

Linear Quadra�c Control Using Model-Free
Reinforcement Learning
Farnaz Adib Yaghmaie, Fredrik Gustafsson and Lennart Ljung

The self-archived postprint version of this journal article is available at Linköping
University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-192951

N.B.: When citing this work, cite the original publication.
Adib Yaghmaie, F., Gustafsson, F., Ljung, L., (2023), Linear Quadratic Control Using Model-Free
Reinforcement Learning, IEEE Transactions on Automatic Control, 68(2), 737-752.
https://doi.org/10.1109/TAC.2022.3145632

Original publication available at:
https://doi.org/10.1109/TAC.2022.3145632
Copyright: Institute of Electrical and Electronics Engineers
https://www.ieee.org/
©2023 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the
IEEE.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-192951
https://doi.org/10.1109/TAC.2022.3145632
https://www.ieee.org/

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020 1

Linear Quadratic Control using Model-free
Reinforcement Learning

Farnaz Adib Yaghmaie, Fredrik Gustafsson, Fellow, IEEE , and Lennart Ljung, Fellow, IEEE

Abstract— In this paper, we consider Linear Quadratic
(LQ) control problem with process and measurement
noises. We analyze the LQ problem in terms of the av-
erage cost and the structure of the value function. We
assume that the dynamics of the linear system is unknown
and only noisy measurements of the state variable are
available. Using noisy measurements of the state variable,
we propose two model-free iterative algorithms to solve
the LQ problem. The proposed algorithms are variants of
policy iteration routine where the policy is greedy with
respect to the average of all previous iterations. We rigor-
ously analyze the properties of the proposed algorithms,
including stability of the generated controllers and con-
vergence. We analyze the effect of measurement noise on
the performance of the proposed algorithms, the classical
off-policy, and the classical Q-learning routines. We also
propose a model-building approach where a model of the
dynamical system is estimated and the optimal control
problem is solved assuming that the estimated model is the
true model. We use a benchmark to evaluate and compare
our proposed algorithms with the classical off-policy, the
classical Q-learning, and the policy gradient. We show that
our model-building approach performs nearly identical to
the analytical solution and our proposed policy iteration-
based algorithms outperform the classical off-policy and
the classical Q-learning algorithms on this benchmark but
do not outperform the model-building approach.

Index Terms— Linear Quadratic Control, Reinforcement
Learning

I. INTRODUCTION

Machine Learning (ML) has surpassed human performance
in many challenging tasks like pattern recognition [1] and
playing video games [2]. By recent progress in ML, specif-
ically using deep networks, there is a renewed interest in
applying ML techniques to control dynamical systems in-
teracting with a physical environment [3], [4] to do more
demanding tasks like autonomous driving, agile robotics [5],
solving decision-making problems [6], etc.

Adaptive control studies data-driven approaches for con-
trol of unknown dynamical systems [7], [8]. If we combine
adaptive control with optimal control theory, it is possible to
control unknown dynamical systems adaptively and optimally.

Farnaz Adib Yaghmaie is supported by the Vinnova Competence Cen-
ter LINK-SIC and by the Wallenberg Artificial Intelligence, Autonomous
Systems and Software Program (WASP).

Farnaz Adib Yaghmaie, Fredrik Gustafsson and Lennart Ljung
are with Department of Electrical Engineering, Linköping Univer-
sity, Linköping, Sweden (email: email: farnaz.adib.yaghmaie@liu.se,
fredrik.gustafsson@liu.se, lennart.ljung@liu.se).

Reinforcement Learning (RL) refers to a class of such routines
and its history dates back decades [9], [10]. By recent progress
in ML, specifically using deep networks, the RL field is also
reinvented. RL algorithms have recently shown impressive
performances in many challenging problems including playing
Atari games [2], agile robotics [5], control of continuous-time
systems [3], [11]–[17], and distributed control of multi-agent
systems [18], [19].

In a typical RL setting, the model of the dynamical system
is unknown and the optimal controller is learned through
interaction with the dynamical system. One possible approach
to solve an RL problem is the class of Dynamic Programming
(DP)-based solutions, also called Temporal Difference (TD)
learning, where the idea is to learn the value function by
minimizing the Bellman error [20]. The celebrated Q-learning
algorithm belongs to this class [21]. Least Squares Temporal
Difference learning (LSTD) [21], [22] refers to the case where
the least-squares is used to minimize the TD error. Another
class contains policy search algorithms where the policy is
learned by directly optimizing the performance index. Ex-
amples are policy-gradient methods that use sampled returns
from the dynamical system [23] and actor-critic methods that
use estimated value functions in learning the policy [24]. In
the control community, adaptive control is used for optimal
control of the unknown system by first estimating (possibly
recursively) a model [25], [26] and then, solving the optimal
control problem using the estimated model [8]. This category
of solutions is called model-based RL in the RL community
but we coin the term model-building RL to emphasize that no
known/given model is used or assumed.

As the scope of RL expands to more demanding tasks, it is
crucial for the RL algorithms to provide guaranteed stability
and performance. Still, we are far away from analyzing the RL
algorithms because of the inherent complexity of the tasks and
deep networks. This motivates considering a simplified case
study where analysis is possible. Linear Quadratic (LQ) prob-
lem is a classical control problem where the dynamical system
obeys linear dynamics and the cost function to be minimized
is quadratic. The LQ problem has a celebrated closed-form
solution and is an ideal benchmark for studying and comparing
the RL algorithms because firstly, it is theoretically tractable
and secondly, it is practical in various engineering domains.

Because of the aforementioned reasons, the LQ problem
has attracted much attention from the RL community [14],
[27]–[29], see [30] for a complete survey on RL approaches
and properties for the LQ problems. For example, [15], [16]

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

TABLE I: Notation and abbreviations.

The subscript k The time step
The superscript i The iteration index of algorithm
The superscript ∗ The optimal value of the superscripted quantity
xk, uk, yk The state, control and output at k
(A,B) System dynamics
rk = yTk Ryyk + uTkRuuk The running cost associated with yk, uk
wk, vk, ηk The process, measurement and probing noises at k
Ww, Wv , Wη The covariances of the process, measurement and probing noises
Ki, Li = A+BKi, λi The policy gain at iteration i, the closed-loop dynamics and the average cost using Ki

V i, P i The value function and its quadratic kernel associated with Ki

Qi, Gi The quality function and its quadratic kernel associated with Ki

V̂ i, Q̂i, P̂ i, Ĝi, λ̄i The estimations of V i, Qi, P i, Gi and the empirical estimation of λi
I, 0 The identity and zero matrices with appropriate dimensions
P > 0(P ≥ 0) P ∈ Rn×n is (semi) positive definite
µ(P), µ(P), ρ(P), Tr(P) An eigenvalue, the minimum eigenvalue, the spectral radius and the trace of P ∈ Rn×n
vec(A) = [aT1 , a

T
2 , ..., a

T
m]T The vectorization of matrix A = [a1, ..., am], ai ∈ Rn, i = 1, ...,m

vecs(P) = [p11, ..., p1n, p22 , ..., p2n, ..., pnn]T The vectorization of the upper-triangular part of a symmetric matrix P ∈ Rn×n
vecv(v) = [v21 , 2v1v2, ..., 2v1vn, v

