorrect detections were removed manually for PTT,
whereas incorrect detections in EMAT were removed based on the same criteria that
were used on page 103.

Blood pressure recordings and transit times contained fluctuations with frequency
content higher than that of realistic pressure changes. These were removed with a
low-pass filter (5th order zero-phase Butterworth filter with a cut-off frequency cor-
responding to 0.02 Hz assuming a heart rate of one beat per second). An example of
the three transit time traces along with intermittent measurements of SBP is shown
in figure 7.3. An immediate observation is that EMAT(EA) provides significantly
higher transit time values compared to EMAT(MR). This is due to the fact that the
ensemble averaging approach marked S1 occurrences when the template was abreast
of S1 while the multi resolution approach located the first peak within S1.

7.1.2 Agreement between transit times and blood pressure

PTT as well as EMAT was negatively correlated to SBP (based on transit times
extracted from data set I), see table 7.1. The baseline levels were analyzed sep-
arately for the three measurement phases (the resting phases were put together
and analyzed as one). Higher baseline values were found during hypotension, as
compared to resting conditions, for both PTT and EMAT (table 7.2). For hyper-
tension, although weak, an opposite tendency was seen. The results for PTT agree
with several studies [19,229,231,232,234,235]. However, PEP has been reported to
show great interpatient variability with positive as well as negative correlations with
SBP [236,237]. This indicates that EMAT is a more stable time interval compared
to PEP when assessing blood pressure changes. However, these results need to be
confirmed in a study where PEP, EMAT and the isovolumic contraction time are
derived on a large amount of patients with conformed reference methods, not from
the ECG and PCG alone.

The transit time baseline values from hypertension showed a small (nonsignificant)
decrease as compared with resting conditions. This surprisingly small decrease might
derive from the isometric muscle contraction. This provocation can only be main-
tained for a shorter time, it affects the peripheral resistance by direct mechanical
compression and its effect on SBP is not fully clear [238]. Regarding PTT, another
explanation is provided by Moens-Korteweg’s formula (equation 7.3) which states
that SBP and PTT are exponentially related. Variations in the high pressure region
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Fig. 7.3: Example of the inverse relationship between SBP (a) and PTT (b) in a test
subject. The solid line shows the low frequency changes in the data. Corresponding
curves for EMAT(MR) and EMAT(EA) are shown in (c) and (d), respectively. The
two provocation phases are clearly seen in the top plot as hypotension between 5 and
10 minutes and as hypertension after 15 minutes. The time resolution is one sample
per obtained blood pressure reading (a) and one sample per heartbeat (b, c and d).
Faster variations are mainly respiratory fluctuations.

will thus give a smaller change in transit time compared to variations in the low
pressure region. Regarding PEP, and possibly EMAT as well, recent findings sug-
gest that PEP is rather reflecting fluid responsiveness and that the correlation to
blood pressure is a secondary effect [239]. This could explain EMAT’s agreement to
hypovolemia (induced by LBNP) as well as the modest reaction to isometric muscle
contraction.

EMAT accounted for a larger percentage of PTT during the hypotension phase.
Calculated via the ensemble averaging approach, EMAT corresponded to 41% of
PTT during hypotension compared to 36% during rest and hypertension. This is
an additional indication that PEP is highly affected by changes in blood volume.
It also demonstrates that PTT should not be used as a substitute for pulse wave
velocity for assessment of arterial stiffness (if PEP is not constant, it will violate
Moens-Korteweg’s formula). This latter finding is in agreement with the results
from Payne et al. [236].
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Table 7.1: Correlation between the three transit times and SBP (all measurement
phases together, MR = multi resolution, EA = ensemble averaging).

Subject PTT EMAT(MR) EMAT(EA)

1 -0.80 -0.83 -0.86
2 -0.80 -0.91 -0.85
3 -0.92 -0.44 -0.58
4 -0.79 -0.70 -0.73
5 -0.78 -0.74 -0.75
6 -0.73 -0.67 -0.74
7 -0.85 -0.76 -0.77
8 -0.76 -0.73 -0.84

Mean±std 0.80 ± 0.06 0.72 ± 0.14 0.76 ± 0.09

Table 7.2: Baseline values (ms), mean ± std, of the three transit times for each
measurement phase (MR = multi resolution, EA = ensemble averaging).

