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A computationally efficient method for marginal maximum likelihood estimation of 
multiple group generalized linear latent variable models for categorical data is introduced. 
The approach utilizes second-order Laplace approximations of the integrals in the 
likelihood function. It is demonstrated how second-order Laplace approximations can 
be utilized highly efficiently for generalized linear latent variable models by considering 
symmetries that exist for many types of model structures. In a simulation with binary 
observed variables and four correlated latent variables in four groups, the method has 
similar bias and mean squared error compared to adaptive Gauss-Hermite quadrature 
with five quadrature points while substantially improving computational efficiency. An 
empirical example from a large-scale educational assessment illustrates the accuracy and 
computational efficiency of the method when compared against adaptive Gauss-Hermite 
quadrature with three, five, and 13 quadrature points.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

When estimating latent variable models for categorical observed variables, such as generalized linear latent variable mod-
els or item response theory models, marginal maximum likelihood estimation is typically used. With marginal maximum 
likelihood, integrals without an explicit solution must be calculated. Standard estimation methods are based on Gauss-
Hermite quadrature approximations (Bock and Aitkin, 1981), which are highly efficient for models with one or two latent 
variables but quickly decrease in efficiency with higher-dimensional problems. Adaptive quadrature (Schilling and Bock, 
2005; Cagnone and Monari, 2013), which concentrates the region of integration to the most relevant part for each integral, is 
a partial solution but with more than four dimensions the computational expense means that adaptive quadrature becomes 
impractical if high accuracy is desired. Another approach is to use a simulation-based method such as the Metropolis-
Hastings Robbins-Monro method (Cai, 2010a) or a Monte Carlo method (Zhu et al., 2005). However, the simulation-based 
methods can be slow to converge to a local maximum with small sample sizes and ensuring that proper convergence has 
been attained is often challenging and time-consuming. Efficient approximation methods such as the variational approxi-
mation have also been proposed (Hui et al., 2017; Niku et al., 2019; Cho et al., 2021), but these methods perform relatively 
poorly with few observed variables and have not been implemented for many types of models.
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Another approach is to use a first-order Laplace approximation to approximate the required integrals (Huber et al., 
2004). However, estimation methods based on first-order Laplace approximations often have convergence problems and 
high bias (Joe, 2008), especially with binary data or complex models (Andersson and Xin, 2021). To remedy this, second-
order Laplace approximations of the log-likelihood (Shun, 1997; Thomas, 1993; Bianconcini, 2014; Raudenbush et al., 2000) 
or second-order Laplace approximations of the gradient of the log-likelihood (Bianconcini and Cagnone, 2012) have been 
used. Such higher-order Laplace approximations have shown promise in providing a computationally efficient yet accurate 
estimation method for models with many latent variables, such as in Andersson and Xin (2021) where up to 12 correlated 
latent variables were used with an independent-clusters structure and ordinal observed variables. In contrast to this, some 
previous studies found that the second-order Laplace approximation was computationally much less efficient compared 
to adaptive quadrature with 5 quadrature points in each dimension for exploratory factor analysis with ordinal data with 
up to four dimensions (Bianconcini, 2014). As we will show in the present study, the efficiency of higher-order Laplace 
approximations is highly dependent on the structure of the model used and implementations that disregard the structure 
will be inefficient for most types of models. However, if the structure is exploited in the implementation of the second-order 
Laplace approximation, substantial computational gains can be obtained which makes the method highly computationally 
efficient for many types of models when compared to adaptive quadrature approximations which have the same theoretical 
approximation accuracy.

A hindrance to methods which use second-order Laplace approximations is that they require the derivation of higher-
order derivatives which depend on the type of measurement model specified. This makes higher-order Laplace approx-
imations difficult to efficiently implement and generalize across different types of models. Hence, so far, the available 
implementations of second-order Laplace approximations of the log-likelihood which are relevant to latent variable mod-
els for categorical data have been limited to generalized linear models (Raudenbush et al., 2000), generalized linear mixed 
models (Noh and Lee, 2007), confirmatory factor analysis models for ordinal data (Bianconcini, 2014; Jin et al., 2018), 
independent-clusters item response theory models (Thomas, 1993; Andersson and Xin, 2021) and nonlinear structural equa-
tion models (Jin et al., 2020). Thus, additional research is needed to implement estimation of multiple group generalized 
linear latent variable models with second-order Laplace approximations and to investigate its estimation properties.

The objective of the current work is then to develop a computationally efficient estimation method based on a second-
order Laplace approximation to estimate multidimensional generalized linear latent variable models with categorical ob-
served variables, with support for an arbitrary model structure and with multiple groups. There are three main contributions 
of the present study in relation to the existing literature. First, we derive an estimation algorithm that uses a second-order 
Laplace approximation to the marginal log-likelihood function for generalized linear latent variable models for categorical 
observed variables which supports a general model structure. Here, we also detail how the second-order Laplace approx-
imation can be highly efficiently implemented by accounting for the structure of the particular model used. Second, we 
implement the second-order Laplace approximation estimation method for multiple group models where parameter invari-
ance between groups can be established and where the mean vectors and covariance matrices of the latent variable in 
multiple groups can be estimated. Third, we compare the second-order Laplace approximation method to an implementa-
tion of adaptive Gauss-Hermite quadrature, that uses the same underlying code base as the second-order Laplace method, 
in terms of the estimation accuracy and precision and in terms of the computational efficiency.