2
2 , ..., 2v2vn, ..., v2n]T The quadratic vector of the vector v ∈ Rn

⊗ The Kronecker product

study the Linear Quadratic Regulator (LQR) control problems
in completely deterministic setups via LSTD. Global con-
vergence of policy gradient methods for deterministic LQR
problem is shown in [31]. Considering a stochastic setup is
more demanding [14], [27]–[29]. In [14], a stochastic LQ
problem with state- and control-dependent process noise is
considered. The authors assume that the noise is measurable
and propose an LSTD approach to solve the optimal control
problem. In [27], the authors give LSTD algorithms for the
LQ problem with process noise and analyze the regret bound,
i.e. the difference between the occurred cost and the optimal
cost. The regret bound is also studied in [32] for a model-
building routine. The sample complexity of the LSTD for the
LQ problem is studied in [29] and the gap between a model-
building approach and a model-free routine is analyzed in [33].
In [28], a model-building approach, called coarse ID control,
is developed to solve the LQ problem with process noise and
sample complexity bounds are derived. The idea of coarse-ID
control is to estimate the linear model and the uncertainty,
and then to solve the optimal control problem using the
information of the model and uncertainty. A convex procedure
to design a robust controller for the LQ problem with unknown
dynamics is suggested in [34]. The total cost to be optimized
in the LQ problem or in general in RL can be considered
as the average cost [33] or discounted cost [16], [29] and
it is a design parameter. If the cost is equally important at
all times, for example, the cost is energy consumption, one
may consider an average cost setting. If the immediate costs
are more important, one may consider a discounted cost. In a
discounted setting, one needs to select the discounting factor
carefully to prevent loss of stability while this can be avoided
by considering the average cost.

In all the aforementioned results, only process noise is con-
sidered in the problem formulation. In practice, both process
and measurement noises appear in the dynamical systems and
one should carefully consider the effect of measurement noise.
This is particularly important in feedback controller design,
where only a noisy measurement of the output is available
for the control purpose. When a model-free approach is used

to control the system, it is not possible to use a filter, e.g. a
Kalman filter, to estimate the state variable because the dynam-
ics of the system is unknown. Reference [35] considers both
process and measurement noises in the problem formulation
but only stability of the generated policy is established and the
effect of measurement noise is not studied. A closely related
topic is RL for Partial Observable Markov Decision Processes
(POMDP), where the state is only partially observable [36]–
[38]. The references [36], [37] consider LQ systems with
both process and observation noises and propose algorithms
to estimate the model of the dynamical system and to learn
a near optimal controller via gradient descent. [38] considers
noise-free LQ problem and proposes to use a history of input-
output data in the controller design.

In this paper, we focus on Dynamic Programming-based
RL routines to solve LQ problem. There is much research
on RL algorithms for LQ problem assuming that the state
variable is exactly measurable [15], [16], [27], [29]. We take
one step further and replace the state with a noisy measurement
of the state; i.e. the output. There are two contributions to
this paper. Our first contribution is to study the LQ problem
in terms of the average cost and the structure of the value
function. Our second contribution is to propose two model-
free Dynamic Programming-based RL algorithms and analyze
their properties. We study the effect of measurement noise
in the proposed algorithms and the classical off-policy and
the classical Q-learning routines. Such a discussion is absent
in [35]. Moreover, we provide the convergence proof for the
proposed algorithms while such a discussion in a simpler setup
in [27] is missing. We also propose a model-building RL
which can be easily extended to cover the partially observable
dynamical systems. We leave the analysis of such model-
building approaches for our future research. We would like
to stress that the solutions we discuss (including the model-
building one) are all in the model-free family of classical RL.
The only information about the data generation that is used is
that the outputs come from a linear system of known order;
no known model is assumed to generate the data.

The rest of the paper is organized as follows. In Section

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 3

II, we define the stochastic linear quadratic problem and
discuss the analytical model-based solution. In Section III, we
define the value and quality functions for the LQ problem. In
Section IV, we present two model-free algorithms to solve the
LQ problem. In Section V, we analyze the properties of the
proposed algorithms like stability of the generated controllers,
convergence, and the bias in the estimations. Anyone not
interested in the theoretical details can skip this section.
In Section VI, we give the simulation result and compare
our proposed algorithms with the classical model-free RL
approaches and the model-building approach. In Section VII,
we conclude the paper. To be self-contained, we bring the
classical off-policy learning, the classical Q-learning and the
model-building approach in Appendix I. The proofs of all
theorems and lemmas are given in Appendix II. We have
summarized the notations and abbreviations in Table I. The
reader may refer to this table to find the frequently used
notations.

II. LINEAR QUADRATIC PROBLEM

A. Linear Gaussian dynamical systems

Consider a linear Gaussian dynamical system

xk+1 = Axk +Buk + wk, (1)
yk = xk + vk, (2)

where xk ∈ Rn and uk ∈ Rm are the state and the control
input vectors respectively. The vector wk ∈ Rn denotes
the process noise drawn i.i.d. from a Gaussian distribution
N (0,Ww). The state variable xk is not measurable and the
output yk ∈ Rn in (2) denotes a noisy measurement of the
state xk where vk ∈ Rn is the measurement noise drawn i.i.d.
from a Gaussian distribution N (0,Wv) where Wv is diagonal.

The model (A,B) is unknown but stabilizable. The model
order n is assumed to be known. The measurements yk, uk can
be used to form the next output in order to achieve a specific
goal of the control. When the control input uk is selected as
a function of the output yk, it is called a policy. In this paper,
we design stationary policies of the form uk = Kyk to control
the system in (1)-(2). Let L := A+ BK. The policy gain K
is stabilizing if ρ(L) < 1.

B. The Linear quadratic optimal control problem

We define the quadratic running cost as

r(yk, uk) = rk = yTk Ryyk + uTkRuuk (3)

where Ry ≥ 0 and Ru > 0 are the output and the control
weighting matrices respectively. The average cost associated
with the policy uk = Kyk is defined by

λ(K) = lim
τ→∞

1

τ
E[

τ∑
t=1

r(yt,Kyt)] (4)

which does not depend on the initial state of the system [9].
For the dynamical system in (1)-(2), we define the value

function [9] (or bias function [39]) associated with a given
policy uk = Kyk

V (yk,K) = E[

+∞∑
t=k

(r(yt,Kyt)− λ(K))|yk] (5)

where the expectation is taken with respect to wk, vk.
Problem 1: Consider the dynamical system in (1)-(2). De-

sign the gain K∗ such that the policy K∗yk minimizes (5).

In this paper, we are interested in optimizing (5). The value
function (5) quantifies the quality of transient response using
uk = Kyk. Because of the presence of stationary process and
measurement noises in (1)-(2), the controller uk = Kyk results
in a permanent average cost which is represented by λ(K).
In the next section, we will show that λ(K) is a function of
Ww, Wv and has a nonzero value if the process noise or the
measurement noise, or both are present. By subtracting λ(K)
in (5), we end up with the transient cost or the controller cost.
We will also prove in Lemma 1 that minimizing V (yk,K) is
equivalent to an LQR problem and can be solved through an
Algebraic Riccati Equation (ARE).