Phase PTT EMAT(MR) EMAT(EA)

Hypotension 282.1 ± 22.4 49.6 ± 12.5 115.1 ± 9.6
Resting 260.7 ± 18.9 30.1 ± 8.0 94.4 ± 4.4
Hypertension 254.4 ± 18.9 29.0 ± 9.3 90.8 ± 4.9

As already mentioned, the inclusion of PEP when using PTT to estimate SBP is
still actively debated. Since SBP is dependent on both vascular and ventricular
contraction, it comes as no surprise that PTT, a composite of both vascular and
cardiac activity, is correlated to SBP. The current standpoint is that PEP should
not be included when trying to estimate blood pressure [229,236], however, it should
be included if only changes in SBP are sought [7,236]. The results presented in this
section clearly showed that EMAT, which is a subset of PEP, was correlated to SBP.
This fact supports the hypothesis that PEP should be included when estimating
blood pressure changes from transit times.

7.2 Respiration monitoring

Monitoring of respiration is a fundamental component in fields such as intensive care,
postoperative care, anesthesia and neonatal care. Nonetheless, no technical method
yet exists that satisfies demands on sensitivity, specificity, patient safety and user
friendliness [240]. Non-obstructing techniques able to extract respiration rate in
combination with other monitoring parameters are often preferred to air-flow based
sensors. An example of such a solution is transthoracic impedance plethysmography,
which is integrated with the ECG electrodes.

It is well known that blood pressure decreases during inspiration. The transit times,
which are modulated by a blood pressure synchronous component, might thus be
modulated by a respiration synchronous component as well. In fact, it has been
demonstrated that PEP is lengthened during inspiration [231, 232, 241], and since
PEP is part of PTT, it is reasonable to believe that PTT is also lengthened during
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inspiration. Applications of this respiration synchronous component of the PTT
have so far been restricted to grading respiratory effort in connection with obstruc-
tive sleep apnea [230,242]. The remainder of this section will be spent investigating
and discussing the effects of respiration on PTT and PEP. As in section 7.1, the
EMAT parameter will be used as a substitute to PEP. The content in this section
is a combination of the results reported in paper I and in another study performed
by our group [6].

7.2.1 Agreement between transit times and respiration

Using data set I, 2326 respiratory cycles from eight test subjects were analyzed. The
three transit times that were extracted in the previous section were here re-used in
the respiratory setting. An example of the three transit time traces is presented in
figure 7.4.

Fig. 7.4: Typical transit time traces during rest (normotension). Dashed lines are
expirations as detected by the respiration reference. The top trace represents PTT,
followed by EMAT(EA) and EMAT(MR) at the bottom. The missing value in the
bottom trace is due to a detection error.

The mean amplitude of the respiratory variation is presented in table 7.3. The
amplitude was defined as half the difference between the maximum and minimum
transit time value within each reference respiratory cycle. Reference respiratory cy-
cles were set as the regions between expiration marks in the respiration reference.
In the previous section, it was noted that the transit time baselines responded in-
versely to the provocations invoking hypo- or hypertension, respectively (table 7.2).
Despite these blood pressure induced changes, the respiration amplitudes were not
significantly affected. This indicates that despite coarse physiological provocations,
the respiratory synchronous fluctuations in the transit times remain intact.

Table 7.3: Mean amplitudes (ms), mean ± std, of the respiratory variation for the
three transit times (MR = multi resolution, EA = ensemble averaging).

Phase PTT EMAT(MR) EMAT(EA)

Hypotension 3.5 ± 3.4 1.4 ± 1.4 2.2 ± 1.5
Resting 4.2 ± 3.9 1.4 ± 1.2 1.5 ± 0.8
Hypertension 4.0 ± 3.5 1.0 ± 0.8 1.1 ± 0.7

The number of false positive and false negative breath detections for PTT and the
two EMAT measures are presented in table 7.4. A breath was assumed correct if
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there was exactly one local minimum in the transit time trace during the reference
respiratory cycle. A false positive was registered if there was more than one mini-
mum and a false negative if there were no minima. Best results in breath detection
were seen for PTT in the normotension phase with a total error rate of 12%. The
error rates were significantly increased for the hypotension and hypertension phases.
In general, false positive errors dominated over false negative errors. The higher er-
ror rates found during the blood pressure provocations are probably explained by
unstable physiological conditions. In the EMAT cases, there was also additional
acoustic noise introduced by the LBNP device. Comparing the two approaches of
determining EMAT, ensemble averaging gave slightly better results. In the hypoten-
sion phase, where noise from the LBNP device heavily influenced the PCG signal,
EMAT(EA) resulted in a 13% increase in the amount of correct breath detections.
This is a direct consequence entailed by the more accurate S1 detector.

