

Linköping Studies in Science and Technology

Thesis No. 1353

A Model and Implementation of a Security Plug-in
for the Software Life Cycle

by

Shanai Ardi

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2008

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

A Model and Implementation of a Security Plug-in
for the Software Life Cycle

by

Shanai Ardi

March 2008
ISBN 978-91-7393-956-0

Linköping Studies in Science and Technology
Thesis No. 1353
ISSN 0280-7971

LiU-Tek-Lic-2008:11

ABSTRACT

Currently, security is frequently considered late in software life cycle. It is often bolted on late
in development, or even during deployment or maintenance, through activities such as add-on
security software and penetration-and-patch maintenance. Even if software developers aim to
incorporate security into their products from the beginning of the software life cycle, they face
an exhaustive amount of ad hoc unstructured information without any practical guidance on
how and why this information should be used and what the costs and benefits of using it are.
This is due to a lack of structured methods.

In this thesis we present a model for secure software development and implementation of a
security plug-in that deploys this model in software life cycle. The model is a structured
unified process, named S3P (Sustainable Software Security Process) and is designed to be
easily adaptable to any software development process. S3P provides the formalism required to
identify the causes of vulnerabilities and the mitigation techniques that address these causes to
prevent vulnerabilities. We present a prototype of the security plug-in implemented for the
OpenUP/Basic development process in Eclipse Process Framework. We also present the
results of the evaluation of this plug-in. The work in this thesis is a first step towards a general
framework for introducing security into the software life cycle and to support software
process improvements to prevent recurrence of software vulnerabilities.

This work has been supported by Vinnova (Swedish Agency for Innovation Systems) and
CUGS (Swedish National Graduate School in Computer Science).

Abstract

Currently, security is frequently considered late in software life cycle. It is
often bolted on late in development, or even during deployment or
maintenance, through activities such as add-on security software and
penetration-and-patch maintenance. Even if software developers aim to
incorporate security into their products from the beginning of the software
life cycle, they face an exhaustive amount of ad hoc unstructured
information without any practical guidance on how and why this information
should be used and what the costs and benefits of using it are. This is due to
a lack of structured methods.

In this thesis we present a model for secure software development and
implementation of a security plug-in that deploys this model in software life
cycle. The model is a structured unified process, named S3P (Sustainable
Software Security Process) and is designed to be easily adaptable to any
software development process. S3P provides the formalism required to
identify the causes of vulnerabilities and the mitigation techniques that
address these causes to prevent vulnerabilities. We present a prototype of the
security plug-in implemented for the OpenUP/Basic development process in
Eclipse Process Framework. We also present the results of the evaluation of
this plug-in. The work in this thesis is a first step towards a general
framework for introducing security into the software life cycle and to
support software process improvements to prevent recurrence of software
vulnerabilities.

Acknowledgements

I would like to express my gratitude to my supervisor Professor Nahid
Shahmehri for introducing me to the incredible world of research in security.
She has always been there to encourage me and is a great teacher for me.
Without her continuously keeping me on track this thesis would not have
been possible.

Several other people have contributed to this thesis. I especially thank: my
colleagues David Byers and Dr. Claudiu Duma, for our interesting
discussions in the initial stage of the project which helped me formulate new
ideas; Professor Kristian Sandahl for providing his valuable comments on
the draft of this thesis and Brittany Shahmehri for proof-reading the thesis.

I also would like to thank our project partners Sectra Communications AB,
Combitech AB and Ericsson AB. Special thanks go to Sectra
Communications for supporting our empirical tests, especially Dr. Michael
Bertilsson and Robert Lidquist for providing valuable comments on the
thesis.

I would like to thank my colleagues at ADIT (Division for Database and
Information Techniques) for their friendship and support.

I wish to express my gratefulness to my beloved ones for their love and
support. I thank my mom and dad for always believing in me and
encouraging me to study and learn and I would like to thank my sister, my
endless source of joy and inspiration for always supporting me. Last but not
least I would like to thank my husband Behzad who has always been my
champion, for his understanding and support.

Finally, I acknowledge the financial support by Vinnova (Swedish Agency
for Innovation Systems) and CUGS (Swedish National Graduate School in
Computer Science).

List of the Publications

1. S. Ardi, D. Byers, and N. Shahmehri, “Towards a structured unified
process for software security”, Proceedings of the ICSE 2006
workshop on Software Engineering for Secure Systems (SESS06),
Shanghai, China, May 2006.

2. D. Byers, S. Ardi, N. Shahmehri, and C. Duma, “Modeling software

vulnerabilities with vulnerability cause graphs”, Proceedings of the
International Conference on Software Maintenance (ICSM06),
Philadelphia, USA, September 2006.

3. S. Ardi, D. Byers, P. H. Meland, I. A. Tøndel, and N. Shahmehri,

“How can the developer benefit from security modeling?”,
Proceedings of the ARES 2007 International Workshop on Secure
Software Engineering (SecSE07), Vienna, Austria, April 2007.

4. S. Ardi, Nahid Shahmehri, “Integrating a security plug-in with the

OpenUP/Basic development process”, Proceedings of the
International Conference on Availability, Reliability and Security
(ARES08), Barcelona, Spain, March 2008.

List of the other publications related to this research topic:

1. D. Byers, N. Shahmehri, “Design of a process for software

security”, Proceedings of the International Conference on
Availability, Reliability and Security (ARES07), Vienna, Austria,
April 2007.

2. D. Byers, N. Shahmehri, “A cause-based approach to preventing

software vulnerabilities”, Proceedings of the International
Conference on Availability, Reliability and Security (ARES08),
Barcelona, Spain, March 2008.

i

Contents

CHAPTER 1 INTRODUCTION...1

1.1 Introduction ..1
1.2 Motivation ..2
1.3 Problem formulation...3
1.4 Research methodology ...4
1.5 Contribution ...5
1.6 Thesis outline ...7

CHAPTER 2 SUSTAINABLE SOFTWARE SECURITY PROCESS.................................9

2.1 The structure of S3P..9
2.2 Model vulnerability ..10

2.2.1 Vulnerability cause graphs.. 10
2.2.2 Prevention semantics... 12
2.2.3 Vulnerability cause graph construction... 13
2.2.4 Graph validation and optimizations .. 14
2.2.5 Case study, VCG.. 15
2.2.6 Initial analysis ... 16
2.2.7 Vulnerability cause graph (CVE-2005-2558).................................... 17
2.2.8 Discussion ... 21
2.2.9 Empirical study.. 21

2.3 Identify cause mitigations...22
2.3.1 Security activities .. 26
2.3.2 Activity constraints .. 27
2.3.3 The semantic value of SAGs .. 27
2.3.4 Security activity graph construction.. 28
2.3.5 Case study, SAG .. 30

2.4 Vulnerability analysis database ..33

ii

2.5 Define process components ... 34
2.6 Tool support... 35

CHAPTER 3 SECURITY PLUG-IN FOR OPENUP/BASIC 37

3.1 The security plug-in... 37
3.1.1 Identifying security problems .. 38
3.1.2 Interactions between S3P and the development process 38
3.1.3 Staffing... 40

3.2 Security plug-in for OpenUP/Basic ... 41
3.2.1 Security domain ... 44
3.2.2 Security discipline ... 45
3.2.3 Case study, the security plug-in... 46

3.3 Evaluation of the security plug-in.. 48
3.3.1 Goal-Question-Metric ... 49
3.3.2 Questionnaire .. 51

3.4 Discussion ... 53

CHAPTER 4 RELATED WORK.. 55

4.1 Software process improvement.. 55
4.1.1 SPI management methods.. 56
4.1.2 Software process best practices... 57

4.2 Experience-based approaches.. 57
4.2.1 Security best practices ... 57
4.2.2 CLASP ... 60
4.2.3 Security for agile development processes.. 61

4.3 Analysis of vulnerabilities ... 65
4.3.1 Root cause analysis ... 65
4.3.2 Vulnerability repositories .. 66
4.3.3 Vulnerability classifications .. 67
4.3.4 Threat modeling... 67
4.3.5 Attack trees .. 68

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 69

5.1 Conclusions ... 69
5.2 Future work ... 71

5.2.1 Improvements to S3P.. 71
5.2.2 S3P in commercial settings .. 71
5.2.3 SPI aiming at security.. 72
5.2.4 Taxonomy of causes and activities .. 73
5.2.5 Tool support... 74

REFERENCES ... 75

APPENDIX A THE OPENUP/BASIC DEVELOPMENT PROCESS................................ 81

APPENDIX B SUMMARY OF THE EVALUATION ... 93

iii

APPENDIX C ACRONYMS..97

LIST OF TABLES ...98

LIST OF FIGURES..99

1

Chapter 1

Introduction

1.1 Introduction

Serious security problems involving software and applications are frequently
reported; they are rapidly becoming one of the most pressing issues in
software engineering. These security problems are at the center of most
costly software failures in recent years. For example the National Institute of
Standards and Technology (NIST) report that software that is faulty in
security costs the US economy $59.5 billion annually in breakdowns and
repairs [36].

According to statistics published by CERT, Coordination Center at
Carnegie Mellon University (CERT/CC), the number of security
vulnerabilities reported in the first three quarters of 2007 is almost as many
as the number of reported vulnerabilities for whole year 2005 (see Figure
1-1) [14].

The level of risk society faces from intentional failures in software
systems has increased in an almost uncontrolled fashion because [2]:

• Software is controlling, protecting, and affecting more and more
critical information and systems, and this has caused a significant
increase of the potential consequences of failures.

• As software becomes more complex, it tends to contain more flaws,
and as it becomes more networked and converges towards a small
set of open standards, its exposure to potential adversaries increases.

CHAPTER 1

2

• Software-intensive systems are increasingly becoming viable
financial and political targets for well-funded and well-motivated
attackers, thus increasing the overall threat to these systems.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

V
u

ln
er

ab
ili

ti
es

 R
ep

o
rt

ed

2000 2001 2002 2003 2004 2005 2006 Q1-Q3
2007

Years

Figure 1-1: Software security vulnerabilities reported to CERT/CC.

1.2 Motivation

The term “software life cycle”, according to Pfleeger [42], “describes the life
of a product from its conception to its implementation, delivery, use and
maintenance”. Security problems can be addressed in many ways during
software life cycle by considering security during software development,
deployment and maintenance. Today, security is often an afterthought when
developing software, rarely included in the early phases of software
development. Most current solutions treat software security as an after-the-
fact consideration, and focus on detecting and fixing problems after software
deployment. Although solutions like firewalling, penetration testing and
patch management reduce the risk by reducing the probability of security
incidents or threats, exposure is more readily controlled if the focus becomes
preventing problems in the first place [2]. Also, it is less expensive to fix
software flaws earlier in the software development process [50]. According
to IBM Systems Science Institute, fixing software defects in the testing and
maintenance phases of software development increases the cost by factors of
15 and 60, respectively, compared to the cost of fixing them during design
phase [50].

INTRODUCTION

3

Efforts are being made to reduce security vulnerabilities in software and
general best practices, disciplines and guidelines for software development
have been published to improve the software security. Despite this, statistics
on security incidents show that the industry has a long way to go (e.g.
according to a preliminary analysis by CERT, over 90% of software security
vulnerabilities are caused by known software defect types [43]). This is a
sign that there are obvious gaps in the software development process with
regard to security.

In addition to efforts to produce secure software, introducing security
solutions to protect already developed software products is an important
issue, particularly during maintenance, as new vulnerabilities in deployed
software are discovered. Processes to build security in software life cycle
can improve the software quality as well, and can result in software released
with fewer defects.

Therefore in this thesis our interest lies in processes for developing secure
software. We aim to introduce a structured way to create security plug-ins to
the software development processes that reduce exposure by reducing the
number of vulnerabilities in software.

1.3 Problem formulation

There are various ways to address security problems of a software product:
intrusion prevention mechanisms such as access control can be used to
prevent vulnerabilities from having consequences; hardware-based solutions
can be introduced to detect and prevent attacks to software systems.
Standard approaches such as penetration testing and patch management,
using security software, or deploying solutions like input filtering also offer
security. One problem of these solutions is:

Problem 1: These mechanisms aim at software security
after software is already built and are based on finding and
fixing known security problems after they have been
exploited in field systems [35].

New programming paradigms, methodologies, and development
environments are introduced to improve the security of software during its
development. Some current approaches are process specific solutions to
integrate security features to a specific software development process. Other
approaches are mostly ad hoc application of best practices or “secure
programming techniques”.

Problem 2: In the case of process specific solutions,
although security features can improve security of
resulted products:

CHAPTER 1

4

The problem of integrating these features in variants of
the same process or in case of process changes remains
unsolved.

Best practices and techniques are experience-based and
they do indeed help prevent flaws, but:

It is difficult to say with any certainty what vulnerabilities
are prevented and to what extent, or to say whether there
are alternative ways of achieving the same effect [3].

More importantly for both of process specific solutions and best practices:

Problem 3: The ad hoc nature of these approaches makes
evolving the process to meet new threats, or adapting it to
specific situations something of a hit-and-miss affair [3].

According to the statistics published by CERT, most software
vulnerabilities arise from common causes. In fact, the top ten causes account
for about 75% of all vulnerabilities and many of these vulnerabilities result
from defective specification, design, and implementation [43]. Because of
increased public interest in computer and Internet security, this kind of
security failure data is published increasingly in books, newsgroups and
advisories.

Problem 4: Although security failure data and lessons
learned from them can improve the security and
survivability of the software systems, and can prevent the
recurrence of vulnerabilities, software engineers do not
use this kind of data [37].

Based on these problems we introduce our model and a security plug-in
that target security issues in software development processes and proposes
solutions to address mentioned problems.

1.4 Research methodology

Research and development covers three activities [16]: “basic research,
applied research and experimental development…Basic research is
experimental or theoretical work undertaken primarily to acquire new
knowledge of the underlying foundation of phenomena and observable facts,
without any particular application or use in view. Applied research is also
original investigation undertaken in order to acquire new knowledge. It is,
however, directed primarily towards a specific practical aim or objective.
Experimental development is systematic work, drawing on existing
knowledge gained from research and/or practical experience, which is

INTRODUCTION

5

directed to producing new materials, products or devices, to installing new
processes, systems and services, or to improving substantially those already
produced or installed”.

Based on this definition, the nature of our research can be categorized as
applied research. We have focused on acquiring new knowledge and
applying it to meet a specific need. From the initial phases of our research
we have had collaboration with industrial partners to identify the
requirements of our research based on commercial settings, and also to test
our proposed solution in industrial settings. This categorizes our research as
applied research in an industrial setting.

 According to Adrion [1], research methodologies in software engineering
are divided into the scientific method, the engineering method, the empirical
method, and the analytical method. The scientific method deals with
observing the real world, proposing a method or theory of some real world
phenomena, measuring and analyzing, validating hypotheses of the method
or theory, and if possible repeating this process. The engineering method
deals with observing existing solutions, proposing better solutions, building
or developing, measuring and analyzing, and then repeating until no further
improvements are possible. The empirical method is based on proposing a
model, developing statistical or other methods, applying to case studies,
measuring and analyzing, validating the model, and repeating. The analytical
method deals with proposing a formal theory or set of axioms, developing a
theory, deriving results, if possible comparing with empirical observations
and then refining the theory if necessary.

The research methodology we used is a combination of the engineering
method (evolutionary paradigm) and the empirical method (revolutionary
paradigm) [1]. We have used surveys about vulnerabilities, their properties
and remedies; we have studied existing solutions presented to improve the
security of software products with a goal of developing new solutions. We
have proposed a new model for improving software security; we have
applied our method to case studies; and we have developed prototypes based
on our method.

1.5 Contribution

The overall contributions of this thesis include introducing the Sustainable
Software Security Process (S3P), for introducing security into the software
life cycle and a security plug-in that shows how S3P can be deployed in a
real development process.

CHAPTER 1

6

S3P consists of three main steps and starts with modeling vulnerabilities
based on a thorough analysis of software vulnerabilities to identify the
causes that leads to them. The results of this analysis are used in the second
step to identify mitigation techniques that eliminate causes of vulnerabilities
as early as possible in the software life cycle. The mitigation techniques are
then used in the third step to define development process components in the
form of activities to be applied by development team members.

S3P is aimed to be process agnostic in order to reduce the effort involved
in deploying it in a wide range of situations. We are particularly concerned
that S3P will be applicable in agile processes such as extreme programming
[8] or feature-driven development [41] as well as in more conventional
development processes, [27], [31]. The security plug-in is composed of the
process components resulting from S3P, and it provides support required for
introducing these components into a particular software development
process. S3P is also a software process improvement (SPI) process, which
aims at improving the development process to prevent recurrence of security
problems and vulnerabilities, and which allows process components to
evolve as new threats and vulnerabilities are discovered.

There is already a considerable body of security know-how in literature,
and individual organizations have developed specific activities and know-
how related to their specific products and processes. This kind of
information is integrated into S3P and the security plug-in as activities in the
process components.

Figure 1-2 shows an overview of S3P and the security plug-in and their
relation to the software life cycle.

Our detailed contribution is as follows:

• We introduce S3P for systematic and continuous improvement of
security throughout software life cycle [3]. We also present our
graphical notation, which is used in the structure of S3P.