Another relevant problem is the classical Linear Quadratic
Gaussian (LQG) problem which optimizes the average cost
(4):

Problem 2 (LQG): Consider the dynamical system in (1)-
(2). Design the controller uk(y1, ..., yk) to minimize (4).
The optimal controller for Problem 2 is uk = KLQRx̂k|k
where x̂k|k is a posteriori state estimation at time k given
observations (y1, ..., yk) [8]. The cost to be minimized in the
LQG problem contains two parts: 1- The Linear Quadratic
Regulator (LQR) cost and 2- the mean-square state estimation
error. The LQR cost measures the quality of transient response.
The KLQR minimizes the LQR cost and it is obtained from
ARE using (A,B,Ry, Ru). The mean-square error of the state
estimation x̂k|k is minimized by the means of a Kalman Filter
where the Kalman gain depends on (A,B,Ww,Wv). We will
show in Lemma 1 that solving Problem 1 is equivalent to
solving the LQR problem with K∗ ≡ KLQR.

In the next result, we show that the solution to Problem 1
can be found from a standard ARE machinery if a model of
the true system is known. The proof of Lemma 1 is given in
Appendix II-A.

Lemma 1: Consider Problem 1 and (1)-(5). The optimal
policy gain K∗ is

K∗ = −(Ru +BTP ∗B)−1BTP ∗A (6)

where P ∗ > 0 is the solution to the ARE

ATP ∗A− P ∗ −ATP ∗B(BTP ∗B +Ru)−1BTP ∗A

+Ry = 0.
(7)

The average cost associated with K∗ is given by

λ(K∗) =Tr(K∗TBTP ∗BK∗Wv) + Tr(P ∗(Ww +Wv))

− Tr((A+BK∗)TP ∗(A+BK∗)Wv). (8)

Remark 1: Lemma 1 states that Problem 1 is equivalent to
the classical LQR problem and the solution can be found from

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

Algorithm 1 Model-based LQ [40]

1: Initialize: Select a stabilizing policy gain K1, set i = 1.
2: for i = 1, ..,N do
3: Find P i from the model-based Bellman equation

(A+BKi)TP i(A+BKi)− P i +Ry

+KiTRuK
i = 0.

(10)

4: Update the policy gain

Ki+1 = −(Ru +BTP iB)−1BTP iA. (11)

a standard ARE machinery. We explain this point intuitively:
The process and measurement noises result in a permanent
average cost. We take away the effect of the process and
measurement noises by subtracting the average cost in (5).
This leaves us with the transient cost or the controller cost
which can be optimized through the ARE in (7). Also, note
that we can cast solving Problem 1 to minimizing the regret
function. The regret framework Ruk evaluates the quality of a
policy uk by comparing its running cost to a baseline b [30]

Ruk =

+∞∑
t=1

rk − b. (9)

Let b := λ(K) in (4) represent the baseline. Then the regret
framework in (9) is indeed equivalent to the value function in
(5), and minimizing V with respect to K (Problem 1) is cast
to minimizing the regret function.

C. Iterative model-based approach for the LQ problem

According to Lemma 1, the solution to Problem 1 can be
found from the ARE in (7). If the dynamics is known, one can
use the Hewer’s method [40] in Algorithm 1. The algorithm
is initiated with a stabilizing gain. In each iteration, the gain
is evaluated by solving the model-based Bellman equation in
(10). Then, using the solution to the Bellman equation, the
gain will be improved. It has been proved in [40] that Ki

converges to KLQR.

III. VALUE AND QUALITY FUNCTIONS

In this paper, we will present two iterative model-free
algorithms to solve Problem 1. Our algorithms rely on the
evaluation of a policy gain K which is done by finding its
associated value function V (defined in Subsection II-B) or
quality function Q (to be defined in this section).

A. Value function V

The value function is defined in (5). Using (5), the value-
based Bellman equation reads

V (yk,K) = r(yk,Kyk)− λ(K) + E[V (yk+1,K)|yk]. (12)

It is straight forward to show that the value function
associated with a linear policy is quadratic and it is equivalent
to the model-based Bellman equation (10):

Lemma 2 ([35]): Consider (1)-(5). Assume that the policy
gain K is stabilizing. Then, V (yk,K) = yTk Pyk where P > 0
satisfies

(A+BK)TP (A+BK)− P +Ry +KTRuK = 0 (13)

and the average cost is given by

λ(K) = Tr(KTBTPBKWv) + Tr(P (Ww +Wv)) (14)

− Tr((A+BK)TP (A+BK)Wv).

Proof: See the proof of Lemma 1 in [35].

B. Quality Q function
Along with the value function (5), it is also handy to define

the Quality (Q) function. Let zk = [yTk , u
T
k]T . The Q function

is equal to the expected return cost for taking an action uk at
time k and then following the existing policy Kyk

Q(yk, uk,K) = r(yk, uk)− λ(K) + E[V (yk+1,K)|zk].
(15)

Note that (15) is indeed the quality-based Bellman equa-
tion. The value function V (yk,K) can be obtained from
Q(yk, uk,K) by selecting uk = Kyk

V (yk,K) = Q(yk,Kyk,K). (16)

Lemma 3: Consider (1)-(5) and (15). Assume that the pol-
icy gain K is stabilizing. Then, Q(zk,K) = zTk Gzk where
G ≥ 0 is a solution to[

AT

BT

] [
I KT

]
G

[
I
K

] [
A B

]
−G+

[
Ry 0
0 Ru

]
= 0,

(17)

and the average cost is given by

λ(K) =Tr(KTBT
[
I KT

]
G

[
I
K

]
BKWv)

+ Tr(
[
I KT

]
G

[
I
K

]
(Ww +Wv))

− Tr(LT
[
I KT

]
G

[
I
K

]
LWv).

(18)

Lemma 4: Consider (1)-(5) and (15). Assume that the pol-
icy gain K is stabilizing. Then, the quality-based Bellman
equation (15) is equivalent to the model-based Bellman equa-
tion (10); that is the solutions are the same.
The proofs of Lemmas 3-4 are given in Appendices II-B-II-C.

IV. PROPOSED MODEL-FREE ALGORITHMS

In this section, we present two model-free iterative algo-
rithms to solve Problem 1. At a high level, each of these algo-
rithms is a variant of policy iteration routine. Each algorithm
iterates N times over two steps: 1- policy evaluation and 2-
policy improvement. The policy is evaluated by finding the
associated value function or Q function, and the average cost.
The improved policy is then selected to be greedy with respect
to the average of all previously estimated value or Q functions.
The number of iterations N is a design variable, often a small
number.

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 5

Algorithm 2 Average Off-policy Learning

1: Initialize: Select a stabilizing policy gain K1, set i = 1.
2: for i = 1, ..,N do
3: Execute Kiyk for τ rounds and estimate P̂ i, λ̄i from

(21)-(22).
4: Z =CollectData(Ki, τ ′, τ ′′,Wη).
5: Estimate ξ̂i by (27) using Z .
6: Update the policy gain Ki+1 by (28).

Algorithm 3 CollectData

Input: K, τ ′, τ ′′, Wη .
Output: Z .
Z = {}.
for t = 1, .., τ ′ do

Execute Ky for τ ′′ rounds and observe y.
Sample η ∼ N (0,Wη) and set u = Ky + η.
Take u and observe y+.
Add (y, u, y+) to Z .

A. Average off-policy learning

Our first routine is called average off-policy learning in
Algorithm 2. This routine is given in [35] but its properties are
not discussed. We analyze the properties in Subsection V-A.

