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The use of maximum entropy and ecological niche factor analysis to decrease 
uncertainties in samples for urban gain models
Mohammad Ahmadloua, Mohammad Karimia and Nadhir Al-Ansarib

aGIS Department, Geodesy and Geomatics Faculty, K.N. Toosi University of Technology, Tehran, Iran; bDepartment of Civil, Environmental and 
Natural Resources Engineering, Lulea University of Technology, Lulea, Sweden

ABSTRACT
Uncertainty is a common problem in spatial modeling and geographical information systems (GIS). 
Furthermore, urban gain modeling (UGM) contains various dimensions and components of uncer-
tainties. Data sampling is important in UGM, and may cause the results of the models to contain 
many uncertainties as well as affects their precision and accuracy. A poorly sampled or biased 
dataset can lead to inaccurate predictions and decreased performance of the models. This paper 
aims to present and develop novel strategies for sampling and building training datasets that can 
enhance the performance of data-driven models. In other words, the present study used maximum 
entropy (ME) and ecological niche factor analysis (ENFA) models to select pure non-change 
samples with minimal uncertainty for training datasets in UGM of Isfahan and Tabriz cities in 
Iran. The urban gain of two time intervals of 1992–2002 and 2002–2012 were used for Tabriz City 
and two time intervals of 1994–2004 and 2004–2014 for Isfahan City. Nine and 14 urban gain 
drivers were used in the UGM of Isfahan and Tabriz cities, respectively. After the ME and ENFA 
models produced a training dataset with change and non-change samples with the lowest 
uncertainty, three well-known models, namely random forest (RF), artificial neural network 
(ANN), and support vector machine (SVM) were used for the modeling. Moreover, the ME and 
ENFA models that were used to investigate the uncertainty of the sampling procedure were used 
as the one-class prediction models. Compared to extant studies, the proposed ME – based 
sampling strategy increased the area under the receiver operating characteristic curve (AUROC), 
figure of merit, producer’s accuracy, and overall accuracy by 5.5%, 5%, 5%, and 3%, respectively, in 
the validation phase of Isfahan City and by 5%, 6%, 14%, and 17%, respectively, for Tabriz City. For 
Isfahan, the accuracies of ME (AUROC = 0.649) and ENFA (AUROC = 0.661) one – class models were 
closer to that of the ANN – ME (AUROC = 0.646), ANN – ENFA (AUROC = 0.619), and RF – ENFA 
(AUROC = 0.631) models but differed significantly from that of the RF – ME (AUROC = 0.737) model. 
For Tabriz, the accuracies of ME (AUROC = 0.657) and ENFA (AUROC = 0.688) one – class models 
were lower than that of the two class RF-ME (AUROC = 0.852), and ANN-ME (AUROC = 0.778) 
models. The results showed that the ME model was able to identify relatively pure non-change 
samples and properly remove impure non-change samples from the training dataset. This study 
discovered that binary models are preferable to one-class models, and showed that an optimal 
sampling strategy is an essential step in UGM as it can decrease uncertainty. As such, modelers 
must adopt efficient sampling methods.
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1. Introduction

In various scientific fields, uncertainty analysis and 
management is an important step in efficient modeling 
(Aven 2010). Urban gain models (UGMs) help policy – 
and decision – makers to adopt vital policies that avert 
environmental issues (Matthews et al. 2007). This 
includes policies that can decrease the potential 
threats of urban gain such as environmental degrada-
tion (El Araby 2002), loss of biodiversity (Hansen, 
DeFries, and Turner 2012; McDonald et al. 2020), 
changes in land surface temperature (Nurwanda and 

Honjo 2020; Ullah, Jing, and Wadood 2020), destruction 
of farmlands (Liu et al. 2014; Surjan, Ara Parvin, and 
Shaw 2016), and changes in water quality (Dong, Liu, 
and Chen 2014; Zhao et al. 2015). Therefore, UGMs can 
help urban planners and decision-makers predict 
future urban gain areas, plan land usage, and create 
basic urban infrastructure and amenities as well as 
adopt the necessary policies to protect the environ-
ment (Bakker et al. 2008; Don, Schumacher, and 
Freibauer 2011; Martin et al. 2013; Van Minnen et al.  
2009). Although a plethora of statistical, machine 
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learning, and data mining models have been used to 
create UGMs, the produced UGMs all contain uncer-
tainties in various dimensions and components. 
Uncertainty may arise due to the data and the models 
used in the modeling (Tayyebi, Tayyebi, and Khanna  
2014). If left unaddressed, these uncertainties will lead 
to inaccurate results when depicting the relationship 
between independent and dependent variables, which 
in turn causes the UGMs to produce erroneous results. 
Therefore, the various dimensions of uncertainty in 
urban gain modeling (UGM) must be examined.