• We present a security plug-in based on S3P, for the OpenUP/Basic
development process version 0.9 [39]. This security plug-in is the first
step towards developing a framework for adapting S3P to arbitrary
software development processes and we present lessons learned when
developing this plug-in.

• We also present the results of an evaluation of applicability of the
security plug-in, which we have performed in collaboration with one of
our industrial partners.

INTRODUCTION

7

Figure 1-2: Security plug-in in the context of software life cycle.

1.6 Thesis outline

The outline of this thesis is as follows:

• Chapter 1 presents the introduction, the motivation, the problem
formulation, our research methodology and the contribution of the
thesis.

• Chapter 2 provides an overview of S3P and details about each step in this
process.

• Chapter 3 presents the important issues related to the development of a
security plug-in based on S3P and the security plug-in for the
OpenUP/Basic development process.

• Chapter 4 presents the related work.

• Chapter 5 concludes the thesis and presents our future work.

9

Chapter 2

Sustainable Software Security Process

2.1 The structure of S3P

S3P runs in parallel to a software development process and produces
required components to improve the development process. According to
definition by Komi-Sirviö [28] “Software process improvement denotes
activities aiming at improving the software development process and is used
for reaching a desired improvement goal”. Based on this definition, S3P is a
process improvement process and the goal of the improvements is to
introduce security to the software development process and to produce
secure software. The workflow of S3P is shown in Figure 2-1.

“Model vulnerability” (the first step in S3P) aims at the analysis of
vulnerabilities and their causes, similar to the root cause analysis. The results
of this step are represented in a graph called Vulnerability Cause Graph
(VCG). VCGs provide the basis for better understanding of vulnerabilities
and their relationships, and identifying the activities to prevent them. Each
cause in the VCG is then individually analyzed in the second step of S3P to
determine how it can be mitigated. The result of this analysis and the
structure of the VCG are then used to create a second graph structure called
Security Activity Graph (SAG). SAGs allow us to reason about tradeoffs
between different activities. Then activities are selected from SAGs and are
introduced to the software development process in the form of configurable
process components.

CHAPTER 2

10

Figure 2-1: The workflow of S3P.

2.2 Model vulnerability

When security problems or potential vulnerabilities are discovered in
software during development or after deployment, they must be addressed as
part of the software life cycle. Vulnerability modeling is a creative process
supported by a systematic approach that provides an in-depth understanding
of why and how the security problems and vulnerabilities are introduced into
the software. The in-depth understanding helps to address these problems,
prevent their reoccurrence, and eventually prevent the occurrence of similar
problems. The process we describe for vulnerability modeling is based on
our experience of analyzing a number of known software vulnerabilities [3],
[10].

Vulnerability modeling starts with an initial analysis of the vulnerability
in question. The vulnerability is analyzed to develop an understanding of the
conditions that might lead to it. This analysis is typically performed using
code review, static analysis tools, and visualization tools, execution traces,
live debugging and if possible developing a working exploit. This initial
analysis is considered complete when we know what conditions, inputs, and
environmental issues would expose the vulnerability [10]. The results of the
initial analysis are used to create the vulnerability cause graph.

2.2.1 Vulnerability cause graphs

A VCG is a directed acyclic graph that contains four kinds of nodes: simple
nodes, compound nodes, conjunction nodes and an exit node. Simple nodes
represent causes - conditions and events during software development
process - that independent of any other cause or condition might result in the
vulnerability. “Use of unsafe API”, “conditional range check” and “data file
can contain executable code” are examples of simple causes. Compound
nodes represent combinations of causes and refer to other VCGs. Compound
nodes are introduced into the VCG to model complex analysis elements and
facilitate analysis reuse, maintenance, and readability. Conjunction nodes
represent the conjunction of two or more other nodes. Arbitrary
combinations of simple and compound nodes are permitted in the
conjunction nodes. The exit node is the root node that is the only node in the
VCG without any successors. The exit node represents the vulnerability

SUSTAINABLE SOFTWARE SECURITY PROCESS

11

being modeled by the VCG, and when a VCG is created for a compound
node, the exit node represents the compound cause that VCG models. The
edges in the VCG represent the relationship between causes and between
causes and the vulnerability. The UML model of the VCG is shown in
Figure 2-2.

Cause Node
+Name

Exit

Node

VCG

Simple Node Compound Node Cause

+Nodes

1..*+Predecessor

0..*

1

1..*

+Clause

1

1

1

1
+Graph1

+Exit

0..*

0..* 1+Cause

Conjunction Node

Figure 2-2: Simplified UML model of VCG.

The visual representation of VCGs is designed so that they can be easy for
humans to understand. VCGs must also be well-defined so they can be used
for automatic computation. Figure 2-3 contains the visual elements of VCG.

Figure 2-3: Visual representation of VCG.

The predecessor-successor relationship in the VCG shows that if node B is
a predecessor of node A, then if B holds (i.e. is not mitigated during
development), then A is a concern. This implies that if the cause node B
represents is mitigated, node A will not be a concern any more. Figure 2-4

CHAPTER 2

12

shows an example sequence in the VCG. Node A is a direct cause and if
Node B holds, then Node A and consequently Node C will be a concern.

Figure 2-4: A sequence in VCG.

In the case of conjunctions, if N is a predecessor of C, and N is a
conjunction consisting of A1…An, then C is a concern only if all of A1…An

hold (expressing conjunctions
nAAAC ∧∧∧= ...21
). In the example VCG in

Figure 2-5, the conjunction node shows that the connection between A1, A2
and A3 is not causal and these three nodes jointly cause Node C to be a
concern.

Figure 2-5: A conjunction in VCG.

2.2.2 Prevention semantics

The ultimate goal of vulnerability modeling is to determine how the
vulnerability can be prevented and the semantics of VCGs are expressed in
such terms [10]. Based on these semantics:

A cause that is of concern during software development
is mitigated if actions are taken that result in the
condition the cause represents being false.

A node representing a cause that is not a concern during
development is considered blocked.

A node in a VCG is said to be blocked if it is mitigated,
or all its immediate predecessors in the VCG are blocked.

A simple node is mitigated if the cause it represents is
mitigated.

SUSTAINABLE SOFTWARE SECURITY PROCESS

13

A conjunction node is mitigated if any of its clauses are
blocked.

A compound node is mitigated if the exit node of the
VCG it is associated with is blocked.

By definition, the exit node of a VCG can never be mitigated but can be
blocked as it always represents the consequences of other conditions. If the
exit node of the VCG is blocked, then the vulnerability the VCG models is
prevented.

In the example graph shown in Figure 2-6, E causes C and the conjunction
of A and B to be a concern and vulnerability V is a concern because of both
C and the conjunction of A and B. In order to prevent vulnerability V, C and
the conjunction node should be mitigated. The conjunction node can be
mitigated if one of A or B is mitigated. C will be mitigated if the exit node of
its associated VCG is blocked. Another alternative is to mitigate D and E, so
none of A, B, and C and consequently vulnerability V will be a concern
anymore.

Figure 2-6: A simple vulnerability cause graph.

2.2.3 Vulnerability cause graph construction

The process of VCG construction starts with creating a base VCG consisting
of an exit node only. Then the immediate causes of the exit node are
identified and entered into the VCG as the predecessors of the exit node.
Then each of the new entered nodes is further analyzed to identify their
direct predecessors. The predecessors of a node represent the conditions that
independent of any other condition, might cause the condition that the node
represents to be a concern. For example if a node represents “range check is
missing when copying into the buffer” a candidate predecessor might be
“fixed-size buffer is used”.

CHAPTER 2

14

Finding the predecessors of each node starts with answering the question
“under what circumstances is this cause a concern?”. Then three steps are
performed for every node entered into the VCG:

• The validity of the node is determined.

• The node is analyzed to determine if it needs to be split or converted
to a compound node.

• Candidates for predecessors are found and organized.

Simple nodes entered into the VCG should always represent simple
conditions, not combinations or sequences of conditions and the conditions
represented by different nodes in the graph should not overlap. This is
important both for the understanding of the vulnerability and for identifying
mitigation techniques. Analysis of mitigation techniques is easier for simple
conditions than for the complex ones. When a complex condition is
identified it should be split to several nodes and possibly converted to
compound or conjunction nodes. If the node being analyzed is already
present in some other VCG, then its predecessors in that VCG might be
suitable as predecessors in the current VCG.

The process of finding predecessors is repeated for all of the nodes in the
VCG until no more additions to the VCG can be found. All compound nodes
that have been introduced to the VCG should also be analyzed completely.
The process of analyzing compound nodes is identical to the process of
analyzing vulnerabilities.

We stop the modeling process when we find the causes related to the
actions performed during the software development process and further
analysis of these causes will lead to the causes related to issues out of the
scope of the development process (e.g. organizational level causes).

2.2.4 Graph validation and optimizations

After completing the VCG, a second analysis is needed to validate the
resulting VCG. Then the VCG is optimized - transformations are applied to
it while preserving its semantic. This is an important step for improving the
clarity of the VCG and to support its reuse. For example1:

• The order of every sequence in VCG needs to be verified to ensure
that it is a natural order (e.g. cause-effect or temporal order).

1 Detailed information about graph transformation is in [10].

SUSTAINABLE SOFTWARE SECURITY PROCESS

15

• If a sequence lacks natural order we recommend the conversion to a
conjunction node.

• Part of the graph can be converted to a compound node to support
model reuse.

2.2.5 Case study, VCG

We have applied vulnerability modeling to a number of well-known
vulnerabilities. This has resulted in a comprehensive understanding of them
and alternative techniques to eliminate them. As an example, we present the
analysis of CVE-2005-2558 [59] (as designated in the Common
Vulnerabilities and Exposures2 list [58]). This vulnerability is a buffer
overflow in MySQL 4.0 before 4.0.25, 4.1 before 4.1.13, and 5.0 before
5.0.7-beta. According to the published descriptions:

“Stack-based buffer overflow in the init_syms function in
MySQL allows remote authenticated users who can create user-
defined functions to execute arbitrary code via a long
function_name field” [59].

“The init_syms function uses an unsafe string function to
copy a user specified string into a stack based buffer. Due to
improper sanitation this buffer is able to be overflowed,
overwriting portions of the stack. This allows an attacker to
write 14 bytes of arbitrary data and 8 bytes of hard coded data
beyond the end of the buffer. The format of the CREATE
FUNCTION statement is as follows:

CREATE FUNCTION function_name RETURNS type
SONAME “library_name”.

User specified input to the “function_name” field is limited
to 64 characters. If this library can be successfully loaded by the
operating system, control is then passed to init_syms(). This
will attempt to copy the user string into a buffer 50 bytes in
length. Hard coded strings are then copied onto the end of this
string. In some older versions of MySQL this can be used to
gain complete control over the EIP or copy attacker specified
data to an arbitrary location. One issue of concern is because
this buffer is owned by the calling function, in an environment
with a stack that grows upwards, it may be possible to overwrite

2 CVE (Common Vulnerability and Exposure) is a list of standardized names for

vulnerabilities and other information security exposures and is hosted by MITRE
Corporation. For more information see www.cve.mitre.org.

CHAPTER 2

16

the EIP return or other sensitive values. Exploiting this
vulnerability would require the ability to create user-defined
functions. This is not typically granted to untrusted users;
however given this vulnerability you should understand the
ramifications of granting the ability to create user-defined
functions” [53].

2.2.6 Initial analysis

We performed a detailed analysis of the vulnerability in MySQL-4.0.24 by
code inspection and analysis of known exploits in a debugger. According to
our analysis:

• The size of the buffer that should contain the user-defined function
name is defined by the constant variable MAX_FIELD_NAME
which is set to 34 characters. This variable together with some other
variables are defined in a file named unireg.h to be used in unireg
library3. Based on the comments in the code, MAX_FIELD_NAME
is used to define maximum length of column names in the tables.

• The function used for copying function name into the buffer is
strmov() which is defined by the programmer and is an unsafe
function without any range check when it copies data.

• In MySQL-4.0.25, the patch is released for this vulnerability and the
size of the buffer is defined by the constant variable NAME_LEN,
which is defined in mysql_com.h file.

• The code does not contain any comments about the files, their
creation time and how they are related and it is difficult to know
which of the following scenarios are valid:

o MAX_FIELD_NAME and NAME_LEN are defined to be
used for different concepts (MAX_FIELD_NAME for
column names and NAME_LEN for user-defined function
names) and the programmer has made wrong assumption
about MAX_FIELD_NAME.

o Both of these constant values are defined for user-defined
function names at different times with different values.

Figure 2-7 shows the structure and relationships of the folders and files in
MySQL. The folder named sql contains modules related to user-defined
functions. The folder named include contains modules related to the

3 In MySQL, unireg is the tty interface builder. For more information see [38].

SUSTAINABLE SOFTWARE SECURITY PROCESS

17

communication between server and client. Parts of the code related to this
vulnerability are:

unireg.h:
 #define MAX_FIELD_NAME 34 /* Max column name length +2 */

sql_udf.c:
 char buf[MAX_FIELD_NAME+16], *missing;

mysql_com.h:
 #define NAME_LEN 64 /* Field/table name length */

libmysql include sql

MySQL-4.0.24

Unireg.hMysql-com.h Sql_udf.cMysql.h

Figure 2-7: The structure of files in MySQL.

The constant value used in vulnerable version (MAX_FIELD_NAME) is
from a different module (unireg module). If we assume that include folder
contains constant values for the whole system, NAME_LEN is the correct
value to be used.

2.2.7 Vulnerability cause graph (CVE-2005-2558)

VCG construction starts with a single exit node labeled “CVE-2005-2558”,
representing the vulnerability we are modeling:

Iteration 1: The exit node is picked for further analysis. This node is a
valid node and cannot be split or converted to a compound node. The
predecessor candidates of the node are its immediate causes and according to
our analysis a buffer overflow can occur because the size of the buffer that
contains the user-defined function names is defined with wrong value.
Besides, no range check is performed when copying data into this buffer. We
enter these two causes as predecessors of the exit node. “Wrong source size
is used” and “missing range check” together leads to this vulnerability and
mitigating one of them can block the vulnerability. In this case these two
causes should form a conjunction node (see Figure 2-8).

CHAPTER 2

18

Figure 2-8: VCG of CVE-2005-2558, Iteration 1.

Iteration 2: The cause “wrong source is used” is not a simple cause and
there are causes and conditions that are directly related to it. We convert this
node to a compound node and will further analyze it in next iterations (see
Figure 2-9).

Iteration 3: Based on the analysis, unsafe function strmov is used for
string copying and because of wrong buffer size and missing range check
this cause might lead to vulnerability. We enter it as a simple node to the
VCG and since it causes vulnerability in conjunction with two previous
nodes, we enter them as conjunction node to the VCG (see Figure 2-10).

Figure 2-9: VCG of CVE-2005-2558, Iteration 2.

Figure 2-10: VCG of CVE-2005-2558, Iteration 3.

Iteration 4: We analyze the resulting conjunction node and identify its
direct cause to be the use of fixed-size buffers. This cause is a cause for
concern because external data is copied into internal buffer and this is a
cause for concern because C-like strings are used. We introduce these nodes
to the VCG (see Figure 2-11).

SUSTAINABLE SOFTWARE SECURITY PROCESS

19

Figure 2-11: VCG of CVE-2005-2558, Iteration 4.

The compound node in the VCG is further analyzed to identify its causes.
This process is similar to the process mentioned for construction of VCG
with CVE-2005-2558 as exit node.

Iteration 1: In order to construct the VCG of this node, the exit node is
created and labeled as “Wrong source size is used”. This is a valid node and
it is a concern because either two different concepts (column name in tables
and the name of a user defined function) have been assumed to be the same
or different values have been defined for the same concept in two different
modules (see Figure 2-12).

Figure 2-12: VCG of compound node, Iteration 1.

Iteration 2: First we analyze the node “two different concepts assumed to
be same”. This is a cause for concern because of lack of traceability from
design to implementation. Another cause can be not using documentation to
clarify the purpose of each concept. These two causes independently can
result in wrong assumption about the two concepts and respective constant
values MAX_FIELD_NAME and NAME_LEN (see Figure 2-13).

CHAPTER 2

20

Figure 2-13: VCG of compound node, Iteration 2.

Iteration 3: The node “different values defined for same concept” can
also be caused by “missing design to code traceability” or “documentation
not used completely” (see Figure 2-14).

Figure 2-14: VCG of compound node, Iteration 3.

Iteration 4: Possible cause for not using documentation completely
includes: the developer does not understand documentation and the cause for
this problem can be either that the documentation quality is low (it is hard to
understand), or the developer lacks skills to read documentation (e.g.
language proficiency problem, etc.). We enter these causes as compound
nodes because they can be further analyzed to identify why such problems
are present. Further analysis of resulting nodes will lead to causes that are
outside the scope of the development team (e.g. the cause for hiring a
development team member that lacks skills to read the documentation) and
further analysis of the node representing lack of traceability from design to
implementation does not lead to any direct cause for it.