The algorithm is initiated with a stabilizing policy gain K1

in Line 1. Then, the algorithm iterates N times in Line 2
over the policy evaluation and the policy improvement steps.
The policy evaluation step is given in Line 3 and discussed
in Subsubsection IV-A.1. The policy gain Ki is evaluated by
estimating its associated value function and average cost. The
policy improvement step is given in Lines 4-6 and discussed
in Subsubsection IV-A.2.

1) Policy evaluation:
Line 3: Considering V i(yk,K

i) = yTk P
iyk, the value-based

Bellman equation (12) reads

rk − λi = (Φk − Φk+1)T vecs(P i) + n1 (19)

where

Φk = vecv(yk), rk = r(yk,K
iyk),

n1 = yTk+1P
iyk+1 −E[yTk+1P

iyk+1|yk].
(20)

To estimate P i and λi, we execute Kiyk and collect τ samples
of the output yk. We use the empirical average cost from τ
samples, as an estimate of λi

λ̄i =
1

τ

τ∑
t=1

rt. (21)

The average-cost LSTD estimator of P i is given by [39]

vecs(P̂ i) = (

τ∑
t=1

Φt(Φt − Φt+1)T)
−1

(

τ∑
t=1

Φt(rt − λ̄i)).

(22)

2) Policy improvement: We find the improved policy gain
by the concept of off-policy learning. The idea is to apply a
behavioral policy uk to the system while learning the target (or
optimal) policy Kiyk. Note that the behavioral policy should
be different from the target policy. Define the behavioral policy
as uk = Kiyk + ηk where we sample ηk from N (0,Wη) at
each time k and Wη is the covariance of probing. Using the
behavioral policy, the closed-loop system of (1) reads

yk+1 =Axk +Buk + wk + vk+1 (23)

=Lixk +B(uk −Kiyk) +BKivk + wk + vk+1.

Using the above equation, we can obtain the off-policy Bellman
equation

yTk (Ry +KiTRuK
i − P i)yk + E[yTk+1P

iyk+1|yk]− λi

= 2(uk −Kiyk)TBTP iAyk

+ (uk +Kiyk)TBTP iB(uk −Kiyk). (24)

We will show in Theorem 1 that (24) is equivalent to the
model-based Bellman equation (10). We can write (24) as a
linear regression

ck = ΥT
k ξ

i + n2 (25)

where

ck = yTk (Ry +KiTRuK
i − P̂ i)yk + yTk+1P̂

iyk+1 − λ̄i,

Υk =

[
2yk ⊗ (uk −Kiyk)

vecv(uk)− vecv(Kiyk)

]
,

ξi =

[
vec(BTP iA)
vecs(BTP iB)

]
, (26)

n2 = yTk+1P̂
iyk+1 −E[yTk+1P

iyk+1|yk] + yTk P
iyk − yTk P̂ iyk.

In (25), ξi is the parameter vector to be estimated and ck and
Υk are known using the collected data.
Line 4: To estimate ξi, we run the CollectData routine
in Algorithm 3 to collect τ ′ sample points. The procedure is
as follows: First, the policy Kiyk is applied for τ ′′ rounds to
ensure that E[xk] = 0 and the output yk is sampled. Then,
we sample a random action ηk from ηk ∼ N (0,Wη). We
apply the action uk = Kiyk + ηk and sample the next output
yk+1. This builds one data point (yk, uk, yk+1). We repeat this
procedure and collect τ ′ data points.
Line 5: The estimation of ξi is given by

ξ̂i = (

τ ′∑
t=1

ΥtΥ
T
t)
−1

(

τ ′∑
t=1

Υtct). (27)

Line 6: Using ξ̂i, we now obtain the improved policy. Let
Hi := BTP iA and N i := BTP iB, and let Ĥi and N̂ i be
their estimates using (27) (see (26)-(27)). The improved policy
is selected to be greedy with respect to the average of all
previously estimated value functions

Ki+1 = −(

i∑
j=1

(N̂ j +Ru))−1(

i∑
j=1

Ĥj). (28)

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

B. Average Q-learning
Our second routine is called average Q-learning in Algo-

rithm 4. Similar to the average off-policy learning in Subsec-
tion IV-A, the average Q-learning is a policy iteration routine.
Different from the average off-policy learning, the policy is
evaluated by finding the Q function. The algorithm is an
extended version of the Model-Free Linear Quadratic control
(MFLQ) in [27] to accommodate the effect of observation
noise. In [27], only process noise is present and the average
cost is parameterized based on the covariance of the process
noise. Such an approach is not possible here because the
average cost depends on the process and observation noises,
and the dynamics of the system. Note that there is no proof of
convergence for the MFLQ algorithm in [27]. We give a proof
of convergence for Algorithm 4 in Subsection V-B which is
also applicable to the MFLQ algorithm in [27].

The algorithm is initiated with a stabilizing policy gain K1

in Line 1. Then, the algorithm iterates N times in Line 2
over the policy evaluation and the policy improvement steps.
The policy evaluation step is given in Lines 3-5 and discussed
in Subsubsection IV-B.1. The policy gain Ki is evaluated by
estimating its associated Q function and average cost. The
policy improvement step is given in Line 6 and discussed in
Subsubsection IV-B.2.

1) Policy evaluation: We evaluate the policy gain Ki by
finding the quadratic kernel Gi of the Q function and the
average cost λi.
Line 3: We execute Kiyk and collect τ samples of the output
yk and then we estimated P i and λi from (21)-(22).
Line 4: We run CollectData routine in Algorithm 3 to
collect τ ′ sample points.
Line 5: Considering Qi(zk,Ki) = zTk G

izk, the quality-based
Bellman equation (15) can be written as

c′k = ΨT
k vecs(Gi) + n3 (29)

where

c′k = r(yk, uk)− λ̄i + yTk+1P̂
iyk+1,

Ψk = vecv(zk), zk = [yTk , u
T
k]T ,

n3 = yTk+1P̂
iyk+1 −E[yTk+1P

iyk+1|zk].

(30)

We estimate Gi using τ ′ sample points collected in Line 5

vecs(Ĝi) = (

τ ′∑
t=1

ΨtΨ
T
t)
−1

(

τ ′∑
t=1

Ψtc
′
t). (31)

2) Policy improvement:
Line 6: Let partition matrix Ĝi as

Ĝi =

[
Ĝi11 Ĝi12
ĜiT12 Ĝi22

]
(32)

such that Ĝi11 ∈ Rn×n, Ĝi12 ∈ Rn×m, Ĝi22 ∈ Rm×m. The
improved policy is selected to be greedy with respect to the
average of all previously estimated Q functions

Ki+1 = arg min
a

1

i

i∑
j=1

Q̂j(yk, a) =

i∑
j=1

−(Ĝj22)−1ĜjT12 .

(33)

Algorithm 4 Average Q-learning

1: Initialize: Select a stabilizing policy gain K1, set i = 1.
2: for i = 1, ..,N do
3: Execute Kiyk for τ rounds and estimate P̂ i, λ̄i from

(21)-(22).
4: Z =CollectData(Ki, τ ′, τ ′′,Wη).
5: Estimate Ĝi from (31) using Z .
6: Update the policy gain Ki+1 by (33).

Remark 2: In Appendices I-A-I-B, we bring two classical
model-free algorithms, namely the classical off-policy learning
(Algorithm 5) and Q-leaning (Algorithm 6). We also give
a model-building approach (Algorithm 8) using the same
information as the RL schemes in Appendix I-C.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

The aim of this section is to analyze properties of the
proposed algorithms and compare them with the classical off-
policy and the classical Q-learning routines. The reader may
refer to Appendix I for overviews of the classical off-policy,
the classical Q-learning and the model-building approaches.

