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SUMMARY
Prioritization of disease mechanisms, biomarkers, and drug targets in immune-mediated inflammatory dis-
eases (IMIDs) is complicated by altered interactions between thousands of genes. Our multi-organ single-
cell RNA sequencing of a mouse IMID model, namely collagen-induced arthritis, shows highly complex
and heterogeneous expression changes in all analyzed organs, even though only joints showed signs of
inflammation.We organized those into amulti-organmulticellular diseasemodel, which shows predictedmo-
lecular interactions within and between organs. That model supports that inflammation is switched on or off
by altered balance between pro- and anti-inflammatory upstream regulators (URs) and downstream path-
ways. Meta-analyses of human IMIDs show a similar, but graded, on/off switch system. This system has
the potential to prioritize, diagnose, and treat optimal combinations of URs on the levels of IMIDs, subgroups,
and individual patients. That potential is supported by UR analyses in more than 600 sera from patients with
systemic lupus erythematosus.
INTRODUCTION

‘‘I never feel completely well.’’ This is a common complaint from

patients with immune-mediated inflammatory diseases (IMIDs),

despite state-of-the art treatment. This sentiment reflects a gen-

eral health care problem: according to the US Food and Drug

Administration, medication is deemed ineffective in 40%–70%

of patients with common diseases.1 Genome-wide analyses

down to the single-cell level indicate that this limited responsive-

ness depends on both complexity and heterogeneity. Clinical

studies have shown that predicting treatment response based

on omics data from IMID patients is challenging.2 Each disease

can involve thousands of genes across multiple cell types, which

vary between patients with the same diagnosis, and even be-

tween the same patient at different time points.3,4 The clinical
Cell Re
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manifestations of IMIDs suggest an added layer of heterogene-

ity, namely, variable organ involvement in the same disease.

IMIDs encompass more than 80 diseases, which include rheu-

matoid arthritis (RA), ulcerative colitis (UC), Crohn disease

(CD), psoriasis (PSO), systemic lupus erythematosus (SLE),

and many others.5

As an example of variable organ involvement, RA can affect

not only joints but also the skin and many internal organs,

including the kidney, heart, and spleen. Successful pharmaco-

logical treatment of such variable organome-wide disease man-

ifestations would ideally require answering questions such as:

How many organs are affected? How complex and heteroge-

neous are the underlying molecular changes? Can those

changes be organized into an overriding structure, which permits

systematic, and increasingly detailed, analysis? Is there a
ports Medicine 4, 100956, March 21, 2023 ª 2023 The Author(s). 1
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hierarchy in the structure? Can that hierarchy be exploited to pri-

oritize diagnostic and therapeutic targets?

These questions have not been investigatedon combined orga-

nome-, cellulome-, and genome-wide scales. This type of analysis

would involve challenges that are close to, or beyond, the limits of

current understanding of the architectural principles of disease-

associatedchanges in themultidimensional genome, for example:

1. Characterization of genome-, cellulome-, and organome-

wide changes: This can be achieved by single-cell RNA

sequencing (scRNA-seq), which allows creation of atlases

of all cell types in all organs in healthymice and humans.6,7

One reason as to why no similar effort has been made in

disease states is that many organs are difficult or impos-

sible to investigate in living human patients. Another

reason is that internal organs may not give rise to specific

symptoms. As an example, pathogenic mechanisms in

lung have been proposed to have a primary role in RA,8

but clinical and research foci are on joints. It is thus

possible that important disease mechanisms, biomarkers,

and drug targets are missed. Another problem with

focusing on only one organ is that all organs may interact

through the hematological, lymphatic, or nervous sys-

tems. Thus, they should ideally be studied together, rather

than as individual parts.

2. Organization of organome-wide scRNA-seq data: We and

others have previously described methods to organize

scRNA-seq data from individual organs into multicellular

disease models (MCDMs).9,10 MCDMs are network

models that show directed molecular interactions be-

tween cell types based on differentially expressed genes

(DEGs) in each cell type and their predicted upstream reg-

ulators (URs) in other cell types. However, organization of

MCDMs on an organome-wide scale is an unresolved

challenge.

3. Prioritization of regulatory mechanisms in organome-wide

scRNA-seq data: BecauseMCDMs have not been charac-

terized on an organome-wide scale, their potential interac-

tions have not been systematically investigated, nor is

there any form of molecular or cellular hierarchy between

organs. However, in a previous study, we found that inter-

actions in an MCDM from one inflamed organ were multi-

directional, without any evident hierarchy.10 This compli-

cated prioritization of diagnostic and therapeutic targets,

which emphasizes the need to search for overriding struc-

ture to systematically find and prioritize regulatory mecha-

nisms.

Here, we performed multi-organ scRNA-seq of a mouse

model of collagen-induced arthritis (CIA) to develop a systems-

level strategy to define such structures, which could be validated

in human IMIDs (Figure 1). Although disease mechanisms may

differ between mouse models and human diseases, we

reasoned that overriding structures would be comparable. In

summary, we found complex and heterogeneous organome-

wide changes in CIA.11 Those changes could be organized into

a multi-organ MCDM (MO-MCDM) in which all organs interacted

without evident hierarchy. However, despite thewidespreadmo-

lecular changes across all organs, only joints showed signs of
2 Cell Reports Medicine 4, 100956, March 21, 2023
inflammation. This contrast led to the question whether there

could be an overriding structure in which complex mechanisms

are required not only to activate but also to inhibit inflammation. If

so, could that structure be systematically analyzed to prioritize

such mechanisms and their URs? Combined analyses of multi-

organ data from the mouse model and 10 human IMIDs sup-

ported that shared transcriptional programs were switched on

or off by variable combinations of URs. Subsequent analyses

of IMID patients who did or did not respond to treatment with

anti-TNF (tumor necrosis factor), as well as more than 600 blood

samples from SLE patients, supported that variable combina-

tions of URs have the potential for personalized diagnostics

and therapeutics in IMIDs. We propose prospective clinical

studies to examine this potential and have made the data and

methods freely available for such studies.

RESULTS

scRNA-seq shows highly diverse cellulome- and
genome-wide expression changes in joints and multiple
other organs in a mouse model of arthritis
In order to search for systems-level principles to organize and

prioritize disease mechanisms on organome-, cellulome-, and

genome-wide scales, we performed Seq-Well-based massively

parallel scRNA-seq of six DBA1/J mice with CIA and four healthy

control mice. Three of the CIA mice developed mild arthritis (per

limb arthritis score: 1–3) and three severe arthritis (per limb

arthritis score: 4). We first analyzed 10 different organs, namely,

joint, blood, draining lymph nodes, lung, thymus, skin, limb mus-

cle, spleen, liver, and kidney, from at least one mouse with se-

vere arthritis and one healthy mouse (Data S1). Despite only

joints showing macroscopic signs of disease, we found DEGs

between sick and healthy mice in multiple organs. The highest

numbers of DEGs were found in muscle, joint, lung, skin, and

spleen (Figure S1A). We proceeded to analyze these five organs

from all sick and control mice. After filtering and quality control,

we recovered 2,230, 814, 4,565, 1,167, and 3,320 cells from

joint, lung, muscle, skin, and spleen, respectively (see ‘‘method

details’’ in STAR Methods; Data S1). Clustering and cell-type

annotation revealed 13 cell types, namely, B cells, dendritic cells,

endothelial cells, erythrocytes, fibroblasts, granulocytes, macro-

phages, monocytes, natural killer (NK) cells, T cells, myocytes,

basal III cells, and neutrophils (see ‘‘method details’’ in STAR

Methods; Figure 2A; Data S1). Cell-type proportions and DEGs

varied greatly between organs (Figures 2B and 2C; Data S1).

Of the total number of DEGs identified in macrophages and

T cells, which were the only cell types identified in all five organs,

5% and 4%, respectively, intersected over all organs (Data S2).

Pathway analysis of the cell types in the different organs resulted

in a total of 501 pathways being significantly enriched in at least

one cell type, although they were variably upregulated/downre-

gulated in the different organs and cell types in which the direc-

tion could be inferred (Figure S2A; Data S3).

The daunting complexity and heterogeneity of the molecular

changes across multiple organs and cell types highlighted the

overarching questions behind this study: how can disease-asso-

ciated changes on organome-, cellulome-, and genome-wide

scales be organized and prioritized? We reasoned that one
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Figure 1. Overview of the study

(A1) Single-cell RNA sequencing (scRNA-seq) of a mouse model of collagen-induced arthritis (CIA) showed thousands of differentially expressed genes (DEGs)

across all organs despite only joints showing signs of inflammation. (A2) Multicellular diseasemodels (MCDMs) were constructed based on scRNA-seq data from

the organswith themost DEGs. (A3) Transcriptional programswere identified in joints andmuscle. Thesewere turned on or off by partially shared combinations of

upstream regulators (URs).

(B1) Meta-analysis of multiple immune-mediated inflammatory diseases (IMIDs) showed a similar on/off switch that was (B2) regulated by different UR com-

binations in different IMIDs. (B3) Those URs have potential for personalized diagnostics and therapeutics, either using single-drug or combinatorial drug

treatments.
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Figure 2. Cellular composition, differential gene expression, and H&E analysis of healthy and CIA mice

(A) UMAP of 12,096 cells from all samples, colored by cell type.

(B) Proportional abundance of cell types per organ and disease state. Healthy mice = 4; CIA mice = 6.

(C)Heatmappresenting thesimilarity ofDEGs.Rowsandcolumns representdifferent cell types in respectiveorgans, and thecolor scale corresponds to theJaccard index.