For the optimization of the resulting VCGs, we analyze the order of the
sequences: for the sequence “copy of external data to internal buffer” and
“use of non-adaptive buffers”, the decision on the use of non-adaptive
buffers is made after the decision to copy data; for the sequence “use of C-
like strings” and “copy of external data into internal buffer”, the choice of

SUSTAINABLE SOFTWARE SECURITY PROCESS

21

using the C language is made early in the development. We keep the current
sequences as they are. Three nodes were converted to compound nodes
during the analysis and this further optimizes the VCG.

The resulting VCG for the vulnerability with one expanded compound
node is shown in Figure 2-15.

2.2.8 Discussion

We applied our modeling method to this and several other known
vulnerabilities and we found that the results gave a much more detailed
understanding of the vulnerability than available published sources. For
example for CVE-2005-2558 we discovered that documentation problems
can cause misunderstanding and might lead to buffer overflow in stack. This
detailed understanding is vital when we attempt to improve the development
process and to prevent similar vulnerabilities.

Figure 2-15: Vulnerability cause graph for CVE-2005-2558, with
expanded compound node.

2.2.9 Empirical study

We empirically tested the generation of vulnerability modeling in
collaboration with one of our industrial partners. The goal of this experiment
was to determine if our proposed vulnerability modeling methodology could
be applied consistently by software developers.

CHAPTER 2

22

Our test took the form of a small empirical experiment, involving four
subjects. The subjects were experienced developers: two programmers, one
tester and one security officer with development experience. The subjects
were part of a development team. We were interested in having our method
tested by subjects with various expertises in the development team, so
subjects were chosen based on this criterion.

The test started with giving a tutorial on the vulnerability modeling and
example vulnerability (vulnerability A) was analyzed and modeled to help
subjects get familiar with the modeling process. Then the subjects got the
description of vulnerability B and they analyzed the vulnerability and
modeled it based on their own analysis. Each subject then modeled someone
else’s model and then the groups consisting of two subjects were formed to
discuss the models of each group member and report one model for each
group. We made a comparison of the models before and after validation by
the groups and we also compared the models to the results of modeling
performed by our research group.

The results of the experiment showed that software developers can use the
method to model vulnerabilities with a small amount of training. Subjects
had total agreement regarding causes in the design and coding phases and
they came up with similar causes but there were some significant differences
in naming the causes. The structure of the model varied before validation but
after validation the structure was comparable to our modeling results. This
shows that the validation phase is critical and perhaps more than one
iteration should be recommended.

Our empirical test has shown that vulnerability modeling requires a
mindset that is initially foreign for most developers: they tend to think in
terms of fixing problems, rather than in terms of causes that lead to
problems. This matches our own experience in developing our modeling
process. We also realized that the names of causes should be made more
consistent and the creation of taxonomy of causes should be considered as
part of our future work. This empirical test validated our test method and we
are planning to use a similar method to test the second step of S3P as well.

2.3 Identify cause mitigations

After modeling a vulnerability, mitigation techniques are identified to
mitigate causes and block the vulnerability in question. This is the second
step of S3P. The goal of this step is to determine possible software life cycle
activities that would prevent vulnerability. This includes determining
techniques for individual causes and composing them in a structure to show

SUSTAINABLE SOFTWARE SECURITY PROCESS

23

how they should be combined and performed to address the causes and to
prevent the vulnerability. Most current methods for software security
typically recommend certain sets of activities without support for adapting
them to the conditions of the users of them. Many of these recommendations
are only applicable under certain conditions (product type or organizational
structures) and have little or no support for evolution [12]. Our methodology
in identifying cause mitigations is developed with consideration for this
shortcoming of current solutions.

The input to identifying cause mitigation step is vulnerability cause
graphs. Each cause in the VCG is analyzed individually and activities that
can be performed during software development to mitigate these causes are
identified. The results are presented in security activity graphs. SAG is a tree
consisting of nodes that are logic gates or activities. Edges represent
relationships between activities and gates. SAG is a representation of a
predicate logic formula with activities for terms and gates for operators. The
root of the SAG is representing the semantics of the entire SAG. Figure 2-16
shows visual representation elements of SAGs and Figure 2-17 shows an
example SAG. According to Figure 2-17 cause C can be mitigated by either
performing activity A3 or performing both of activities A2 and A1.

SAGs can be constructed manually or composed automatically from
manually constructed SAGs. Manually constructed SAGs show how to
prevent particular causes and the SAG of a vulnerability is computed
automatically by combining the SAGs of each cause in the vulnerability’s
VCG, based on the structure of the VCG. The SAG of a vulnerability can be
very large and complex but the structure of SAGs supports automatic
processing.

The SAGs may contain cause references, a type of node that abstracts the
SAG for a cause. A simplified UML model of the SAG is shown in Figure
2-18. For example, for vulnerability V in Figure 2-19 with two causes A and
B, the complete SAG is shown in Figure 2-20. Since the two causes A and B
independently can cause the vulnerability, the SAGs of these causes are
combined with an and gate expressing that both of the causes must be
mitigated (an or gate must be used if cause A and B have built a sequence).

CHAPTER 2

24

Figure 2-16: Visual representation of SAG.

Figure 2-17: A security activity graph for a cause.

Root

Node

SAG

+children
Package: SAG

+root

+sagActivity

Or VAD::SAGOwner

Gate

VAD::ActivityAnd

VAD::CompoundActivity VAD::CauseVAD::SimpleActivity

+sag

+nodes

+parent

+child

+owner

+parent

+activity

Figure 2-18: UML model for Basic SAGs.

SUSTAINABLE SOFTWARE SECURITY PROCESS

25

The structure of SAG is called graph rather than tree because it can be
visualized as a directed acyclic graph in which duplicated sub-trees have
been merged. This can help to reduce the visual complexity of the SAG.

Figure 2-19: Example vulnerability and SAGs of individual causes.

The algorithm for automatic composition of SAGs is as follows4:

1. The SAG for a simple node is the combination of mitigation
techniques that address the cause that the node represents
(mitigation techniques are combined by and and or gates to
show how they should be applied).

2. The SAG for a compound node is the SAG for the exit node of
the VCG modeling the compound node.

3. The SAG for a conjunction node is the SAGs for the nodes in
the conjunction connected by an or gate.

4. To construct the SAG for the exit node in a VCG:

a. Set the node as the start point.

b. Create the SAG of its direct predecessor according to
the steps 1, 2, or 3 and set this SAG as the basic SAG.

c. Set the visited direct predecessor as the start node and
repeat step b and connect the resulting SAG to the
basic SAG with an or gate.

d. Repeat steps b and c until there is no predecessor for
the start point.

4 The algorithm in Python-esque notation can be found in [12].

CHAPTER 2

26

e. If there is a node that has more than one direct
predecessor connect the SAGs constructed for its direct
predecessors by an and gate.

2.3.1 Security activities

SAGs contain security activities and security activities represent security-
related software life cycle activities. These activities are selected and
performed during the software development process to prevent
vulnerabilities.

Figure 2-20: Complete SAG for vulnerability V.

“Make all design objects identifiable” and “specify overall security
policy” are examples of security activities. Every security activity contains
information required to implement it and verify the implementation, and
some constraints that might be faced when it is performed. Two kinds of
activities are supported in our method: simple and compound. A simple
activity is a natural language description of an activity and a compound
activity refers to another SAG.

Implementation procedure

The implementation procedure of an activity is a detailed description of how
the activity is implemented and if it should be expressed using a natural
language (simple activity) or by a SAG (compound activity). Compound
activities are mainly used to express the activities that can be performed in
more than one way. Compound activities also create abstraction of complex
activities and support reuse of part of complex activities in other SAGs.

Verification procedure

The purpose of this procedure is to verify that the implementation
procedures was successful. The verification procedure can be expressed both
in natural language and in form of SAG. Using SAGs for verification
procedure means alternative ways can be used to verify the activity. The

SUSTAINABLE SOFTWARE SECURITY PROCESS

27

verification procedure is not always required. For example, compound
activities may transfer verification to constituent activities, and the
constituent activities of a verification procedure expressed by a SAG
typically lack a verification procedure.

2.3.2 Activity constraints

Activity constrains model relationships between activities called inter-
activity constraints or between activities and the world called external
constraints. The types of activities we have faced so far are dependency and
ordering constraints (inter-activity constrains) and applicability constrains
(external constraints).

Dependency constraints

Dependency constrains refer to the situation when for activity A to be
successful activity B must be also performed. This constraint is satisfied if
activity A is not performed or if both of activities A and B are performed. For
example, the activities A and B can be connected via an and gate or activity
A can be extended to contain the content of activity B. Sometimes dependent
activities should be performed in different phases and there is a need for
verification procedure to ensure that the activity is actually performed as
intended.

Ordering constrains

If, when activity A and B are both performed, activity A should be performed
before B, then there is an ordering constraint. This constraint is satisfied if
none of activities A and B is performed or A is performed before B. Ordering
constraints are not modeled in the SAGs, as the SAG models the information
about which activities to be performed not how they should be composed to
form a process component. The ordering constraints might be mentioned in
the description of simple activities.

Applicability constraints

The applicability constraints refer to situations when a specific tool or
expertise is needed to perform an activity.

2.3.3 The semantic value of SAGs

The semantic function of a SAG is a function of Boolean variables that
return true when activities are implemented in the software life cycle to
prevent the vulnerability associated with the SAG. The semantic values are
computed as follows [12]:

CHAPTER 2

28

The semantic value of the root equals the semantic value
of its child.

The semantic value of an and gate is the conjunction of
the semantic values of its predecessors.

The semantic value of an or gate is the disjunction of the
semantic values of its predecessors.

The semantic value of an activity is a variable, which is
true iff the activity is implemented.

For example the semantic value of the SAG in Figure 2-20, with V
denoting vulnerability,)(VB denoting the semantic function, A1 denoting
activity A1 and so on is:))(()()(54321 AAAAAVB ∨∧∧∨= 5.

2.3.4 Security activity graph construction

Security activity graph construction starts with the analysis of the individual
causes identified in the vulnerability modeling step. The analysis process is
called cause mitigation analysis and each cause is analyzed to determine
how it can be mitigated. Determining how to mitigate a cause is a creative
process, and relies on the experience of the analyst. Security know-how and
best practices are used in this stage to define the security activities. The
process of cause mitigation analysis consists of following steps:

1. Determine immediate activities: The activities that directly address
the cause are identified. The following questions help us to perform
this step:

a. What best practices are known to eliminate this cause?

b. What activities could eliminate this cause if performed
during requirement analysis, design, implementation, and
deployment?

c. What activities related to the organization and overall
environment can eliminate this cause?

Depending on the type of cause, some of these questions will not have any
answers. For example, a cause that is strongly related to the implementation
may not have related activities in the requirement phase.

5 The algorithm that computes the semantic function of a SAG can be found in Python-esque

notation in [12].

SUSTAINABLE SOFTWARE SECURITY PROCESS

29

2. Determine supporting activities: Supporting activities are those
that are required for successfully implementing an activity. These
activities are either dictated by the current cause or must always be
performed together with the current immediate activity. The
supporting activities are attached to the activities they support, via
an and gate.

3. Break down complex activities: Every new activity entered in
SAG is examined to determine if it should be a simple or compound
activity. An activity is compound if:

a. There are steps of the activity that belong to different
development phases.

b. There are steps in implementation of the activity that require
different verification processes.

c. There are options for implementing the activity.

d. The implementation of the activity contains reusable parts
that could be used in the implementation of other activities.

4. Define the verification procedure: For each new activity, an
analysis is performed to determine how it can be verified that the
implementation was successful.

5. Account for detection method: The cause is analyzed to
determine how it can be detected. This cannot be used for prevention
of the cause but can be used in verifying the activities and can
indirectly lead to prevention of other causes. The following
questions help us to perform this step:

a. What best practices are known to detect this cause?

b. What activities could detect this cause during requirement
analysis, design, implementation, testing, and deployment?

c. How can the organization and overall environment be
designed to promote detecting this cause?

6. Cull inappropriate activities: We need to identify the activities
that have effects beyond addressing the current cause (e.g. “Use
Java” for a cause like “Use of unsafe function for string
copying”).We should also identify the activities that address the
conditions that the current cause leads to instead of addressing the
current cause. Such activities should be accounted for as part of the
SAG associated with some cause in the current VCG. If no suitable

CHAPTER 2

30

SAG is found, the current VCG should be reviewed to see if it is
complete.

7. Iterate: All steps are iterated until no more changes are made to the
SAG.

2.3.5 Case study, SAG

We have applied techniques for developing security activity graphs to CVE-
2005-2558. Based on the VCG of this vulnerability in Figure 2-15, we have
analyzed each cause and determined the mitigation techniques.

Missing range check

Range check is not performed when copying the name of user-defined
function into the fixed-size buffer and resulting in a buffer overflow. The
SAG for this cause is shown in Figure 2-21. We performed following steps
to construct this SAG:

1. Range check when copying into fixed-size buffer is recommended
as a best practice [22]. Immediate activities that can mitigate this
cause include managing the size of the buffer either by allocating the
buffer after size calculation or checking its size before copying and
also ensuring that range check is actually implemented before each
copy action. These activities are performed during implementation.

2. We have not identified any supporting activity.
3. The identified activities are simple.
4. Any copy action to the fixed-size buffer needs to be checked to

verify that range check is implemented.

Figure 2-21: The SAG for missing range check cause.

Use of unsafe function for string copying

MySQL uses strmov which is very similar to the standard C function strcpy.
We perform cause mitigation analysis and identify that:

SUSTAINABLE SOFTWARE SECURITY PROCESS

31

1. This cause can be mitigated by replacing all occurrence of strmov
with a safe function e.g. strlcpy or strncpy.

2. The alternatives for replacing the unsafe function are complex
activities and we introduce them as compound activities.

3. We also identify supporting activity to ensure that replacing of
strmov is successfully implemented.

4. We also need the verification procedure to ensure that strmov is
never re-introduced. The verification procedure is shown in Figure
2-23.

The SAG for this cause and the SAGs of its compound activities are
shown in Figure 2-22.

Figure 2-22: The SAG for use of unsafe function for string copying.

Use of non-adaptive buffers

The buffer used for copying the name of user-defined functions is a fixed-
size buffer and does not adapt to the amount of data. Figure 2-24 shows the
results of cause mitigation analysis for this cause.

Copy of external data to internal buffer

Data supplied by, or influenced by a source outside the program is copied
into a buffer and this copy is performed improperly. The SAG for this cause
is shown in Figure 2-25.

Use of C-like strings

C-like strings do not contain a representation of their length and this might
cause problems if they are not handled properly especially when copying.
The SAG for this cause is shown in Figure 2-26.

CHAPTER 2

32

Wrong source size is used

“Wrong source size is used” is a compound activity and its SAG is shown in
Figure 2-27. Since the cause “hard to understand documentation” and
“developer lacks skill to read documentation” are compound causes and
need further analysis, we enter cause references instead of their SAGs. The
activities to mitigate these causes are not performed during software
development and are related to the qualification of the development team
members. These activities will vary depending on the structures of the
organizations and their policy when employing new development team
members.

Figure 2-23: Verification procedure for not using strmov.

The complete SAG of CVE-2005-2558 can be composed of the SAGs that
we presented here (see 2.3). The full SAG shows which activities must be
combined to prevent the vulnerability. In this particular case, using a safe
function or a good string library would prevent vulnerability. If these options
are not accepted then the SAG shows all possible alternative activities.

Figure 2-24: The SAG for use of non-adaptive buffers.

Figure 2-25: The SAG for copy of external data to internal buffers.

SUSTAINABLE SOFTWARE SECURITY PROCESS

33

Figure 2-26: The SAG for use of C-like strings.

Figure 2-27: The SAG for wrong source size is used.

2.4 Vulnerability analysis database

All information gathered during “model vulnerability” and “identifying
cause mitigations” steps is entered into a shared repository called
Vulnerability Analysis Database (VAD). The VAD ensures that all uses of
same cause, VCG, and SAG are linked; provides search mechanisms to
support analysis reuse; and contains documentation needed to use our
models. This database is an essential tool for effective practical application
of S3P. The VAD contains five major sets of data:

• Vulnerabilities: Information including ID, summary, full description
of the vulnerability and an in-depth analysis of the vulnerability are
available for each vulnerability. The possible references to external
resources are also presented in VAD. Figure 2-28 shows a
screenshot of the interface that users see when entering information
about a new vulnerability.

CHAPTER 2

34

Figure 2-28: The screen shot of the user interface of VAD.

• Causes: Every cause has a title and ID, a brief summary and an in-
depth description. There is also a code example and references to the
vulnerability that cause might produce. Each cause is also linked to
the SAG that presents the activities to mitigate the cause.

• Security activity: Every activity has an ID, a title, an implementation
procedure, a verification procedure, and a set of constraints, also an
assigned cost.

• Vulnerability cause graph: VCGs are linked to the vulnerability they
present and the causes they contain.

• Security activity graphs: Every SAG has an ID. The SAG is linked
to the cause it mitigates, and the activities that it contains.

2.5 Define process components

The third step in S3P is the process of selecting activities from a set of
security activity graphs. Activities are selected that are suitable to the
product, development process, and organization. To accomplish this,
activities are assigned costs, and a set of activities with best cost is selected.
The cost of an activity depends on different factors including how it fits to
the development process, staff, product, and organization. For example, the
cost of training staff for performing an activity affects the cost of the

SUSTAINABLE SOFTWARE SECURITY PROCESS

35

activity. An activity that the staff already know how to perform is cheaper
(from a training point of view) than one that requires staff training.