The paper is structured as follows. We first introduce the modeling framework used and then present the second-order 
Laplace approximation estimation method along with a discussion of some of its properties with models commonly used 
in applied measurement. Then, based on a simulation study, we contrast and compare the proposed approach to adaptive 
Gauss-Hermite quadrature and discuss the advantages and disadvantages of the method based on theoretical and practical 
considerations. Subsequently, an empirical example from an international large-scale assessment is used to illustrate the 
application of the Laplace approximations and adaptive quadrature methods. Lastly, we discuss our findings and provide 
recommendations for applied work.

2. Methods

2.1. Models

With latent variable models for categorical data, we model the response probabilities for each category of a set of 
discrete observed variables i ∈ {1, . . . , I} conditional on a latent variable. Define Pic(z) as the probability, conditional on the 
p × 1 latent variable vector z, to observe category c of observed variable Yi which has mi possible outcomes. We assume 
conditional independence such that the joint probability for multiple random variables Y1 = y1, . . . , Y I = yI , conditional on 
z, can be factorized as

P (Y1 = y1, . . . , Y I = yI |z) =
I∏

i=1

Piyi (z), (1)

where the individual Piyi can be based on, for example, confirmatory factor analysis with categorical data, the general-
ized partial credit model (Muraki, 1992), the graded response model (Samejima, 1969), or the nominal response model 
2
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(Bock, 1972). These three specific models are all types of generalized linear latent variable models (Huber et al., 2004) and 
also fall within the framework of generalized linear latent and mixed models (Rabe-Hesketh et al., 2004). Let b i be a mi × 1
vector of intercept parameters, with entries bic such that bi1 = 0. For the graded response model, with a p × 1 vector ai of 
slope parameters, we have

Pic(z) = P∗
ic(z) − P∗

i(c+1)(z), (2)

where

P∗
ic(z) = 1

1 + exp(−a′
i z − bic)

, (3)

with P∗
i1(z) = 1 and P∗

i(mi+1)
(z) = 0. For the nominal response model, with a p × 1 vector aic of slope parameters for each 

category c such that ai1 = 0, we have

Pic(z) = exp
(
a′

ic z + bic
)

∑mi
c′=1 exp

(
a′

ic′ z + bic′
) , (4)

and for the generalized partial credit model, a special case of the nominal response model, we have

Pic(z) = exp
[∑c

v=1(a
′
i z + biv)

]
∑mi

c′=1 exp
[∑c′

v=1(a
′
i z + biv)

] . (5)

In principle any probability model that satisfies the conditional independence assumption can be used. Let N g denote the 
sample size in group g and define y f g as the I × 1 vector of observed variables for an individual f ∈ {1, . . . , Ng} in group 
g ∈ {1, . . . , G} and let N = ∑G

g=1 Ng . The marginal log-likelihood for an individual f in group g is equal to

l f g(θ g |y f g) = log
∫

P (y f g |z)φ(z;μg,�g)dz, (6)

where θ g are the unknown parameters in group g and φ is the multivariate normal density function with mean μg and 
covariance matrix �g . Define θ as the vector of all free parameters of the model across all groups. With multiple group 
models it is possible to evaluate measurement invariance across groups and estimate the mean vectors and covariance 
matrices in the groups, provided there exist some observed indicators which exhibit invariance (Muthen and Lehman, 1985). 
Typically, we cannot solve the integral in Equation (6) analytically and it must be approximated.

2.2. Likelihood approximation

We consider approximating the marginal log-likelihood with either a second-order Laplace approximation or adaptive 
Gauss-Hermite quadrature. Here, we present these two methods and outline their properties in terms of accuracy and 
computational efficiency.

2.2.1. A second-order Laplace approximation
We propose to approximate the integrals in the likelihood function with a second-order Laplace approximation 

(Shun, 1997) and implement an estimation method based on such approximations. Define the function h f g(z) =
− log P (y f g |z)φ(z; μg, �g). The second-order Laplace approximation is based on 1) the estimation of the posterior mode of 
the latent variable vector for each individual, and 2) derivatives of h f g with respect to z up to the fourth order. Let ẑ f g be 
the posterior mode, equal to the minimizer of h f g(z). Define ĥ = h f g(ẑ f g), H f g = ∂2ĥ

∂z∂z′ and let Ẑ denote the p × N matrix 
of posterior modes. We then obtain the second-order Laplace approximation to the log-likelihood as Shun (1997)

lLap2
f g (θ g |y f g) = p

2
log(2π) − 1

2
log

∣∣H f g
∣∣ − ĥ + log(1 + ε f g), (7)

where, with b jk denoting the j-th row entry of the k-th column in H−1
f g ,

ε f g = −1

2

⎡
⎣1

4

p∑
jklm

∂4ĥ

∂z j∂zk∂zl∂zm
b jlbkm − 1

4

p∑
jklrst

∂3ĥ

∂z j∂zk∂zl

∂3ĥ

∂zr∂zs∂zt
b jrbklbst (8)

− 1

6

p∑
jklrst

∂3ĥ

∂z j∂zk∂zl

∂3ĥ

∂zr∂zs∂zt

1

6
b jrbksblt

⎤
⎦ .
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Fig. 1. Illustration of a model with six observed variables and two latent variables.