UGM using data-driven models such as artificial 
neural networks (ANNs) is conducted by consider-
ing two time intervals of t1-t2 and t2-t3 (Ahmadlou, 
Karimi, and Pontius 2021; Shafizadeh-Moghadam 
et al. 2017, 2017). For example, the UGM uses all 
or a part of the data from the first time interval 
including urban gain drivers and the urban gain 
variable as the training dataset. The models are 
then validated using the data from the second 
time interval including the urban gain drivers and 
the urban gain variable. Significant uncertainties 
were noted in the input data such as in the pre-
dictor variables and even the dependent variable, 
as well as in the model uncertainty (Tayyebi, 
Tayyebi, and Khanna 2014). Tayyebi et al. (2014) 
concluded that uncertainties in the input data 
were more damaging than uncertainties in the 
parameters of the model. Therefore, the various 
dimensions and components of uncertainty in the 
input data of a model must be examined. As such, 
this present study analyzes the uncertainty of 
a sampling strategy that is proposed for creating 
a training dataset for UGM by unrealistically assum-
ing that the input data is error-free and that the 
parameters of the models are uncertainty-free.

In UGM, the first time interval contains both 
change and non-change samples, with typically 
more non-change samples than change samples. 
This is known as the imbalance problem 
(Ahmadlou, Karimi, and Pontius 2021; Gu et al.  
2008), one of the biggest challenges plaguing 
UGM training datasets, even in highly-researched 
fields (Ahmadlou, Karimi, and Pontius 2021; 
Pirizadeh et al. 2021). More specifically, as change 
samples are often surrounded by a large number of 
non-change samples, an imbalance problem occurs 
when selecting samples for the modeling 
(Ahmadlou, Karimi, and Pontius 2021).

Machine learning models are built using training 
datasets (Jaydhar et al. 2022; Ruidas et al. 2021, 2022). 
Although multiple methods have examined creating 
training datasets for UGMs using samples from the 
first-time interval, they all contain different degree of 
uncertainties. When creating a training dataset for 
UGM, it is common to randomly select 70% of the 
whole samples including change and non-change 
samples from the first-time interval (Shafizadeh- 
Moghadam et al. 2017, Parvinnezhad et al. 2021; 
Tayyebi and Pijanowski 2014; Tayyebi et al. 2014). 
Although this approach is more frequently used, it 
produces the highest level of uncertainty as the first- 
time interval contains significantly fewer change sam-
ples than non-change samples (imbalance problem). 
As such, the training dataset contains more non- 
change samples (Ahmadlou, Karimi, and Pontius  
2021). As machine learning and data mining models 
are more likely to learn the non-change samples that 
are present in higher quantities, they fail to model the 
change samples, which is the primary goal. 
The second approach is to select equal quantities of 
change and non-change samples (Karimi et al. 2019; 
Pal et al. 2022). Ahmadlou, Karimi, and Pontius (2021) 
and Karimi et al. (2019) randomly selected equal 
quantities of the change and non-change samples 
from the first-time interval and discovered that the 
non-change samples contained a significant amount 
of uncertainty. In recent studies, it has been assumed 
that these non-change samples do not have the 
potential to change in the future, and they were 
entered into the modeling as the opposite of the 
change samples. In other words, randomly selecting 
non-change samples from samples that have the 
potential to change in the future causes significant 
uncertainty to arise in the modeling. This is because 
the model may encounter many non-change samples 
that have the same spatial drivers and features as 
change samples, but they have not changed. Thus, 
another severe modeling challenge is the selection of 
pure non-change samples with no to low potential to 
change. The third approach is to use all the data from 
the first interval for modeling (Ahmadlou, Karimi, and 
Pontius 2021). The challenges of this approach 
include differing degrees of class inequality (imbal-
ance problem) and non-change samples that have the 
potential to change affecting the accuracy of the 
models. As these uncertainties in the training dataset 
make it challenging to build a UGM, efficient 
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approaches are needed to manage and overcome 
these problems.

A balanced training dataset that contains change 
and pure non-change samples should be used to 
develop UGMs. It is easy to select change samples 
for the training dataset of the UGMs as uncertainties 
only ensue from errors in extracting and providing 
these samples. However, it is very difficult to select 
the pure non-change samples with no or low poten-
tial to change as the number of urban gain samples is 
much less than the non-change samples, and signifi-
cantly more non-change samples than change sam-
ples are selected for the training dataset. Therefore, 
random sampling causes the model to be biased in 
favor of the non-change samples. Such models have 
good accuracy in modeling of non-change samples 
(frequent class) and bad accuracy in modeling of 
change samples (infrequent class), while the goal is 
to model urban gain samples. Multiple studies have 
faced these modeling issues (Parvinnezhad et al.  
2021; Pontius et al. 2018; Shafizadeh-Moghadam 
et al. 2017; Ahmadlou, Karimi, and Pontius Jr 2021). 
Pontius et al. (2018) used various models to simulate 
land use changes (LUCs) in 13 study areas with vary-
ing change rates. They found that low LUC rates lead 
to lower predictive accuracy. Therefore, the novelty of 
this paper lies in proposing and examining the effi-
cacy of two approaches, maximum entropy (ME) and 
ecological niche factor analysis (ENFA), for creating 
balanced training datasets containing equal quanti-
ties of change samples and pure non-change samples 
for UGM of Tabriz and Isfahan Cities in Iran, both of 
which have different urban gain rates.