(D) Representative H&E images of the joint and muscle from control and CIA mice shown at a magnification of 1003 (scale bars, 100 mm). Red, black, and blue

arrows indicate synovial hyperplasia, bone destruction, and synovial infiltration of inflammatory cells, respectively.

BM, bone marrow; C, cartilage; S, synovial cavity.
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straightforward way would be to focus on DEGs in organs

with microscopic signs of inflammation, a key endophenotype

in CIA.

Histological analysis shows signs of inflammation in
joints, but not in other organs
To investigate the inflammation status in multiple organs and cell

types, we conducted microscopic analyses of different organs

from independent mice with severe CIA (clinical scores >8)
4 Cell Reports Medicine 4, 100956, March 21, 2023
and control mice. The results showed inflammation only in joints:

significant infiltration of leukocytes in cartilage and synovium,

together with bone destruction and synovial hyperplasia

(Figures 2D and S1B).

MCDMs show multi-directional networks in each organ
without evident hierarchies
The presence of macroscopic and microscopic signs of inflam-

mation only in joints, despite cellulome- and genome-wide
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changes in all analyzed organs, suggested an overriding struc-

ture underlying the organization and prioritization of DEGs in

this system: DEGs in joints activated inflammation, whereas

DEGs in other organs suppressed inflammation. If so, this struc-

ture would hypothetically act as an on/off switch for inflamma-

tion, which could help to prioritize URs and downstream target

genes for that switch. To test this hypothesis, we constructed

MCDMs of each organ. TheMCDMs described predictedmolec-

ular interactions between cell types in each organ. The interac-

tions were bioinformatically inferred by linking the DEGs in

each cell type with their predicted UR12 (Data S4). DEGs linked

with URs were referred to as downstream targets.13 Because

the interactions were directed, they could potentially be traced

to prioritize an UR and cell type with a hierarchically superior

role, as well as its downstream target genes in other cell types.

We began by analyzing whether the joint MCDM had such a

pro-inflammatory UR with an ‘‘on’’ role for the switch. The joint

MCDM included URs of known pathogenic importance for

both mouse CIA and human RA, such as Il1b and Tnf.13 Howev-

er, theMCDMshowedmulti-directional interactionsmediated by

many other URs without evident hierarchy (Figures 3A and 3B).

A similar, multi-directional organization was found in MCDMs

from lung, spleen, muscle, and skin (Figures 3C–3F).

The complex, heterogeneous, and apparently non-hierarchi-

cal changes across multiple organs and cell types led us to

attempt to prioritize URs on a multi-organ scale.

Ranking indicates that altered balance between
pro-inflammatory and anti-inflammatory URs has an
on/off function for inflammation
To prioritize URs, we ranked the URs based on the size of their

predicted molecular and cellular effects across all analyzed or-

gans (see ‘‘method details’’ in STAR Methods; Figure 3G). The

disease relevance of the ranking system was supported by

four of the top-ranking URs in joints, Il1b, Tnf, Dsc3, and Ltf, be-

ing either therapeutically, functionally, or genetically associated

with RA and other IMIDs.13–16 In further support of the clinical

relevance of those URs, the expression of their downstream tar-

gets differed significantly between mild and severe arthritis in

several cell types in joints: Tnf in fibroblasts (p = 2.00 3 10�3),

Il1b in T cells (p = 4.14 3 10�5), Ltf in T cells (p = 9.51 3 10�5)

and macrophages (p = 1.57 3 10�6), Dsc3 in macrophages

(p = 9.9 3 10�7), and Mpz in macrophages (p = 1.84 3 10�14)

(Figure S3; Data S4). Although the increased activity of pro-in-

flammatory URs in joints was expected, another finding was

not: both Il1b and/or Tnf were also differentially expressed and

predicted URs in organs that did not show macroscopic and

microscopic signs of inflammation. However, in contrast with

joints, the expressions of those URs varied and were counter-

balanced by anti-inflammatory URs. For example, in muscle,

Il1b increased, whereas Tnf decreased, and the anti-inflamma-

tory UR Tgfb increased (Figure S1C). By contrast, both Il1b

and Tnf, but not Tgfb, increased in joints. Thus, the altered bal-
(B) Joint MCDM, showing URs and their predicted, directed interactions. Node s

denotes the cellular origin of each interaction.

(G) URs ranked based on their predicted downstream effects. Red spectra indica

cell type and organ; white indicates that no downstream targets were predicted.

6 Cell Reports Medicine 4, 100956, March 21, 2023
ance between pro- and anti-inflammatory URs could act as an

on/off switch for inflammation. Such a switch would explain

why only joints showed signs of inflammation, despite orga-

nome-wide expression changes. Another unexpected finding

was that although Tnf was downregulated in muscle, its pre-

dicted downstream targets in the same organ were activated

in monocytes (p = 6.9 3 10�4; Z score = 0.69), and in T cells

(p = 1.02 3 10�3; Z score = 1.182). A potential explanation was

that the downstream targets were regulated by TNF derived

from other organs and transported via the blood. If so, inflamma-

tory mechanisms in different organs are interconnected. We hy-

pothesized that this concept could be developed by searching

for molecular interactions between MCDMs, such that a MO-

MCDM would be formed.

MO-MCDMs connect inflammatory mechanisms in
different organs into a multi-directional network
To investigate systematically if molecular interactions between

MCDMs in different organs could be organized into an MO-

MCDM, we used the same methods as for individual MCDMs.

However, we included only URs predicted to be released into

the blood (based on the Human Protein Atlas). We identified

1,966 of such inter-organ interactions, which were mediated by

48 URs (Figure 4; see ‘‘method details’’ in STAR Methods). The

resultingMO-MCDM formed amulti-directional network in which

all MCDMs were interconnected.

To validate that URs could mediate interconnectivity in the

MO-MCDM, we performed protein analyses of high-ranking

URs and interacting cytokines in sera from independent CIA

mice (Figure S4). Because CIA may variably involve different or-

gans, these analyses were performed at different time points

during disease progression.17

In support of interconnectivity, all analyzed URs and interact-

ing cytokines were found in sera (Figure S4). TNF increased at

early time points, whereas it decreased to normal expression

at later stages of the disease. For interleukin (IL)-1b, no systemic

changes in protein expression level could be seen at different

stages of disease progression. However, for IL-1a, a significant

drop in protein expression level was seen at later stages of the

disease. IL-6 and interferon g (IFN-g), which are known to

interact with IL-1b and TNF,18–21 also showed variable changes

in expression level at different time points of disease. Such

variations could be consistent with dynamic changes in organ

inflammation in CIA.22 We next analyzed whether the altered

balance between pro- and anti-inflammatory URs would be

associated with an altered balance between downstream pro-

and anti-inflammatory pathways.

Connective pathway analysis supported a graded switch
system in CIA
To systematically test whether the altered balance between

downstream pro- and anti-inflammatory mechanisms explained

why joints, and not muscle, showed signs of inflammation, we
ize denotes the number of cells of each cell type, and the color of the edges

te the total number of predicted downstream targets for each UR, within each
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performed pathway analysis of all DEGs in different cell types

from these two organs. In total, we identified 428 significantly en-

riched pathways in at least one cell type (Data S3). The large

number of pathways complicated systematic testing of our hy-

pothesis. A potential solution was suggested by the fact that

64% of all genes in the 428 pathways were shared by more

than one pathway. This led us to hypothesize that a higher-order

structure than pathways could be identified, namely, groups of

pathways with partially shared genes (henceforth referred to as

programs). If such programs were relevant for pathogenesis,

they should (1) be enriched in genome-wide association study

(GWAS) genes from human RA and (2) differ in activation profiles

between joints and muscle. To find such programs, we devel-

oped a method called connective pathway analysis. This
approach used the 1-Jaccard index as a distancemetric for clus-

tering of pathways (pathways that share many genes would then

be more proximate to each other than those that do not and,

therefore, be closer in the dendrogram; Figure 5A; see ‘‘method

details’’ in STAR Methods).

We reasoned that cutting the dendrogram at different levels

would provide a systematic approach to prioritizing the pro-

grams that differed most in activation profiles between joints

and muscle and therefore would be most relevant for an on/off

switch. At the highest level of the dendrogram, we found two

main CIA-associated programs (CIA_P), CIA_P1 and CIA_P2.

Both CIA_P1 and CIA_P2 were enriched for GWAS genes of

human RA (p < 0.006; Data S5). We also tested whether similar

programs would be found using Kyoto Encyclopedia of Genes
Cell Reports Medicine 4, 100956, March 21, 2023 7
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and Genomes (KEGG) instead of Ingenuity Pathway Analysis

(IPA), and we found significant overlap (p < 0.0001; Figure S2B).

Analyses of these programs did not support the existence of a

discrete on/off switch: both programs included activated path-

ways in the non-inflamedmuscle, compared with healthy control

mice. This finding suggested a graded switch system in which

the non-inflamed state was an intermediate in a continuous

spectrum, in which healthy and inflamed organs were extremes.

We next focused on CIA_P1 because pathways were mainly

activated in joints and inhibited in muscle (Figure 5B). To facili-

tate the identification of pathways that had the most opposing

activation directions in CIA_P1 (i.e., being activated in one organ

and inhibited in the other or being significantly enriched in one or-

gan and not significant in the other; see ‘‘method details’’ in

STAR Methods), we cut the dendrogram into 10 subprograms

(CIA_SPs) (Figure 5C). Of these, CIA_SP1.3, CIA_SP_1.1, and

CIA_SP1.6 showed the highest percentages of pathways with

opposing activation directions (79%, 61%, and 60%, respec-

tively; Data S3). The highest GWAS enrichment was found in

CIA_SP1.6 (Data S5). Further analysis of CIA_SP1.6 showed

that 75% of its pathways were related to human RA (Data S3).