Denote the sums of Equation (8) as sum A, B and C, for the first, second and third entry, respectively. Without considering 
the model structure, Equation (8) requires the computation of p4 + p6 + p6 entries which quickly becomes computationally 
demanding as the number of latent variables p increases. However, with models structured in a particular way, many of the 
terms needed for computing the entries in Equation (8) will be zero or repeated. For example, if all observed variables are 
each related to just one out of many latent variables, the expression reduces to a simple sum and a two-fold sum instead 
of the four-fold and six-fold sums in Equation (8) (Andersson and Xin, 2021; Noh and Lee, 2007). In our implementation 
of the second-order Laplace approximation, we avoid computing the same entries multiple times and identify the unique 
entries, which are products of multiple terms, in each of the sums in Equation (8). Such a procedure was also suggested in 
the supplementary material of Jin and Andersson (2020). We accomplish this with a computer algorithm at the first step of 
the estimation process which identifies the entries that must be computed and thus filters out repeated and zero entries. 
We subsequently weight the unique entries in accordance with the frequency of each entry in the sum.

In addition to avoiding zero and repeated entries in Equation (8), we exploit the expression of the function h f g(z) to 
gain further computational advantages. To illustrate this, first observe that

h f g(z) = −
I∑

i=1

log P (yif g |z;αig) − logφ(z;μg,�g), (9)

where yif g denotes the ith observed variable for individual f in group g and where αig is the parameter vector for the ith 
observed variable in group g . Define hif g(z) = − log P (yif g |z; αig). Since derivatives of logφ(z; μg, �g) with respect to z of 
order three and higher are all zero, we have

∂uh f g(z)

∂z j∂zk . . . ∂zv
=

I∑
i=1

∂uhif g(z)

∂z j∂zk . . . ∂zv
, (10)

for u > 2. The implication of expressing the higher-order derivatives in this manner is that, while the higher-order derivative 
terms in the approximation of the likelihood in Equation (8) may not be zero or equal for a combination of j, k, . . . , v , in 
many cases a term ∂uhi f g (z)

∂z j∂zk ...∂zv
for a single observed variable is indeed zero or equal for this combination of j, k, . . . , v . For 

example, consider the model with six observed variables and two latent variables displayed in Fig. 1 where the ellipses rep-
resent the latent variables and the rectangles represent the observed variables. For this model, the unique third derivatives 
of h f g are ∂3h f g (z)

∂z3
1

, ∂3h f g (z)

∂z2
1∂z2

, ∂3h f g (z)

∂z1∂z2
2

, and ∂3h f g (z)

∂z3
2

. However, for all observed variables except y3, the only non-zero third-

derivatives are ∂3hif g (z)

∂z3
1

, for i ∈ {1, 2}, and ∂3hif g (z)

∂z3
2

, for i ∈ {4, 5, 6}. We thus also account for these patterns when computing 
the entries in the main approximation, beyond accounting for the symmetries that exist for the entries in the two four-fold 
and six-fold sums in Equation (8).

The filtering process described above means that the second-order Laplace approximation can be implemented with 
substantial efficiency gains compared to using, for example, adaptive Gauss-Hermite quadrature with the same order of 
accuracy. Note that, unlike in Shun (1997), we do not remove terms from the approximation in Equation (8) to improve the 
computational efficiency. Rather, we account for zero entries and symmetries that exist for the models we use.

2.2.2. Adaptive Gauss-Hermite quadrature
Let � f g be the Cholesky decomposition of the matrix H −1

f g . The adaptive quadrature approximation to the log-likelihood 
is then (Jin and Andersson, 2020)

lAGHQ
f g (θ g |y f g) = p

2
log(2) − 1

2
log

∣∣H f g
∣∣ + log

Q∑
j ,..., j

[ p∏
k=1

w jk exp
(

q2
jk

)]
exp

(
h f g(z)

∣∣z=√
2� f g q j1 ,..., jp +ẑ f g

)
, (11)
1 p
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where Q denotes the number of quadrature points per dimension, q jk is the jk-th Gauss-Hermite quadrature point with 
weight w jk and q j1,..., jp

= (q j1 , . . . , q jp )
′ . The theoretical approximation accuracy of adaptive Gauss-Hermite quadrature de-

pends on the number of quadrature points and the error rate is given by O  
(

I−�(Q +2)/3�) (Jin and Andersson, 2020), implying 
that using four to six quadrature points has the same theoretical accuracy as the second-order Laplace approximation.

Adaptive Gauss-Hermite quadrature requires Q p number of quadrature points, meaning that higher-dimensional models 
quickly become very computationally demanding to estimate. For example, a four-dimensional model requires a total of 
81, 625, and 2401 quadrature points for Q = 3, 5, and 7, respectively. Unlike for the number of entries required with 
the second-order Laplace approximation, the total number of quadrature points needed for a given level of accuracy is 
unaffected by the model structure.