2. Study areas and data sets

The urban gain of two major megacities in Iran, Tabriz 
and Isfahan, were used to model and evaluate the 
proposed sampling strategies due to their non-linear 
and complex urban gain pattern as well as differing 
urban gain rates (Figure 1).

2.1. Study areas

The urban gain of two periods, 1990 to 2000 and 2000 
to 2010 were examined for Tabriz City and 1994 to 
2004 and 2004 to 2014 for Isfahan City. Isfahan and 
Tabriz are two old, large, and industrial cities in Iran 
with numerous tourist attractions. Their growing 

immigration rates have increased the demand for 
residential sites and industrial developments, leading 
to the urban expansion and growth of Tabriz and 
Isfahan.

Isfahan is located in Central Iran at 32.38° N and 
51.38° E with an average elevation of 1587 m above 
sea level. Its northern and southern halves are divided 
by The Zayandeh Rud River, which played an impor-
tant role in the urban gain of Isfahan in the past. In 
1994 and 2004, agricultural and open lands were the 
dominant types of land use. However, by 2014, most 
of the city had been urbanized, which alludes to 
Isfahan’s high urban gain rate.

Tabriz is a major city in North-Western Iran located 
at 32.38° N and 51.38° E, with an average elevation of 
1500 m above sea level. As the industrial center of the 
northwest, its population is expected to increase to 
1,940,000 by 2030. The population of the city 
increased 6-fold and its urban growth increased 18- 
fold between 1956 and 2011. In 1992, its lands were 
predominantly barren or urbanized.

2.2. Dataset

Landsat images of Isfahan in 1994, 2004, and 2014 
were obtained from the United States Geological 
Survey (USGS) and used to prepare land use maps 
and identify urban gain areas. The area had five land- 
use classes, namely croplands, open lands, built-up 
areas, water bodies, and salt marshes. They were clas-
sified using the maximum likelihood classification 
(MLC) with an overall accuracy of 84%, 86%, and 
87% for 1994, 2004, and 2014, respectively. The 
urban gain maps of 1994–2004 and 2004–2014 were 
obtained by comparing the land-use maps of 1994 
with 2004 and of 2004 with 2014. Nine significant 
urban gain factors of Isfahan were used for the mod-
eling procedure (Table 1). The distance maps were 
obtained using Euclidean distance analysis in the geo-
graphical information system (GIS) environment, the 
elevation map was obtained from the 30 m digital 
elevation model (DEM) of Advanced Spaceborne 
Thermal Emission and Reflection Radiometer 
(ASTER), and the slope map was obtained from eleva-
tion map in the GIS environment. Landsat images of 
Tabriz in 1992, 2002, and 2012 were obtained from 
the USGS and used to prepare land use maps. The 
MLC was used to classify the satellite images into 
urban, vegetation, and open lands. Fourteen 
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significant urban gain factors of Tabriz were used for 
the modeling procedure (Table 1). The altitude and 
slope maps of Tabriz were obtained from the DEM of 
the ASTER. The urban drivers varied between both 
cities. As such, the urban gain drivers of both cities 

were selected using the available expert opinions and 
extant studies on the two cities. Moreover, to com-
pare the modeling results of the present study to 
other studies that have been carried out in these 
two cities, the urban gain of two time intervals of 

Figure 1. Location of both study areas.

4 M. AHMADLOU ET AL.



1992–2002 and 2002–2012 were used for Tabriz City 
and two time intervals of 1994–2004 and 2004–2014 
for Isfahan City.

3. Methodology

Figure 2 depicts the modeling process and the pro-
posed sampling strategy. The method used to create 
the training dataset for the various data-driven mod-
els should solve the class imbalance problem and 
include non-change samples with no to low potential 
for change. The study involves several steps, which 
are outlined below:

Step 1: After preparing the necessary land use 
maps, the urban gain cells of the selected time 
intervals 1992 to 2002 and 2002 to 2012 for 
Tabriz and 1994 to 2004 and 2004 to 2014 for 
Isfahan were extracted in the GIS environment. 
The urban gain drivers were then prepared for 
the two cities.