CIA_SP1.6 contained pro-inflammatory pathways such as

‘‘Acute Phase Response Signaling’’ and ‘‘IL-6 signaling,’’ as

well as anti-inflammatory pathways such as ‘‘PPAR signaling’’

(Figure 5D). The pro-inflammatory pathways were mainly acti-

vated in joint and inhibited inmuscle, whereas the anti-inflamma-

tory pathways showed the opposite pattern (Figure 5E). Il1b and

Tnf were predicted URs of CIA_SP1.6 in both joint and muscle

(Data S6). However, in muscle, the downregulation of the pro-in-

flammatory URs Tnf and Apoe23 and upregulation of the anti-in-

flammatory Tgfb1 (Figure S1C) could explain why no signs of

inflammation were found. By contrast, increased expression of

Il1b in muscle was consistent with partial activation of some

pro-inflammatory pathways. For example, the ‘‘Senescence

Pathway’’ showed mixed activation or inhibition in different cell

types in both joint andmuscle (Figure 5D). This pathway has pre-

viously been implicated in IL-1- and TNF-induced tissue damage

in RA.24,25 The mixed activation pattern of the ‘‘Senescence

Pathway’’ in joints andmuscle is thus consistent with mixed acti-

vation of IL-1 and TNF in these two organs. Taken together,

these findings support a graded, rather than discrete, on/off sys-

tem. We next examined whether such a system could be trans-

lated to human IMIDs.
Figure 5. Connective pathway analysis to systematically define and p
mouse model

(A) Outline of connective pathway analysis: (1) identification of genes that belong

pathway-associated DEGs; (4) assessment of pathway-associated DEGs overlap

and X2 (orange) have a high overlap of DEGs but not X1 (green) and X3 (purple); (

dendrogram transformation into a tree-like structure.

(B) Connective pathway analysis identified two main programs, CIA_P1 (purple) a

(blue), ‘‘unknown activation’’ (gray), or ‘‘not significant’’ (black).

(C) Tree-like representation of CIA_P1 with subprograms indicated with different n

CIA_SP1.6 (ochre). Node size represents the total number of cell types in which

(D) Detail of CIA_SP1.6. Each node represents a pathway, and pie charts within no

pie chart, respectively) for which the pathway was significantly enriched. Colors

(E) Detail of selected pathways from CIA_SP1.6. Left (right) part of polar charts p

degree to which the sector is filled with color represents enrichment �log10(p v

activation, and gray for unknown activation).
Meta-analysis of human IMIDs supported a graded
switch system
To test the disease relevance of the graded switch system, we

performed meta-analysis of 10 different IMIDs (Data S1): RA,

UC, CD, PSO, Sjögren’s syndrome (SS), systemic sclerosis

(SSc), atopic dermatitis (AD), juvenile myositis (JM), ‘‘at risk

for’’ type 1 diabetes (T1D), as well as SLE. The SLE datasets

included discoid lupus erythematosus (DLE), subacute cuta-

neous lupus erythematosus (SCLE), and lupus nephritis (LN).

The meta-analysis was based on 32 bulk profiling datasets

from human organ biopsies. The IMID biopsies were taken

from inflamed and/or non-inflamed sites and compared with bi-

opsies from healthy controls. Meta-analysis of DEGs from each

IMID showed highly complex changes in inflamed and non-in-

flamed sites with 647 pathways that differed significantly

compared with controls (Data S3). Similar to CIA, connective

pathway analysis revealed two IMID-associated programs

(IMID_P): IMID_P1 and IMID_P2 (Figure 6A).

The disease relevance of both IMID_P1 and IMID_P2 was sup-

ported by significant enrichment for GWAS genes (Data S5).

However, when we compared the pathway overlap between

IMID_P1 and IMID_P2 with the corresponding programs from

each individual IMID, we mainly found significant overlaps within

IMID_P1 (Figure 7A; see ‘‘method details’’ in STAR Methods).

This observation indicated that IMID_P1 contained pathways

that were shared across IMIDs, whereas IMID_P2 had more dis-

ease-specific pathways. In IMID_P1, 32% of pathways were

activated in inflamed organ sites and inhibited, or not significant,

in non-inflamed sites. The corresponding figure for IMID_P2 was

21%. Both IMID_P1 and IMID_P2 also included many activated

pathways in non-inflamed sites. In agreement with a graded

switch system across a spectrum between health and an in-

flamed phenotype, this more graduated response could predict

an increased risk of a gradual shift in the balance between pro-

and anti-inflammatory pathways toward an inflamed phenotype.

We next cut the dendrograms of both programs into subpro-

grams (IMID_SPs) in order to prioritize the subprogram that

had the most pronounced on/off pattern and GWAS enrichment.

This analysis led to prioritization of IMID_SP1.6, which had 49%

of pathways with opposing patterns between inflamed and non-

inflamed organ sites, and GWAS enrichment in 72% of the IMID

datasets, with median (range) odds ratio (OR) among the signif-

icant = 5.34 (�3.54–8.94) (Figures 6, 7A, and 7B; Data S3 and
rioritize transcriptional programs in joint and muscle from the CIA

to a pathway; (2) mapping DEGs on that pathway; (3) pairwise comparison of

(Jaccard Index); (5) examples of two extreme situations, pathways X1 (green)

6) hierarchical clustering using the 1-Jaccard index as distance matrix; and (7)

nd CIA_P2 (green). Each pathway was labeled as ‘‘activated’’ (red), ‘‘inhibited’’

ode colors. Color bars indicate main programCIA_P1 (purple) and subprogram

the pathway is significantly enriched.

des represent ratios of cell types in muscle and in joint (left and right part of the

represent pathway activation profile.

resents all cells in muscle (joint). Each pie sector represents one cell type. The

alue), whereas the color shows pathway activation (blue for inhibition, red for
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Figure 6. Transcriptional programs in inflamed and non-inflamed organs from IMIDs

(A) Hierarchical clustering of all significant pathways in inflamed and non-inflamed organs from IMIDs identified two programs, IMID_P1 (purple) and IMID_P2

(green). Each pathway was labeled as ‘‘activated’’ (red), ‘‘inhibited’’ (blue), ‘‘unknown’’ (gray), or not significant (black).

(B) Tree-like representation of subprograms in IMID_P1. The subprograms are indicated by different colors and numbers, with each node representing a pathway.
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icant.’’
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S5). We also found that IMID_SP1.6 was shared across inflamed

organ sites in all IMIDs but PSO (Figure 7A).

The top-ranking pathways in IMID_SP1.6, in inflamed sites,

were ‘‘Acute phase response signaling,’’ ‘‘B cell receptor

signaling,’’ ‘‘Chemokine signaling,’’ and ‘‘IL-6 signaling.’’ By

contrast, anti-inflammatory pathways, such as ‘‘PPAR signaling’’

and ‘‘PPARa/RXRa Activation,’’26–28 were inhibited (Figure 6C).

However, IMID_SP1.6 also included activated pro-inflammatory

pathways in non-inflamed organ sites: ‘‘Leukocyte extravasa-

tion,’’ ‘‘Natural Killer Signaling,’’ and ‘‘MS-RON Signaling,’’ all

of which can contribute to chronic inflammation, and thereby a

switch from off to on.29
10 Cell Reports Medicine 4, 100956, March 21, 2023
Analysis of the URs of IMID_SP1.6 agreed with the graded

switch system being regulated by variable combinations of

pro- and anti-inflammatory URs. This could have important basic

and clinical implications, namely, that the stepwise characteriza-

tion of programs and subprograms, as described above, could

help to prioritize, diagnose, and treat optimal combinations of

URs on the levels of IMIDs, subgroups, and individual patients.

Combinatorial regulation of the graded switch system
has diagnostic and therapeutic implications
For all IMIDs combined, we found a total of 389 predicted URs

(Data S6). Specifically, for each disease we found a median
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Figure 7. Relevance of programs/subprograms for different human IMIDs
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significant with red (see ‘‘method details’’ in STARMethods). Node size corresponds to the�log10(p value). The programs and subprograms (rows) were ordered
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(B) GWAS enrichment of subprograms in each IMID.

(C) The predicted activity of TNF corresponds to the known clinical effects of anti-TNF treatment. Red color corresponds to significant predicted activity,

whereas gray denotes non-significant activity. Green checkmarks and red X denote whether the anti-TNF treatment is clinically effective or not,

respectively.
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(range) of 79 (0–218) URs, of which only 8 were shared by all

IMIDs (except SS), namely, AR, ER-b, Fas, IFN-g, IL-1a, IL-1b,

TLR3, and TNF. In agreement with the graded switch system de-

pending on altered balance between pro- and anti-inflammatory

URs, Fas, IFN-g, IL-1a, IL-1b, TLR-3, and TNF are mainly pro-in-

flammatory, whereas AR and ES-b are anti-inflammatory.30–35

Unexpectedly, however, the predicted effects of these URs,

based on Z score, contrasted with their measured fold changes

(FCs; Figures S5A and 5B). For example, TNF was predicted to

be activated in 25 datasets, whereas it was differentially ex-

pressed in only 13 datasets. This difference could be explained

by URs, other than TNF, having redundant effects on the same

downstream target genes. Thus, one or more URs could have

‘‘backup’’ functions if another UR, like TNF, was therapeutically

inhibited. We tested this hypothesis in IMID patients treated with

anti-TNF.