2.3. Parameter estimation with the approximated likelihood

To estimate the unknown parameters, the gradient of the approximated log-likelihood is needed. We calculate the gradi-
ent ∇θ of Equations (7) and (11) to obtain, for each θ ∈ θ , and for each Method ∈ {Lap2, AGHQ},

∇θ =
G∑

g=1

Ng∑
f =1

⎛
⎜⎝∂lMethod

f g (θ g |y f g)

∂θ
+ ∂ ẑ f g

∂θ

∂lMethod
f g (θ g |y f g)

∂z

∣∣∣∣∣
z=ẑMethod

f g

⎞
⎟⎠ , (12)

where the second term in the expression is needed since the mode is dependent on the parameter vector θ (Huber et 
al., 2004; Jin et al., 2018), and where ẑLap2

f g = ẑ f g and ẑAGHQ
f g = √

2� f gq j1,..., jp
+ ẑ f g . Note that AGHQ requires derivatives 

up to the third-order and the second-order Laplace requires derivatives up to the fifth-order. We analytically derived the 
derivatives for the generalized partial credit model and nominal response model and give the expressions of the constituents 
of Equation (12) for each of these in the appendix. The derivatives for the graded response model can be found in the 
supplementary material of Jin and Andersson (2020). Note that, with the second-order Laplace approximation, the model 
structure and symmetry of the derivatives also impact the computation of the gradient and just like for the computation of 
the entries in Equation (8), we compute only the unique entries in Equation (12) and weight them by their frequency.

With the gradient, we implement a quasi-Newton method for parameter estimation where the Hessian matrix is ap-
proximated with either the empirical cross-product matrix (Berndt et al., 1974) or the Broyden–Fletcher–Goldfarb–Shanno 
(Nocedal and Wright, 2006, BFGS) method. Let iter denote the iteration number and define αiter as the step size in the 
quasi-Newton method. The algorithm proceeds as follows.

1. Let iter = 0 and define starting values θ̂ iter.
2. With values θ̂ iter, compute the posterior modes Ẑ and the gradient ∇

θ̂ iter
.

3. Compute the approximated Hessian matrix H iter from the gradient ∇
θ̂ iter

.

4. Update the parameter estimates with θ̂ iter+1 = θ̂ iter + αiter × H−1
iter∇θ̂ iter

and let iter = iter + 1.

5. Repeat steps 2-4 until max|θ̂ iter − θ̂ iter−1| < TOL.

We propose using starting values aijc = 1.2 for the slope parameters, an even sequence from mi − 2 to −(mi − 2) for the 
intercept parameters (hence, starting value 0 if mi = 2 and starting values 1 and -1 if mi = 3) and σ jk = 0.5, with TOL =
0.0001 and αiter = 1.0 as default settings. If max|H−1

iter∇θ̂ iter
| > 0.25, we suggest to instead set αiter = 0.25/max|θ̂ iter − θ̂ iter−1|

to avoid changing the parameter estimates too much in each iteration. Note that we directly maximize the approximated 
marginal log-likelihood function instead of using the EM (Dempster et al., 1977) algorithm. As a result, ẑ f g is treated as a 
function of θ as implied in Equation (12).

2.4. Inference with the approximated likelihood

To draw inference we suggest using the inverse of the observed information matrix. The observed information matrix can 
be approximated by a numerical approximation to the Jacobian of the observed gradient in Equation (12) or the approxima-
tion from the BFGS algorithm. The results in Andersson and Xin (2021) indicated that using the numerical approximation 
to the Jacobian was accurate with correctly specified independent-clusters models and we therefore use this method in the 
current study. The numerical approximation to the Jacobian is obtained by defining an objective function with the unknown 
parameters as a vector-valued input argument, which computes and returns the exact observed gradient of the approxi-
mated log-likelihood, given in Equation (12). Before computing the gradient, the objective function updates the mode for 
each response pattern based on the parameters of the input argument. The Jacobian of this function is then approximated 
with a finite difference approach as implemented in the R package numDeriv (Gilbert and Varadhan, 2019). This method 
thus provides an approximation of the second derivatives of the approximated log-likelihood, taking the mode estimation 
into account when doing so. It is also possible to use the sandwich estimator, based on an approximation of the observed 
information matrix and the empirical cross-product matrix, to obtain robust standard errors.
5
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Fig. 2. Illustration of the two models with 12 observed variables used in the simulation study.

3. Simulation study

We performed a simulation study to investigate the parameter recovery and the computational efficiency of the second-
order Laplace approximation (Lap2) method for multiple group models by comparing with the first-order Laplace approx-
imation (Lap1) and adaptive Gauss-Hermite quadrature with three (AGHQ3) and five (AGHQ5) quadrature points. The R 
package lamle (Andersson and Jin, 2022) was used for parameter estimation with all methods.

3.1. Simulation design

In the simulations, we considered models with four latent variables and four groups, with 500 participants per group. 
Two settings were manipulated in the simulation design: (1) the type of multidimensional model - an independent-clusters 
model or a cross-loading model, and (2) the number of observed variables - three or four per dimension, for a total of 
either 12 or 16 observed variables. We considered only binary observed variables because the Laplace approximation has 
been shown in previous research to perform the worst in this setting (Joe, 2008; Andersson and Xin, 2021). We consid-
ered only the case of a low number of observed variables for the same reason. The conditions of experimental setting (1) 
represent between-item and within-item multidimensional models, respectively (Wang et al., 2004). In the between-item 
case, each observed variable is assumed to measure a single latent variable while in the within-item case some observed 
variables measure more than one latent variable via cross-loadings. Specifically, in the scenario with 12 observed variables, 
we added cross-loadings to one observed variable for each latent variable, resulting in four cross-loadings. Similarly, two 
observed variables in each dimension load on another dimension in the scenario with 16 observed variables, resulting in 
eight cross-loadings. The two models in the setting with 12 observed variables are presented in Fig. 2, where the ellipses 
represent the latent variables, the rectangles represent the observed variables, the solid lines with two arrows represent co-
variances between the latent variables, and the solid lines with one arrow represent the main loadings, with cross-loadings 
represented by dotted lines with one arrow. For both types of models, the covariances for the latent variables are freely 
estimated in each group and the mean vector and variances for the latent variables are freely estimated in each group ex-
cept the first one, where the means and variances are all fixed to 0 and 1, respectively. The manipulation of the simulation 
settings led to 2 × 2 = 4 conditions. 1000 replications were conducted under each condition.