Step 2: The first-time interval of both study 
areas was used for the sampling procedure and 
to build the models. The urban gain potential of 
the non-change samples was calculated using the 
ENFA and ME models as well as the urban gain 
samples and drivers of the first-time interval. The 
proposed sampling strategy preserves the change 
samples of the first-time interval and enters them 
into the training dataset and then selects an 
equivalent number of non-change samples with 
the lowest ME and ENFA to create the training 
dataset (Figure 2).

Step 3: This training dataset was then used to 
construct three well-known machine learning models, 
random forest (RF), artificial neural network (ANN), 
and support vector machine (SVM). These models 

have been used in various fields (Das and Chandra 
Pal 2020; Saha et al. 2022).

Step 4: The model was validated using the urban 
gain that occurred in the second time interval and 
the urban gain drivers at t2. The total operating 
characteristics (TOC), figure of merit (FoM), producer 
accuracy (PA), and overall accuracy were used and 
calculated using the Hits, False Alarms, and Misses 
entries of the confusion matrix (Table 2) for valida-
tion of models.

Step 5: The suitability maps obtained from the ME 
and ENFA were entered directly into the validation 
phase and compared to those of the three machine 
learning models (Figure 2).

3.1. Maximum entropy (ME)

The Shannon entropy is a basic concept in the 
information theory that Claude Shannon devel-
oped in 1940 to assess uncertainty in a random 
process (Gray 2011). The ME mainly identifies 
a probability distribution to meet any constraints 
in the data (Berger, Della Pietra, and Della Pietra  
1996). With a series of constraints on urban gain 
cells, UGMs aim to identify the unknown distribu-
tion (P), presenting a set of urban gain drivers. The 
information available for this distribution is the 
mean of the features (X) under P in each change 
cell defined as follows: 

P Xð Þ ¼
1
n

Xn

i¼1

fj xið Þ (1) 

The goal is to identify the distribution P Xð Þ as an 
approximate of the actual distribution in the change 
cells. According to the ME principle, of all the possible 
distributions that satisfy the constraints, the 

Table 1. List of spatial drivers of urban gain in Isfahan and Tabriz.
Isfahan (between 1994 and 2004) Tabriz (between 1992 and 2002)

1 Altitude Altitude
2 Slope Slope
3 Distance to main roads Aspect
4 Distance to crop lands Distance to crop lands
5 Distance to marsh Distance to central business district
6 Distance to built-up zones Distance to built-up zones
7 Distance to open lands Distance to open lands
8 Easting parameter Easting parameter
9 Northing parameter Northing parameter
10 – Distance to roads
11 – Distance to faults
12 – Distance to industrial zones
13 – Distance to railway
14 – Distance to river
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distribution with the ME is the best, as calculated by 
Eq. 2 (Buchen and Kelly 1996; Van Campenhout and 
Cover 1981): 

H �Pð Þ ¼ �
X

x2X

�P xð Þln �P xð Þ (2) 

where ln represents the natural logarithm. Based on 
convex duality theory and to maximize the entropy of 
the given constraints, the Gibbs distribution is the 
only distribution with the smallest Kullback-Leibler 

that satisfies all the constraints without additional 
presumptions (Della Pietra, Pietra, and Lafferty 1997; 
Nasser and Cessac 2014). This distribution function is 
proportional to the conditional probability of being 
positive. Refer to (Phillips, Anderson, and Schapire  
2006; Phillips, Dudík, and Schapire 2004) for more 
details.

3.2. Ecological niche factor analysis (ENFA) model

Ecological niche factor analysis (ENFA) is 
a multivariate method that uses factor analysis and 
ecological niche theory to study the distribution of 
species according to environmental variables and pre-
sence-only locations without the need for absent 
locations (Hirzel et al. 2002). An ecological niche is 

Figure 2. The flowchart of the urban gain modeling.

Table 2. The error matrix.
Reality

Model Urban gain Hits False alarms
Unchanged Misses Correct rejection
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formed in the model via habitats that are available 
and used by the species (Brotons et al. 2004). This 
present study equates the urban gain cells with the 
species spread at various regions over time. The ENFA 
model calculates the difference between the predic-
tor variables in the change cells and other cells of the 
entire studied area (Basille et al. 2008). The model 
does not require any information on the non-change 
cells and calculates the suitability of the cells using 
the change cells and the predictor variables. Refer to 
(Basille et al. 2008) for more details on the ENFA 
model.

3.3. Validating the proposed sampling strategies

The data from the second time interval were used to 
evaluate the quality of the two proposed sampling 
strategies. Their outputs were converted to maps with 
values of 0 and 1 with a threshold of 0.5. Cells > 0.5 
indicate that they have the potential to change use, 
while cells < 0.5 indicate that they do not have the 
potential to change use (Tayyebi and Pijanowski  
2014). The strategy with the highest consistency was 
chosen as the best sampling strategy.