Performing the selected activities during software development process
satisfies the semantic function of the corresponding SAG. Finding a set of
activities that satisfies the semantic function is trivial but finding a good
solution is difficult. The process of assigning costs to activities and selecting
a set of suitable activities is ongoing work and we are currently in the
process of specifying the selection method. Further complicating matters is
that sometimes the combination of certain activities is less expensive than
the sum of their costs, and we also need to consider possible conflicts
between activities that can affect the cost of an activity.

Note that such constraints will make the task of activity selection more
difficult and we will work on this issue in our future work. These constraints
are present in the SAG and are related to the development organization that
performs the activity selection. Figure 2-29 shows the summarized structure
and content of S3P as presented in this chapter.

Define
Process

Components

IdentifyModel
Vulnerability

Vulnerability Analysis Database

Cause
Mitigations

Figure 2-29: The structure of S3P.

2.6 Tool support

Tool support can help the effective application of S3P. To support the initial
analysis process that precedes vulnerability modeling, tools like source code
checking tools are useful. It depends on the development organization how
these kinds of tools are provided for the development team. Visualization
and model editing tools can be used for vulnerability modeling and cause
mitigation analysis.

Tool support for S3P includes tools to aid the software development
process as well. The static code analysis tools help S3P during analysis and

CHAPTER 2

36

also in verification procedures of security activities. These tools can evolve
by taking advantage of the information provided by vulnerability modeling.

37

Chapter 3

Security Plug-in for OpenUP/Basic

S3P is designed to be process agnostic and is introduced into the software
development process as a process plug-in. In software engineering, plug-ins
are modules that add specific features to software or a service. The idea
behind a process plug-in is to tailor new components into processes to better
fit the needs of an enterprise. Process plug-ins support modifications to
activities, roles, and other components of a process for software process
improvements. Moreover, new components may be added by plug-ins to
support missing features of a development process. Examples of plug-ins are
a plug-in for handling capacity requirements in the OpenUP/Basic process
[9] and IBM’s process plug-in that extends the Rational Unified Process
(RUP) to support requirements quality assurance [4].

 This chapter presents a prototype of the process plug-in to introduce
security into the OpenUP/basic development process. This security plug-in is
our first step in deploying S3P in a real software development process. We
first present key issues that must be considered when developing the security
plug-in and then we present the security plug-in for OpenUP/Basic.

3.1 The security plug-in

The typical scenario for using S3P in a software development process may
contain the following steps:

1. Security problems and vulnerabilities are found and documented
during the software development process.

2. The problems to be addressed are selected.

CHAPTER 3

38

3. The selected problems are used to create the input document to
S3P.

4. The steps of S3P are performed.

5. The process components resulting from S3P are defined based on
the software development process.

6. The process components are introduced into the development
process.

Considering these steps, the security plug-in must provide information
about modifications to the software development process, including the
interactions between S3P and the development process, and staffing issues.

3.1.1 Identifying security problems

Currently S3P does not mandate a particular process for identifying security
problems during the software development process. However, detection
methods identified when constructing SAGs are introduced in the form of
process components to prevent recurrence of the vulnerabilities.

After identifying security problems, a risk analysis must be performed to
determine the associated risks to each problem. This is required for
prioritizing the security problems to be analyzed by S3P. The risk analysis
step is not part of S3P and it is a requirement for the software development
process to support this risk analysis.

3.1.2 Interactions between S3P and the development process

The vulnerabilities or potential vulnerabilities, and problems uncovered (and
possibly fixed) during development must be used to create inputs to S3P.
Since the first stage in S3P is the in-depth analysis of the vulnerability, a
simple problem description is sufficient as the input. We call these reports
Security reports. S3P will be initiated and run whenever a security report is
created. It depends on the development organization how often S3P is
performed (e.g. for each security report or after creating several security
reports). These reports are generated in all phases of development and
shouldn’t be limited to test or maintenance phases.

Note that if there is no security problem identified to create the security
report, a potential starting point for the use of S3P is to obtain the VAD with
data on publicly known vulnerabilities, identify relevant vulnerabilities in
the VAD and create process components that need to be introduced into the
development process to prevent the vulnerabilities.

SECURITY PLUG-IN FOR OPENUP/BASIC

39

In addition to reporting the problems during development, security reports
should be created when [11]:

1. A known vulnerability reoccurs; this indicates that the existing
vulnerability or activity models are incomplete.

2. New mitigation techniques become known; in this case all
existing models should be revisited to include the new mitigation
technique.

3. An existing mitigation technique changes; in this case all models
containing the mitigation technique need to be reviewed.

4. A new risk is identified or a known risk changes; new
vulnerability models may be created to model potential
vulnerabilities implied by the risk.

5. The criteria that influence process component definition changes
(e.g. development process, staffing, or some other basis for cost
assignment).

Figure 3-1 shows examples of descriptions that can be included in a
security report. In some of the cases, there is no need to perform all steps of
S3P. For example in the case of changes in the criteria for defining process
components, the iteration will contain only the last step performed to re-
select the activities.

Security Report,

Reported by: Designer
Date: 2007-09-10

There is ambiguity in the behavior of mprotect() function. It seems that it
should be used to switch the write permission on and off to a readonly
segment of the shared memory. Why do we attach readonly to this
segment at first place?

Reported by: Project manager
Date: 2007-09-11

The static analysis tool AAA is available now for development team.
The VAD needs to be updated in this regard.

Figure 3-1: A security report.

The results of S3P are selected activities and it depends on the structure of
the development process what kind of process components should be created
to introduce these activities into the development process. For example
Security checklist can be created containing activities selected from SAGs.
Activities in the security checklist must be included in the software

CHAPTER 3

40

development process as routines the development team always follows. For
example, activities represented by Figure 3-2 are a checklist of security
activities that prevent security problems resulting from an inadequately low
memory response in combination to unsafe use of malloc. Depending on the
organization and the development process these tags might be different (e.g.
referring to the role that performs the activity, not the phase in which activity
is performed).The general view of the interaction between S3P and the
development process, with security reports as input and a security checklist
as output is shown in Figure 3-3. This figure shows one iteration of the
interaction.

Note that training might be required to successfully perform some security
activities defined in the security checklist.

Figure 3-2: Example page of a security checklist.

3.1.3 Staffing

All members of the development team can create security reports. Then at
least two individuals are required to perform the steps of S3P (two or more
individual are required to perform model validation). These two individuals
are trained in vulnerability modeling and cause mitigation identification
[11]. Based on our experience from our empirical test of vulnerability
modeling (see 2.2.9), the more experience individuals have, the more varied
the causes they identify. We recommend that one of the individuals in the
team performing S3P steps is a senior developer with experience from all
phases of software development.

Since process components are used to improve the development process,
the team responsible for S3P must be supported by an individual or team
with the mandate to alter the development process. This individual or team is
a good candidate for ownership of the overall process [11]. We call this role
Security Auditor (or security auditor team).

SECURITY PLUG-IN FOR OPENUP/BASIC

41

 Figure 3-3: Example of the interaction between S3P and a software

development process.

3.2 Security plug-in for OpenUP/Basic

OpenUP/Basic is an open source software development process that takes an
agile approach to software development. OpenUP/Basic targets small teams
of 3-6 people with 3-6 months of development effort and preserves essential
characteristics of the Rational Unified Process (RUP), e.g. iterative
development and risk management. We have worked with version 0.9 of
OpenUP/Basic. OpenUP/Basic provides an approach to assigning tasks and
responsibilities within a development organization. These tasks and
responsibilities based on OpenUP/Basic are described in two dimensions:
the time dimension that shows the dynamic aspect of the process, and the
content dimension that shows the static aspect of the process.

The static aspect describes what OpenUP/Basic contains in terms of
modeling elements: artifacts, tasks, roles and workflows. Roles refer to
responsibilities (stakeholder, analyst, architect, developer, tester and project
manager). Tasks refer to activities to be performed by roles and workflows
are sequences of tasks. Roles perform tasks that consume and produce
artifacts and workflows define which tasks should be performed and when.
For example, the task Create test cases develops test data for the
requirements to be tested, and is performed by tester. The input to this task is
the use case artifact that captures the sequence of actions and the behavior of
a system from the perspective of the end user. The output of this task is a test
case artifact, which is the specification of a set of test inputs and expected
outputs. Tasks in OpenUP/Basic are organized into six disciplines
(requirements; configuration and change management; project management;

CHAPTER 3

42

analysis and design; implementation and test). Five domains organize the
artifacts of OpenUP/Basic (architecture, development, project management,
requirements, and test).

The dynamic aspect describes how OpenUP/Basic is performed over time,
in terms of cycles, phases, iterations and milestones. Phases are: inception,
elaboration, construction, and transition. Each of these phases consists of a
number of activities. The activities show the tasks and their sequences. More
information about the structure of OpenUP/Basic can be found in the
Appendix A.

OpenUP/Basic has not been developed for secure development, although
its aim is to deploy software development best practices such as iterative and
incremental development. Tests focus on attributes of stated requirements
for the developed product including integrity (resistance to failure), ability to
be installed and executed on different platforms, and ability to handle many
requests simultaneously. To achieve these kinds of goals different type of
tests are developed such as a function test, security test, integrity test and
stress test. The security test focuses on ensuring the data related to the
product are accessible only to those actors for which they are intended, and
relies on the expertise of the developers in designing such tests.

Testing cannot prove the absence of vulnerabilities in software because
testers can apply only limited numbers of tests [60]. In order to build
security into a system, security testing needs to be coupled with other
security activities performed throughout the software development life cycle
to effectively validate design assumptions, and to discover vulnerabilities
and implementation issues that may lead to vulnerabilities.

We developed the security plug-in as an extension to OpenUP/Basic to
run S3P and to use its results during software development. This plug-in
introduces modifications to the OpenUP/Basic dynamic and static aspects:
Security Domain and Security Discipline extend the static aspect of
OpenUP/Basic and introduce modifications to roles, tasks and artifacts; the
Security Iteration extends the dynamic aspect, and shows how the new roles,
tasks, and artifacts are used to support security. According to our scenario in
3.1, when security problems or potential vulnerabilities are discovered, they
need to be reported in security reports. Analyst, architect and developer are
responsible for reporting problems such as ambiguities in the specification of
requirements, conflicts between requirements from a security point of view,
problems encountered during architecture design and the results of developer
tests. The security iteration consists of the tasks and artifacts required for
performing the three steps of S3P and security reports are used for initiating

SECURITY PLUG-IN FOR OPENUP/BASIC

43

a security iteration and as inputs to this iteration. Figure 3-4 shows the
overview of workflow for initiating the security iteration.

Figure 3-4: The overview of workflow for security iteration.

We have designed the security plug-in as a method plug-in6 in the Eclipse
Process Framework (EPF) [20]. In this framework the elements like artifacts,
tasks, roles, and capability patterns related to the plug-in are created and
introduced to development processes. “Method content variability” is used in
EPF when introducing new elements in a plug-in. According to the method
content variability, the new element can contribute to, extend, or replace and
existing element:

• Contributes: A new element contributes to an existing (base)
element and the resulting element is the combination of the element.

• Extends: A new element inherits attribute values of an existing
(base) element and also can have its own additional attribute values.

• Replace: A new element replaces an existing (base) element.

In addition to these content variability alternatives, “Not applicable” can
be selected when a new element is created without connection to any other
element. For example, the task “Report the issues discovered in developer
test” in the security plug-in contributes to the “Implement developer test”
task of OpenUP/Basic.

The Security Team is responsible for performing the security iteration. We
introduce two roles in the security team and these roles extend two existing
roles in OpenUP/Basic:

6 In Eclipse Process Frame work the content of a plug-in is organized in method plug-ins [20].

CHAPTER 3

44

• Security auditor: The owner of the security iteration and the
primary performer of S3P tasks. This role extends the project
manager role.

• Developer: The person in this role is a developer and a member of
the security team and, together with the security auditor, performs
security tasks. This role contributes to the developer role of
OpenUP/Basic.

Figure 3-5 and Figure 3-6 show security auditor and developer roles, the
related artifacts and related tasks. The symbols used for tasks (pentagon) and
artifacts (rectangles) in these figures are the same as symbols used in EPF.

Figure 3-5: The security auditor.

Figure 3-6: The security developer.

3.2.1 Security domain

Security reports, the results of performing initial analysis in vulnerability
modeling, vulnerability cause graphs, and security activity graphs are the
artifacts used for initiating and performing the security iteration. Checklists

SECURITY PLUG-IN FOR OPENUP/BASIC

45

are used in OpenUP/Basic to identify a series of items that need to be
completed or verified and the results of the security iteration are introduced
into OpenUP/Basic in security checklist artifact (see 3.1.2). The workflow in
Figure 3-7 shows how these artifacts are used.

Figure 3-7: The workflow and artifacts in the security plug-in.

3.2.2 Security discipline

This discipline contains tasks for initiating and performing the security
iteration and the task that supports the use of the results. In order to initiate a
security iteration the security reports must be created and the tasks to create
these reports must be defined in the plug-in. The tasks performed in a
security iteration are defined based on the three steps of S3P and :

• Report security issues in requirements, report inconsistencies in
design, and report issues discovered in developer test are tasks
related to reporting potential vulnerabilities and problems and
creating security reports.

• Report new risk, new mitigation and change in criteria: This task
is for creating the security report whenever there is a need for
revisiting the models (see 3.1.2).

• Model vulnerability: This task is the first step, in which S3P
identifies the causes that might lead to vulnerability. The result is in
the form of vulnerability cause graphs.

CHAPTER 3

46

• Identify mitigation techniques: This task is the second step of S3P,
identifies the cause mitigations. The output is in the form of security
activity graphs.

• Define the activities to perform: This task is the last step of S3P, to
select activities to be performed during development, the output is
the list of activities that should be used to create security checklist.

• Create-update security checklist: After selecting activities, those
activities that should be introduced as process improvements are
used to update the security checklists.

The security plug-in extensions to OpenUP/Basic are presented in Table 3-1
and Figure 3-8 shows the organization of contents for Secure OpenUP/Basic
(OpenUP/Basic after introducing the security plug-in).

Table 3-1: Extensions to OpenUP/Basic.

3.2.3 Case study, the security plug-in

We assume that CVE-2005-2558 has been identified during the test of the
MySQL 4.0.24 (e.g. one of the testers realized that strmov behaves similarly
to strcpy, which is an unsafe function) and is reported by the security report

SECURITY PLUG-IN FOR OPENUP/BASIC

47

Communication
& Collaboration

M
an

ag
em

en
t Intent

Solution

Stakeholder

Pr
oj

ec
t M

an
ag

er
Ar

ch
ite

ct

Developer

Analyst
Tester

Security
 plug-in

Security plug-in

Se
cu

rit
y

pl
ug

-in

Security
 plug-in

Security plug-in

Security plug-in

Figure 3-8: The organization of content in Secure OpenUP/Basic.

in Figure 3-9. This security report is input to security iteration. The security
team performs “model vulnerability” task and the results are the initial
analysis and VCGs (see 2.2.6, 2.2.7). Then VCGs are used to perform a
“identify cause mitigations” task and the SAGs presented in section 2.3.5 are
created. The complete SAG (see Figure 3-10) is used to select activities in
“define process components” task7.

Figure 3-9: Security report for CVE-2005-2558.

The SAG shows that the use of safe functions for copying data would be
sufficient to prevent the vulnerability. This is one of the alternatives and
other options might be selected depending on the organization’s preference.
The knowledge about the vulnerability and the results of each of these tasks

7 This SAG is simplified: sub-trees are eliminated and cause references are shown for four of

the causes.

CHAPTER 3

48

are entered into VAD, and the security checklist is updated to include the
selected activities (see Figure 3-11). The activities in the security checklist
must be performed during implementation (by developer role in
OpenUP/Basic).

Figure 3-10: Complete SAG for CVE-2005-2558.

Figure 3-11: Security checklist to prevent CVE-2005-2558.

3.3 Evaluation of the security plug-in

We evaluated the application and adoption of the security plug-in in
collaboration with one of our industrial partners. The goal of this evaluation

SECURITY PLUG-IN FOR OPENUP/BASIC

49

was to gather knowledge about the advantages and disadvantages of
deploying the plug-in, its adoptability, and an estimation of time and effort
required for its deployment.

We have used a questionnaire to ask experienced development team
members about how the security plug-in would fit into a development
process and how much value it adds to the development process after
incorporation. We used “Goal-Question-Metric” [6] to design the
questionnaire and to conduct the evaluation.

3.3.1 Goal-Question-Metric

The Goal-Question-Metric (GQM) paradigm is a mechanism for defining
and interpreting software measurements [6]. It combines models of an object
of study e.g. process, product, and one or more focuses, e.g. models aimed at
viewing the object of study and studies the particular characteristics of the
object. This study can be done for any purpose e.g. characterization,
evaluation, prediction, motivation, improvement, etc.