Data were generated in R version 4.1.1 (R Core Team, 2021). We simulated binary data using the graded response model 
with slope and intercept parameters given in Tables A.4-A.6 in the Appendix. We selected these parameters to have a setting 
which closely resembles real-life examples in educational and psychological measurement (Ayala, 2009). The latent vari-
ables were generated from a multivariate normal distribution with the mean vectors (−1, −1, −1, −1), (−.5, −.5, −.5, −.5), 
(0, 0, 0, 0), and (.25, .25, .25, .25) in the respective group, chosen to represent common differences in proficiency between 
age groups in practice. The covariances, which were identical for each group, were set to values between 0.4 and 0.6 and 
6
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Table 1
Convergence rates (in percent), average absolute bias, average coverage rate of 95% con-
fidence intervals (in percent), average root mean squared error, average estimation time 
(in seconds), and average number of iterations for the four-dimensional multiple group 
models with sample size 2000 and different numbers of variables.

Outcome measure Model J Lap1 Lap2 AGHQ3 AGHQ5

Independent- 12 100 100 100 100
Convergence clusters model 16 100 100 100 100
rate Cross-loading 12 67.6 100 98.9 99.3

model 16 99.7 100 100 100

Independent- 12 0.076 0.013 0.024 0.011
Average clusters model 16 0.050 0.010 0.017 0.009
absolute bias Cross-loading 12 0.080 0.015 0.022 0.012

model 16 0.048 0.010 0.016 0.009

Independent- 12 90.0 94.6 94.6 94.8
Average clusters model 16 92.1 95.0 94.9 95.0
coverage rate Cross-loading 12 91.3 94.7 94.8 94.9

model 16 92.4 94.8 94.7 94.8

Independent- 12 0.040 0.027 0.025 0.027
Average root mean clusters model 16 0.025 0.020 0.019 0.020
squared error Cross-loading 12 0.047 0.030 0.029 0.031

model 16 0.029 0.024 0.023 0.024

Independent- 12 23.71 31.64 271.15 2182.70
Average clusters model 16 29.32 40.17 363.10 2987.91
estimation time Cross-loading 12 78.00 88.22 372.17 2437.80

model 16 40.91 164.52 475.47 3365.19

Independent- 12 30.77 29.93 29.75 29.83
Average number clusters model 16 30.67 30.32 30.20 30.31
of iterations Cross-loading 12 113.63 35.82 42.14 34.14

model 16 38.09 31.63 31.89 31.56

Notes. J = number of observed variables, Lap1 = first-order Laplace, Lap2 = second-order 
Laplace, AGHQ3/AGHQ5 = adaptive Gauss-Hermite quadrature with 3 or 5 quadrature 
points.

are given in Table A.7 in the Appendix. The variances for the latent variables were fixed to one. Hence, the four groups 
varied in the means of the latent variables but shared the same correlations among the four dimensions. Note that we 
freely estimated the covariances in each group.

With the generated data, we employed the Lap1, Lap2, AGHQ3, and AGHQ5 estimation methods. To assess the perfor-
mance of the four methods, we examined their statistical properties in terms of convergence rate, parameter recovery, and 
computational speed. Successful convergence was determined by fulfilling all of the following three criteria: 1) the algo-
rithm stopped within 500 iterations, 2) the empirical cross-product matrix was positive definite, and 3) the approximated 
observed information matrix was positive definite. After concluding the simulation, we also inspected the parameter esti-
mates and standard errors with each method to detect outlying replications. We computed the convergence rate in percent 
for each method and setting. Regarding parameter recovery, for a parameter θ with the estimate θ̂ r in replication r, define 

the absolute bias as |bias|θ = | ∑R
r=1(θ̂

r − θ)/R| and the root mean squared error (RMSE) as RMSEθ =
√∑R

r=1(θ̂
r − θ)2/R . 

We computed overall measures of the recovery of the parameters (slopes, intercepts, covariances, variances, and means) in 
terms of average absolute bias, average RMSE, and average coverage rate of 95% confidence intervals estimated with the 
standard errors from the observed information matrix, across all parameters in a given setting. To evaluate the computa-
tional efficiency of the four estimation methods, we recorded the time information and the number of iterations required in 
the estimation. The computational efficiency is comparable between the methods since all methods are based on the same 
code base written in C++. The total simulation time exceeded 3600 core hours.