3.4. Applying the proposed sampling strategies in 
UGM

Three well-known and widely-used machine learning 
algorithms, RF, ANN, and SVM, were used to test the 
proposed sampling strategies. Multiple studies on 
UGM have used these models (Jun 2021; Shafizadeh- 
Moghadam et al. 2017). As the purpose of this present 
study was to examine the ability of two proposed 
sampling strategies to efficiently control and manage 
uncertainty in training datasets, the ANN, SVM, and RF 
models are not discussed in detail. After preparing the 
urban gain maps of Tabriz and Isfahan, the urban gain 
samples from the first-time interval were used to 
develop the ME, and ENFA models. The outputs of 
these models are maps with values between 0 and 1, 
which indicate the change potential by considering 
the change samples in the first interval. In these maps, 
cells with a value close to 1 mean that the value of the 
drivers of those cells are close to these drivers of the 
change samples. By setting a threshold of 0.5, non- 
change cells with values that exceed this threshold 
are removed from the training dataset. An equal num-
ber of non-change samples as change samples were 

selected from the < 0.5 samples according the cluster-
ing-based sampling approach that (Ahmadlou, Karimi, 
and Pontius Jr 2021) proposed. The ANN, SVM, and RF 
models were then developed using this training data-
set and evaluated using the urban gain of the second 
time interval. The predication of these three models 
were compared to the real values. The models were 
evaluated using the TOC (Pontius and Kangping 2014) 
and the Hits, Misses, and False Alarms entries in the 
confusion matrix.

This study primarily uses the ME and ENFA models 
to examine the uncertainty in the urban gain training 
dataset. Nonetheless, the outputs of these models can 
be used for UGM. These models, also known as one- 
class algorithms (Moya and Hush 1996), are devel-
oped solely using change samples. The outputs of 
these models were compared with that of the urban 
gain of the second time interval. The results were 
evaluated using the TOC, the FoM (Eq. 3), PA (Eq. 4), 
and OA (Eq. 5): 

FoM ¼
Hits

HitsþMissesþ False Alarms
(3) 

PA ¼
Hits

HitsþMisses
(4) 

OA ¼
Hitsþ Correct Rejections

HitsþMissesþ False Alarmsþ Correct Rejections
(5) 

4. Results

4.1. Sampling of the urban gain modeling using ME 
and ENFA

The urban gain drivers for Isfahan in 1994 and Tabriz 
in 1992 were used as the predictor variables and the 
urban gain of Isfahan between 1994 and 2004 and the 
urban gain of Tabriz between 1992 and 2002 were 
used as the target or dependent variable. The ME and 
ENFA of all the non-change cells were calculated 
using the change samples and the urban gain drivers 
of the first-time interval. Figures 3 and 4 depict the ME 
and ENFA maps calculated for the non-change cells 
for Isfahan in the first-time interval. These maps were 
generated only using the urban gain samples of the 
first-time interval and without the use of any of the 
non-change samples. As seen, the ME and ENFA range 
between 0 to 0.96 and 0 to 1, respectively. The higher 
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and closer to one the ME, the higher the potential of 
a non-change sample to change. Conversely, the 
lower the ME, the lower the potential for urban gain. 
An equal number of non-change samples as change 
samples was generated from the first-time interval 

(black points in Figures 3 and 4) to depict the uncer-
tainty of the sampling approaches that extant studies 
have adopted. As seen in Figure 3 (A1–A6), a large 
number of the randomly generated non-change sam-
ples were placed in cells with high ME and ENFA. 

Figure 3. The maximum entropy of non-change samples for Isfahan City.
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Therefore, if these non-change samples were used to 
create training datasets for data mining and machine 
learning models, it would have led to a high level of 
sampling uncertainty. This was because some of the 
non-change samples had a high potential for urban 

gain. However, extant studies considered these sam-
ples as non-change samples in the training dataset. 
The green points seen in Figures 3 and 4 identify 
samples that could be non-change samples and 
have the lowest ME.

Figure 4. The ecological niche factor analysis of non-change samples for Isfahan City.
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The ME and ENFA of all the cells were calculated 
using the urban gain samples and drivers of the first 
time interval for Tabriz (Figures 5 and 6). A large and 
equal number of non-change samples as the change 
samples was randomly generated and placed in cells 

with high ME and ENFA. To create the training data-
set, non-change cells with ME and ENFA above 0.5 
were removed from the study areas. Then, as 
(Ahmadlou, Karimi, and Pontius Jr 2021) recommend, 
a clustering-based approach was used to select an 

Figure 5. The maximum entropy of non-change samples for Tabriz City.
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equal number of non-change samples as change sam-
ples in the first-time interval from cells with ME and 
ENFA less than 0.5. To test the efficacy of the pro-
posed sampling strategies, the ANN, SVM, and RF 

models were trained using the training dataset and 
their results were compared with that of extant stu-
dies that had used common sampling methods to 
create training datasets.