Applying GQM involves:

1. Developing a set of goals,

2. Generating questions that define those goals as completely as
possible in a quantifiable way,

3. Specifying measures that needed to be collected to answer those
questions,

4. Developing a mechanisms for data collection, and

5. Collecting, validating and analyzing the data in real-time to provide
feedback for corrective actions.

Goals may be defined for any object, for a variety of reasons, with respect
to various models of quality, from various points of view. The goal is
defined by filling a set of values for the various parameters in the template
[6]. The template parameters are: purpose (what object and why),
perspective (what aspect and who), and the environmental characteristics
(where).

We are interested in the underlined template parameters for our
evaluation:
Purpose:
Analyze some
 (object: processes, products, other experience models)

CHAPTER 3

50

for the purpose of
 (why: characterization, evaluation, prediction, motivation, improvement)

Perspective:
with respect to
(focus: cost, correctness, defect removal, changes, process context, adherent,
resulted product, …)
from the point of view of
 (who: user, customer, manager, developer, corporation, …)

Environment:
in the following context
 (problem factors, people factors, resource factors, process factors,…)

In our case, we analyze Secure Open/UP/Basic for the purpose of
evaluation, with respect to cost, process context, adherent and resulting
product, from the point of view of the manager and development team. The
model of the object is “the software development process” and the model of
perspective of interest is “producing secure software”.

Different sets of guidelines exist for different objects of study to apply
GQM. Based on these guidelines for each process under study, there are
three major areas that need to be addressed: definition of the process,
definition of the quality of perspectives of interest, and feedback from using
this process relative to the quality perspective of interest. Definition of the
process includes questions related to:

• Process conformance (an assessment of how well the process is
performed), and

• Domain conformance (an analysis of the process performer’s
knowledge concerning the object).

Quality of perspective of interest is related to the validity of the model for
the particular environment, and the validity of the data collected. Feedback
includes questions related to improving the process and things learned with
regard to process.

In GQM paradigm, metrics for process measurements are collected from
the activities used in the process. Examples include cost and quality. Cost
includes the measures of any resource used e.g. staff months, computer time,
calendar time, etc. Quality measures include examples like reliability, ease
of change, etc.

SECURITY PLUG-IN FOR OPENUP/BASIC

51

Based on these guidelines and information about GQM, we developed a
questionnaire to evaluate our plug-in. There were three participants: one
project manager and two development team members received a tutorial to
get started with OpenUP/Basic and the security plug-in. The assumption is
that the participants are acquainted with OpenUP/Basic and the security
plug-in when answering the questionnaire.

3.3.2 Questionnaire

The questionnaire consists of three sections: process conformance questions,
domain conformance questions and feedback. Process conformance
questions target the characterization of S3P and the security plug-in. Domain
conformance questions aim at the analysis of the evaluation participant’s
knowledge concerning software development.

Process conformance questions:
1. Do you think that applying the security plug-in (as an example plug-in

based on S3P) is important?

a. Not very important but it may be applied to some products.
b. Important and should be applied to most products.
c. Extremely important, part of the essence of the development process

(all products).
d. Critical, without the security plug-in the product will be insecure.

2. The security plug-in shows the details about how it can be adapted to

OpenUP/Basic. Based on these details, what is your estimate of the cost
of deploying the security plug-in if you were using OpenUP/Basic in
your organization?

Training

a. A large amount of time needs to be spent on training courses.
b. A small amount of time needs to be spent in courses.
c. Just using plug-in for self-training is enough.
d. I can’t answer.

Staff-Months

a. All team members need to be heavily involved with the tasks of the
security plug-in.

b. Only the security team needs to be heavily involved with the tasks of
the security plug-in.

CHAPTER 3

52

c. The level of involvement of the development team is not important
compared to the results gained by using the security plug-in.

d. Not possible to estimate before deployment.

Project Schedule
a. It is possible to adjust the time spent on each security iteration,

based on project constraints.
b. It will not affect the schedule.
c. Whatever it takes to perform the security iteration, the results are so

important that the cost will be acceptable.
d. It is not possible to estimate how much performing the security

iteration will affect project schedule before using it. (Give comments
if you choose this answer.)

3. How long does a normal iteration take in your organization and what is
your estimation about the length of the security iteration?

4. How often do you think the security iteration will have to be run?
(Answer by considering the experience of your development team in
reporting potential vulnerabilities or problems.)

5. Estimate the staff-time required for each of the following tasks:

• Creating security report

• Creating and updating security checklists

• Vulnerability modeling

• Identifying mitigation techniques

• Using security checklists

6. Do you think that there may be principles or issues related to the security
plug-in that will not be completely accepted by development team to
perform?

7. Do you think that the development team in your organization can create
security reports based on the currently available problem reports (before
deployment of the security plug-in in your organization)?

8. How closely you think your team will follow the principles and practices
related to the security plug-in? Answer on a scale of 1-5, (5 means
completely following the principles and 1 not following at all).

9. Do you see any significant problems that may hinder the deployment of
the security plug-in?

SECURITY PLUG-IN FOR OPENUP/BASIC

53

10. Do you think that your development team supports the use of security
checklist?

Domain conformance questions:

1. What kind of products does your organization develop?

2. What is your team size?

3. What is your role in the organization?

4. How familiar are you with the OpenUP/Basic (or RUP) development
process model and concepts? Answer on a scale of 1-5, (5 means
completely confident and 1 no familiarity).

5. How much do you think S3P will help you address security requirements?
Answer on a scale of 1-5, (5 means completely addressing, and 1 not at
all addressing). Please comment on your answer.

6. How much do you think the use of S3P may influence customer
satisfaction? Answer on a scale of 1-5, (5 means influence a lot, and 1
no influence at all). Please comment on your answer.

7. How much are security handbooks used by your development team?
a. Not at all.
b. Used for some products.
c. Used for most products.
d. Essential to the development process

Feedback:

1. What are your suggestions to refine S3P?

2. Do you think the interface for the plug-in was usable for you to get
required information about S3P?

3. Do you think that OpenUP/Basic helped you to get the idea of the
deployment of S3P in an organization?

4. What parts of S3P you think need to be automated?

5. How much time did it take for you to answer to this questionnaire?

3.4 Discussion

The detailed answers to the questionnaire are summarized in Appendix B
and we present an overview of the evaluation result here. The subjects in the
evaluation were three development team members: a system and software

CHAPTER 3

54

engineer, a developer, and a project manager. The subjects are familiar with
the principles of the OpenUP/Basic process and used the published web
pages for the security plug-in to get familiar with it. The organization
develops embedded systems, PC applications and communication products.

Results of the evaluation show that the subjects see the deployment of the
security plug-in as a way to improve the security of the software products
and two subjects even see it as an important method to be used in
development of most of the software products. According to the subjects the
security plug-in can be applied by the development team after a reasonable
amount of training and the staff-months required for applying the plug-in
cannot be estimated before deployment; however, only the security team will
be heavily involved with the security iteration. Subjects state that when
deploying the security plug-in it is possible to adjust the time spent on
security iterations, based on the constraints of every project. Also deploying
the plug-in would improve customer satisfaction.

Checklists are already used in the organization for some of the
development activities but in order to ensure the proper use of security
checklists a process is needed to manage and update the checklists. The
frequency and length of the security iteration and each of its tasks depend on
how many vulnerabilities are addressed in each security iteration and how
often in the project’s lifetime this iteration is run. Subjects believes that
security reports can be created based on the current available problem
reports in their organization and development team members would more
and less follow the principles of the security plug-in.

According to the evaluation, the provided EPF-based interface has the
quality required to assist the development team.

There are also several questions asked during this evaluation that need to
be answered in future work:

• How can the security plug-in be integrated with security solutions
already in use in the organization (e.g. Common Criteria)?

• Is there a way to export security reports to Common Criteria for
tracking?

• Why is’nt the security plug-in used for all defects?

• How can S3P and the security plug-in be used to capture security
requirements?

• How can we be sure that security checklist is followed?

55

Chapter 4

Related Work

4.1 Software process improvement

According to the definition of ISO 15504 standards [25] a software process
is “the process or the set of processes used by an organization or project to
plan, manage, execute, monitor, and control its software related activities”.
ISO 15504 further defines process improvements as an “actions taken to
change an organization’s processes, so that they meet the organization’s
business needs and achieve its business goals more effectively”. Based on
this definition S3P is a software process improvement process for
organizations where development of secure software is one of their business
goals.

Various SPI methods have been suggested in the literature since the late
1980’s, to support the software development and software process
improvements [7], [24]. These methods are classified to SPI management
methods, software process best practices, measurement methods, product
quality and knowledge management methods [28]. The purpose of
management methods is to manage improvement initiatives. Software
process best practices aim to improve software development processes using
software development best practices. Measurement methods are used to
determine the status of processes and products before and after applying
improvement activities. Knowledge management methods aim to use the
knowledge management principles to effectively share knowledge of
software development. S3P shares the ideas of the management methods and
software development best practices.

CHAPTER 4

56

4.1.1 SPI management methods

The examples of SPI management methods are Total Quality Control Model
(TQC) [24], Quality Improvement Paradigm (QIP) [7], and The IDEAL
Model [28]. TQC and QIP use models similar to Deming’s cycle [18] and
the IDEAL model is developed to support SW-CMM8 and aims at improving
the management in strategic and tactical levels.

S3P is similar to TQC in the way that they both start by analyzing the
cause of the problems and visualizing the results of analysis in a graphical
representation (VCG in S3P and Ishikawa diagrams in TQC).

TQC is based on the Control Circle (refined version of Deming cycle).
Figure 4-1 shows the structure of Control Circle. The TQC model starts by
defining the improvement goals and then in the PLAN phase, the Cause and
Effect Fishbone diagrams (known as Ishikawa diagrams) are used for
collecting cause factors which may have an influence on implementing the
quality characteristics. These diagrams are created in an analysis session and
based on the opinion of people familiar with the development process in
question. The results of these analysis sessions are used to plan actions to
improve the process.

Take appropriate
action

Determine
goals and

targets

Determine
methods of

reaching goals

Engage in
education

and training

Implement
work

Check the
Effects of

implementation

ACT PLAN

DOCHECK

Figure 4-1: Control Circle [28].

TQC does not support any specific process to identify and visualize the
actions required for improving the process and it has no support for
introducing these actions into the development process. The management
improvement methods aim to improve the management of the process in

8 The capability maturity model for software from Software Engineering Institute. For more

information see www.sei.cmu.edu/cmm..

RELATED WORK

57

general and do not focus on a specific property of the resulting product e.g.
security.

4.1.2 Software process best practices

Methods in this class are classified into two categories: assessment-based
approaches and software process standards. Assessment-based approaches
focus on assessing existing development process and compare the process
with a specific reference process [28]. Examples of these methods are SEI
Capability Maturity Model and ISO 15504 (SPICE) [19]. Software process
standards take the software best practices and create standardized definitions
for them, and then these standards are mandatory or recommended for
process improvements. One example of these methods is ISO 9000-3 [26].

S3P uses these software process best practices and standards of software
development in the form of activities in SAGs. The knowledge available in
the VCGs and SAGs also help to find out about the benefits of applying a
certain best practice and the consequences of not using it.

4.2 Experience-based approaches

Currently, most approaches to software security are based on experience.
These approaches are either ad hoc application of best practices and
techniques or processes specific solutions. Examples of ad hoc solutions are
security best practices suggested by Howard [23], software security
approach by McGraw [35] and Microsoft’s trustworthy computing security
development life cycle [32]. Examples of process specific solutions are
CLASP [48], and security for agile development processes [21], [49].

4.2.1 Security best practices

Howard defines the basic best practices that must be performed by a security
team in the software development process. These practices are: security-
focused development process goals, creating a central security team,
education and raising awareness, understanding the adversary, using secure
design practices, building secure code, security-focused events, performing
security review and establishing a response process [23].

McGraw focuses on applying software security practices to various
security artifacts [35]. For example, building abuse cases can help to identify
the security requirements. Risk analysis should be applied during design to
identify possible attacks on the system. External review is necessary and
static analysis tools must be used to find implementation flaws. Risk-based

CHAPTER 4

58

security testing is necessary and penetration testing is useful. Operations
people should carefully monitor the system during use for security breaks. In
this approach the artifacts are laid out according to traditional waterfall
model, but it is possible to cycle through the steps more than once if the
organization follows an iterative approach. Figure 4-2 shows how the
security best practices are applied.

Figure 4-2: Software security best practices applied to software

artifacts [35].

Although evidence clearly shows that these methods do prevent
vulnerabilities, they typically have several drawbacks. One of the drawbacks
is a lack of specificity. For example, Howard’s approach makes high-level
recommendations without any practical guidance on how they are
implemented. McGraw recommends a security review without specifying
how this review should be performed and what the results of the review
might be. In both of these approaches it is not clear which security problems
are addressed by applying the practices and to what extent; if there are any
alternatives to the practices; what the concrete benefits of the practices are
and what the consequences of not applying one or more of them might be.

Many other proposals for security best practices have the same
deficiencies. In our approach, the alternatives, benefits, and consequences of
activities are presented by SAGs, VCGs, and the relationships between
them. We also offer a flexible framework for selecting activities based on
the needs of the organization.

The trustworthy computing security development life cycle is a process
adopted by Microsoft for “development of software that needs to withstand
malicious attack” [32]. The process is formed of a series of security
activities. These activities are:

• The development of threat models during software design
• The use of static analysis code-scanning tools

RELATED WORK

59

• The conduct of code reviews and security testing during a focused
security push

• The final security review by a team independent from the
development group

The generally accepted development process in Microsoft is shown in
Figure 4-3. The process has five milestones and although the figure shows a
waterfall model, the process is spiral. Requirements and design are often
revisited during implementation in response to changes.

Figure 4-3: The standard Microsoft development process [32].

Security principles listed by Microsoft are:

• Secure by design: The software should be designed and
implement so it can resist attacks.

• Secure by default: Software’s default state should promote
security to minimize the harm that attacks may cause.

• Secure in deployment: Tools and guidance should accompany
software to help users to use it securely.

• Communications: Developers should be prepared for the
discovery of the vulnerabilities and should communicate openly
with the users.

Integrating security measures that support these principles results in the
Secure Development Life cycle (SDL) process shown in Figure 4-4. In this
process, during the requirements phase, the product team and central security
team collaborate in planning the process and a security advisor advises the
product team on security milestones. In the design phase the guidelines for
security architecture and design are used, threat modeling (see 4.3.4) is
conducted and documented. Then coding and testing standards are applied
and static analysis tools are used in implementation. In the verification phase
a security push that includes security code reviews is applied and security-
focused testing is performed. In release phase, the software is subject to a

CHAPTER 4

60

final security review and then is ready to be delivered. According to SDL,
after deployment, the product team must be prepared to respond to newly
discovered vulnerabilities in the software product.

Figure 4-4: SDL improvements to the Microsoft development
processes [32]9.

SDL, like McGraw’s approach [35], recommends some best practices for
each phase. It concentrates on threats and attacks as well, and performs
threat modeling and defines the elements of the software attack surface. This
process follows the high-level guidelines of Howard’s approach [23]. The
experimental results at Microsoft show that the number of security bulletins
released when SDL is used is significantly less than the number of bulletins
when using the baseline process.

SDL is presented based on the baseline process of Microsoft and is a
specific solution for a specific process, process model and organization.
Integrating the security measures of SDL in other organizations requires the
complete replacement of the development process. This is not always an
accepted solution by organizations. SDL recommends security support for
the maintenance phase but it is not clear how this support is performed and
how new vulnerabilities are discovered and mitigated.

4.2.2 CLASP

CLASP [48] is Comprehensive, Lightweight Application Security Process
which is designed as a security plug-in for RUP. CLASP is an activity
centric approach containing twenty-four activities to be performed by
software development team members. Figure 4-5 and Figure 4-6 show an
example activity and example vulnerability respectively.

9 SWI in the requirement phase activities refers to Secure Windows Initiative team in

Microsoft.

RELATED WORK

61

Figure 4-5: An example activity in CLASP.

CLASP has a database that contains vulnerabilities categorized in sets of
problem types: range and type errors, environmental problems,
synchronization and timing errors, protocol errors, general logic errors and
malware. The example vulnerability in Figure 4-6 is a range and type error.

While CLASP is a comprehensive and practical approach, it can only be
used with RUP, while S3P supports any process and adapts to each user's
needs. Security activities are limited to twenty four activities and possible
alternatives or additional activities are not supported in this approach. The
database of vulnerabilities in CLASP provides information about classes of
vulnerabilities and general error types; in contrast we perform cause analysis
in S3P to identify the causes of individual problems as well as common
causes of classes of vulnerabilities.

4.2.3 Security for agile development processes

Agile software development processes such as extreme programming [8]
and feature-driven development (FDD) [41] are of increasing interest in
software development, especially for web applications [21]. Security for
agile processes has been discussed in a few articles mostly focusing on
adding security features in specific agile development processes. Ge et al.
[21] presents an agile development method for secure web applications. In
this approach, FDD is the baseline development process and security
activities like risk analysis are integrated into this process. The goal of the

CHAPTER 4

62

authors is to design a development process that decreases the life cycle time,
accepts frequent change of requirements, and, through risk analysis tasks and
subtasks integrates security design throughout the development. The overall
process then contains following tasks:

Buffer underwrite

Overview
A buffer underwrite condition occurs when a buffer is indexed with a negative number, or pointer
arithmetic with a negative value results in a position before the beginning of the valid memory
location.
Consequences

Availability: Buffer underwrites will very likely result in the corruption of relevant memory, and
perhaps instructions, leading to a crash.
Access Control (memory and instruction processing): If the memory corrupted memory can be
effectively controlled, it may be possible to execute arbitrary code. If the memory corrupted is
data rather than instructions, the system will continue to function with improper changes, ones
made in violation of a policy, whether explicit or implicit.
Other: When the consequence is arbitrary code execution, this can often be used to subvert
any other security service.