Different combinations of URs with redundant functions
may explain variable response to anti-TNF treatment
TNF was predicted to be a top-ranking UR of IMID_SP1.6 in in-

flamed states of both UC and CD, but not in SS (Figures S5A

and 5B; Data S6). These predictions agree with the clinical expe-

rience that anti-TNF treatment is effective in the two former dis-

eases, but not in the latter (Figure 7C). This led us to examine

the effects of anti-TNF treatment on subprograms in UC and

CD. The pathways analyses of DEGs after treatment between

CD patients who responded to anti-TNF (GEO: GSE52746, 10

treated anti-TNF responders versus 7 untreated patients)

showed significant enrichment of anti-TNF-targeted pathways

among IMID_P1 and subprograms IMID_SP1.6, IMID_SP1.9,

and IMID_SP2.5 (false discovery rate [FDR], <4.58 3 10�2)

(Data S6). The corresponding analyses of DEGs from patients

with UC (GEO: GSE92415; 29 treated anti-TNF responders

versus 32 untreated patients) showed significant enrichment of

anti-TNF-targeted pathways in the subprograms IMID_SP1.2

and IMID_SP2.7 (FDR,<1.99310�2). The enriched subprograms

are henceforth referred to as affected subprograms and the

others as non-affected. The relevance of the affected subpro-

grams was supported by TNF being predicted to regulate all of

them in inflamed organs (Data S6). For subprogram IMID_SP1.6,

whichwe in this study identified as highly relevant for IMIDs, six of

seven pathways (where a |Z score| > 0 could be inferred) showed

the opposite direction of activation as a result of treatment

response compared with how they were affected by the disease

(Figure S5C), indicating effective treatment response.

We next tested the hypothesis that the non-affected subpro-

grams could be explained by URs whose downstream targets

overlapped with TNF, having redundant, ‘‘backup,’’ functions.

In UC, we found 14 URs predicted to co-regulate non-affected

subprograms. For example, NR4A2 was predicted to co-regu-

late 8 out of 16 non-affected subprograms (Figure S6A). In sup-

port of this prediction, NR4A2 was significantly upregulated in

inflamed samples of UC (FDR, 2.07 3 10�4; logFC = 1.31). By

contrast, affected subprograms were not predicted to be regu-

lated by NR4A2.31

We further tested the potential of other URs to take over the

effect of TNF in UC patients who did not respond to anti-TNF

treatment. The pathways enriched among the DEGs of re-
12 Cell Reports Medicine 4, 100956, March 21, 2023
sponders, respectively non-responders versus controls, showed

similar main and subprogram associations (Figure S6B). We

identified 92 predicted URs for the DEGs of non-responders

versus controls. By predicting the potential for each alternative

UR predicted for non-responders to take over the downstream

effect of TNF (see ‘‘method details’’ in STAR Methods), we iden-

tified TLR6 as a potential UR to take over the effect of TNF

among the non-responders after treatment.

To verify that the downstream genes of TLR6 and TNF fol-

lowed the expected FCs before and after treatment, we addition-

ally analyzed the DEGs for responders and non-responders after

treatment versus controls. As expected, we found a tendency for

a higher |FC| of the TLR6 downstream genes among the non-re-

sponders compared with the responders, before and after treat-

ment (Figure S6C). However, only CXCL8 showed a significant

difference between responders and non-responders after treat-

ment (p = 3.62 3 10�2) (Figure S6C). Furthermore, the TNF

downstream genes showed smaller differences compared with

control for the treated responders, compared with any of the un-

treated groups or treated non-responders (Figure S6D).

Because UC and CD primarily affect the intestine, we next

analyzed whether different UR combinations were associated

with variable organ involvement in another IMID that often shows

multi-organ involvement, namely, SLE. The clinical relevance lies

in that this could indicate the need for diagnostic and therapeutic

targeting of different URs in patients with different forms of organ

involvement.

Different combinations of UR proteins in sera were
associated with different subtypes of SLE, as well as
with disease severity
We analyzed 18 predicted UR proteins of IMID_SP1.6 in sera

from two clinical visits of 304 patients who had been prospec-

tively seen by the same rheumatologist (C.S.) at the tertiary

referral unit, Linköping University Hospital, according to stan-

dardized criteria.36 The American College of Rheumatology

(ACR) criteria were used to define disease phenotype.37 We con-

structed regression models to estimate relationships of UR pro-

teins with ACR criteria, as well as measures of disease activity

and organ damage (SLE disease activity index-2000 [SLEDAI]

and Systemic Lupus International Collaborating Clinics/ACR in-

dex [SDI], respectively) (Figure S7). Clinical variables, including

results from physical examinations, laboratory values, age,

gender, and duration of the disease, were collected and used

in all our models. We also included the treatment information in

regression models that predicted SLEDAI and SDI. We did not

use treatment information in models predicting ACR criteria,

because the treatment is dependent on the patient phenotype,

e.g., patients with LN are widely treated by mycophenolate mo-

fetil (MMF). We showed that different UR proteins were associ-

ated with different ACR phenotypes (Data S1). For example,

cases classified with ACR-1 (malar rash) were positively associ-

ated with CD40-L and negatively associated with Fas. Cases

classified with ACR-7 (renal disorder/LN) were positively associ-

ated with FAS but negatively associated with hepatocyte growth

factor (HGF). TNF was positively associated with ACR-9 (hema-

tological disorder) and ACR-10 (immunological disorder). By

contrast with ACR-7 and ACR-9 (hematological disorder), TNF
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and HGF were significantly associated with ACR-6 (serositis),

TNF negatively and HGF positively.

Next, we examined whether different combinations of poten-

tial URs were associated with disease activity in patients with

(n = 80) and without (n = 224) LN. The regression models showed

that different proteins were associated with the disease activity

in the two groups (Data S1). IL-1a, IL-4, Fas, and oncostatin M

(OSM) were associated with SLEDAI in patients with LN,

whereas TNF, HGF, and CD40 were associated with SLEDAI in

patients without LN. In agreement with our hypothesis, the

URs that were negatively correlated with SLEDAI may have

anti-inflammatory roles. However, testing whether altered

expression of these URs inhibit or activate inflammation is

complicated by their context-dependent pleiotropic roles. For

example, OSM has an anti-inflammatory role on synovial cells:

it reduces IL-1 and TNF expression, but it has a pro-inflammatory

role on endothelial cells by inducing leukocyte recruitment and

IL-6 production from endothelial cells.38,39 A similar pleiotropy

has been described for HGF and IL-4. Focusing on organ dam-

age (Data S1), we found that TNF, IL-27, OSM, and TGF-b1

were associated with SDI in patients with LN. In contrast, IL-6,

IL-1a, IL-2, HGF, and CD40-L were associated with SDI in pa-

tients without LN.

DISCUSSION

The main problem behind this study is that many patients with

IMIDs do not respond adequately to treatment.1 An important

reason for this inadequate response is the daunting complexity

and heterogeneity of the molecular changes in these diseases.

scRNA-seq studies of IMIDs have shown altered expression of

thousands of genes across multiple cell types in individual or-

gans with phenotypic signs of disease.40–42 Despite detailed

information about those changes, translation of the data to

personalized medicine has proven difficult. Thus, there is a

wide gap between the complexity of disease-associated

changes and health care today. Bridging that gap will likely

involve great challenges for researchers and clinicians.

Variable multi-organ involvement in each IMID adds to the

complexity and heterogeneity. This indicates the need for

characterization, organization, and prioritization of molecular

changes on organome-, cellulome-, and genome-wide scales.

Our multi-organ scRNA-seq analyses of a mouse model of an

IMID, namely, CIA, showed extensive changes on all those

scales. Although those changes could be organized into

an MO-MCDM, this analytical approach showed no evident

molecular or cellular hierarchy that would allow prioritization of

molecular changes. An unexpected finding led us to a potential

solution: despite the organome-wide changes, only joints

showed signs of disease. That contrast led us to hypothesize

that the expression changes were organized into an overarching

structure designed to switch inflammation on or off. We devel-

oped an analytical strategy that supported such an on/off switch

and showed that it depended on altered balance between pro-

and anti-inflammatory URs. Such a switch has been previously

suggested in inflammatory responses and validated by func-

tional studies of individual genes and cell types.40–42 Given the

complexity and heterogeneity of the organome-, cellulome-,
and genome-wide changes, ranking of URs is crucial for under-

standing and prioritization of disease mechanisms. Our strategy

provided a solution for systematic characterization and prioriti-

zation of URs, as well as their downstream target genes. We

found that URs could be ranked based on the size of their effects

on the downstream genes. In support of clinical relevance, the

top-ranking URs included known therapeutic targets in IMIDs,

including IL-1 and TNF. The downstream target genes could

be organized into two main programs, and their subprograms,

which permitted increasingly detailed analyses of pathways. In

support of disease relevance, both programs were significantly

enriched for genes identified by GWAS of human RA. However,

large molecular changes in non-inflamed organs, including

partially activated pathways, did not support a discrete on/off

switch, in which non-inflamed organs corresponded to an ‘‘off’’

state. Instead, the activated pathways could increase the risk

of a switch to an ‘‘on’’ state. This observation is consistent with

a graded on/off switch, in which non-inflamed organs are inter-

mediates on a spectrum, where healthy and inflamed organs

represent extremes. Such an intermediate ‘‘risk’’ state could

explain an important characteristic of both CIA and human

IMIDs, namely, variable organ involvement during disease pro-

gression. A graded on/off switch has been previously described

in model organisms and proposed to be generally applicable to

biological systems. The relevance of molecular gradients in dis-

ease is supported by previous findings that variable expression

or dysregulation of interconnected genes will define whether

an organ is affected by disease.43

The translational relevance of the strategy was supported by

meta-analyses of human IMIDs. These showed a similar organi-

zation as in CIA, with URs, programs, and subprograms that

agreed with a graded on/off switch. High-ranking URs included

known drug targets such as IL-1 and TNF. However, except for

a core group of URs, these varied across diseases and organs.