Figure 6. The ecological niche factor analysis of non-change samples for Tabriz City.
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4.2. Urban gain modeling using the proposed 
sampling strategies

4.2.1 Binary classifiers
These models were developed using binary labels 0 
and 1, where 0 indicates that the examined phenom-
enon did not occur while 1 indicates that the exam-
ined phenomenon did occur. In urban gain modeling, 
these values refer to the non-change (0) and change 
samples (1). Binary models are the most common 
examples of UGMs. After using ENFA and ME to create 
the training datasets for Isfahan and Tabriz, three 
well-known binary models, RF, ANN, and SVM, were 
used in UGM. More specifically, the ME and ENFA 
models were used to create two training datasets for 
Tabriz and two training datasets for Isfahan. Six hybrid 
models, ME – ANN, ME – RF, ME – SVM, ENFA – ANN, 
ENFA – RF, and ENFA – SVM, were then developed for 
each case. The data of the second time interval includ-
ing the urban gain variable and drivers at t2 were used 
to validate the developed models. Figures 7 and 8 
depict the error maps as well as the values of four 
entries in error matrix (Table 1) for Isfahan and Tabriz, 
respectively. They also provide the prediction success 
rates of the models.

4.2.2. ENFA and ME models as one-class classifiers 
for UGM
Apart from the binary ANN, RF, and SVM models, the 
outputs of the ME and ENFA models as one-class 
classifiers were directly used as suitability maps. As 
such, an equal number of cells with the highest ME 
and ENFA as urban gain cells in the second-time 
interval were selected and considered the predicted 
urban gain cells for the second time interval. Figures 9 
and 10 depict the error maps of these models for the 
two cities in the second-time interval.

4.2.3. Validating the models using TOC and the four 
entries in the confusion matrix
Figures 10 and 11 show the TOC curve of the six 
hybrid binary models (i.e., ME – ANN, ME – SVM, 
ME – RF, ENFA – ANN, ENFA – SVM, and ENFA – RF) 
with two one-class models of ME and ENFA for Isfahan 
and Tabriz, respectively. For Isfahan, the proposed 
ME-based sampling approach outperformed the pro-
posed ENFA – based sampling. As seen in Figure 10, 
the RF – ME model (AUC = 0.737) was the most accu-
rate, followed by the ANN – ME (AUC = 0.646), RF – 

ENFA (AUC = 0.631), ANN – ENFA (AUC = 0.619), SVM – 
ENFA (AUC = 0.512), and SVM – ME (AUC = 0.509) 
models. Furthermore, the SVM-based models were 
overfitted. The accuracies of ME (AUC = 0.649) and 
ENFA (AUC = 0.661) one – class models were closer 
to that of the ANN – ME, ENFA – ANN, and RF – ENFA 
models but differed significantly from that of the RF – 
ME model. Compared to the ANN (AUC = 0.682), SVM 
(AUC = 0.481), and RF (AUC = 0.661) constructed by 
balance sampling without ME and ENFA models, the 
proposed RF-ME (AUC = 0.737) increased the area 
under the receiver operating characteristic curve 
(AUROC) by 5.5% in the validation phase of Isfahan 
City.

The proposed ME-based sampling approach out-
performed the proposed ENFA – based sampling 
approach for Tabriz as well. As seen in Figure 12, the 
RF – ME model (AUC = 0.852) was the most accurate, 
followed by the ANN – ME (AUC = 0.778), RF – ENFA 
(AUC = 0.504), SVM – ENFA (AUC = 0.503), ANN – ENFA 
(AUC = 0.502), and SVM – ME (AUC = 0.449) models. 
The RF – ENFA, SVM – ENFA, ANN – ENFA, and SVM – 
ME models were overfitted. The accuracies of ME 
(AUC = 0.657) and ENFA (AUC = 0.668) one – class 
models were lower than that of the two class RF-ME 
and ANN-ME models. Compared to the ANN (AUC =  
0.71), SVM (AUC = 0.521), and RF (AUC = 0.791) con-
structed by balance sampling without ME and ENFA 
models, the proposed RF-ME (AUC = 0.852) increased 
the AUROC by 6% in the validation phase of Tabriz 
City. Table 3 provides the PA, OA, and FoM of all the 
models. As seen, the PA, OA, and FoM of the ME – RF 
and ME – ANN models were higher than that of the 
other models.