Exposure period
Requirements specification: The choice could be made to use a language that is not
susceptible to these issues.
Implementation: Many logic errors can lead to this condition. It can be exacerbated by lack of
or misuse of mitigating technologies.

Platform
Languages: C, C++, Assembly
Operating Platforms: All

Required resources
Any
Severity
High
Likelihood of exploit
Medium
Avoidance and mitigation

Requirements specification: The choice could be made to use a language that is not
susceptible to these issues.
Implementation: Sanity checks should be performed on all calculated values used as index or
for pointer arithmetic.

Examples
The following is an example of code that may result in a buffer underwrite, should find() returns a
negative value to indicate that ch is not found in srcBuf:

int main() {
 ...
 strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
 ...
}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.
Related problems

Buffer Overflow (and related issues)
Integer Overflow
Signed-to-unsigned Conversion Error
Unchecked Array Indexing

Figure 4-6: One example from the root-cause database in CLASP.

• Requirement analysis: The aim is to determine the needs and
expectations of relevant stakeholders.

• Security policy decision: A set of rules, principles and practices
that determines how security is implemented, defined and
followed during the development.

RELATED WORK

63

• Use case analysis: The purpose is to list a categorized list of
features offered by the system, as well as a development plan.

• Content design: This is the major design activity, which is to
design the structure and functionality of the system based on the
features.

• Security risk analysis: the risk analysis is performed based on a
risk model and the features in the system.

• Implementation: Finally the model of the features is implemented.

Figure 4-7 and Figure 4-8 show FDD and the secure web application
development process based on FDD, respectively.

Figure 4-7: Description of FDD process.

This approach focuses on risk analysis as the main security feature in
software development. Performing risk analysis is an important way to
identify security flaws in design but developers need to know how to
manage each particular risk and what the most cost-effective practice might
be to address a certain risk. The development team should be aware of the
problems and vulnerabilities that might be introduced to software and there
is also a need for verifying that applying a particular set of practices has
helped to control a particular risk.

One of the most important drawbacks that all the aforementioned
approaches share is that they provide little or no support for evolution. For
example, the evolution of CLASP is accomplished by waiting for the next
revision of the manual. By continuously revising the vulnerabilities, their
VCGs and SAGs, S3P and the security plug-in based on S3P evolves to meet
new threats.

CHAPTER 4

64

All the methods discussed here tend to be centered on best practices in
one way or another. Our approach is not different in that respect: many
security activities in our approach are best practices, and a thorough
knowledge of best practices is essential to successfully identify cause
mitigations.

Figure 4-8: Secure web application development process.

According to Turner [56] the software best practices have little
implementation in software projects because the answers to the following
questions are unclear:

1. How much will the practice really cost?

2. What is the actual benefit of applying the best practice?

3. What environment is assumed?

4. Will the management buy-in the practice?

5. Can we really implement it?

6. What is the pedigree?

7. Does the practice provide immediate benefits?

RELATED WORK

65

Our approach eliminates most of these obstacles in implementation of best
practices, by clarifying the implementation procedure, the benefits of each
practice, the cost of implementation, and the consequences of the activity.

4.3 Analysis of vulnerabilities

Our overall approach to software security is related to root cause analysis
(RCA) [44] and defect causal analysis (DCA) [13]. The vulnerability
modeling method presented in section 2.2 can be seen as a method for root
cause analysis of security-related software failures.

4.3.1 Root cause analysis

RCA is a process for identifying the root causes of problems or events. Root
cause in this process refers to the fundamental case, basis, or source from
which the event or problem derives. The primary goal is to identify what
happened, how it happened, why it happened, and the actions for preventing
recurrence. The possible fields of application of RCA include project
management, quality control, health and safety, business process
improvement, change management, etc. In software engineering RCA can be
used for defect analysis. The basic approach for using root cause analysis is:

• Define the problem
• Gather information and evidence
• Identify all issues and events that contributed to the problem
• Determine the root cause
• Identify recommendations for eliminating the recurrence of

problems
• Implement the identified solutions

There are also several methodologies based on this basic approach such as
the “5-why” analysis, change analysis, and Pareto analysis [44]. Defect
causal analysis is a kind of root cause analysis based on Ishikawa diagrams
and is derived from the quality management process (see 4.1.1). Cause-
effect diagrams are used to visualize the causes of a problem in DCA.
Figure 4-9 shows an example Ishikawa diagram with categories of plan,
people, and policy.

Our method meets many of the requirements of a root cause analysis
method. There are, however, some differences. We are concerned not only
with what did cause the vulnerability, but with what might have caused the
vulnerability. One of the reasons for this is that in many situations, there will
not be sufficient evidence available to determine the actual causes.

CHAPTER 4

66

Furthermore, RCA and DCA are typically most concerned with root causes,
while we are equally concerned with contributing causes (e.g. through
implementation-related, rather than design or requirements-related,
activities).

Figure 4-9: An example fishbone (Ishikawa) diagram.

S3P supports a high degree of formalism in the representation of the
analysis. This formalism is important for automation purposes when creating
VCGs and SAGs. Although some RCA methods use a formal representation,
it is not a general requirement, and we found Ishikawa diagrams very limited
for supporting the required formalism.

4.3.2 Vulnerability repositories

Information about known vulnerabilities can already be found in several
publicly available repositories or databases. The examples of these
repositories are the web-based vulnerability database from Security Focus
[47] and the related mailing list Bugtraq, and the Open Source Vulnerability
database [40]. These databases provide descriptions and catalogs of publicly
available vulnerabilities and information about possible exploits, the affected
software products and released patches. They do not provide information
about how vulnerabilities are caused or how they can be prevented.
Vulnerability modeling in S3P is a complement to these efforts in the way
that the in-depth analysis in vulnerability modeling provides understanding
of the vulnerability and its causes. This information is used to prevent the
vulnerability and to identify common causes of vulnerabilities to prevent
similar problems.

RELATED WORK

67

4.3.3 Vulnerability classifications

There are several approaches to classifying software vulnerabilities. For
example, Aslam et al. [5] define a classification of security faults in the
UNIX operating system with two classes: coding faults, and emergent faults
(improper installation of software). Another example is Krusl’s [29]
approach that classifies vulnerabilities based on the assumptions that
programmers make regarding the environment in which the software will be
used. The classes are design flaws, environmental flaws, coding flaws and
configuration flaws.

Vulnerability modeling could benefit from these classification efforts, as
vulnerabilities in the same class are likely to have similar causes.
Classification efforts might also benefit from vulnerability analysis, as
vulnerabilities with similar causes are likely to be related in some way. The
analysis of one form of buffer overflow vulnerability and example IP
fragmentation vulnerability are published by Krsul et al. [30]. The analysis
attempts to identify the characteristics of the vulnerabilities and the kinds of
policy violations by their exploitation. This kind of information can be used
during the initial step of vulnerability modeling, as it provides a thorough
understanding of the vulnerability in question.

4.3.4 Threat modeling

Threat modeling [52], [57] is mainly performed during the design phase of
development and the goal is to understand what kind of threats the software
faces and how adversaries might try to attack the system. Threat modeling
consists of following activities [57]:

1. Scoping the process: threat modeling of an entire product is too
complex and realistic threat modeling can be performed on the
components of the system. In order to threat model the individual
components, it is possible to enumerate all dependencies and
entry points and list manageable number of components or it is
possible to perform a high-level analysis of each feature of the
system and then combine the logically related features to get an
overview of the threats of whole system.

2. Gathering background information to understand the software
system: this information is entered into the threat-model
document and this document assists the entire process.

3. Identifying the entry points to software like interfaces to other
software, hardware and users: entry points represent interfaces

CHAPTER 4

68

with other software, hardware, and users. Any part of the system
that sends or receives data to or from an external entity is an entry
point.

4. Obtaining threats: after gathering all information about the system
a brainstorming session is arranged to enumerate all potential
threats.

5. Resolving threats: when potential threats are listed, a meeting
with the key stakeholders is scheduled and everyone in the meting
agrees on the resolution of threats.

6. Following up: follow up is needed to track and verify the
assumptions made in previous steps and to consider changes.

Threat modeling is performed as part of Microsoft’s SDL (see 4.2.1).

4.3.5 Attack trees

Attack trees [45] model attacks against a system in a tree structure. The root
node in the tree represents the goal (a successful attack) and different ways
of achieving the goal is represented by leaf nodes. Attack trees can be used
in both requirements and design phases. A simple example attack tree is
shown in Figure 4-10.

Figure 4-10: An example attack tree.

Threat modeling, attack trees, and vulnerability modeling aim at
improving the understanding of security issues so they can be dealt with
effectively. Vulnerability modeling models causes where the direct or
indirect actors are software developers. Threat modeling and attack trees
deal with the attacker’s behavior. All of these approaches aim at developing
an understanding of security problems and identifying countermeasures.

69

Chapter 5

Conclusions and future work

5.1 Conclusions

Security is rapidly becoming one of the most important issues in software
engineering. Software security aims to reduce exposure to security incidents
by reducing the number of vulnerabilities in software. In this thesis we have
identified four problems related to the current status of software security (see
1.3) and we have presented our approach, which aims at addressing these
problems:

1. Today, security is often an afterthought when developing
software and most of the currently available mechanisms
aim at software security after software is already built.
We believe that security needs to be built into the
software from the early phases of software development,
and security-related activities need to be performed
throughout the software life cycle. In order to accomplish
this we present our approach that starts from the
beginning of software life cycle and introduce security in
a structured way. The security plug-in based on our
approach systematically introduces security activities to
the software development process.

2. Current approaches to software security are either
process-specific solutions or they are mostly ad hoc
applications of security best practices and it is difficult to
say what vulnerabilities are prevented by applying a

CHAPTER 5

70

certain set of these practices. S3P is a process-agnostic
solution and can be introduced to both requirements-
driven and agile processes by a security plug-in. VCGs
and SAGs in S3P provides information about the costs and
benefits of applying security best practices.

3. The problem with both process specific techniques and
best practices is that none of these approaches evolve the
development process to meet new threats. One of the
properties of our security plug-in is that it supports the
idea of sustainable security. It is designed to help its users
continuously take care of new threats and vulnerabilities
as they evolve.

4. We focus on analysis of vulnerabilities based on
published knowledge about possible attacks and exploits
against them to gain a detailed understanding of the
causes of vulnerabilities. This use of available published
data about vulnerabilities and attacks helps to identify
common causes of vulnerabilities and to prevent a wide
range of vulnerabilities and classes of vulnerabilities.

In addition, VCGs and SAGs can be used in other applications, such as
process analysis and estimating risk of vulnerabilities. It can also be used to
assess existing development processes.

In this thesis we presented a prototype of our security plug-in, which
shows how S3P can be introduced to the OpenUP/Basic development
process. In this prototype we focused on using the results of S3P in a
development team. We did not discuss how these results might be used at an
organizational level; howeverour case study (see 2.2.5 and 2.3.5) showed
that S3P helps to identify the causes outside the development process (e.g.
employing underqualified developers).

The process of developing the security plug-in for OpenUP/Basic helped
us to identify issues that must be considered when deploying S3P. For
example, we identified that defining interactions between S3P and the
development process is an important step when deploying S3P, and roles in
the plug-in need to be connected to the roles in the development process. We
also found that we might need tasks that are not performed in S3P but they
must be included in the development process to support S3P (e.g. identifying
and reporting potential problems discovered during software development,
and support for risk analysis to decide on which vulnerabilities to prevent).

The process of developing the security plug-in shows that the S3P part of
the security plug-in is process agnostic and it is the structure of the plug-in
that follows the structure of the development process. In the case of

CONCLUSIONS AND FUTURE WORK

71

OpenUP/Basic, the security plug-in is designed based on both static and
dynamic aspects of OpenUP/Basic. We evaluated this plug-in; the evaluation
results helped us to identify the strengths and weaknesses of our plug-in and
possible directions for our future work.

5.2 Future work

We have identified several directions for our future work:

5.2.1 Improvements to S3P

We are currently working on attaching costs to activities in SAGs to quantify
tradeoffs between cost and security, and optimize the selection of activities
given a desired cost or level of mitigation. When costs are attached to
security activities they can be selected manually or automatically. Manual
selection requires no tool and there is no need for optimization, since the
user can choose the set of activities that fits their situation. Note that
complete SAGs tend to be large graphs and there is a need to support
automation in activity selections. This is a part of our future work to define
how the optimal solution can be defined and what the optimal solution is to
satisfy the semantic function of SAGs.

Currently, we assume that mitigation techniques (sometimes several in
conjunction) are 100% effective at eliminating vulnerability causes. We are
unable to model mitigation techniques that merely reduce the risk of a
vulnerability. One of our priorities for the future is extending VCGs and
SAGs so risk-reducing mitigation techniques can be accurately modeled and
combined. However, cost modeling and modeling risk-reducing mitigation
techniques should clarify preferences between actions in a more flexible
way.

The current versions of VCGs and SAGs do not express the costs of
applying security activities, the order in which they are applied, or the
constraints. To some extent, order is implied by the actions, but we expect
that explicit ordering will be needed at some point. Similarly, it is likely that
we will want to express preference or priority between actions.

5.2.2 S3P in commercial settings

We have begun validating key properties of S3P and we are planning to
incorporate the entire process into one or more of our partners’ development
processes, hoping to show that it leads to a reduction in vulnerabilities. Our
results to date indicate that the vulnerability modeling step, which is the
basis for the entire process, works as intended. We have also empirically

CHAPTER 5

72

evaluated the security plug-in. The next step will be testing other steps of
S3P and then a full-scale test thereafter.

The security plug-in for OpenUP/Basic is our first step in deploying S3P
in a real development process. Although the process of developing this
prototype helped us to identify the key aspects of deploying S3P, in order to
support the deployment of S3P in various development processes (both agile
and requirement-driven), a framework is needed that specifies how a
security plug-in must be developed in a structured way. We use the term
framework as a defined support structure that specifies which steps need to
be performed and what elements need to be defined in order to create a
security plug-in based on S3P. Research must also be conducted to define
how the plug-in is developed with respect to different process models. The
evaluation of the security plug-in shows that it is necessary to consider the
integration with the solutions that organizations use to deal with security
problems. For example, one of our industrial partners uses Common Criteria
in the requirements phase and as future work we need to clarify how the
artifacts of the security plug-in and Common Criteria can collaborate.

Adopting S3P in an organization requires management support and buy-in.
In our prototype we have focused on integrating the security plug-in into a
development process and we have not considered the issues related to
integrating the resulting development process (e.g. Secure OpenUP/Basic)
into an organization. One of the directions for future work is to identify the
factors that motivate the deployment of security solutions in general and S3P
as a concrete example in various development organizations. Research is
needed to determine how adopting security solutions might affect
management issues (e.g. recruitment policy and financial issues), and how
security budgets and ROI (Return On Investment) on security can be
managed.

5.2.3 SPI aiming at security

S3P is not only a security solution to be included in a software development
process but also a software process improvement process. The current
version of S3P uses software engineering standards and practices as activities
that mitigate software vulnerabilities. As a direction for future work, we may
look at the possibility of using S3P as an assessment-based SPI approach to
define how S3P can be used as a method for evaluating and improving
process properties from a security point of view. In order to be used as a SPI,
S3P needs extensions to be able to answer two main questions: “what to
improve” and “how to improve”. In order to answer these questions we need
to define security properties of a software development process, metrics
required for assessment and evaluation of a process from a security point of
view, methods to measure the security properties and interpret the

CONCLUSIONS AND FUTURE WORK

73

measurements, and methods to identify the improvements to development
processes. More research is needed to explore how to make use of
improvement results.

One further research area in this regard arises from differences in the
nature of agile and requirements-driven development processes. SPI
strategies for security must provide support for both of these software
development methods. We believe that the research area of SPI for
improving development processes from a security point of view is in its
infancy and requires more attention and investment.

5.2.4 Taxonomy of causes and activities

In order to verify that VCGs and SAGs are sufficiently expressive for
vulnerability modeling and visualizing cause mitigations, we need to
completely characterize the set of vulnerabilities, their causes, and
associated mitigation techniques. We currently have partial characterizations
of a number of problems related to buffer overflows.

Our empirical work has shown that when modeling vulnerabilities and
identifying cause mitigations, the process of identifying cause candidates
and defining mitigation activities depend on the creativity of S3P team
members. We have not formalized the process of labeling the nodes in
VCGs and SAGs yet. Such formalism supports the use of information in
VCGs and SAGs for automation purposes.