3.2. Results

In this subsection, we present the results of the simulation study. First in Table 1 are the convergence rates of Lap1, Lap2, 
AGHQ3, and AGHQ5 estimation methods for the four-dimensional multiple group models. It suggests that all the estimation 
methods attained 100% convergence for the independent-clusters models. However, with cross-loading models, the Lap2 
method outperformed the other methods and was the only method to reach a 100% convergence rate. The Lap1 method 
was particularly problematic with respect to convergence (convergence rate = 67.6%) in the cross-loading scenario with 12 
observed variables. We excluded the non-converged replications in subsequent comparisons of the methods.

Next, we evaluate the recovery of parameters and summarize the results of Table 1 concerning this. With respect to 
average absolute bias, Lap2 and AGHQ5 estimation methods produced less bias compared with Lap1 and AGHQ3. With an 
7
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Table 2
Number of unique nonzero 3rd and 4th derivatives and the number of unique nonzero entries in the sums 
of the second-order Laplace approximation for the four different models considered in the simulation.

Model J Unique 3rd Unique 4th Unique sum A Unique sum B Unique sum C

Independent- 12 4 4 4 10 10
clusters model 16 4 4 4 10 10

Cross-loading 12 12 16 20 170 114
model 16 16 22 28 322 214

Note. J = number of observed variables.

increasing number of observed variables, the average absolute bias decreased, especially for the Lap1 estimation method. The 
types of model, independent-clusters or cross-loading, did not impact estimation accuracy much. Regarding average coverage 
of 95% confidence intervals, Lap2, AGHQ3, and AGHQ5 showed similar results and performed better than Lap1. In addition, 
the manipulation settings barely had influence on this evaluation criterion. Besides the accuracy of parameter estimates, we 
also considered the estimation precision. The results suggest that compared with Lap1, other estimation methods produced 
more precise estimates, especially when the number of observed variables was 12. Increasing the number of observed 
variables or using a simpler model improved the average RMSE for all estimation methods. In general, the Lap2 estimation 
method exhibited similar estimation accuracy and precision with the AGHQ5 method, outperforming the AGHQ3 method 
and especially the Lap1 method.

Regarding computational efficiency, overall, the Lap1 method cost the least time (23.71 to 78.00 seconds per replication 
on average), followed by the Lap2 method (31.64 to 164.52 seconds), while the adaptive Gauss-Hermite quadrature methods 
required much longer time - over 270 seconds for AGHQ3 and more than 2100 seconds for AGHQ5 for all settings. Regarding 
the influence of the experimental factors, all the methods needed more time under the cross-loading conditions compared 
with the independent-clusters conditions. The computational time increased as the number of observed variables rose, 
except for the Lap1 method under the cross-loading conditions. The reason for this decrease is the need for additional 
iterations in the algorithm when using the Lap1 method in the cross-loading setting with 12 observed variables compared 
to 16 observed variables. It is worth mentioning that the simulation study in Bianconcini (2014) showed that Lap2 needs 
substantially more steps than AGHQ5, whereas our results show that they tend to converge within similar number of 
iterations.

To explain these computational results, it is useful to consider their relationship to the expression of the second-order 
Laplace approximation in terms of the unique quantities that are needed and the size of the sums included in the ap-
proximation. With an arbitrary four-dimensional model, the number of unique third derivatives of h f g(z) is at most 20 
and the number of unique fourth derivatives of h f g(z) is at most 35. The sums in Equation (8) consist of entries that are 
products of these derivatives and the entries of the inverse of H f g . When ignoring symmetries and zero entries, sum A 
with fourth-order derivatives has 44 = 256 entries, and sums B and C with third-order derivatives each have 46 = 4096
entries.

In Table 2, we present the number of unique derivatives that must be computed for each model we considered and 
the number of unique entries required in the sums of Equation (8). The number of unique entries does not change when 
increasing the number of observed variables for the independent-clusters model because the model structure remains the 
same. This means that the computational time is essentially a linear function of the number of observed variables. However, 
since the model structure changes for the cross-loading model when increasing the number of observed variables from 12 
to 16, there is an increased number of unique entries both for the derivatives and for the resulting sums. Nevertheless, the 
reduction in the number of entries is substantial compared to the unfiltered number since at most 28 out of the total 256 
of sum A, 322 of the total 4096 of sum B, and 214 of the total 4096 of sum C have to be computed. This illustrates that the 
number of derivatives that must be computed for these models is still quite small compared the total which explains the 
high computational efficiency of the second-order Laplace approximation. Note that the function h f g must be evaluated only 
once for each unique response pattern in the data for either the first- or second-order Laplace approximation whereas with 
adaptive quadrature it needs to be evaluated either 81 (AGHQ3) or 625 (AGHQ5) times for each unique response pattern in 
the data. As seen in the simulation study, this results in drastically increased computational time for adaptive quadrature 
relative to the Laplace approximations for the four-dimensional models considered.

In sum, the simulation study suggests that the Lap2 estimation method led to desirable outcomes in three aspects. First, 
unlike the Lap1 method, which suffered from non-convergence problems under some conditions, the Lap2 method achieved 
convergence in all the simulated data sets. Second, the Lap2 method yielded both accurate and precise parameter estimates, 
which was comparable to AGHQ5. Both Lap2 and AGHQ5 methods outperformed Lap1 and AGHQ3 methods in terms of 
parameter recovery. Third, the Laplace approximation methods greatly improved the computational speed compared to the 
adaptive Gauss-Hermite quadrature methods. Thus, we conclude that the Lap2 estimation method can produce satisfac-
tory parameter estimates with a substantial improvement of computational efficiency compared to adaptive Gauss-Hermite 
quadrature for estimation of multidimensional multiple group models.
8
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Table 3
Estimated latent means (se) of 2009 PISA mathematics literacy, 
reading literacy, and science literacy in Hong Kong (the reference 
group), Macao, Shanghai, and Chinese Taipei.