5. Discussion

Urban gain is very important due to its impact on 
ozone concentration, water quality, and pollution, 
food security, and so on. Although multiple studies 
have developed models to depict urban gain beha-
viors, very few studies have examined the uncertain-
ties in the training datasets that are used in these 
models, as these datasets are often plagued by imbal-
ance issues and the impurity of non-change samples.

Class imbalance problem in the training dataset 
can be overcome by using equal quantities of change 
and non-change samples. Past studies have randomly 
selected change and non-change samples to create 
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Figure 7. The spatially distributed errors of the (a) ME-ANN, (b) ME-RF, (c) ME-SVM, (d) ENFA-ANN, (e) ENFA-RF, and (f) ENFA-SVM 
model’s urban gain predictions for Isfahan City in the second time interval (2004–2014).
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Figure 8. The spatially distributed errors of the (a) ME-ANN, (b) ME-RF, (c) ME-SVM, (d) ENFA-ANN, (e) ENFA-RF, and (f) ENFA-SVM 
model’s urban gain predictions for Tabriz City in the second- time interval (2002–2012).
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training datasets. However, as urban gain datasets 
contain significantly fewer change samples than non- 
change samples, random sampling causes the train-
ing dataset to contain more non-change samples, 
which skews the model toward these samples. 
Therefore, urban gain modelers should consider 
using equal quantities of change and non-change 

samples in the training dataset as machine learning 
and statistical models require balanced training data-
sets. This present study used under-sampling, which 
some extant studies have used, to build a balanced 
training dataset.

Apart from class imbalance problem, the impurity 
of the non-change samples used in the training data 

Figure 9. The spatially distributed errors of the (a) ME (b) ENFA model’s urban gain predictions for Isfahan City in the second time 
interval (2004–2014).

Figure 10. The spatially distributed errors of the (a) MaxEnt (b) ENFA models’ UG predictions for Tabriz City in the second time period 
(2002–2012).
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set is another significant issue. More specifically, 
UGMs may encounter samples that have identical 
features but some labeled change and others non- 

change. As there was no logical approach of selecting 
non-change samples from available cells in the past, 
UGMs contained samples that had been randomly 
chosen from the available cells. The findings of this 
present study indicate that randomly selecting cells 
for non-change samples creates samples that, in rea-
lity, may have a high potential for change as these 
samples have been erroneously labeled non-change 
and entered in the training datasets. Therefore, this 
present study proposed a balanced sampling 
approach that uses two approaches, namely ME and 
ENFA to select cells with the lowest potential for 
change as non-change samples and entering them 
into the training dataset. Conway and Wellen (2011) 
have used ENFA model to examine the purity of the 
non-change samples, which they used to model the 
urban gain of Barnegat Bay watershed in New Jersey, 
United States. However, the one-class ENFA model 
failed to outperform the logistic regression model. 
Conversely, this present study found that the one- 
class ENFA model outperforms the ANN, RF, and 
SVM binary models in both study areas. This could 
be because Conway and Wellen (2011) created their 
logistic regression model using non-change samples 
with the lowest urban gain potential that their ENFA- 
based urban gain suitability map had overestimated. 
The ENFA-based binary models of this present study, 
however, had reasonable results. This present study 
also used the ME model to select pure non-change 
samples and build a one-class model. However, the 
ENFA model outperformed the ME model in both 
Tabriz and Isfahan. Nevertheless, the binary ANN 
and RF models constructed using the non-change 
samples that the ME probability map selected out-
performed the one-class models as well as other mod-
els built based on ENFA probability map. Although 
there were no significant differences between the 
ANN-ME model for Isfahan and the one-class models 
of ME and ENFA, the ME-based binary ANN and RF 
models outperformed the other models in both study 
areas. Similar to the findings of Ahmadlou, Karimi, and 
Pontius (2021), the SVM-based models of this present 
study were overfitted in both study areas. Therefore, it 
fails to model the urban gain of both study areas.

The use of samples with the biggest variety in the 
training dataset for UGMs is also a significant chal-
lenge. Therefore, after using the ENFA and ME models 
to remove non-change samples with change poten-
tial from the training dataset, this present study used 

Figure 11. The TOC and AUC of the proposed models for Isfahan 
City.

Figure 12. The TOC and AUC of the proposed models for Tabriz 
City.
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the framework proposed by Ahmadlou, Karimi, and 
Pontius (2021) to diversify the non-change samples.

As the urban gain patterns of Isfahan and Tabriz 
cities are very complex, multiple studies have 
attempted to model the urban gain in these 
areas. Most of these studies have focused on devel-
oping new hybrid models. More specifically, 
Parvinnezhad et al. (2021) proposed using support 
vector regression to integrate an adaptive neural 
fuzzy inference system and a fuzzy rough set to 
model the urban gain of Tabriz City. A comparison 
of the accuracy of the modeling results of that 
study and that of this present study indicates that 
focusing on sampling can improve the perfor-
mance of a model better than developing hybrid 
models. Apart from that, Shafizadeh-Moghadam 
et al. (2017) developed a model that used the 
Land Transformation Model (LTM) and cellular 
automata to model the urban gain of Isfahan City. 
A comparison of the accuracy of the modeling 
results of that study and that of this present 
study also proves that using a suitable sampling 
approach is more important than developing 
hybrid models.