Table 7.4: False positive (FP) and false negative (FN) breath detections (%) in the
three transit times for each measurement phase (MR = multi resolution, EA = en-
semble averaging).

Phase PTT EMAT(MR) EMAT(EA)

FP FN FP FN FP FN
Hypotension 30 4 58 2 39 8
Resting 8 4 20 4 19 1
Hypertension 14 2 22 6 21 4

The transit time values were normalized to the region [0 1], and mean values of
these patterns were calculated to obtain information about the direction of change
and phase lag between respiration and the transit time traces. For all three phases
(hypotension, hypertension and resting) it was clear that PTT as well as EMAT
decreased as a first response (five heartbeats) to expiration, see figure 7.5. It is also
worth noticing that the hypothesis of increasing transit times following inspiration
seems correct, both in normotension and during blood pressure provocations.

An interesting finding in this section was that the reported respiratory synchronous
fluctuations in PEP [231, 232, 241] are also present in EMAT. To measure these
fluctuations, it is however necessary to use accurate localization of S1. Further,
since respiration directly affects the circulation by reducing systolic blood pressure
during inspiration, a reduced mean blood pressure gives rise to a longer VTT [6].
In combination with the respiratory modulation of EMAT, simple superposition
explains why the most robust mean respiratory amplitudes were found in PTT.

7.3 Additional comments

Accurate continuous blood pressure monitoring can only be achieved via an intra-
arterial pressure sensor. Catheter insertion is however always associated with a
certain risk of embolism, infections or injuries of peripheral nerves. Despite these
risks, invasive blood pressure monitoring is the only continuous technique which is
accepted for clinical use today. Non-invasive estimates of the pressure curve are
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Fig. 7.5: Mean and standard deviation values of the normalized transit time patterns
for the five consecutive heartbeats after expiration (MR = multi resolution, EA =
ensemble averaging).

usually based on the vascular unloading technique. However, these techniques suf-
fer from insufficient accuracy and stability. Since an externally applied pressure is
required, they are also occlusive, which in the long run can cause tissue trauma.
The occlusion itself also means stress for the patient, a condition which undoubt-
edly affects the blood pressure. When it comes to non-invasive and non-occlusive
continuous blood pressure monitoring, available methods are restricted to transit
time modeling. This technique is not yet accurate enough to monitor the absolute
value of blood pressure, but tracking of blood pressure changes is achievable.

Similar difficulties apply to respiration monitoring. Direct methods are accurate
but also very intrusive since the sensor is attached to the airways in one way or
another. There are, unfortunately, no good alternative indirect methods (not based
on air flow) available. It would have been interesting to compare transit time based
methods with other indirect measures such as transthoracic impedance (TTI) or res-
piratory sinus arrhythmia (RSA) derived from ECG. Such a comparison is however
left for future studies. It should be noted that both TTI and RSA can be measured
with the same sensors as was used in this chapter. Combining information from
many sources is thus conceivable to improve both accuracy and robustness.

A noninvasive and non-intrusive multi-sensor device, fitted in a simple chest belt,
would be able to monitor ECG and PCG as well as well as be able to estimate
respiration and blood pressure fluctuations. Such a device would be very useful in
home health care as well as in exercise testing, sport sciences and certain clinical
applications. A typical clinical application is the investigation of sleeping disorders,
where noninvasive, non-obstructive and non-intrusive sensors are necessary in order
not to disturb the patient’s sleeping patterns [242].
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8
Complementary Remarks and

Future Aspects

“Di väis hynsi kan u värp i nättlar”
Old Gutnish saying

In a small pilot study in 2002, interviews with primary health care physicians re-
vealed that the most interesting task for an intelligent stethoscope was classification
of heart murmurs, especially to distinguish physiological murmurs from patholog-
ical murmurs. These interviews formed the basis for this thesis work and greatly
influenced the questions at hand.

This chapter is a collection ideas, thoughts and preliminary results regarding this
thesis work and its continuation.