Taxonomies of causes and mitigation activities can facilitate both of these
processes and increase the performance of S3P team (e.g. in terms of creating
complete models in a short time). Since vulnerabilities in the same classes
tend to have common causes, such taxonomies can be developed gradually
by modeling examples of the classes of vulnerabilities and as an essential
part of the VAD. We have already started to create a taxonomy for buffer
overflow vulnerability class, in which various vulnerabilities and memory
structures are involved. Buffer overflows together with format string
vulnerabilities, covert storage channel vulnerabilities and injection problems
are range and type errors [48]. The next step can be extending the taxonomy
to these classes of vulnerabilities as well as environmental problems,
serialization and timing errors and protocol errors. The taxonomy of causes
can show the distribution of causes in various phases of the software
development process and this information can be used if statistics are needed
when improving a software development process.

Additionally, knowledge gathered in the taxonomy of causes and the
relationship between causes and vulnerabilities may provide the required
background to see if we can identify combinations of the causes that has not
been identified yet and might lead to potential vulnerabilities. This might

CHAPTER 5

74

lead us to determine if vulnerabilities can be predicted and removed before
they are introduced into software products.

5.2.5 Tool support

S3P can be applied without the use of any tools but tool support is helpful for
effective application of the process. Tools for finding potential
vulnerabilities, visualization and modeling tools, tools to estimate costs of
activities, and tools to visualize and make activity selections are needed. In
addition to the aforementioned tools, in order to ensure the application of
selected security activities during software development, there is a need for
mechanisms such as workflow engines that can assist the use of e.g. security
checklists to ensure that activities are really performed during software
development.

Currently S3P does not mandate any process for initial analysis during
vulnerability modeling and our examples are known vulnerabilities that are
already reported in literature. One of the future work directions is to use
available knowledge e.g. attack patterns; identify possible vulnerability
patterns in source code; and develop tools based on these patterns to assist in
the initial analysis step. The solution can be extended to other software
artifacts such as requirements specification and design specification.

Several types of tools are currently available to help to improve security
in software development (e.g. verification and validation of formal
specifications, design tools, and static analysis tools). These tools need
process support to be maximally effective in software development. We
believe modeling vulnerabilities, making these models openly available, and
making development tools and methods take advantage of them will
contribute to the creation of more secure software. Future work directions
related to this issue might be identifying formal security models to express
security information e.g. vulnerabilities, causes of vulnerabilities, attacks,
and their mitigation techniques; providing openly available repositories of
security information; and integrating access to this information into
development tools and methods. This direction is the subject for a European
project (FP7) called SHIELDS10 and our research group is one of the actors
involved with this project.

10 For more information see http://er-projects.gf.liu.se/~shields.

75

References

[1] W. R. Adrion, “Research methodologies in software engineering”,
Workshop on Future Directions in Software Engineering, Software
Engineering Notes, Summary of the Dagstuhl, vol. 18, no. 1, 1993.

[2] S. Ardi, D. Byers, P. H. Meland, I. A. Tøndel, N. Shahmehri, “How

can the developer benefit from security modeling?”, Proceedings of
the ARES 2007 International Workshop on Secure Software
Engineering (SecSE07), Vienna, Austria, April 2007.

[3] S. Ardi, D. Byers, N. Shahmehri, “Towards a structured unified

process for software security”, Proceedings of the ICSE 2006
workshop on Software Engineering for Secure Systems (SESS06),
Shanghai, China, 2006.

[4] A. Altmannsberger, F. Buhler, M. Rowe, “A rational unified process

(RUP) plug-in to support requirements quality assurance”, Midwest
Instructions and Computing Symposium 2006,
http://www.micsymposium.org/mics_2006/papers/AltmannsbergerB
uhlerRowe.pdf, accessed August 2007.

[5] T. Aslam, I. Krsul, E. Spafford, “Use of a taxonomy of security

faults”, Proceedings of the 19th NIST-NCSC National Information
System Security Conference, 1996.

[6] V. R. Basili, “Software modeling and measurement: the

Goal/Question/Metric paradigm”, University of Maryland, CS-TR-
2956, UMIACS-TR-92-96, September 1992.

[7] V. R. Basili, G. Caldiera, H. D. Rombach, “Experience factory”,

Encyclopedia of Software Engineering, vol. 1, ed. JohnWiley &
Sons, 1994.

REFERENCES

76

[8] K. Beck, “Embracing change with extreme programming”, IEEE
Computer, vol. 32, no. 10, pp. 70-77, 1999.

[9] A. Borg, M. Patel, K. Sandahl, “Extending the OpenUP/Basic

requirements discipline to specify capacity requirements”,
Proceedings of the 15th International Requirements Engineering
Conference (RE 2007), Delhi, India, 2007.

[10] D. Byers, S. Ardi, N. Shahmehri, C. Duma, “Modeling software

vulnerabilities with vulnerability cause graphs”, Proceedings of the
International Conference on Software Maintenance (ICSM06),
Philadelphia, USA, September 2006.

[11] D. Byers, N. Shahmehri, “Design of a process for software

security”, Proceedings of the International Conference on
Availability, Reliability and Security (ARES07), Vienna, Austria,
April 2007.

[12] D. Byers, N. Shahmehri, “A cause-based approach to preventing

software vulnerabilities”, Proceedings of the International
Conference on Availability, Reliability and Security (ARES08),
Barcelona, Spain, March 2008.

[13] D. N. Card, “Learning from our mistakes with defect causal

analysis”, IEEE Software, vol. 15, no. 1, 1998.

[14] CERT Coordination Center, CERT/CC statistics 2000-3Q 2007.

[15] Common Criteria Portal, http://www.commoncriteriaportal.org,

accessed Sept. 2007.

[16] C. L. S. Coryn, “The fundamental characteristics of research”,

Journal of MultiDisciplinary Evaluation, no. 5, ISSN 1556-8180,
September 2006.

[17] N. Davis, W. Humphrey, S. T. Redwine, G. Zibulski, G. McGraw,

“Processes for producing secure software”, Security & Privacy
Magazine, IEEE, vol. 2, no. 3, pp. 18-25, May-June 2004.

[18] W. E. Deming, “Out of the crises: quality, productivity and

competitive position”, MIT Center for Advanced Engineering Study,
Cambridge, MA, 1986.

[19] J. N. Drouin, “The SPICE project”, Elements of Software Process

Assessment and Improvement, ed. K. El Emam, N. Madhavji, IEEE
Computer Society, Los Alamitos, CA, 1999.

REFERENCES

77

[20] Eclipse Process Framework Project (EPF),
http://www.eclipse.org/epf, accessed June 2007.

[21] X. Ge, R. F. Paige, F. A. C. Polack, “Agile development of secure

Web applications”, Proceedings of the International Conference on
Web Engineering, CA, USA, 2006.

[22] M. Howard, D. LeBlanc, “Writing secure code”, Microsoft Press,

Second Edition, 2003.

[23] M. Howard, “Building more secure software” Security & Privacy

Magazine, IEEE, vol. 2, no. 6, pp. 63-65, November-December
2004.

[24] K. Ishikawa, “What is total quality control? The Japanese way”,

Prentice Hall, Englewood Cliffs, NJ, 1985.

[25] ISO/IEC 15504-9, “Information technology-software process

assessment-part 9: Vocabulary”, Technical Report, 1998.

[26] ISO/IEC 9000-3, “Guidelines for the application of ISO 9001:1994

to the development, supply, installation, and maintenance of
computer software”, Internal Organization for Standardization,
1997.

[27] I. Jacobson, G. Booch, J. Rumbaugh, “Unified software development

process”, Addison-Wesley, 1999.

[28] S. Komi-Sirviö, “Development and evaluation of software process

improvements methods”, VTT Publications 535, 2004.

[29] I. Krsul, “Software vulnerability analysis”, PhD thesis, Purdue

University, 1998.

[30] I. Krsul, E. Spafford, M. Tripunitra, “An analysis of some software

vulnerabilities”, Proceedings of the 21st NIST-NCSC National
Information Systems Symposium, pp. 111-125, 1998.

[31] R. C. Linger, “Cleanroom process model”, IEEE Software, vol. 11,

no. 2, pp. 50-56, March 1994.

[32] S. B. Lipner, “The trustworthy computing security development life

cycle”, Proceedings of the 20th Annual Computer Security
Application Conference, pp. 2-13, December 2004.

[33] G. McGraw, “Building secure software: better than protecting bad

software”, IEEE Software, vol. 19, no. 6, pp. 57-58, November-
December 2002.

REFERENCES

78

[34] G. McGraw, “From the ground up: The DIMACS software security

workshop”, IEEE Security & Privacy, vol. 1, no. 2, pp. 59-66,
March-April 2003.

[35] G. McGraw, “Software security”, IEEE Security & Privacy, vol. 2,

no. 2, pp. 80-83, March-April 2004.

[36] N. R. Mead, “Security requirements engineering”, Build Security In

2006-08-10, http://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/requirements/243.html, accessed August 2007.

[37] A. P. Moore, R.J. Ellison, R. C. Linger, “Attack modeling for

information security and survivability”, Dependable Systems and
Networks Conference, Gothenburg, Sweden, 2001.

[38] MySQL reference Manual, http://www.yesky.com/imagesnew/

software/mysql/manual_Unireg.html, accessed September 2007.

[39] OpenUP Component, http://www.eclipse.org/epf/openup_

component/open up_index.php.

[40] OSVDB. The open source vulnerability database. http://osvdb.org,

accessed September 2007.

[41] S. R. Palmer, J. M. Felsing, “A practical guide to feature-driven-

development”, Prentice Hall, 2002.

[42] S. L. Pfleeger, “Software Engineering: theory and practice”,

Prentice Hall, Second Edition, 2001.

[43] S. T. Redwine, N. Davis, “Task force for improving security across

the development life cycle”, Task Force Report, Appendix B:
processes to produce secure software, 2004.

[44] Root cause analysis, Office of Financial Management,

http://www.ofm.wa.gov/rmd/erm/root.asp, accessed September
2007.

[45] B. Schneier, “Attack trees: modeling security threats”, Dr. Dobb’s

Journal, December 1999.

[46] R. Scumacher, R. Ackermann, R. Steinmetz, “Towards security at

all stages of a system’s life cycle”, Proceedings of the International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM), 2000.

REFERENCES

79

[47] SecurityFocus. Security focus vulnerability database.
http://www.securityfocus.com/vulnerabilities.

[48] Secure Software, Inc., “The CLASP application security process”,

http://www.securesoftware.com, accessed June 2007.

[49] M. Siponen, R. Baskerville, T. Kuivalainen, “Integrating security

into agile development methods”, Proceedings of the 38th Hawaii
International Conference on System Sciences, 2005.

[50] K. Soo Hoo, A. W. Sundbury, A. R. Jaquith, “Tangible ROI through

secure software engineering”, Secure Business Quarterly, vol. 1, no.
2, Fourth Quarter 2001.

[51] E. Spafford, “The Internet worm program: An analysis”, Computer

Communication Review, vol. 19, no. 1, 1989.

[52] F. Swiderski, W. Snyder, “Threat modeling”, Microsoft

Professional, 2004.

[53] Team SHATTER Security Alert, Application Security Inc.

http://www.appsecinc.com/resources/alerts/mysql/2005-002.html,
accessed September 2007.

[54] The common vulnerabilities and exposures list, http://cve.mitre.org.

[55] H. H. Thompson, J. A. Whittaker, “Rethinking software security”,

Dr. Dobb’s Journal, January 2004.

[56] R. Turner, “Seven pitfalls to avoid on the hunt for best practices”,

IEEE Software, vol. 20, no. 1, 2003.

[57] P. Torr, “Demystifying the threat-modeling process”, IEEE Security

& Privacy, vol. 3, no. 5, pp. 66-70, 2005.

[58] US-CERT/NIST. National vulnerability database,

http://nvd.nist.gov.

[59] US-CERT/NIST, Vulnerability summery CVE-2005-2558, National

Vulnerability Database, http://nvd.nist.gov/nvd.cfm?cvename=CVE-
2005-2558.

[60] A. J. A. Wang, “Information security models and metrics”,

Proceedings of 43rd ACM Southeast Conference, 2005.

81

Appendix A

The OpenUP/Basic Development Process

OpenUP/Basic
OpenUP/Basic is an open source development process, developed as part of
the Eclipse Process Framework (EPF) [20]. OpenUP/Basic is a subset of
OpenUP that takes an agile approach to software development. The essential
characteristics of the Rational Unified Process (RUP) are preserved in
OpenUP, including iterative development, use cases, and risk management.
OpenUP/Basic targets small teams of 3-6 people and 3-6 months of
development effort. The version of OpenUP/Basic we use in this thesis is
version 0.9 [39] (OpenUP/Basic version 1.0 is in its review stage)11.

OpenUP/Basic contains the fundamental contents of RUP providing a
simplified set of work products, roles, tasks, and guidance. The focus is
more on the collaboration and stakeholder benefits than on unnecessary
deliverables and formality. Four core principles characterize OpenUP/Basic
[39]:

• Collaborate to align interests and share understanding

• Balance competing priorities to maximize stakeholder value

• Focus on articulating the architecture

• Evolve continuously to obtain feedback and improve

11 The review version is available in http://www.epfwiki.net/wikis/openupreview/

82

Based on RUP, the OpenUP basic process has two aspects: dynamic and
static. The dynamic aspect is over time and expresses the process in terms of
cycles, phases, iterations and milestones. The static aspect describes the
process in terms of activities, artifacts, tasks, roles and workflows.

Based on the dynamic organization of OpenUP/Basic, the development
process is broken into development cycles and each cycle has four phases:

• Inception phase: This phase contains activities to initiate the
project, manage the iterations, manage requirements, and determine
architectural feasibility.

• Elaboration phase: The main objectives for elaboration are related
to better understanding requirements, creating and establishing a
baseline for the architecture for the system, and mitigating top-
priority risks.

• Construction phase: The architecture should be stable when this
phase starts and functionality is continuously implemented and
tested.

• Transition phase: The main objectives are to fine-tune
functionality, performance, and overall quality of the beta product
from the end of construction phase.

 Every cycle works on a new generation of product and each phase in the
cycle has a well-defined milestone (see Figure A-1) [39].

Figure A-1: Phases in OpenUP/Basic.

Based on the core principles, the content of OpenUP/basic is organized
into four major areas also known as sub-processes: collaboration and
communication, intent, solution, and management. The collaboration and

83

communication sub-process is the foundation for OpenUP/Basic. The
management sub-process deals with the management of the projects,
including project planning, iteration planning, and iteration assessment. The
intent sub process deals with how to transfer the intent of stakeholders to the
rest of the development team, to ensure that the intent of the stakeholder will
be reflected by validated builds. The solution sub-process describes all
aspects of creating the architecture, designing, implementing, and testing the
application. Figure A-2 shows the organization of contents in
OpenUP/Basic. Each sub-process contains four kinds of modeling elements
which are:

• Roles refer to responsibilities. These are stakeholder, analyst,
architect, developer, tester and project manager (see Figure A-2).

• Tasks refer to activities to be performed by roles (organized by
disciplines).

• Work products contain all artifacts as inputs and outputs of tasks
(organized by domains).

• Workflows are sequence of tasks (defined in capability patterns).

Roles perform tasks that consume and produce artifacts. OpenUP/Basic
describes the minimal set of roles, tasks, and artifacts involved in software
development.

Figure A-2: Organization of content in OpenUP/Basic.

84

The distribution of the modeling elements in each of the sub-processes is
shown in Table A-1. OpenUP/Basic supports the use of Guidance which is a
general term for supplemental information that can be added to most
elements. For example, the modeling elements are linked to concepts that are
a kind of guidance to outline key ideas or basic principles behind the
elements; checklists are another type of guidance to be used in reviews such
as walkthroughs or inspections. An example checklist in OpenUP/Basic is
Qualities of good requirements, which provide guidance on assessing the
quality of requirements.

The process description of OpenUP/Basic is published as a set of web
pages, linked based on different perspectives including phases and disciples
[39]. An example page that describes the artifact Architectural Proof-of-
Concept is shown in Figure A-3. This artifact is a work product kind of
concept, and its relationships with other elements are described in this page.
As it is shown in Figure A-4, there is a guideline that describes how to select
and validate the architectural proof-of-concept.

The collaboration and communication sub-process is not included in
Table A-1. This sub-process involves all roles, and instead of containing
tasks and artifacts, provides a set of practices that motivate effective
collaboration. These practices help development team members to jointly
define the intent of the stakeholder, jointly develop the solution and jointly
manage the project. The provided practices are applied to all of sub-
processes. The practices are:

Maintain a common understanding: Project participants should share
information and use work products that helps to align understanding between
the stakeholder and developers. These work products could be Vision, Work
item list and Requirements.

Foster a high-trust environment: Planning activities in detail, and
supervising and auditing them can create a high-trust environment. Project
participants should feel safe communicating their ideas and taking
initiatives.

Share responsibility: While assigning primary responsibilities of work
products to individuals, sharing responsibilities of work products supports
team members in asking for help when needed.

Learn continuously: Continuous development of technical and
interpersonal skills is very important for members of a software development
team. This will help with personal development as software development
field is evolving.

85

Organize around the architecture: As the size of projects grows the
communication between team members become complex. Organizing
around the architecture will provide team members a common vocabulary
and shared mental model of the system.