There are two main differences between our proposed
routines in Algorithms 2 and 4, and the classical off-policy
and the classical Q-learning routines in Algorithms 5 and 6:
1) We use Algorithm 3 to collect data for estimation. The main
feature of this algorithm is that it runs the dynamics for τ ′′

steps before collecting a sample data point. It helps us to have
independent sample points and E[xk] = 0. 2) The policy is
greedy with respect to the average of all previously estimated
value functions rather than the last value function. This causes
the gain to adapt slowly towards its optimal value. However
if the estimation of the value function is poor (so it is away
from its correct value), it helps us to avoid getting an unstable
controller gain. This feature has a positive effect when the
trajectory length to estimate the value or Q function is short.

A. Properties of Average off-policy learning
Theorem 1 ([35]): The off-policy Bellman equation (24)

is equivalent to the model-based Bellman equation (10).
Theorem 2 ([35]): Assume that the estimation errors in

(22) and (27) are small enough. Then, Algorithm 2 produces
stabilizing policy gains Ki+1, i = 2...,N.

Theorem 3: Assume that the estimation errors in (22) and
(27) are small enough. Then, the sequence of P i, i = 1, ...,N
associated with the controller gain Ki, i = 1, ...,N generated
in Algorithm 2 is converging P ∗ ≤ P i+1 ≤ P i ≤ P 1.
The off-policy Bellman equation is given in (24). In both
the average off-policy learning and the classical off-policy
learning, the solution to this equation is found by estimating
P i, BTP iA and BTP iB. In the classical off-policy learning
P i, BTP iA and BTP iB are estimated at the same time, see
(35)-(36). In the average off-policy learning, we solve (24) by
first estimating the quadratic kernel of the value function; i.e.
P i and then, the matrices BTP iA and BTP iB are estimated
by running the CollectData routine in Algorithm 3. In the
sequel, we show that the estimation of P i in (22) is biased and

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 7

as a result, the average off-policy learning routine in Algorithm
2 is biased. But if this bias in the estimation of P i is near zero,
the average off-policy learning returns an unbiased estimate.

Lemma 5: Consider Problem 1 and the estimation problem
in (19)-(22). The LSTD estimate of P̂ i in (22) is biased by
an amount that is related to the correlation between the noise
n1 in (20) and the square of yk.

Theorem 4: Consider Problem 1 and the estimation prob-
lem in (25)-(27). Assume that we run Algorithm 3 to collect
data to find the estimated solution ξ̂i in (27). The estimate
ξ̂i in (27) in the average off-policy learning is biased and the
bias in ξ̂i is proportional to the bias in P̂ i in (22). If the bias
in P̂ i is negligible, the estimate ξ̂i is unbiased.

Lemma 6: Consider Problem 1 and the estimation problem
in (34)-(36). The estimated solution $i in (36) in the classical
off-policy learning is biased by an amount that is related to the
correlation between n1 and yk, and the correlation between n1
and the square of yk where n1 is the noise in (35).
The proofs of Theorems 3-4 and Lemmas 5-6 are given in
Appendices II-D-II-G.

B. Properties of Average Q-learning

Based on Lemma 4 and Theorems 1-3, the following
corollaries are concluded immediately.

Corollary 1: Assume that the estimation errors in (22) and
(31) are small enough. Then, Algorithm 4 produces stabilizing
policy gains Ki+1, i = 2...,N.

Corollary 2: Assume that the estimation errors in (22) and
(31) are small enough. Then, the sequence of P i, i = 1, ...,N
associated with the controller gain Ki, i = 1, ...,N generated
in Algorithm 4 is converging P ∗ ≤ P i+1 ≤ P i ≤ P 1.

The quality-based Bellman equation is given in (15). In the
average Q-learning, we solve this equation by first estimating
P i and then, estimating Gi by collecting data according to
the CollectData routine in Algorithm 3. In comparison, the
classical Q-learning algorithm estimates the kernel Gi directly,
without going through the estimation of P i. Both algorithms
return biased estimates.

Lemma 7: Consider Problem 1 and the estimation problem
in (29)-(31). Assume that we run Algorithm 3 to collect data
for the estimation of Gi in (31). The estimate (31) in the
average Q-learning is biased by an amount that is related to
the average of noise n3 in (30), the correlation between n3
and yk, and the correlation between n3 and the square of yk.

Lemma 8: Consider Problem 1 and the estimation problem
in (38)-(40). The estimated solution Gi in (40) in the classical
Q-learning is biased by an amount that is related to the
correlation between n4 and yk, and the correlation between
n4 and the square of yk where n4 is the noise in (39).

Remark 3: It is not possible to compare the bias terms in
the average Q-learning and the classical Q learning, as they
contain different terms that are not comparable.

Remark 4: Setting vk ≡ 0 and Wv ≡ 0 in the proofs of
Lemmas 5-8 and Theorem 4, it is easy to verify that in the
absence of measurement noise, all estimates in Algorithms 2,
4, 5, 6 are unbiased.
The proofs of Lemmas 7-8 are given in Appendices II-H-II-I.

C. Computational complexity

TABLE II: Computational complexity in each iteration of
Algorithms 2, 4-6, and 8. d : the number of parameters
to be estimated, n, m : the dimensions of the state and
the input, τ : the rollout length, and τ ′ : the exploration
length in CollectData in Algorithm 3 (only for the average
off-policy and the average Q-learning routines).† The (n2)
parameters in the model-building approach are only estimated
if the open-loop system is unstable.

Algorithm 2- The average off-policy learning
d : (n+m)(n+m+ 1)/2
Complexity: O(n4τ) +O((m4 + 4m2n2 + 4m3n)τ ′)

Algorithm 4- The average Q-learning
d : (n+m)(n+m+ 1)/2 + n(n+ 1)/2
Complexity: O(n4τ) +O((n+m)4τ ′)

Algorithm 5- The classical off-policy learning in App. I-A
d : (n+m)(n+m+ 1)/2
Complexity: O((n+m)4τ)

Algorithm 6- The classical Q-learning in App. I-B
d : (n+m)(n+m+ 1)/2
Complexity: O((n+m)4τ)

Algorithm 8- The model-building approach in App. I-C

d : n2 + nm+ (n2)†

Let d denote the number of parameters to be estimated. In
the average off-policy, the classical off-policy and the classical
Q-learning, we estimate the same number of parameters d =
(n+m)(n+m+1)/2 but we need to estimate n(n+1)/2 more
parameters in the average Q-learning, so d = (n+m)(n+m+
1)/2 + n(n+ 1)/2. In the model-building approach, we need
to estimate n2 + nm parameters in (A,B). If the open-loop
system is unstable, it is also required to estimate n2 parameters
of the so-called disturbance model which are denoted by the
superscript † in the corresponding cell in Table II.

In each iteration of model-free algorithms, we solve one or
more linear regression problems with solutions like (22). Con-
sidering d as the number of parameters and τ as the number
of samples, the complexity of (22) for τ >> d is O(d2τ)
[41]. Table II summarizes the computational complexities of
the estimations in each iteration of the routines where we have
simplified the complexity terms and kept the dominant terms
only.