8.1 Areas of application

Evaluation of patients with heart disease is a complex task, where auscultation
provides one piece of the puzzle. Therefore, a PCG based decision support system
should not be seen as a tool capable of replacing clinicians or other diagnostic
techniques, but rather as a mean to quantify and clarify information from the PCG
signal. By alerting the auscultator when abnormal sounds are present in the signal,
or by helping to decide whether a murmur is innocent or not, much could be gained
in form of more accurate early diagnoses. This is, in my opinion, the main area
of application for an intelligent stethoscope. In the primary care, when deciding
which patients that need special care, an intelligent stethoscope could really make
a difference. Another application of interest is to follow the progress of a disease. If
the disease state is monitored by PCG signal analysis, recurrent echocardiographic
examinations in the clinic could be less frequent. This topic is directly related to
the aim of making auscultation more objective.

Just as in the human health care system, there is a primary health care and a
specialized/centralized care in veterinary medicine as well. This implies that the
main areas of application for an intelligent stethoscope are the same regardless if
the patient is human or an animal. AS and MI are the most important structural
heart diseases in dogs and especially classification of physiological murmurs from
pathological murmurs is of great interest. There is, however, an important difference
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between humans and animals concerning the interesting stage of the disease. In
humans, surgical correction is generally performed well before the disease causes
any secondary changes. In this case it is important to find the disease at an early
stage. In animals on the other hand, cardiac surgery is very rare and the important
stage of the disease is when it is time to start a medical treatment. This usually
occurs at a more severe disease stage. This means that algorithms developed for
humans needs to be adjusted to be used in veterinary science and vice versa.

Cardiac imaging by means of echocardiography or magnetic resonance imaging
(MRI) are diagnostic techniques which outperform auscultation and phonocardiog-
raphy when it comes to accurate assessment of cardiac function. These techniques do
however require expensive, often immobile, equipment and requires specially trained
clinicians. Auscultation with an intelligent stethoscope is usable by a broader spec-
trum of clinicians and investigations can be performed both in the clinic or at home.
A competitive technique is the portable ultrasound equipment [243]. In due time,
such mobile echocardiography devices will inevitably be equipped with computer vi-
sion software able to guide even an inexperienced sonographer so that high quality
images are obtained.

8.2 Limitations

8.2.1 Clinical validation

The methods presented, especially in papers I and IV–V, have not been clinically
validated. All methods have been developed and tested on data acquired from either
test subjects, patients or dogs, but clinical validation on a large number of unseen
human patients is necessary before any final conclusions can be drawn from the
results. In paper I, the developed S1 localization algorithm was designed based on
simulated data and verified on healthy test subjects. The regression models were
however not tested on patients. In papers II and III, the algorithms were designed
and adjusted based on data from dogs and a leave-one-out approach was used to
verify the classification results, but the methods need to be validated on human
patients. In paper IV, the same data set was used for feature selection as well as
for leave-one-out classification why a new unseen material of patients is needed to
verify the results. Finally, in paper V, the method was developed and tested on
healthy test subjects while the main area of application would be patients with lung
disease.

8.2.2 Computational complexity

Many of the methods used in this thesis suffer from high computational burden.
This is a problem since the software is supposed to be implemented in a portable
intelligent stethoscope, preferably in real time. It is however difficult to assess the
actual performance limitations of the used signal processing methods since they were
never designed to be quick or efficient. A number of potential speed-ups are:
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• MATLAB was used to implement all algorithms, but using a lower level lan-
guage would improve the performance.

• Fast nearest neighbor routines are available, but currently a very simple search
routine is used.

• A sliding window approach is often used to gain time resolution. The recon-
structed state space is nearly identical between iterations due to the overlap
between segments, and this fact is not exploited.

A fundamentally different bottle-neck is the fact that some calculations are non-
causal. For instance, many of the features in papers II–IV were derived as averages
over all available heart cycles. In most cases this could be dealt with by only using
old data. Accumulated statistics could then be used to increase the accuracy of the
output as more data become available. In either way, real-time performance is not
that important in a classification situation. As long as the result is presented within
consultation time it will be fast enough.