For example, TNF was a predicted UR in IBD, but not in SS,

which agreeswith the clinical experience that anti-TNF treatment

is effective in the former, but not in the latter. Clinical implications

may be that characterization and ranking of URs will be needed

for successful treatment, on the levels of IMIDs, subgroups, or

even individuals. Those implications were supported by our an-

alyses of the effects of anti-TNF treatment in patients with IBD

who did or did not respond to that treatment. We found that

lack of response could be explained by overlapping downstream

effects of the URs, such that the effect of inhibiting one UR could

be diminished by one or more other, functionally redundant,

‘‘backup’’ URs. Prospective clinical studies are warranted to

test whether predictive classifiers for treatment response can

be developed based on high-ranking URs. To examine whether

UR combinations would vary in patients with different forms of

organ involvement, we focused on an IMID with highly variable

multi-organ manifestations, SLE. Analyses of predicted UR pro-

teins in more than 600 sera from SLE patients did show that

different combinations of UR proteins correlated with different

forms of organ involvement. Furthermore, different combinations

of URs were associated with disease severity in SLE patients

with and without renal involvement. A clinical implication may

be that different URs should be targeted in these two subgroups.

Moreover, some shared URs showed opposing associations.
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Thus, targeting of such URs could have curative or aggravating

effects in different subgroups of patients with the same disease.

Interestingly, we found that HGF was positively associated with

the damage index but negatively associated with organ involve-

ment in SLE patients without renal involvement. This supports

our message that a systems-level strategy for prioritization of

URs on an organome-wide scale is important. Similar to CIA,

several subprograms in non-inflamed organs included activated

pro-inflammatory pathways. The pathogenic relevance of those

subprograms was supported by enrichment of genes identified

byGWAS. In agreement with a graded switch system, these sub-

programs could enhance risk of altered balance between pro-

and anti-inflammatory pathways, resulting in an inflammatory

phenotype or amplification of that phenotype. A potential clinical

implication is the development of combinatorial diagnostic and

therapeutic targeting of such URs during disease remission to

prevent a gradual switch to active disease.3,43 We propose

that our strategy to organize and prioritize disease-associated

changes on organome-, cellulome-, and genome-wide scales

has significant potential for future studies aimed at personalized

combinatorial diagnostics and therapeutics. We have made the

methods and data freely available for such studies.

Limitations of the study
The analytical strategy was derived frommulti-organ analyses of

a mouse model of CIA, which may not be representative of hu-

man disease. Moreover, the CIA model includes use of an adju-

vant to enhance the inflammatory response, which could induce

pro-inflammatory pathways in tissues other than joints. The con-

struction ofMCDMs and the predicted effects of combinations of

URs on downstream genes were based on previously described

or predicted protein interactions, which may be confounded by

knowledge bias. Although the analyses of the CIA mouse model

were based on scRNA-seq, the analyses of human IMIDs were

performed on bulk RNA-seq. From a translational perspective,

future experimental and clinical studies are warranted to

examine the diagnostic and therapeutic implications of the

study, in particular the effects of URs on downstream genes.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse model of arthritis
Male DBA1/J mice aged between 8-12 weeks were housed in the Linköping Animal Housing Unit of the Faculty of Health Sciences

and kept under standard temperature and light conditions. Experiments were conducted according to the Swedish Animal Welfare

Act and ethical permission was granted by the Ethical Committee Board, Norra Stockholms Djurförsöksetiska nämnd (permission

number: 6798/18). For the independent histology analysis, male DBA1/J mice were purchased from GemPharmatech (China) and

weremaintained in a specific pathogen-free animal facility. All animal studies were performed in accordancewith protocols approved

by the Animal Experimental Ethics Committee of Xuzhou Medical University (permission number: 202012A162).

Human data
Samples were obtained from 304 patients (263women, 41men) classifiedwith SLE according to the 1982 American College of Rheu-

matology and/or the Fries’s diagnostic principle83 (Data S1). All subjects had provided oral and written informed consent. The study

protocol was approved by the Regional Ethics Review Board in Linköping (M75-08/2008). All subjects were included in the prospec-

tive and observational research program Clinical Lupus Register in North-Eastern Gothia at the Rheumatology Unit, Linköping

University Hospital48. Patients were not involved in the design, conduct, reporting or dissemination plans of our research. Serum

was available from each patient at two different time-points from which disease activity had been assessed by the clinical SLE dis-

ease activity index (SLEDAI) and damage accrual by the Systemic Lupus International Collaborating Clinics/ACR damage index

(SDI).84,85 The recent treatment of the patients prescribed at the previous visit was included in the clinical information (Data S1).

METHOD DETAILS

Study design
Our aims were to characterize, organize and prioritize disease-associated organome-, cellulome- and genome-wide changes in

IMIDs (Figure 1). We combined single cell and bulk multi-organ profiling of mouse and human IMIDs. We found complex and hetero-

geneous organome-wide changes in a mousemodel of CIA, which could be organized into a multi-organ multicellular disease model

(MO-MCDM). In this MO-MCDM all organs interacted, without evident hierarchy. Despite the organome-wide molecular changes

only joints showed signs of inflammation. This contrast led to the identification of an overriding structure in which shared transcrip-

tional programs were switched on or off by variable combinations of URs. Analyses of IMID patients who did or did not respond to

treatment with anti-TNF, as well as more than 600 blood samples from SLE patients, supported a graded on/off switch regulated by

variable combinations of URs, which have the potential for personalized diagnostics and therapeutics.

CIA mouse model generation
For scRNA-seq analysis, CIA was established following a previously described method.11 Six mice were immunized with 100 mg

(50 mL) bovine collagen II (BC-II, Chondrex, USA) emulsified with 50 mL Complete Freund’s Adjuvant (CFA) (Sigma-Aldrich, USA)

in 1:1 ratio, via intradermal injection near the base of the tail. A booster immunization was administered on day 20 with 100 mg of

BC-II emulsion (prepared with 1:1 incomplete Freund’s adjuvant (IFA)) and injected at the base of the tail. 100 mL of Phosphate-

Buffered Saline (PBS) was injected similarly to control mice. The severity of arthritic limbs was scored on a 0–4 scale, 0: normal;

1: swelling and redness in one digit; 2: swelling and redness in more than one digit or swelling and redness in one digit, wrist and

ankle; 3: Swelling and redness presenting in paw and digits; 4: maximum inflammation of limb involving all joints and digits as

described in the protocol by Brand et al.11 The arthritic score for each mouse was the sum of the scores of arthritic limbs. The

mice were sacrificed when they achieved scores of 8–12 or after they had been immunized for 60 days under isoflurane anesthesia

via cervical dislocation. The joint, blood, draining lymph nodes, lung, thymus, skin, limb muscle, spleen, liver, and kidney were

collected for further analysis.

For the independent histology analysis, four 8-week male DBA1/J mice were immunized intradermally in the proximal tail

with 100 mL of emulsified chicken type II collagen (2 mg/mL, Chondrex, USA)/CFA (1 mg/mL). The clinical arthritis score was

evaluated for each limb from 0 to 4 with a maximal score of 16 for each mouse.86 The healthy control and severe CIA mice (clinical

score >8) were sacrificed, and the knee joints, lungs, livers, kidneys, skin, and hindlimb muscles were collected after heart

perfusion.17,87

Histological analysis
Whole knee joints, lungs, livers, kidneys, skin, and hindlimb muscles from healthy control and CIA mice were fixed in 4% formalde-

hyde. Joints were further decalcified with Decalcification Solution (ServiceBio, G1107, China) for 7 days. The specimens were then

embedded in paraffin and sagittal sections (4 mm) were cut. The sections were stained with hematoxylin and eosin (H&E, Sigma-

Aldrich, USA) for the histology analysis. Histological sections were assessed for infiltration of cells into the synovial cavity resulting

in inflammation, proliferation of cells in the synovial layer, and bone erosion.
Cell Reports Medicine 4, 100956, March 21, 2023 e3
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Sample cryopreservation
All dissected organ samples were placed into suitable tubes with freezing solution (10%DMSOand 90%FBS), placed into a CoolCell

LX box (Corning, USA), and frozen with gradually decreasing temperature (1�C/min) to �80�C. The samples were then stored at

�175�C until further analysis.

Sample thawing
Before digesting all the organs and harvesting the single cells, the cryopreserved samples were thawed following88 with slight differ-

ences. Briefly, cryopreserved samples were quickly thawed in a 37�C water bath with continuous agitation, then transferred into

15 mL centrifuge tubes with 1 mL pre-warmed thaw solution (90% Hibernate-A and 10% FBS) and incubated at room temperature

for 1 minute. Next, 2 mL, 5 mL, and 5 mL thaw solutions were added into the centrifuge tube, separated by 1-minute incubation. The

samples were then centrifuged at 350 3 g for 5 minutes. Lastly, the samples were resuspended with 1 mL Hibernate-A, after which

the supernatant was removed and incubated until the next step.

Single cell suspension
The thymus, spleen, and lymph node were thawed as described above, and were passed through a 70 mm strainer to collect cells in

a50mLcentrifuge tube.Afterbeingcentrifugedat 3503g for 5minutes, cellswere resuspendedwith 5mL redbloodcell lysisbuffer for

5minutes. The lysis reactionwas quenched by addingmedium (90%RPMI-1640with 10%FBS). Cells were centrifuged at 3503 g for

5minutes andwashed thrice to remove the lysis buffer. Single cell suspensions were prepared with RPMI-1640 at a density of 13 10-

cells/mL. Samples from different organs (whole knee joint, muscle, lung, skin, liver, and kidney) were quickly transferred into 75 mm

dishes with 1 mL DMEM after thawing, and then minced into�1mm pieces with scissors. Next, pieces of organ samples were trans-

ferred into 15 mL centrifuge tubes containing 5 mL DMEM. Different organ samples were treated with different enzymes for different

durations (Data S1). After dissociation, another 5mLDMEMwith 10%FBSwas added to the 15mLcentrifuge tubes. Dissociated cells

were centrifuged at 3503 g for 5 minutes after passing through a 70 mm strainer, after which the cells were washed thrice with PBS.