Table A-1: The distribution of modeling elements in sub-processes.

Disciplines
Tasks to be performed during the OpenUP/Basic development process are
organized into six disciplines: requirement, analysis and design,
implementation, test, project management, and configuration and change
management.
Requirement discipline: The tasks specified for the Requirements
discipline of OpenUP/Basic are:

• Define vision: The analyst role negotiates with the stakeholder to
gain agreement on the problem to solve, capture a common
vocabulary and identify the constraints on the system.

• Define requirements: The purpose of this task is to describe one or
more requirements in sufficient detail to validate understanding of
the requirements. The responsible role is analyst.

86

• Find and outline requirements: This task is performed to identify
and capture domain terms and to communicate the requirements to
the development team.

Analysis and design discipline: The specified tasks in this discipline are:

• Analyze architectural requirements: The architect identifies
architectural goals and architectural constrains and captures
architectural decisions.

• Demonstrate the architecture: The architect illustrates at least one
architecture that supports the requirements of the system. This
illustration reduces the risk of reworking the software architecture.

Figure A-3: Snapshot of an artifact.

• Design the solution: This task is about designing part of the system
not the whole and the developer describes the elements of the
system so that they support the required behavior.

• Develop the architecture: The architect provides a skeletal design
to enable more comprehensive design activities to be performed
coherently by the team.

Implementation discipline: This discipline aims to incrementally build the
system and to verify that technical units used to build the system work as
specified. The discipline contains three tasks:

87

• Implement developer tests: The developer refines the scope and
identifies the test. This test is based on the expected behavior of
code units.

• Implement solutions: The developer determines the strategy and
transforms design into implementation; writes source code and
evaluates the implementation.

• Run developer tests: To verify that the implementation works as
specified, the developer runs tests and evaluates execution of tests.

Figure A-4: Snapshot of a guideline.

Test discipline: The purpose of this discipline is to find and document
defects and to validate the requirements, design and implementation. The
tasks in this discipline are:

• Create test cases: The tester examines the requirements to be tested
and identifies test data.

• Implement tests: The tester selects appropriate implementation
techniques and implements tests.

• Run tests: The tester runs and evaluates test results.

The project management discipline: The goal is to keep the team focused
on continually delivering a tested software product for stakeholder
evaluation.

88

• Plan project: The project manager describes a roadmap that
provides direction to the team and continually adapts it based on
feedback and changes in the environment.

• Plan iteration: The project manager defines the iteration
objectives, produces a detailed plan and defines the evaluation
criteria.

• Assess results: The project manager gathers stakeholder feedback
and assesses the results.

• Manage iteration: The project manager identifies and manages
risks and handles exceptions and problems.

Configuration and change management discipline: This discipline
explains how to control changes to artifacts, ensuring a synchronized
evolution of the set of work products composing a software system. The
only task in this discipline is:

• Request change: Any role in the development team can gather
request information and update the work item list to document the
information that is gathered in the previous steps.

Domain
The artifacts (work products) that are used by or that resulted from tasks are
organized into domains. These domains are:
Architecture domain: Two artifacts are defined in this domain.

• Architectural proof-of-concept demonstrates the feasibility of the
project and is used to explore the understanding of problem domain.

• Architecture is used to concentrate on the structure of the design,
essential elements and key scenarios.

Development domain: The artifacts in this domain are:

• Build is the operational version of the system that demonstrates the
capabilities provided by the final product.

• Design describes the system in terms of components to serve the
understanding of the functionality of the system.

• Developer test validates the performance of the individual software
components.

• Implementation contains software code files including source,
binary or executable code, data files and documentation files.

89

Project management domain: The artifacts related to this domain are as
follows:

• Iteration plan: The iteration plan describes the objectives, work
assignments and the evaluation criteria of the iteration.

• Project plan: This artifact gathers all information required to
manage the project.

• Risk list: This is a sorted list of known and open risks to the project.

• Status Assessment: This artifact captures the results that show if the
project is on track and if there are opportunities for improvements.

• Work item list: This artifact contains a list of all scheduled work to
be done as well as the proposed work that may affect the product.

Requirements domain: This domain contains six artifacts:

• Actor: This artifact represents a set of rules interacting with the
system. The analyst uses this artifact to define the system boundaries
and to identify external interfaces. The developers use it to capture
characteristics of human actors when creating user interfaces.

• Glossary: This artifact defines important terms used by the project.
The goal is to provide a common vocabulary for all stakeholders.

• Supporting requirements: This artifact captures system-wide
requirements that are not captured in scenarios and use cases.

• Use case: This artifact shows the sequence of actions a system
performs and is used to capture the behavior of the system from the
end user’s point of view.

• Use case model: This artifact is used to present an overview of the
system as a base for agreement on the functionality of the system
between the customer and the project team.

• Vision: This is a high-level conceptual view of the system.

Test domain: The artifacts related to this domain are:

• Test case is used to specify the set of test inputs, execution
conditions and expected results.

• Test log collects raw outputs during each unique execution of a test
to provide verification that a set of tests was executed and to provide
information related to the success of those tests.

90

• Test script contains step by step instructions that realize a test. This
can be documented textual instructions that are executed manually.

Capability Patterns
Capability patterns describe the workflow of each sub-process by defining
the activities to be performed in the form of tasks and work products. The
capability patterns of each sub-process are shown in Table A-1. For example
Figure A-5 shows structure of the work breakdown for “Initiate project”
capability pattern. The capability patterns in OpenUP/Basic are:

Manage requirements: This capability pattern belongs to intent sub-
process and describes the tasks performed to gather, specify, analyze
and validate a subset of system’s requirements prior to implementation and
verification.

Figure A-5: The work breakdown structure for “Initiate project”.

Ongoing tasks: This is another capability pattern that belongs to the
intent sub-process and includes a single task, Request Change. This task may
occur anytime during the life cycle in response to an observed defect, a
desired enhancement, or a change request.

91

Initiate project: This capability pattern belongs to the management sub-
process. This capability pattern describes the activities that take place at the
beginning of the first iteration, when the project starts to establish the vision
for the project.

Plan and manage iteration: This capability pattern describes how to
initiate an iteration and assign work to team members, and belongs to the
management sub-process.

Define the architecture: This capability pattern explains the activities to
complete the architecture for iteration and belongs to the solution sub-
process.

Determine architecture feasibility: This capability pattern in the
solution sub-process confirms that the project is feasible by constructing an
architectural proof-of-concept.

Develop solution: The project manager uses this capability
pattern to perform goal-based planning and management. During each
iteration this capability pattern occurs multiple times (one instance for each
requirement planned for the iteration). Figure A-6 shows how this capability
pattern is used.

Figure A-6: The overview of workflow for developing solution.

Test: This capability pattern describes the activities to create and run tests to
validate the system according to the intent.

93

Appendix B

Summary of the Evaluation

Answers to the process conformance section

Importance:

• Different products have different security requirements; the security
plug-in is one way of achieving security.

• Important for most products (for all defects)
• Extremely important for most products

Training:

• Small amount of time (training course)
• Small amount of time (training course)
• Self training (plug-in published webpage)

Staff-Months:

• Don’t know yet
• Don’t know yet (based on the acceptance factors, 4 man-week to

setup everything to start)
• Only the security team is involved.

Schedule:

• Adjustable to projects
• Adjustable to projects
• Adjustable to projects

Frequency and length:

94

• One security iteration e.g. every second month
• For one vulnerability the time spent is one day
• One iteration for 4-10 defects, at least once per development

iteration

Detailed staff-time:

• Don’t know yet
• Don’t know yet
• Depends on the vulnerability, e.g. one vulnerability:

o Security report: one hour
o Security checklist creation: two hours
o Vulnerability modeling: one hours
o Identifying techniques and using checklist: ?

Reason for not accepting:

• Formalism in modeling (VCG and SAG)
• New process is difficult to be accepted (solved if used for all

defects)
• No problem for accepting

Following principles: (1-5)

• 3
• 3
• Depends on the acceptance (usually quick fixes are appreciated

rather than processes)

Problem in deployment:

• Acceptance, root causes are not usual in real life and the security
process should be integrated with CC

• How to find vulnerabilities in first place? Who decides which is bug
and not vulnerability? What is the relation to security requirements
and assets to be protected?

• No problem

Your team supports use of checklists:

• Yes
• Yes
• Yes and no, first day it is used and then forgotten. (Parsers may

help)

95

Addressing security requirements: (1-5)
• 3 (CC is good for handling and tracking security requirements, why

use the security plug-in)
• 3 (CC is good and prevents building vulnerabilities into software.

S3P can be used after development)
• 2 (Security requirements have not been mentioned in the description

of S3P)

Answers to domain conformance section
Products of organization:

• Embedded systems
• PC applications
• Communication products

Role of subject in development team:
• System and software engineer, responsible for software competence
• Project manager
• Developer

Team size:
• 4
• 3-10
• 5-10

Familiarity with OpenUP: (1-5)

• 2
• 2
• Just theory

Influence on the customer satisfaction: (1-5)

• 3
• 3 (Customers are already concerned about well-defined security

processes)
• A security flaw destroys our business completely

Use of security handbooks:

• For most products
• For some products (CC)
• Essential to development process (architecture, pre-design and

design, not on a daily basis but essential to understand)

96

Answers to feedback section
Refinement:

• The security plug-in can be used for handling all kind of defects in
controlled way.

• Make it possible to export security reports to CC for tracking.
• It could be used in maintenance phase (there often is a lack of

process in that phase)

The quality of proposed Interface:

• Don’t know
• Yes
• A bit (templates and examples are needed for artifacts)

OpenUP helped:

• Yes
• Yes
• Hard to say, I was already familiar with S3P.

Automation:

• Tool for modeling VCG and SAG
• Checklists should be performed by parsers if possible
• Don’t know

Time spent to answer the questionnaire:

• 4 hours
• 3 hours
• 3 hours

97

Appendix C

Acronyms

API Application Program(ming) Interface
CERT Computer Emergency Response Team
CERT/CC CERT Coordination Center
CLASP Comprehensive Lightweight Application Security Process
CVE Common Vulnerabilities and Exposures
DCA Defect Causal Analysis
EPF Eclipse Process Framework
FDD Feature Driven Development
GQM Goal-Question-Metric
ISO International Standards Organization
NIST National Institute of Standards and Technology
QIP Quality Improvement Paradigm
RCA Root Cause Analysis
RUP Rational Unified Process
ROI Return On Investment
S3P Sustainable Software Security Process
SAG Security Activity Graph
SDL Secure Development Life cycle
SEI Software Engineering Institute
SPI Software Process Improvement
SPICE Software Process Improvement and Capability

dEtermination
SW-CMM Capability Maturity Model for Software
TQC Total Quality Control
UML Unified Modelling Language
VAD Vulnerability Analysis Database
VCG Vulnerability Cause Graph

98

List of Tables

Table 3-1: Extensions to OpenUP/Basic. ... 46

Table A-1: The distribution of modeling elements in sub-processes. 85

99

List of Figures

Figure 1-1: Software security vulnerabilities reported to CERT/CC. 2

Figure 1-2: Security plug-in in the context of software life cycle.............................. 7

Figure 2-1: The workflow of S3P. .. 10

Figure 2-2: Simplified UML model of VCG. .. 11

Figure 2-3: Visual representation of VCG. .. 11

Figure 2-4: A sequence in VCG... 12

Figure 2-5: A conjunction in VCG. ... 12

Figure 2-6: A simple vulnerability cause graph. .. 13

Figure 2-7: The structure of files in MySQL. .. 17

Figure 2-8: VCG of CVE-2005-2558, Iteration 1. ... 18

Figure 2-9: VCG of CVE-2005-2558, Iteration 2. ... 18

Figure 2-10: VCG of CVE-2005-2558, Iteration 3. ... 18

Figure 2-11: VCG of CVE-2005-2558, Iteration 4. ... 19

Figure 2-12: VCG of compound node, Iteration 1. .. 19

Figure 2-13: VCG of compound node, Iteration 2. .. 20

Figure 2-14: VCG of compound node, Iteration 3. .. 20

Figure 2-15: Vulnerability cause graph for CVE-2005-2558, with expanded
compound node.. 21

Figure 2-16: Visual representation of SAG. .. 24

Figure 2-17: A security activity graph for a cause. .. 24

LIST OF FIGURES

100

Figure 2-18: UML model for Basic SAGs. .. 24

Figure 2-19: Example vulnerability and SAGs of individual causes. 25

Figure 2-20: Complete SAG for vulnerability V.. 26

Figure 2-21: The SAG for missing range check cause... 30

Figure 2-22: The SAG for use of unsafe function for string copying. 31

Figure 2-23: Verification procedure for not using strmov. 32

Figure 2-24: The SAG for use of non-adaptive buffers. .. 32

Figure 2-25: The SAG for copy of external data to internal buffers. 32

Figure 2-26: The SAG for use of C-like strings. .. 33

Figure 2-27: The SAG for wrong source size is used. ... 33

Figure 2-28: The screen shot of the user interface of VAD. 34

Figure 2-29: The structure of S3P... 35

Figure 3-1: A security report.. 39

Figure 3-2: Example page of a security checklist. ... 40

Figure 3-3: Example of the interaction between S3P and a software development
process. .. 41

Figure 3-4: The overview of workflow for security iteration................................... 43

Figure 3-5: The security auditor... 44

Figure 3-6: The security developer. ... 44

Figure 3-7: The workflow and artifacts in the security plug-in................................ 45

Figure 3-8: The organization of content in Secure OpenUP/Basic. 47

Figure 3-9: Security report for CVE-2005-2558.. 47

Figure 3-10: Complete SAG for CVE-2005-2558. .. 48

Figure 3-11: Security checklist to prevent CVE-2005-2558.................................... 48

Figure 4-1: Control Circle [28]. ... 56

Figure 4-2: Software security best practices applied to software artifacts [35]........ 58

Figure 4-3: The standard Microsoft development process [32]. 59

Figure 4-4: SDL improvements to the Microsoft development processes [32]........ 60

Figure 4-5: An example activity in CLASP. .. 61

Figure 4-6: One example from the root-cause database in CLASP. 62

101

Figure 4-7: Description of FDD process. ... 63

Figure 4-8: Secure web application development process. 64

Figure 4-9: An example fishbone (Ishikawa) diagram... 66

Figure 4-10: An example attack tree.. 68

Figure A-1: Phases in OpenUP/Basic. ... 82

Figure A-2: Organization of content in OpenUP/Basic. .. 83

Figure A-3: Snapshot of an artifact. ... 86

Figure A-4: Snapshot of a guideline. ... 87

Figure A-5: The work breakdown structure for “initiate project”............................ 90

Figure A-6: The overview of workflow for developing solution. 91

LINKÖPINGS UNIVERSITET

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 1353

Nyckelord
Keywords

Datum
Date

URL för elektronisk version

X

X

2008-03-18

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

A Model and Implementation of a Security Plug-in for the Software Life Cycle

Shanai Ardi

Currently, security is frequently considered late in software life cycle. It is often bolted on late in development, or
even during deployment or maintenance, through activities such as add-on security software and penetration-and-
patch maintenance. Even if software developers aim to incorporate security into their products from the beginning of
the software life cycle, they face an exhaustive amount of ad hoc unstructured information without any practical
guidance on how and why this information should be used and what the costs and benefits of using it are. This is due
to a lack of structured methods.

In this thesis we present a model for secure software development and implementation of a security plug-in that
deploys this model in software life cycle. The model is a structured unified process, named S3P (Sustainable
Software Security Process) and is designed to be easily adaptable to any software development process. S3P provides
the formalism required to identify the causes of vulnerabilities and the mitigation techniques that address these
causes to prevent vulnerabilities. We present a prototype of the security plug-in implemented for the OpenUP/Basic
development process in Eclipse Process Framework. We also present the results of the evaluation of this plug-in. The
work in this thesis is a first step towards a general framework for introducing security into the software life cycle and
to support software process improvements to prevent recurrence of software vulnerabilities.

Software security, Vulnerability modelling, Plug-in, Software development process, Software life cycle.

978-91-7393-956-0

0280-7971

LiU-Tek-Lic-2008:11

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm

for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarki-

tektur och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for

Irregular Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,

2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,

2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the

sick leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie

baserad på trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-

aktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,

2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging

Industry, 2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting

Data, 2005.
No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered

Approach, 2005
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implemen-

tation Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation-

What are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education

and Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage,

2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches,

2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations,

2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.

	lic-tfk-titelsid
	lic-tfk-abstract
	Thesis_draft_0217
	lic-tfk-bibblad
	Lic-sammanst

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 707
 246
 None
 Down
 14.1732
 0.0000

 Both
 95
 AllDoc
 100

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 707
 246
 None
 Down
 14.1732
 0.0000

 Both
 95
 AllDoc
 100

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 111
 110
 111

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 707
 246
 None
 Right
 4.2520
 0.0000

 Both
 95
 AllDoc
 100

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 707
 246

 Fixed
 Down
 14.1732
 0.0000

 Both
 95
 AllDoc
 100

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 6
 5
 6

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 707
 246
 None
 Down
 14.1732
 0.0000

 Both
 95
 AllDoc
 100

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