For the sake of comparison, assume τ ′ = τ . According
to Table II, the average off-policy learning has a lower com-
plexity in compared to the classical off-policy and Q-learning
algorithms. To see this point, note that the complexity O(d2τ)
is quadratic in the number of parameters d. In the average off-
policy learning, these d = (n + m)(n + m + 1)/2 unknown
parameters are estimated in two parts: first n(n + 1)/2 pa-
rameters are estimated in (22) and then, nm + m(m + 1)/2
parameters are estimated in (27). So, the overall complexity
of the average off-policy learning is O((n(n + 1)/2)2τ) +
O((mn+m(m+1)/2)2τ ′). In the classical off-policy and Q-
learning algorithms all d = (n+m)(n+m+ 1)/2 parameters

8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

are estimated at the same time which has the higher complexity
O(((n+m)(n+m+ 1)/2)2τ).

The complexity of the model-building approach can be
difficult to establish. For example, the command SSEST in
MATLAB initializes the parameter estimation using a nonit-
erative subspace approach where the numerical calculations
consist of a QR factorization and an SVD (Singular Value
Decomposition). It then refines the parameter values iteratively
using the prediction error minimization approach (see section
10.7 of [25]). One can also use total least squares [42] to
estimates the dynamics [35]. For this, one needs to find
Singular Value Decomposition of a matrix of order τ × (n2 +
nm + 1). For τ >> d, the complexity of the computation is
O(2(n2 +mn+ 1)2τ + 11(n2 +mn+ 1)3) [42].

VI. SIMULATION RESULTS

We consider an idealized instance of data center cooling
with three sources coupled to their own cooling devices with
the following dynamics [23], [27], [28]

xk+1 =

1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

xk +

1 0 0
0 1 0
0 0 1

uk + wk,

yk = xk + vk,

and the quadratic running cost

r(yk, uk) = 0.001yTk yk + uTk uk.

Let Ww = I, Wv = I . We select the initial state of the
system as zero. We set the initial stabilizing policy gain K1 for
all algorithms by solving a modified ARE(A,B, 200Ry, Ru).
We set the covariance of the probing noise as Wη = I . If
an algorithm produces an unstable controller gain, we assign
an infinite cost to that iteration and algorithm, and restart the
system. Let τ and N denote the rollout length and the number
of iterations in Algorithms 2, 4, 5, 6.
Average off-policy learning: In Algorithm 2, we set τ ′ = τ
and select τ ′′ = 10. We select the behavioral policy as uk =
Kiyk + ηk where we sample ηk from N (0,Wη).
Average Q-learning: In Algorithm 4, we set τ ′ = τ and select
τ ′′ = 10. We select the behavioral policy as uk = Kiyk + ηk
where we sample ηk from N (0,Wη).
Classical off-policy learning: We run the classical off-policy
learning in Algorithm 5. We select the behavioral policy as
uk = Kiyk + ηk where we sample ηk from N (0,Wη).
Classical Q-learning: We run the classical Q-learning in
Algorithm 6. We set uk = Kiyk + ηk where we sample ηk
from N (0,Wη).
Model-building approach: We run Algorithm 8 for the
model-building approach. We collect the input-output data by
applying the control signal uk = Kiyk + 10ηk, where we
sample ηk from N (0,Wη). We estimate the matrices (Â, B̂)
from the experimental data as explained in Appendix I-C.
Policy gradient: While this paper studies Dynamic
Programming-based RL routines, we also evaluate a policy
gradient algorithm [23] in our simulation. To be self-contained,
we have summarized this routine in Algorithm 9 in Subsection
I-D. We consider a multivariate Gaussian distribution for the

Fig. 1: The fraction of stable policy gains generated by each
algorithm in all iterations.

TABLE III: Percentage of stability in all iterations in 100
simulations.

T= 100 500 1000 2000 3000 4000 5000

Alg. 2 33 89 100 100 100 100 100
Alg. 4 29 89 98 100 100 100 100
Alg. 5 6 41 66 88 97 100 100
Alg. 6 3 39 60 90 95 99 100
Alg. 8 100 100 100 100 100 100 100
Alg. 9 100 100 100 100 98 78 61

probability density function of the probabilistic policy with the
covariance 0.01I . In each iteration, we collect 10 mini-batches
of trajectories of length T = 10, so in each iteration, 10× 10
data is used. We update the controller gain using an ADAM
optimizer with the learning rate as 0.01 and the default values
for other hyper parameters. To match the sample budget of
Algorithms 2, 4, 5, 6, we set the number of iterations in the
policy gradient as τ ×N/100.
Analytical solution: Our baseline for comparison is the ana-
lytical solution assuming that the matrices (A,B) are exactly
known. Using the full information of the system dynamics
(A,B), we solve ARE(A,B,Ry, Ru) and obtain P ∗ and K∗.
We compute the analytical average cost λ(K∗) from (8) using
A, B, P ∗, K∗, Wv and Ww.

A. Stability analysis
For Algorithms 2, 4, 5, 6, we set the number of itera-

tions as N = 3 and we change the rollout length τ =
[100, 500, 1000, 2000, 3000, 4000, 5000]. In the policy
gradient algorithm, we change the number of iterations as
τ×3/100 = [3, 15, 30, 60, 90, 120, 150] to match the sample
budget of Algorithms 2, 4, 5, 6. We run each algorithm 100
times and in Fig. 1, we show the fraction of times each algo-
rithm produces stable policy gains in all iterations. In Table
III, we list the percentage of stability numerically. From this
figure, we can see that the model-building approach always
produces stable policies. We can also see that the average off-
policy learning and the average Q-learning algorithms produce
more stable policies among DP-based model-free approaches
and they are the most stable model-free routines. This is

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 9

Fig. 2: Median of the relative error |λ(K)−λ(K∗)|
λ(K∗) for 100 stable

policies. Shaded regions display quartiles. The numerical
values are given in Table IV.

TABLE IV: The median of the relative error |λ(K)−λ(K∗)|
λ(K∗) .

T= 100 500 1000 2000 3000 4000 5000

Alg. 2 0.616 0.145 0.106 0.067 0.051 0.043 0.047
Alg. 4 0.751 0.173 0.104 0.064 0.058 0.046 0.045
Alg. 5 1.930 1.134 0.820 0.498 0.491 0.383 0.389
Alg. 6 1.619 0.868 0.566 0.736 0.484 0.390 0.349
Alg. 8 0.006 0.001 0.001 0.000 0.000 0.000 0.000
Alg. 9 7.056 6.280 5.309 3.602 2.541 1.885 1.409

because in the average off-policy and the average Q-learning
routines, the policy is greedy with respect to the average of
all previously estimated value functions rather than the last
value function. This causes the gain to adapt slowly towards its
optimal value and helps us to get less unstable gains when the
trajectory length to estimate the value or Q function is short.
By increasing the rollout length, τ ≥ 2000, the average off-
policy learning and the average Q-learning routines produce
stable policy always while the classical Q-learning and the
classical off-policy learning need at least 4000−5000 samples
to produce stable policies always. For the policy gradient
algorithm, as more iteration is done, the algorithm returns less
stable policies.