Mathematics Reading Science

Hong Kong 0 0 0
Macao -0.31 (0.03) -0.58 (0.02) -0.45 (0.02)
Shanghai 0.47 (0.03) 0.20 (0.03) 0.25 (0.03)
Chinese Taipei -0.07 (0.03) -0.50 (0.02) -0.32 (0.03)

4. Empirical illustration

4.1. Data and models

To illustrate the proposed estimation method and compare against alternatives, we utilized data from Hong Kong, Macao, 
Shanghai and Chinese Taipei in the 2009 Programme for International Student Assesment (Schleicher et al., 2009, PISA). PISA 
is a large-scale educational assessment run by the Organisation for Economic Co-operation and Development (OECD) which 
aims to measure student achievement in mathematics, reading, and science, and monitor the outcomes of education systems 
internationally. We estimated three-dimensional multiple group (i.e., four regions) independent-clusters graded response 
models, where the dimensions corresponded to mathematics literacy, reading literacy and science literacy. The total number 
of respondents were 21690 but we removed 18 of these due to excessive numbers of missing values. The sample sizes 
in each region were 4792 in Hong Kong, 5948 in Macao, 5113 in Shanghai and 5819 in Chinese Taipei. There were 35 
mathematics items, 100 reading items and 53 science items for a total of 188 items, out of which 176 items were binary 
scored and 12 were scored in three categories. Due to the PISA 2009 sampling design, each respondent only answered a 
subset of the total items included in the study and missing values are assumed missing at random. The average number of 
responses to the 188 total items was 54.55 across all regions. We simultaneously estimated the item parameters and the 
mean vectors and covariance matrices in each region using the item response data. Hong Kong was set as the reference 
group and the means and variances of the latent variable were not estimated in this group. The item parameters were 
considered invariant between regions. The model had nine free mean parameters, nine free variance parameters, 12 free 
covariance parameters, and 388 free item parameters, for a total of 418 parameters that were uniquely estimated.

4.2. Estimation settings

Estimation was done by maximizing the approximated log-likelihood, where the first-order Laplace (Lap1), second-order 
Laplace (Lap2) and adaptive Gauss-Hermite quadrature with 3, 5 and 13 quadrature points (AGHQ3, AGHQ5, and AGHQ13) 
were used for the integral approximations. The most accurate method out of these according to underlying theory is the 
AGHQ13 method, which has a fifth-order accuracy (Jin and Andersson, 2020). We thus used this as the reference method 
to compare the other methods against. The methods used the same starting values and estimation settings: tolerance of 
0.0001, step size 0.5 for the first 25 iterations, maximum update direction 0.25, and maximum number of iterations 500. 
The R package lamle was used for all methods. All methods converged successfully after 36 iterations.

4.3. Results

4.3.1. Estimated distribution parameters
The estimated mean vectors and associated standard errors from the Lap2 method are shown in Table 3, where Hong 

Kong is set as the reference group and thus has a mean vector of 0 and variances equal to 1. The estimated means indicate 
that Shanghai is the highest performing region overall. The performance in reading and science are the highest in Hong 
Kong and Shanghai. Macao and Chinese Taipei have similar profiles, with slightly lower mean estimates compared to Hong 
Kong in all domains. The estimated covariance matrix for the latent mathematics, reading, and science literacy indicate that 
the domains are highly correlated, with estimated correlations between 0.86 and 0.92 in the reference group Hong Kong. 
The results for the three other regions were similar to Hong Kong and the full results are provided as covariance matrices 
in the Appendix.

4.3.2. Computational efficiency and accuracy
The log-likelihood values, estimation times and the parameter estimates were obtained after convergence. The log-

likelihood values and estimation times are given in Table 4. These statistics reflect the results from the simulation study, in 
that the Lap1 method is the fastest but which approximates the log-likelihood the worst. Meanwhile, the Lap2 method is 
almost as fast as Lap1 while having a log-likelihood value that is very close to AGHQ13. Compared to AGHQ3, Lap2 improves 
both on the accuracy in terms of the log-likelihood value and the computational efficiency. AGHQ5 gives a log-likelihood 
value that is the closest to the reference AGHQ13, but the difference to Lap2 is small. The speed improvement of the Laplace-
based methods relative to the adaptive quadrature methods is not as great for this three-dimensional model because of the 
9
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Table 4
Log-likelihood values and estimation times in seconds for five estimation methods with 
the 2009 PISA data from Hong Kong, Macao, Shanghai, and Chinese Taipei.

Lap1 Lap2 AGHQ3 AGHQ5 AGHQ13

Log-likelihood -627557.7 -627402.9 -627426.6 -627405.3 -627404.7
Estimation time 532.3 608.5 1800.7 6031.8 99081.1

Note. Lap1 = first-order Laplace, Lap2 = second-order Laplace, AGHQ3/AGHQ5/AGHQ13 = 
adaptive Gauss-Hermite quadrature with 3, 5, or 13 quadrature points.