Single cells were resuspended into RPMI-1640 at a density of 1 3 105 cells/mL for cell loading. Peripheral blood mononuclear cells

(PBMCs) were isolated as previously described.89 Briefly, 0.5 mL peripheral blood was diluted with an equal volume of PBS (calcium

free), which was further loaded on the top of 1 mL Lymphoprep followed by centrifugation at 8003 g for 30 minutes at room temper-

ature in a swinging bucket rotorwith the brake off. PBMCswere retrieved andwashedwith PBS. Erythroid cells of different organs and

peripheral blood of eachmousewere removed using RBCLysis Buffer (Bio Legend, USA) (Data S1). Single cell suspensionswere pre-

pared by resuspension of PBMCs with RPMI-1640 at a density of 1 3 105 cells/mL.

scRNA-seq wet-lab protocol
All scRNA-seq experiments were performed using the Seq-Well technique.90 Briefly, prepared single cell suspensions were co-

loaded with barcoded and functionalized oligo-dT beads (Chemgenes, USA; cat. no. MACOSKO-2011-10) on microwell arrays

synthesized as described.90 For each sample, 20,000 live cells were loaded onto an array to bind with oligo-dT beads. The arrays,

coveredwith plasma-treated polycarbonatemembranes, were placed in a 37�C incubator for 30minutes. Next, beadswere collected

to perform cell lysis, hybridization, reverse transcription, and whole transcriptome amplification. Libraries were then prepared for

each sample using the Nextera XT DNA Library Preparation Kit (Illumina, USA; cat. no. FC-131-1096) according to themanufacturer’s

instructions. Libraries from three samples were pooled together and sequenced using the NextSeq 500/550 system, and sequencing

results were analyzed as described below.

Cytokine analyses in peripheral blood
Approximately 100 mL of bloodwere collected from ten healthy control DBA1/Jmice, as well as CIAmice at week three (before symp-

tom onset, n = 12), week eight (early stage after symptom onset, n = 12) andweek 15 (later stage after symptom onset, n = 9) after CIA

induction by retro-orbital bleeding. Twenty-five mL of serum were used for assaying inflammatory cytokines using LEGENDplexTM

Mouse Inflammation Panel (13-plex) (CAT: 740446, BioLegend, USA), including IL-1a, IL-1b, IL-6, IL-10, IL-12p70, IL-17A, IL-23,

IL-27, MCP-1, IFN-b, IFN-g, TNF, and GM-CSF. The assay was performed according to the manufacturer’s protocol and the data

were collected on a BD FACSAria III flow cytometer and analyzed by Flowjo. The mean fluorescence intensity of each cytokine of

the standards was used for calculating the standard curve for each cytokine using a log-log curve fit. The difference in concentration

of each cytokine between the different time points was calculated using the Wilcoxon rank sum test, as described above.

The analysis of the UR protein expressions in SLE sera
We used the clinical variables, patient information, drug treatment and protein levels (Data S1) to estimate the association between

the protein levels and the patient phenotype, organ, damage, and disease activity. To preprocess the data, we log-transformed the

protein levels, and used random forest imputation79 to impute the missing values. We removed the observations where the response

variable was not available, andwe scaled the input variables to zeromean and unit variance. In case of treatment information, we only

included drugs that were used to treat at least ten patients. As the distribution of the response variables differed, we fitted different

regression models for each respective response variable. We used a logistic regression,91 negative binomial regression92 and zero

inflated negative binomial regression93 to predict the patient phenotype, organ damage, and disease activity respectively. We also
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used Akaike Information Criteria (AIC)94 to perform variable selection. These models returned the coefficient estimates as well as a p

value, which tested a hypothesis that the estimate is zero. A positive coefficient estimate reflects that the patients with high response

variables had high protein levels, and we further referred to it as a positive association. In contrast, a negative coefficient estimate

reflects that the patients with high response variables had low protein levels, and we further referred to it as a negative association.

To assess whether the testedmodels follow their assumptions, we standardized the residuals between 0 and 1, then compared them

against the assumed distribution and performed outlier and dispersion checks. We also plotted the standardized residuals against

the rank transformed predicted variable where we expected a uniform distribution.95 R functions missForest,79 glm,79 glm.nb,96 were

used to perform the analysis, and function simulateResiduals95 was used to investigate the residuals.

Measurement of the UR proteins in SLE sera
Wemeasured the protein levels of the 18 predicted UR proteins of most disease relevant IMID_SP in the serum of 304 patients at two

separate phlebotomies using human magnetic multiplex beads assay (R&D, Bio-Techne, USA) according to the manufacturer’s in-

structions. The five-parameter logistic curve was used to generate the standard curve. The Limit of Detection (LOD) was defined as

the standard point with the lowest concentration of an analyte that can reliably distinguish signal from background noise. The Lower

Limit of Quantification (LLOQ) is defined as the standard with the lowest concentration. The Upper Limit of Quantification (ULOQ) was

defined as the standard point with the highest concentration. If protein values lay outside of the interval between LLOD andULOQbut

higher than LOD, we used extrapolated data for further analysis. We excluded IL-17 and GM-CSF from the analysis as 86% and 75%

of measurements respectively were below LOD.

QUANTIFICATION AND STATISTICAL ANALYSIS

Organ prioritization
The relevance of the organs for CIA development was tested in a pilot study, in which at least one sample from each organ was

sequenced (Data S1) and processed as described.10 In short, the data from each sample were extracted, and poor-quality cells

were sorted out as described below. Sequencing data from two of the organs, liver and kidney, did not meet quality criteria (%25

cells with 10,000 reads per cell) and were excluded from further analysis. The data from the remaining samples was knn-smoothed

(k = 12), whereafter DEGs were identified between sick and healthy individuals for each organ separately using Monocle70,97 as

described in.10 For comparative analysis between organs, 40 cells were bootstrapped from each group of healthy and sick individ-

uals, for ten sampling rounds, for the differential expression analysis. The number of DEGs (Benjamini-Hochberg adjusted p value

(FDR) < 0.05) for each sampling was compared and the five organs with the highest number of DEGs (joint, lung, muscle, skin,

and spleen) were selected for downstream analysis (Data S1 and Figure S1A).

scRNA-seq data processing
The single cell data from the different mice samples were processed into digital gene expression matrices following James Nemesh,

McCarrol’s lab Drop-seq Core Computational Protocol (version 1.0.1, Drop-Seq tools v1.12) (http://mccarrolllab.com) using

bcl2fastq (v2.19.1) conversion and Picard software (v2.9.0). The indexed reference for alignment of the reads was generated from

GRCm38 (June 2017, Ensembl) using STAR software (v2.5.3).72 Only primary alignments towards the reference genome were

considered during downstream analyses, according to the mapping quality using STAR software. The quality of cells was assessed

by having a minimum of 10,000 reads, 400 transcripts, 200 genes and less than 20% of mitochondrial genes per cell. The five organs

with the highest number of DEGs based on the organ prioritization described above, namely, joint, lung, muscle, skin and spleen,

were then analyzed together. Outliers were removed based on an overestimation of transcripts count (i.e., cells with more than

6,000 transcripts) due to the risk of duplicates in the library. For a gene to be included in the data, it needed to be identified in at least

10% of the cells.

Clustering and cell type identification
Weused a reference-based approach to identify cell types. As a reference dataset, we usedmouse bulk expression data of sorted cell

populations available in the R package SingleR (v1.0.6).73 To preprocess the data for cell type identification, we only retained 6,395

shared genes for both the bulk expression data and the single cell data. The resulting single cell data was denoised by the deep count

autoencoder (DCA, v0.2.3)74with thedefault settings. Thismethodhasan in-built data normalization andoutputs 1) adenoiseddataset

corrected for dropouts and varying library sizes, where each data value represents the expected (denoised) gene expression, and 2) a

latent representation of the denoised data in a 32-dimensional latent space. Existing reference-based single cell type identification

such as73 or98 uses correlation measures, either Spearman or Pearson, to match the single cell observations to the reference data.

While Pearson correlationmeasures linear relationships, Spearman correlation is more general in the sense that it accounts formono-

tonic (i.e., non-linear) relationships. Accordingly, for each referencepoint, a single cell observation having the highest Spearman’s cor-

relation to that reference was found, and then a Monotonic Regression (MR)99 was computed with the reference vector as the input

variable and the natural logarithm of the denoised single cell expression of the selected cell as the output variable in the regression.

The exponents of the predicted values from the MR were then treated as reference data expressions in the scale of the single cell

data. This means that the rounded exponents of the fitted MR values for all reference data points were used as inputs in the DCA
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that was estimated in the data validation step, and the latent representations outputted by the autoencoder were used in the following

step. The latent space observations obtained from both the single cell data and from the bulk data were clustered together by the Lei-

den’s algorithm.100 In the Leiden’s algorithm, we set the size of local neighborhood to 30 and the resolution parameter (which deter-

mines the number of clusters) was set in such amanner that 70%of cells in each resulting cluster matched the same cell type. Briefly,

we started with a resolution parameter of 0.5, resulting in a low number of clusters. For each single cell observation in each computed

cluster, amatchwascomputedbyfindinga referencepoint that belongs to that cluster andhas thehighestSpearmancorrelation to the

denoised gene expression of the single cell. The purity of a cluster was determined by computing the proportion of single cell obser-

vations within that cluster that had the same reference type. The resolution was increased until each cluster had a satisfactory purity,

which resulted in resolution= 1. Finally, all single cell data pointswithin a clusterwere labeledwith the reference label corresponding to

the dominant referencematchwithin that cluster (Data S1). All clusters recognized as the same cell typeweremerged for further anal-

ysis, resulting in 13 groups of cells (Figure 2A). The cell types identified, as well as those unidentified due to a lack of cell types in the

reference, were further validated, or identified, using marker genes as described below.