8.2.3 Stationarity

Stationarity is an underlying assumption in many of the methods used in this thesis.
Interestingly, a time series can be considered both stationary and nonstationary
depending on the time scale of interest. For example, the heart rate of a resting
person is often treated as homogeneous over several minutes. Longer recordings
such as a 24-hour Holter ECG does however cover slower variations such as the
circadian rhythm and can no longer be considered stationary. The PCG signal is
definitely nonstationary when a single heart cycle is under investigation. If the data
is acquired over a longer period of time, the heart cycle repeats itself in a nearly
periodic manner why such recordings can be considered stationary. In this thesis,
the PCG signals typically consist of about ten heart cycles. Such a time window
is short enough so that really slow variations can be ignored. It is however not
long enough to account for faster variations due to respiration. This latter issue is
dealt with by asking the patients to hold their breath. In conclusion, stationarity is
an awkward quality to guarantee and in this thesis, rather simple countermeasures
have been used to relieve nonstationarity issues. This matter should definitely be
investigated more carefully in the future.

8.2.4 Chaos or noise?

Turbulence itself has been shown to be chaotic [173], and due to the strong interac-
tion between fluid flow and its induced sound field [175], it is reasonable to believe
that the chaotic behavior is preserved in the PCG signal. The greatest problems
when trying to determine if a time series is chaotic are that the results are almost
always open for interpretation, that nearly noise free data is required and that the
amount of data should be large. In the early days of nonlinear signal analysis,
convergence of the correlation dimension was interpreted as evidence of low dimen-
sional deterministic chaos. The convincing scaling region in figure 5.7 would have

187



CHAPTER 8. COMPLEMENTARY REMARKS AND FUTURE ASPECTS

been proof enough. After the finding that filtered noise can also demonstrate con-
verging correlation dimensions, the necessity of surrogate data tests was stressed.
Again, surrogate tests of the PCG signal indicate that the data should be nonlinear.
The strength of such a test is however limited to the manufacturing of the surrogate
data. In the end, it might not be that important whether the PCG signal consists of
colored noise or chaos. Of more interest is the possibility to quantify heart diseases
using chaos based signal processing.

8.3 Future work

8.3.1 Creating a murmur map

In the literature, heart murmurs are usually described by means of pressures and
flows within the heart. The task for the auscultating physician is to solve the
inverse problem and translate the sounds into pressure and flow fluctuations and
further into physiological events. As outlined in chapter 3, findings in dynamical
systems theory allow this inverse problem to be partially solved. Using Takens’
delay embedding theorem, the recorded sound signal can be used to reconstruct
or estimate the flow conditions from where the sound once sprung. In this thesis,
certain invariant measures such as the fractal dimension have been used to describe
the reconstructed dynamics. However, a lot of information is thrown away when
summarizing all available information into one single measure. Hypothesizing that
the embedded signal really resides on a manifold in the reconstructed state space, it
would be very interesting to investigate how the geometry of this manifold changes
as different diseases influence the cardiovascular dynamics.

To test the eligibility of these ideas, a naive algorithm was implemented and evalu-
ated on the 29 patients with innocent murmurs or murmurs caused by AS in data set
IV. The recorded PCG signals were embedded in a reconstructed state space using
Takens’ delay embedding theorem with d = 5 and τ = 5.5 ms. Each embedding
was looked upon as a point set, and the Bhattacharyya distance [137] between their
respective distributions was calculated. This provided a distance matrix containing
information about how far away each embedding was from every other embedding.
Based on the distance matrix, it is possible to construct a map showing the relation-
ship between different patients. Here multidimensional scaling was used to create
the map, but many alternatives are available. As can be seen in figure 8.1, patients
with similar AS severity tends to cluster (the classification was based on the AHA
guidelines [197]). Actually, if the first dimension of the multidimensional scaling re-
sults is plotted against AS severity, a correlation coefficient of R = 0.80 is achieved,
see figure 8.1. It is important to realize that it is a very naive approach to use the
Bhattacharyya distance on these kinds of data. However, the example does indicate
the potential of the concept. In fact, the R-value is better than the ones obtained
in section 5.1.

188



8.3. FUTURE WORK

−0.15 −0.05 0.05 0.15

−0.1

−0.05

0

0.05

0.1

Dimension 1

D
im

en
si

on
 2

(a)

−0.15 −0.05 0.05 0.15
1

2

3

4

5

Dimension 1

A
or

tic
 fl

ow
 v

el
oc

ity
 (

m
/s

)

(b)

Fig. 8.1: Results from multidimensional scaling of the Bhattacharyya distances where
the patients with considerable AS (boxes) and the patients with mild or no AS (circles)
group themselves into separate subgroups (a). The gray scale represents the aortic
flow velocity where black is 0 m/s and white is about 5.5 m/s. The correspondence
between dimension 1 and AS severity is illustrated in (b).