This present study examined using ME and ENFA 
models for sampling as well as one-class classifiers 
and discovered that they provided less accuracy 
than binary models. Therefore, binary

models are preferable to one-class models. This 
finding is in line with the study of Zhu et al. (2018) 
that compared two one-class models, namely one- 
class SVM, kernel density estimation, and two binary 
models namely, ANN and SVM. Similar finding was 
reported by Pandey, Reza Pourghasemi, and Chand 
Sharma (2020) that compared one class ME and bin-
ary SVM.

Imbalance issue and the impurity of non-changes 
samples are very complex in multiple LUC modeling 
as, apart from imbalances between change and non- 
change classes, imbalances also occur between the 

change classes. Therefore, future studies may endea-
vor to overcome these issues in multiple LUC model-
ing. Imbalance issues in the training datasets of the 
study areas, which contain various interclass imbal-
ance ratios, also warrant further study. To address the 
impurity issue of non-changed samples in multiple 
land use changes, researchers can provide suitability 
maps using ME for each type of the LUC classes to 
select the cells with the lowest potential for change as 
non-change samples. Also, a simple solution to over-
come the imbalance issue between the change 
classes is to select an equal number of the change 
samples from each type of the LUC classes as the land 
use class with the smallest number of change 
samples.

6. Conclusion

This present study explored the uncertainties that 
arise in samples that are used in UGM, namely 
imbalance problem and impurity of the non- 
changes samples. Sampling is one of the most 
important steps when UGM using data-driven mod-
els as it may result in many uncertainties in the 
model outputs and affect its precision and accuracy. 
As such, this present study used two balanced ME- 
and ENFA-based sampling approaches for UGM. 
Three well-known and widely used data mining 
models, namely ANN, SVM and RF and six hybrid 
models, namely ME-ANN, ME-SVM, ME-RF, ENFA- 
ANN, ENFA-SVM, and ENFA-RF that had been con-
structed using proposed sampling strategies were 
used to evaluate the efficacy of the proposed sam-
pling approaches Two ME- and ENFA-based one- 
class models were also developed and compared 
with proposed two-class hybrid models. The urban 
gain of Isfahan City at the two time intervals of 
1994–2004 and 2004–2014 and that of Tabriz City 
between 1992 to 2002 and 2002 to 2012 were used 
to evaluate the proposed sampling approaches. The 

Table 3. The validation of the eight models using FOM, OA, and PA.
Isfahan PA OA FoM Tabriz PA OA FoM

ME 0.41 0.71 0.25 ME 0.28 0.80 0.16
ENFA 0.38 0.70 0.24 ENFA 0.30 0.80 0.18
ME-RF 0.49 0.75 0.32 ME-RF 0.44 0.84 0.28
ME-ANN 0.51 0.76 0.34 ME-ANN 0.34 0.81 0.20
ME-SVM 0.27 0.65 0.16 ME-SVM 0.14 0.76 0.07
ENFA-RF 0.37 0.70 0.23 ENFA-RF 0.14 0.76 0.08
ENFA-ANN 0.36 0.69 0.22 ENFA-ANN 0.14 0.76 0.08
ENFA-SVM 0.27 0.65 0.16 ENFA-SVM 0.14 0.76 0.08
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proposed sampling approaches were found to sig-
nificantly increase the accuracy of the data mining 
models and decrease the size of the training dataset 
and computational load of these models. 
Furthermore, the non-change samples that are 
selected for use in a training dataset should have 
the lowest potential for change and differ comple-
tely from the change samples. Therefore, the con-
cept of “garbage in, garbage out” is important in 
data mining and selecting the correct samples for 
the training dataset significantly affects the success 
rate of machine learning and data mining models. 
The binary data mining models that this present 
study developed also outperformed the one-class 
models.

This study provided a new perspective of sam-
pling strategy, and proposed two ME- and ENFA- 
based sampling approaches for creating the train-
ing dataset for urban gain models. As data sam-
pling is one of the most significant data 
preprocessing steps in the data mining process, 
researchers and modelers may use the adapted 
and proposed sampling strategy in the present 
study to improve the accuracy of the other 
machine learning and data mining techniques like 
decision trees, which are very large in number. 
Moreover, future studies may investigate using 
the sampling approaches that this present study 
proposed in other study areas with different rates 
of urban gain.
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