B. Performance analysis

Our metric of interest for analyzing the performance is
the relative error |λ(K)−λ(K∗)|

λ(K∗) where K is the policy gain
obtained from a model-free algorithm or the model-building
approach and K∗ is the optimal policy gain obtained ana-
lytically using full information of the system. We run each
algorithm until we obtain 100 stable policies. We set the
number of iterations as N = 3 and we change the rollout
length τ = [100, 500, 1000, 2000, 3000, 4000, 5000]. In the
policy gradient algorithm, we change the number of iterations
as τ × 3/100 = [3, 15, 30, 60, 90, 120, 150].

In Fig. 2, we plot the median of the relative errors for the
aforementioned approaches and in Table IV, we list the median
of the relative errors numerically. From this figure, we can
see that the model-building approach has the lowest relative

error and it is almost identical to the analytical solution.
The average off-policy and the average Q-learning routines
suffer from 4 − 5% relative error. The reason is that the
estimations of P i in the average off-policy and Gi in the
average Q-learning are biased and they will not improve
further by increasing the rollout length. However, the relative
errors for the average off-policy and the average Q-learning
are much less than those of the classical off-policy and Q-
learning algorithms (∼ 35 − 40%). When τ is small, the
average off-policy and the average Q-learning reach their best
performance. This is because Algorithm 3 is used to collect
data for estimation where the dynamics is run for τ ′′ steps
before collecting a sample data point. It helps us to have
independent sample points and E[x] = 0. The policy gradient
algorithm performance is worse than other algorithms. It is
because the policy gradient algorithms try to directly optimize
the performance index and as such, they are very sensitive to
noise.

C. Discussion
In summary, one may consider different factors when

choosing a model-building or a model-free approach. Our
empirical evaluation shows that the model-building solution
outperforms the model-free approaches and is the closest one
to the analytical solution. This point has also been shown
in [27], [28] for the LQ problem with the process noise
only (no measurement noise), where it is possible to estimate
(A,B) using the ordinary least-squares. Though when the
measurement noise is present, this point needs to be proved.

The main difference between the model-building and the
model-free approaches comes from the way the data is used.
In the model-building approach, the data is used to identify
the dynamics of the system while in the model-free approach,
to learn the value function and the optimal policy. The main
advantage of a model-free approach is to eliminate the system
identification part and to directly solve the optimal control
problem. Such an approach can be extremely useful for
nonlinear systems where it is difficult to identify the dynamics
and solve the optimal control problem.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have considered the LQ control problem
with process and measurement noises. We have assumed that
the dynamical model is unknown and developed two model-
free DP-based routines (Algorithms 2 and 4) to solve Problem
1. We have proved stability of the generated controllers
and convergence of the algorithms. We have shown that the
measurement noise can deteriorate the performance of DP-
based RL routines. We have also presented a model-building
approach in Algorithm 8 as a natural way of solving Problem
1 in the adaptive control context, using the same information
from the system as Algorithms 2 and 4. We have used a popu-
lar RL benchmark for the LQ problem to evaluate our proposed
algorithms. Our empirical evaluation shows that our DP-based
algorithms produce more stable policies in comparison with
the classical off-policy and the classical Q-learning routines
and they are the closest ones to the analytical solution. It has

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

Algorithm 5 Classical Off-policy Learning

1: Initialize: Select a stabilizing policy gain K1, set i = 1.
2: for i = 1, ..,N do
3: Z = {}.
4: for t = 1, ..., τ do

Sample ηt ∼ N (0,Wη) and let ut = Kiyt + ηt.
Take ut and observe yt+1.
Add (yt, ut, yt+1) to Z .

5: Estimate λ̄i from (21), and P i, BTP iA, BTP iB
from (36).

6: Update the policy gain Ki+1 by (37).

also turned out that our model-building approach outperforms
the DP-based solutions which is consistent with the previous
results on linear systems with process noise only [23], [28].

Possible future research avenues are to study sample com-
plexity of the proposed methods and extension to nonlinear
systems. We are also interested in extending the current results
for partially observable LQ problems.

APPENDIX I
CLASSICAL MODEL-FREE ALGORITHMS AND THE

MODEL-BUILDING APPROACH

A. Classical off-policy learning

The classical off-policy learning algorithm for deterministic
systems is given in [15]. Here, we bring a modified version
in Algorithm 5 to accommodate the effect of process and
observation noises. The algorithm is initiated with a stabilizing
policy gain K1 in Line 1. Then, the algorithm iterates N times
in Line 2 over the policy evaluation and the policy improve-
ment steps. The policy evaluation step is given in Lines 3-5
and discussed in Appendix I-A.1. The policy improvement
step is given in Line 6 and discussed in Appendix I-A.2.

1) Policy evaluation:
Lines 3-4: To evaluate the policy gain Ki, we collect τ
samples of (yk, uk, yk+1) in the following way: we observe yk
and then, we sample ηk from N (0,Wη). We apply the policy
uk = Kiyk + ηk and observe yk+1.
Line 5: We set the average cost λi to the empirical average
cost from τ samples (21). The off-policy Bellman equation
(24) reads

rk − λi = ΩTk$
i + n1 (34)

where

$i =

 vecs(P i)
vec(BTP iA)
vecs(BTP iB)

 , Ωk =

 vecv(yk)− vecv(yk+1)
2yk ⊗ (uk −Kiyk)

vecv(uk)− vecv(Kiyk)

Θk =

 vecv(yk)
2yk ⊗ (uk −Kiyk)

vecv(uk)− vecv(Kiyk)

 , (35)

n1 = yTk+1P
iyk+1 −E[yTk+1P

iyk+1|yk].

The estimated solution to (24) in the classical off-policy

Algorithm 6 Classical Q-policy Learning

1: Initialize: Select a stabilizing policy gain K1, set i = 1.
2: for i = 1, ..,N do
3: Z = {}.
4: for t = 1, ..., τ do

Sample ηt ∼ N (0,Wη) and let ut = Kiyt + ηt.
Take ut and observe yt+1.
Add (yt, ut, yt+1) to Z .

5: Estimate λ̄i from (21) and Ĝi from (40).
6: Update the policy gain Ki+1 by (41).

learning using instrumental variable method is given by

$̂i = (

τ∑
t=1

ΘtΩ
T
t)
−1

(

τ∑
t=1

Θt(rt − λ̄i)). (36)

2) Policy improvement:
Line 6: Let Hi := BTP iA and N i := BTP iB, and let Ĥi

and N̂ i be their estimates using (36). The improved policy is
given by

Ki+1 = −(N̂ i +Ru)−1Ĥi. (37)

B. Classical Q-learning

We bring the classical Q-learning routine from [29] in
Algorithm 6 and modify it to accommodate the effect of
process and measurement noises. The algorithm is initiated
with a stabilizing policy gain K1 in Line 1. Then, the
algorithm iterates N times in Line 2 over the policy evaluation
and the policy improvement steps. The policy evaluation step
is given in Lines 3-5 and discussed in Appendix I-B.1. The
policy improvement step is given in Line 6 and discussed in
Appendix I-B.2.

1) Policy evaluation: The policy gain Ki is evaluated by
estimating the quadratic kernel Gi of the Q function.
Lines 3-4: We collect τ samples of (yk, uk, yk+1) in the
following way: we observe yk and then, we sample ηk from
N (0,Wη). We apply the policy uk = Kiyk + ηk and observe
yk+1.
Line 5: We set λi to the empirical average cost from τ samples
(21). The quality-based Bellman equation (15) reads

rk − λi = (Ψk −Ψk+1)vecs(Gi) + n4 (38)

where

Ψk = vecv(zk), (39)

n4 = zTk+1G
izk+1 −E[zTk+1G

izk+1|zk].