Data normalization and DEG analysis
To calculate DEGs in the dataset, we used the single cell variational inference (scVI, v0.7.1) framework.76 First, the variational

inference model was set-up based on the UMI-count data, reducing batch effect based on the input samples, i.e., individual

mice and organs, after which the model was trained using default parameters. The DEGs were then identified between CIA and

healthy mice for each cell type in each organ separately, using the ‘change’-mode. The significant DEGs were identified as those

with ‘is_de_fdr_0.05 = True’ in the scVI differential expression output. To infer the direction of change, we used the mean log(fold

change) (‘lfc_mean’) values produced, where a positive fold change (FC) indicated upregulation while a negative FC indicated down-

regulation in cells fromCIA compared to healthymice (Data S2). The data used for differential expression analysis were normalized by

the scVI autoencoder, correcting for variation in sequencing depth. The normalized expression matrix and the latent space represen-

tation data were used for single cell downstream analyses as further described. To compare how much the lists of DEGs differed

between cell types and organs, the Jaccard index was calculated for each pair of gene lists.

Cell type identification using marker genes
Marker geneswere used to validate the cell types identified by the Leiden algorithm, and to obtain the identity of clusters that were not

represented by any reference data point. For all organs combined, the marker genes were calculated based on DEG analysis as

described above. Themarker genes were defined as those being significantly differentially expressed between each cell type or clus-

ter of unknown identity (based on the previous identification) and all other cell types in the dataset (Data S1). We then searched for the

knownmarker genes (Table S1) within the sets of cell type-specific marker genes. If marker genes of a certain cell type were enriched

in a cluster, i.e., a positive FC, the cluster was identified accordingly.

For each cell type identified in any of the organs, the variation in cell type proportion over organs was calculated using ANOVA,

adjusting the p values by Holm correction.

Cell-cell interaction analysis
The interactions between cells were identified by analyzing the data using NicheNet (v1.0.0).12 NicheNet is an R package developed

for identification of inter-cellular interactions based on lists of potential interacting genes and a database of known upstream regu-

lators (URs) to target interactions. For these analyses, we used the lists of DEGs betweenCIA and healthymice to find the interactions

which change due to arthritis. As NicheNet requires human gene symbols as input, themouse genes were translated into their human

orthologs based on the Ensembl genes (http://www.ensembl.org/biomart/martview, GRCh38.p13, Downloaded June 6, 2020).

These human orthologs were used for all downstream analyses based on these cell-cell interactions.

The cut-off to define the expressed genes in the data was set according to the author’s recommendation, to give 5,000 to 10,000

expressed genes for the sender and receiver cell population independently. First, the previous transformation of the scVI-normalized

expression data inverse logarithm was applied (10-1). Next, genes with a mean expression levelR13 10�5 in the population of cells

were defined as expressed. The interactions were then identified, based on the lists of DEGs, between each pair of cell types using

the default analysis set-up. For each interaction identified, all of the potential target genes in the source cell type were identified using

the get_weighted_ligand_target_links() function and its default settings. To focus our analyses on the strongest interactions of the

networks, we included only those with a Pearson Correlation Score (PCC) > 0, meaning that the target genes of the interactions

are enriched among the differentially expressed genes.

When analyzing inter-organ interactions, the UR-target interactions identified by NicheNet were curated only to include those that

are biologically feasible between organs. For this aim, we used Ingenuity Pathway Analysis (IPA, Q4 2020, Qiagen, Germany) to

specify the cellular location known for each potential UR (Data S6). The list of inter-organ interactions was then curated to include

only URs located in extracellular space, as they have the potential to be transported through the blood.

MCDM construction and UR prioritization
For each organ separately, a MCDMwas constructed based on predicted molecular interactions between all cell types in the organ.

The predictions were inferred using NicheNet12 as described above. The MCDM thus consists of cell types as nodes and unique
e6 Cell Reports Medicine 4, 100956, March 21, 2023

http://www.ensembl.org/biomart/martview


Article
ll

OPEN ACCESS
interactions as lines. A unique interaction represents one cell type-UR-cell type combination, thus enabling multiple edges, based on

different UR, between each pair of nodes. The MO-MCDM was created in the same way, but only based on inter-organ interactions

as described above. Thus, the nodes represent cell types in each organ, and the lines represented interactions between cell types in

different organ.

The URs were then prioritized based on their downstream effect. First, they were ranked based on the total number of predicted

downstream target genes that they were predicted to regulate, in all cell types and organs combined. Secondly, they were ranked

based on the number of downstream cell types and organs which they were predicted to target.

Pathway enrichment analysis
Identification of pathways was performed with IPA. We used the core analysis in the IPA software to identify canonical pathways

based on a list of DEGs (e.g., all the potential targets of all the URs in the different organs). When this analysis was completed for

each cell type and organ separately, the Bayes factors from the differential expression analysis were included to define the direction

of change due to arthritis.

IPA consists of a global network that is based on manual curation of a vast body of medical literature and biomedical databases,

which is continuously updated.101 The core analysis in IPA (parameters: species = mouse) was used to identify pathways that were

significantly enriched among the list of genes. Statistical analysis was performed using Fisher’s exact test, right tailed, within the IPA

software (Q1 2021 and Q4 2020 version).77 All pathways with p < 0.05 were considered significantly enriched. Pathway activation

direction was indicated by IPA activation z-score as activated (z-score >0) or inhibited (Z score <0).

The association between UR-target expression and arthritis score
The association between UR-target expression and arthritis score was calculated by pairwise comparison of the target mean expres-

sion levels between cells from mouse joints with mild arthritis (score 1–3), or severe arthritis (score 4) (Data S1), as well as healthy

control mice, using a Wilcoxon rank sum test. The gene names of the normalized data from scVI analysis were first translated to their

human orthologs as previously described. Thereafter, the data were standardized, producing a mean expression of zero and stan-

dard deviation of one, over all genes within each cell. The mean expression level of all UR target genes was calculated for each cell.

The differences in target expression were then computed, in a pair-wise manner between the groups using the wilcox_test() and

add_significance() functions in the R package rstatix (v0.7.0), producing p values adjusted for multiple testing by the Holm correction.

Connective pathway analysis
Pathway analysis was first conducted using IPA, as described above, on all DEGs for each dataset/cell type. To systematically assess

similarities anddifferences betweenpathways in the different groups, (i.e. joint andmuscle for CIAor inflamedandnon-inflamedorgan

sites for IMIDs), we first clustered the pathways based on gene list similarities. To do so, the Jaccard-indexwas calculated, and values

of 1-Jaccard-index used as distances for hierarchical clustering. Clusteringwas performed using the hclust() function in RwithWard’s

method (i.e. parameterward.D2). Only genes differentially expressed in at least one cell type (CIA)/dataset (IMIDs) within each group

(active and inactive disease organ) were considered for clustering. The dendrogram from the hierarchical clustering was next trans-

formed into a tree-like structure, in which each node represents one pathway. To prioritize clusters for downstream analyses further,

each pathway was labelled as ‘‘activated,’’ ‘‘inhibited,’’ ‘‘no_direction,’’ or ‘‘not_significant’’ in each group separately. Labelling was

based on the ratio of datasets showing a specific direction of change (indicated by the IPA activation z-score). For example, in the

CIA data, the ‘‘Acute Phase Response Signaling’’ pathway was found significantly enriched (overlap p < 0.05) in six cell types out

of 12 in muscle: activated (z-score >0) in two cell types and inhibited (z-score <0) in six cell types. Since the pathway was inhibited

in a higher number of datasets, ‘‘Acute Phase Response Signaling’’ was labelled as ‘‘inactive’’ in muscle. In cases in which there

was an equal number of cell types with a pathway that was activated and inhibited or if the direction could not be predicted (z-score =

NA), the pathway was labelled ‘‘no_direction’’, and if none of the cell types showed significant enrichment of the pathway, it was

labelled ‘‘not_significant’’. This oversimplification helps to achieve an overview of general behavior of pathways in the distinct groups,

and to prioritize clusters of pathways for further analyses.

For further validation, KEGG pathway analysis was also conducted on all DEGs for each cell type in muscle and joint using ‘‘en-

richKEGG’’ function from R package ‘‘clusterProfiler’’. Then, connective pathway analysis was performed on the KEGG pathways

with p < 0.05. First, similarities and differences were assessed between pathways using the Jaccard-index. Clustering was per-

formed as previously described and divided into two programs. To assess whether connective pathway analysis using KEGG path-

ways has comparable results as using IPA, similarities between programs from connective pathway analysis of KEGG and IPA were

compared using enrichment analysis (two-sided Fisher’s exact test). Since all pathways in KEGG have different pathway names,

pathways were not directly compared between KEGG and IPA; instead, the enrichment analyses were performed on gene content

of each program using Fisher’s exact test. All genes enriched in KEGG pathways were used as background for the analyses.

Prediction of URs regulating specific programs/subprograms in connective pathway analysis
To identify potential URs of each program/subprogram from the connective pathway analysis, we performed enrichment analyses.