Fig. 3. Differences between parameter estimates obtained from Lap1, Lap2, AGHQ3, and AGHQ5, compared to parameter estimates from AGHQ13.

fewer number of total quadrature points needed with this model compared to a four-dimensional model. Nevertheless, the 
Lap2 method was almost three times faster than AGHQ3 and almost 10 times faster than AGHQ5 in estimation.

The log-likelihood values suggested that the methods provided slightly different results but this does not necessarily 
indicate if there are substantial differences in the parameter estimates from the different methods. To illustrate potential 
differences between the methods, we plotted the differences in the parameter estimates for Lap1, Lap2, AGHQ3 and AGHQ5 
when compared to the AGHQ13 method. These differences are provided in Fig. 3, showing that Lap1 has the largest differ-
ences to the AGHQ13 method, followed by AGHQ3, Lap2, and AGHQ5. Overall, the differences in parameter estimates are 
small for all methods, differing at most by 0.0408 in absolute value for Lap1, 0.0027 in absolute value for Lap2, 0.0144 in 
absolute value for AGHQ3, and 0.0009 in absolute value for AGHQ5. This indicates that all of the methods can be considered 
sufficiently accurate in terms of parameter recovery in this particular setting, which is a consequence of the fairly large 
number of item responses by each student.

5. Discussion

Estimation of generalized linear latent variable models is computationally demanding in high dimensions which hin-
ders their usage in many practical situations. In this study we implemented a second-order Laplace approximation method 
for estimation of generalized linear latent variable models with categorical observed variables and multiple groups. The 
practical consequences of our results are that the application of generalized linear latent variable models with high di-
mensionality is possible to do in situations with large sample sizes and with many parameters and that estimation time is 
reduced compared to alternative methods in other settings. In the numerical illustration, the second-order Laplace approxi-
mation method was highly computationally efficient compared to adaptive quadrature with three and five quadrature points 
per dimension. Meanwhile, the estimation accuracy was improved in relation to the first-order Laplace approximation and 
adaptive quadrature with three quadrature points while estimation accuracy was almost identical to that attained with five 
quadrature points. Since the second-order Laplace approximation has the same theoretical error rate as adaptive Gauss-
Hermite quadrature with four to six quadrature points (Jin and Andersson, 2020), the second-order Laplace approximation 
was substantially more efficient than adaptive Gauss-Hermite quadrature at the same level of theoretical accuracy with the 
examples used in this study.

The results of this study thus imply that the Laplace approximation has a computational efficiency far above that 
of adaptive quadrature using a number of quadrature points which provides the same theoretical error rate. For the 
four-dimensional models considered here, the second-order Laplace approximation was also more efficient than adaptive 
quadrature with three quadrature points, which has a lower theoretical error rate than the second-order Laplace approxi-
mation. Generally speaking, the efficiency advantage will be lower with fewer latent variables and the efficiency advantage 
will be greater with more latent variables. The computational advantage of the second-order Laplace approximation is how-
ever also dependent on the complexity of the model structure. The highest efficiency gains are realized when each observed 
variable is related to only a single latent variable out of many correlated latent variables. The lowest gains are realized when 
specifying an unrestricted model with uncorrelated latent variables.

Our results can guide the practical use of latent variable models in the following ways. First, compared to the regular 
Laplace approximation the second-order Laplace approximation is preferred for most situations due to the added estimation 
accuracy. An exception is for the case of complex models with many indicators where the second-order method may still 
10
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be too time-consuming to utilize. With the most commonly used model structures, the second-order Laplace approximation 
is however fast enough to support up to 12 correlated latent variables (Andersson and Xin, 2021) which should cover 
most settings in practice. Second, we argue that the second-order Laplace approximation is especially useful for cases when 
adaptive quadrature with four or more quadrature points is impossible to practically conduct. If adaptive quadrature with 
many quadrature points is possible to employ, the second-order Laplace approximation becomes less suitable since a higher 
accuracy can be attained with adaptive quadrature by increasing the number of quadrature points.

Compared to alternatives such as adaptive quadrature and simulation-based methods, the second-order Laplace is at-
tractive because of its high computational efficiency while maintaining a high accuracy. It is also attractive relative to the 
simulation-based methods due to the highly efficient computations of the log-likelihood and the observed information ma-
trix, which can be extremely time-consuming for simulation-based methods when the sample size is large. Downsides to 
using the second-order Laplace approximation are that the computational advantage reduces for complex models and that 
the method requires the computation of a considerable amount of higher-order derivatives that do not easily generalize 
for different measurement models. It is also not straightforward with the Laplace approximation or adaptive quadrature to 
utilize the independence structure of the latent variables to improve the efficiency, as is possible with regular numerical 
quadrature (Gibbons and Hedeker, 1992; Cai, 2010b). However, regular numerical quadrature is unfeasible when the number 
of correlated latent variables is larger than three.

Future avenues of research include supporting additional types of observed variables combined with the categorical 
observed variables considered here. For example, providing an efficient yet accurate method that supports combinations of 
continuous data, count data, ordinal data and nominal data would be ideal to have. In addition, extensions of the approach 
to support mixture models and additional latent variable distributions beyond the normal distribution are possible.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2023 .107710.
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