8.3.2 Feature extraction, classification and beyond

The standpoint of this thesis is that the most important step in any classification
system is the extraction and selection of descriptive features. A different approach
is to present large sets of nearly raw data, such as a full joint time-frequency matrix,
to the classifier. In this approach, the recognition system also contains a feature
extractor, but the feature extractor is incorporated in the internal structure of the
classifier. Perhaps this alternative route to classification is even more accessible.
After all, it seems like this is the way the human brain is operating [244].

Along the same line of thought, dimension reduction could be applied to large data
sets such as joint time-frequency matrices or embedding matrices. Classical linear
methods for dimension reduction include principal component analysis and multidi-
mensional scaling. However, if the data can not be accurately summarized by linear
combinations, these techniques are insufficient. A simple example is provided by
the three dimensional helix whose one-dimensional structure cannot be discovered
by linear methods. Instead of finding the most important linear subspace from a set
of data points (like in principal component analysis), nonlinear parameterizations
can be sought. Many of these manifold learning techniques are based on a distance
matrix (like multidimensional scaling in the last section). In principle, the differ-
ence compared to multidimensional scaling is the way that distances are calculated.
Instead of measuring a global distance (a straight line through space), the distance
is calculated by summing up local distances as one moves from one point to another
(i.e. we are only allowed to travel from point a to point b via other data points lo-
cated in between). A problem associated with these techniques is whether the data
really resides on a manifold and if so, whether the manifold is sampled dense enough
to create a reliable distance matrix. A simple experiment was conducted to test the
validity of this idea. The averaged joint time-frequency matrices were calculated
with the S-transform for each patient in data set IV having either an innocent mur-
mur or a murmur caused by AS. The size of the matrices was reduced to 100 × 200
data values to reduce the memory requirements, resulting in a 20000-dimensional
feature space. The dimension of this data set was reduced by locally linear embed-
ding [245], and the resulting two-dimensional space is illustrated in figure 8.2. The
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interesting aspect of both this approach and the one presented in the last section is
that the algorithms find structure in the data without any guidance. Here 29 exam-
ples of a 20000-dimensional data representation are presented to a black box and out
comes a two-dimensional map indicating the severity of the disease. Results from
this experiment should however be interpreted as is. After all, no particular thought
was put into the construction of the high-dimensional feature space. Comparing the
first resulting dimension with the aortic flow velocity, a correlation coefficient of
R = 0.82 was obtained. Again, a simple experiment has showed that nonlinear
signal processing provides very valuable tools. It should be noted that this example
does not make use of nonlinearities in the data (the S-transform is linear). It does
however deal with nonstationarity in a straightforward manner. Perhaps it would
be fruitful to use the Hilbert-Huang transform [118] to compute the feature matrix
because this technique is able to treat both nonlinear and nonstationary data at the
same time.

−0.2 0 0.2
−0.4

−0.2

0

0.2

0.4
(a)

Dimension 1

D
im

en
si

on
 2

−0.2 0 0.2
1

2

3

4

5

A
or

tic
 fl

ow
 v

el
oc

ity
 (

m
/s

)

Dimension 1

(b)

Fig. 8.2: Results from dimensionality reduction by locally linear embedding where the
patients with considerable AS (boxes) and the patients with mild or no AS (circles)
group themselves into separate subgroups (a). The gray scale represents the aortic
flow velocity where black is 0 m/s and white is about 5.5 m/s. The correspondence
between dimension 1 and AS severity is illustrated in (b).