For each potential UR-program/subprogram pair we computed the enrichment of the URs downstream targets among the pathway-

associated genes (right tail Fisher’s exact test). All genes in connective pathway analysis were used as background. Enrichment
Cell Reports Medicine 4, 100956, March 21, 2023 e7



Article
ll

OPEN ACCESS
p values were next combined with Fisher’s method over all cell types in the joint and muscle separately. For each respective organ,

the URs with significant combined p values, corrected for multiple testing with the Benjamini-Hochberg procedure (FDR <0.05), were

ranked by the lowest combined FDR values (Data S6).

Similarly, URs were identified in the meta-analyses of IMIDs, where enrichment p values were combined over all datasets repre-

sentative of inflamed organs and non-inflamed organs separately. To identify specific URs for (UC and CD, enrichment p values were

combined over all datasets representative of the disease and condition (e.g., all datasets representative of inflamed organs in CD).

Differential expression analysis of expression profiling data from immune-mediated inflammatory diseases
We systematically mined the Gene Expression Omnibus (GEO) database for expression profiling datasets from different IMIDs. Each

dataset included samples from at least three patients and three healthy controls (Data S1). The search included 32 different datasets

from ten different IMIDs, namely RA, UC, CD, PSO, SLE, systemic sclerosis (SSc), Sjögren’s syndrome (SS), atopic dermatitis (AD),

juvenile myositis (JM), and type 1 diabetes (T1D).47–53,55–57,61,63,65,66,69,102–105 Using GEO2R81, we identified DEGs between patients

and healthy control samples (detailed in Data S1). The data were annotated by the National Center for Biotechnology Information

(NCBI) and adjusted for multiple testing using the Benjamini-Hochberg procedure. The dataset was next filtered to include only sig-

nificant DEGs (FDR <0.05), with the associated gene symbol for further core analysis using the IPA software. If more than 5,000 DEGs

were found between patients and healthy controls, the top 5,000 DEGs (lowest FDR value) were used for the core analysis using the

IPA software (Q1 2021 and Q4 2020 version), owing to the computational limitation of upload allowance. The core analysis in IPA

(parameters: species = human) was used to identify canonical pathways as described above. Enrichment analyses were performed

by applying Fisher’s exact test (right tailed)). In case two or more datasets were representative of the same disease and condition (for

example UC inflamed organs), enrichment p values were combined with Fisher’s method in all downstream analyses. To check for

similarities between subprograms from connective pathway analysis of CIA and IMID data, we computed the enrichment of pathways

between each subprogram of CIA and each subprogram of IMID. As a background for the analyses, all pathways included in the con-

nective pathway analysis were used.

Genome-wide association study (GWAS) enrichment analyses within programs and subprograms
Genome-wide association study (GWAS) gene enrichment analysis (Fisher exact test, right tailed) of programs and subprograms in

connective pathway analysis in both CIA and IMIDs was performed for each cell type/dataset separately. All DEGs within that cell

type/dataset were used as a background. The GWAS-associated genes were downloaded from DisGeNET (data downloaded on

February 9, 2021). For the CIA data, GWAS genes associated with ‘Rheumatoid Arthritis’ were included, identifying 777 genes. For

the IMIDs data, we included GWAS genes associated with, RA: ‘Rheumatoid Arthritis’ (777 genes), CD: ’Crohn disease’ (515 genes),

lupus (except lupus nephritis (LN)): ’Lupus Erythematosus’, ’Lupus Erythematosus, Cutaneous’, ’Lupus Erythematosus, Discoid’,

’Lupus Erythematosus, Subacute Cutaneous’, ’Lupus Erythematosus, Systemic’, and ’Neuropsychiatric Systemic Lupus Erythema-

tosus’ (626 genes), LN: ’Lupus Nephritis’ (53 genes), SS: "Primary Sjögren’s syndrome" and "Sjogren’s Syndrome" (49 genes), T1D:

’DiabetesMellitus, Insulin-Dependent’, ’DiabetesMellitus, Ketosis-Prone’, ’Diabetes, Autoimmune’, and ’Neonatal insulin-dependent

diabetesmellitus’ (485 genes), AD: ’Dermatitis, Atopic’ and ’Dermatitis, Atopic, 2’ (143 genes), JM: ’Adult type dermatomyositis’, ’Der-

matomyositis’, ’Dermatomyositis, Childhood Type’, and ’Myositis’ (46 genes), PSO: ’Psoriasis’ (416 genes), SSc: ’Systemic Sclero-

derma’ (171 genes), and UC: ’Ulcerative Colitis’ (452 genes).

Prioritization of URs in IMIDs
The upstream analysis of the core analysis in IPA (parameters: species = human, Q1 2021 and Q4 2020 version) was used to predict

URs for all IMIDs separately based on DEGs. If more than 5,000 DEGs were found between patients and healthy controls, the top

5,000 DEGs (lowest FDR value) were used for the upstream analysis. We focused on URs that belonged to one of the following cat-

egories: "G-protein coupled receptor", or "cytokine", or "growth factor", or "ligand-dependent nuclear receptor", or "transmembrane

receptor’’ andwhose downstream targets were significantly enriched amongDEGs (FDR<0.05; Fisher exact test right-tailed; IPA). To

predict further the URs regulating the specific programs/subprograms in IMIDs, we performed enrichment analysis as described

above.

Overlap between programs from all analyzed IMIDs and individual IMIDs
To test if the programs (IMID_P1 and IMID_P2) derived from all analyzed IMIDs overlapped with programs from individual IMIDs in

inflamed and non-inflamed organ sites, separately, we performed Fisher’s exact tests (right tailed), using all pathways in connective

pathway analysis as a background, followed by correction for multiple testing using the Benjamini-Hochberg procedure. These an-

alyses were repeated for IMID_ subprograms (IMID_SPs) and subprograms from individual IMIDs. Disease pathways were defined as

all pathways significantly enriched in a particular disease and inflammation state (IPA, p < 0.05). Enriched pathways were considered

those whose combined p < 0.05.

Treatment effect on IMIDs
We mined the Gene Expression Omnibus (GEO) database for the analysis of anti-TNF treatment effects on any of the previously

analyzed IMIDs. Each dataset included samples from at least three patients (before and after treatment) and three healthy controls.
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The search included two different datasets, one from treated UC (GSE92415)45 and one from treated CD (GSE52746).46We identified

DEGs between treated responders and untreated patients, as well as between untreated patients and healthy control samples.

Pathway enrichment analyses were performed as described above. We then performed enrichment analysis of the significantly en-

riched pathways among the pathways of the program/subprograms from connective pathway analysis, as described above.

Subsequently, DEGs were identified for responders and non-responders separately, between untreated patients vs. control and

treated patients vs. control, as well as between treated non-responders vs. treated responders, as described above. Enrichment an-

alyses of the significantly enriched pathways of the program/subprograms were performed for the untreated patients vs. control, as

described above. The URs for non-responders and responders before treatment were predicted using IPA, as described above.

Focusing onURs ofmolecule types, ‘‘G-protein coupled receptor’’, ‘‘cytokine’’, ‘‘growth factor’’, ‘‘ligand-dependent nuclear receptor’’,

and ‘‘transmembrane receptor’’, we next assessed how the downstream targets of eachURpredicted for the non-responders overlap-

ped with the downstream targets of TNF for each program/subprogram separately using enrichment analysis as described above.

Among those URs whose downstream targets were predicted to be enriched in at least one program/subprogram, we prioritized

them that showed the potential to take over the effect of TNF based on the predicted effect of any potential activators or inhibitors.

The following criteria were used: 1) the activation z-score from IPA being similarly positive or negative in both responders and non-re-

sponders; 2) the FC direction being higher (if positive z-score) or lower (if negative z-score) in non-responders vs. control compared to

responders vs. control; and 3) a significant positive (if positive z-score) or negative (if negative z-score) FC in non-responders vs. re-

sponders after treatment.

To test the potential of other URs to take over the effect of TNF, we analyzed data fromGSE92415. TheURs and enriched pathways

were first inferred using IPA, based on the top 5,000 (lowest p value) of the 10,145 DEGs identified between anti-TNF responders

before treatment (I.e., week 0, N = 32) and healthy control (N = 21), and the 11,351 DEGs between anti-TNF non-responders before

treatment (N = 27) and healthy control (N = 21).We only focused onURs ofmolecule types, ‘‘G-protein coupled receptor’’, ‘‘cytokine’’,

‘‘growth factor’’, ‘‘ligand-dependent nuclear receptor’’, and ‘‘transmembrane receptor. First, we tested if the downstream genes of

each alternative UR were enriched among the TNF downstream genes, for each main- and subprogram separately (Figure S6E). For

each UR, whose downstream genes were predicted to be enriched in at least one main- or subprogram, we further checked if their

z-scores and FCs in responders and non-responders followed the expectations for overtaking the effect of TNF among the non-re-

sponders, but not for the responders, after treatment. Such assumptions can be made, since TNF is known to be an activator,

showing a positive z-score and FC among both responders and non-responders before treatment compared to controls, and since

it is assumed that any UR taking over the effect of TNF will share many of its downstream genes. Specifically, we assumed that if the

UR is an activator, its z-score should be positive in both responders and non-responders, while the direction of its FC should be

higher in non-responders vs. control compared to responders vs. control (for example, if the FC is negative in responders vs. control,

it should be zero or positive in non-responders vs. control) in order to take over the downstream effect of TNF. If the UR is an inhibitor,

we instead expected a negative z-score among both responders and non-responders, and that the direction of the FC should be

lower in non-responders vs. control compared to responders vs. control. We additionally assumed that an UR which has taken

over the effect of TNF should be significantly upregulated (activator), or downregulated (inhibitor), in treated non-responders

compared to treated responders, between which a total of 2,922 DEGs were identified.
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