8.3.3 The forest and the trees

It is all too easy to get lost in the forest if you focus on the trees, and however
tempting it is to use nifty processing algorithms, it is important to remember the rest
of the system. An intelligent stethoscope does not only contain software connected
to a sound sensor. It also needs a high-end amplifier, an AD-converter able to
send accurate data to a sufficiently fast DSP chip via a wide enough data bus,
an intelligible user interface, all packed up in a compact and robust cover. As
of today, the Meditron electronic stethoscope has been used to acquire the PCG
signal. This stethoscope can be directly connected to a computer via a sound card.
In the computer, all the necessary processing power is readily available. Within
the scope of this thesis, this setup has been more than adequate to develop signal
processing methods. However, all of these design issues have to be solved in a
future auscultation system where a graphical display, built in memory, wireless data
transmission, adaptive noise reduction etc. should all be fitted into a small portable
device.
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Speaking of sensors, an interesting extension of the work in this thesis would be to
incorporate multi-sensor data. The magnitude of different components in the PCG
signal varies with the measurement location, so by determining the puncta maxima
of a murmur, a fair indication of its origin is obtained. By using multiple sensors in
parallel, this difference in intensity could be used as a parameter in a classification
system. Further uses could be to derive time differences between the different signals
and, by using this information, calculate an estimate of the location of the event.
For instance, using S1 and S2 as reference locations, the murmur location could
be of diagnostic value. A third possible use of multiple sensors is to use several
sources of the signal when recreating the state space. This would probably give
better resistance to measurement noise and, above all, a better embedding of the
signal. The major drawback with multiple sensors is that the stethoscope would
not be as convenient to use anymore. Further, if additional sensors are to be used,
conceptually different techniques such as ECG and Doppler ultrasound should be
used as well.

8.3.4 Information fusion

Murmurs caused by MI may be confused with murmurs from tricuspid regurgita-
tion. However, by keeping track of the respiratory cycle, these two murmurs can
be distinguished from each other since the tricuspid murmur is augmented during
inspiration. This is but one example where additional information aids the physician
in the diagnosis. Similarly, the respiratory information can come in handy to eval-
uate the splitting of S2. If the splitting does not vary with inspiration, it is usually
because of an atrial septal defect or ventricular septal defect is present [26]. Obvi-
ously, the estimated respiration monitor that was investigated in chapter 7 could be
of great use when assessing heart diseases as well.

There are many sources of information that may facilitate the decision making in
an intelligent stethoscope. A well of usable knowledge can be found in the patient’s
medical history. Since the recorded PCG signals will probably be stored in an elec-
tronic health record in the future, there are no technical obstacles why information
should not flow in the other direction as well. Such ideas have already been inves-
tigated by Javed et al. [185], however, the ethical considerations in such approaches
have yet to be carefully studied.

8.3.5 Model-based signal analysis

If a model can be incorporated in the analysis of the PCG, it is likely that more
effective processing schemes can be constructed. For simulation purposes, models
such as the ones for S1 and S2 in section 2.6 can be used. There are, however,
no models that are flexible and robust enough to describe the entire PCG signal.
Model-based signal processing may however be used on more restricted subproblems.
One example is the determination of the S2-split. By fitting a model of S2 to the
recorded signal, the splitting between the aortic and pulmonary components can be
obtained directly from the model parameters. Equation 8.1 provides a rather simple

191



CHAPTER 8. COMPLEMENTARY REMARKS AND FUTURE ASPECTS

model of S2 consisting of two windowed sinusoids. The sinusoids are defined by their
amplitudes A, frequencies ω and phases ϕ, while the window is implemented as a
Gaussian function where m and σ control the location and width of the window,
respectively.

S2(t) = Aasin(ωat+ϕa) ·
1

σa

√
2π
e
− (t−ma)2

2σ2
a +Apsin(ωpt+ϕp) ·

1

σp

√
2π
e
− (t−mp)2

2σ2
p (8.1)

An efficient method to fit the model to the recorded sound is to minimize the squared
error. This can be achieved using a 10-dimensional nonlinear gradient descent algo-
rithm to determine the ten model parameters. An example showing the possibilities
of this technique is illustrated in figure 8.3. Also illustrated in the figure is the
joint time-frequency representation of S2, where it is possible to measure the split
manually. Once the model has been adjusted to fit the recorded signal, the split can
be obtained as the difference mp −ma.

A more futuristic use of cardiovascular models is to emulate different physical phe-
nomena with the aim to gain knowledge about the underlying processes. Advanced
biomechanical dynamical models of the heart have been developed. One example,
simulating blood flow in a three-dimensional model, is illustrated in figure 8.4. The
main characteristics of the vortices and eddies predicted by the model can be ver-
ified by in vivo visualizations obtained from MRI [246]. Recent advances in MRI
even make it possible to investigate turbulence in vivo by measuring the standard
deviation of the blood flow velocity distribution within voxels [247]. Using knowl-
edge and data from these kinds of measurements, it might be possible to incorporate
more reliable information into models of the heart. In the end, the models might
be accurate enough to reproduce the cardiovascular system in such detail that also
the accompanying sound field can be modeled. Integration between signal process-
ing and such a model would be capable of directly attributing pathophysiological
meaning to the parameters obtained from the signal processing algorithms. Until
this model becomes available, state space reconstruction from the PCG signal offers
a means of describing the underlying dynamical system in terms of structure and
behavior. Throughout this thesis, the embedding dimension has been determined
with Cao’s method [102]. Interestingly, obtained d-values have always been fairly
constant regardless of the patients’ disease state. This implies that the number of
differential equations involved in a system model does not change with health status,
and that only model parameters differ.

8.3.6 Obstacles

This thesis contains a number of examples and results showing the potential use
of computerized phonocardiography. In the literature, methodologies able to dis-
tinguish a large number of different murmurs from each other have been developed
and excellent classification results have been presented. If this is the case, why are
there no successful commercial products available? There are a number of possible
reasons:
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Fig. 8.3: Time-frequency representation of S2 (a). A model of S2 (blue) and the
recorded sound signal (red) is given in (b) and the two model components representing
A2 and P2 are shown in (c).

Fig. 8.4: Section through the model of the left ventricle showing streamlines of ven-
tricular filling (a). An in vivo particle trace visualization of intra-cardiac blood flow
is illustrated in (b). The model image was reprinted from McQueen and Peskin [248]
with kind permission of Springer Science and Business Media while the particle trace
image was adapted from Wigström et al. [246].

1. Many journal articles and conference proceedings are based on PCG data
obtained from teaching tapes and data bases used for teaching auscultation.
The problem is that such data sets contain textbook cases where the signals
are nearly noise-free and very typical for the disease at hand. When training
a classifier on such signals, it is not very surprising that system performance
decreases when real data are used.

2. Many algorithms are designed to separate something pathological from some-
thing physiological. In real life, there is always a gray zone that is seldom
investigated in published work.

3. Patients (and probably physicians as well) in developed countries do not trust
the results of a gadget which is based on something as basic as heart sounds.
If a physician tells you that you have a heart murmur, would you settle with
anything less than a full echocardiographic investigation?

4. Still no one knows the true origin of the heart sounds. There are two working
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hypotheses, and the truth is probably somewhere in between. Maybe very
accurate cardiac models will bring clarity into this issue.

5. Measurement noise is still a big problem. In a clinical environment the record-
ings will contain friction rubs, rumbling sounds from the stomach, breathing
sounds from the lungs, background noise from the clinic, etc. All of these noise
sources influence the recorded sound in a negative way, but a perhaps bigger
problem is handling the stethoscope. This is especially a problem with very
skinny patients where it can be difficult to get a good contact surface between
the ribs. This is a huge setback since the whole idea behind an intelligent
stethoscope is that it should be easy to use (perhaps even by the patients in
their homes). Firm application of the sensor cannot be stressed enough to
achieve high quality recordings.

6. Most studies use independent data sets for training and testing. However,
in some cases, the “independent” data were created using the same patients
twice. Acquiring two recordings from the same patient does not make these
two recordings independent enough so that one recording can be used for
training and the other for testing. Such cross validation will obviously give
too optimistic results.

8.4 Starting all over again

The first step in many system identification tasks is to assume a black box and
carry on with an estimation of this box based on available data. Most of the work
in this thesis as well as in the PCG signal analysis literature has all been based
on this concept. Having exploited information about signal morphology, frequency
properties, joint time-frequency properties and now even nonlinear signal properties,
I am not sure that further research along this line of thought can be brought much
further. Instead, I believe that the black box thinking has to be complemented or
replaced by a strategy built on a realistic model of the heart. If I was to start all
over again, I would have begun with taking massive courses in computational fluid
dynamics and dynamical modeling of heart dynamics. Based on a proper model,
the sound signal can hopefully be reverse engineered and the full potential of the
PCG signal might finally be revealed.
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[183] C. Kvart and J. Häggsytröm. Cardiac auscultation and phonocardiography in
dogs, horses and cats. VIN (Veterinary Information Network), Uppsala,
Sweden, 2002.

[184] R. K. Sinha, Y. Aggarwal, and B. N. Das. Backpropagation artificial neural
network classifier to detect changes in heart sound due to mitral valve
regurgitation. J Med Syst, 31(3):205–209, 2007.

[185] F. Javed, P. A. Venkatachalam, and A. F. Hani. Knowledge based system
with embedded intelligent heart sound analyser for diagnosing cardiovascular
disorders. J Med Eng Technol, 31(5):341–350, 2007.
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