Let zk = [yTk , u
T
k] and zk+1 = [yTk+1, (K

iyTk+1)]. In the
classical Q-learning, the LSTD estimator of Gi approximates
the solution to the quality-based Bellman equation (15) by

vecs(Ĝi) = (

τ∑
t=1

Ψt(Ψt −Ψt+1)T)
−1

(

τ∑
t=1

Ψt(rt − λ̄i)).

(40)

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 11

Algorithm 7 EstimateDynamics

Input: U , Y , m0.
Output: (A_hat,B_hat)
data_exp = iddata(U,Y);
me=ssest(data_exp,m0,ssestOptions,'
DisturbanceModel', 'estimate');
A_hat=me.a; B_hat=me.b;

Algorithm 8 Model-building approach

1: Initialize: Select a stabilizing policy gain K1, set i =
1, U = {}, Y = {}.
m0=idss(zeros(n,n),zeros(n,m),eye(n),
zeros(n,m),'ts',1); m0.Structure.C.Free
=zeros(n,n);

2: for i = 1, ..,N do
3: for t = 1, ..., τ do

Sample ηt ∼ N (0,Wη) and let ut = Kiyt + ηt.
Take ut and U ← ut, Y ← yt.

4: (Â, B̂) =EstimateDynamics(U, Y,m0)
5: m0.A=Â; m0.B=B̂;
6: Find the optimal policy gain K∗ from (6)-(7) and set

Ki+1 = K∗.

2) Policy improvement:
Line 6: Let partition matrix Ĝi as (32). The improved policy
gain is given by

Ki+1 = arg min
a
Q̂i(yk, a) = −(Ĝi22)−1ĜiT12 . (41)

C. Model-building approach
A possible variant to model-free solutions to Problem 1

where the dynamics is not known is to estimate (A,B) as a
separate system identification problem and use these estimates
for the solution of Problem 1. We can call this a model-
building approach to the problem. The estimated (Â, B̂) can
be used in the ARE (7) to solve for optimal policy gain in the
corresponding LQ control (see Lemma 1).

The system identification problem to find (A,B) in (1) is
actually a simple problem since the model order n is known.
Let [U, Y] denote the input-output data and m0 denote the
initial state-space model (which can be set to zero matrices
when no initial knowledge about the dynamics is known). To
solve this structured problem in a general system identification
code, like the system identification toolbox in MATLAB [43],
the code in Algorithm 7 can be used. One can also use total
least squares [42] to estimate the dynamics [35].

Since in this paper we examine the model-building approach
along with the model-free algorithms, we bring the model-
building approach in a recursive way such that the controller
gain in the model-building approach is updated at the same
pace as the model-free approaches. Algorithm 8 summarizes
the model-building approach. In Line 1, we initialize the algo-
rithm by selecting a stabilizing controller gain. Note that if the
uncontrolled system is unstable, using only noise for system
identification results in numerical instability. Otherwise, we
can set K1 = 0. We set empty matrices for the input-output

Algorithm 9 Policy gradient

1: Initialize: Policy gain K1, i = 1, probability density
function p(a;Kiyk).

2: while ending condition is not satisfied do
3: Z = {}.
4: for t = 1, ..., T do

Observe yt, sample ut ∼ p(a;Kiyk), take ut.
Observe rt. Add (yt, ut, rt) to Z .

5: Let R(T) =
∑T
t=1 rt.

6: Set δKi =
∑T
t=1(R(T)− b)∇Ki log p(ut,K

iyt).
7: Update Ki+1 by gradient descent using δKi.

data U, Y , assign zero matrices to the initial state-space model,
and fix C = I (yk = Ixk + vk). In Line 2, the algorithm
iterates N times. In Line 3, we collect τ input-output samples
and append to U, Y . In Line 4, we estimate (Â, B̂) using
U, Y and m0. In Line 5, we update m0 by (Â, B̂). In Line
6, we solve the ARE (7) using (Â, B̂).

Our proposed model-building routine in Algorithm 7 can be
easily extended (by further estimating C) to cover the partially
observable dynamical systems similar to [36], [37].

D. Policy gradient
A Policy gradient routine is given in Algorithm 9 [23]. In

Line 1, we initialize the algorithm by a controller gain and
selecting a probability density function (pdf) for the proba-
bilistic policy (usually a multivariate Gaussian distribution).
In Line 2, the algorithm is iterated until the ending condition
is satisfied. In Lines 3-4, we collect T samples of (yk, uk, rk)
by sampling the actions from the pdf uk ∼ p(a;Kiyk) and
storing in Z . In Line 5, we calculate the total cost of T steps.
In Line 6, we give the gradient of the total cost with respect
to Ki. Note that b in Line 6 is a baseline to reduce variance
[30]. Among many options, one can select the baseline as the
mean cost of previous iterates. In Line 7, we update the policy
gain by gradient descent using δKi.

APPENDIX II
THE PROOFS

In this section, we bring the proofs of theorems and lemmas
in the body of the paper. To facilitate the derivations, we use
the following identity frequently vecv(v)T vecs(P) = (v ⊗
v)vec(P) = vTPv, where P is a symmetric matrix and v is
a vector with appropriate dimension. The following lemma is
useful through the proofs.

Lemma 9: Consider (1)-(5). For Ξ ∈ Rn×n, we have

E[xTk Ξvk|yk] = E[xTk Ξwk|yk] = E[xTk Ξvk+1|yk] = 0, (42)

E[xTk Ξxk|yk] = yTk Ξyk − Tr(ΞWv). (43)
Proof: Based on (1), wk, vk, vk+1 do not affect xk and

(42) follows. To see (43), note that

yTk Ξyk = E[yTk Ξyk|yk] = E[(xk + vk)TΞ(xk + vk)|yk]

= E[xTk Ξxk|yk] + 2E[xTk Ξvk|yk] + E[vTk Ξvk|yk]

= E[xTk Ξxk|yk] + Tr(ΞWv).

12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

A. Proof of Lemma 1

Let V ∗ = yTk P
∗yk be the optimal value function. Define

the Bellman equation for the optimal value function (5)

yTk P
∗yk =yTk Ryyk + yTkK

∗TRuK
∗yk − λ(K∗)

+ E[yTk+1P
∗yk+1|yk].

(44)

The term E[yTk+1P
∗yk+1|yk] reads

E[yTk+1P
∗yk+1|yk]

=E[xTk (A+BK∗)TP ∗(A+BK∗)xk|yk]

+ 2E[xTk (A+BK∗)TP ∗BK∗vk|yk]

+ 2E[xTk (A+BK∗)TP ∗(wk + vk+1)|yk]

+ E[vTkK
∗TBTP ∗BK∗vk|yk]

+ 2E[vTkK
∗TBTP ∗(wk + vk+1)|yk]

+ E[(wk + vk+1)TP ∗(wk + vk+1)|yk].

Using (42)-(43) in the above equation

E[yTk+1P
∗yk+1|yk] = yTk (A+BK∗)TP ∗(A+BK∗)yk

+ Tr(K∗TBTP ∗BK∗Wv) + Tr(P ∗Ww)

− Tr((A+BK∗)TP ∗(A+BK∗)Wv) + Tr(P ∗Wv).

Substituting the above result in (44) and matching terms, we
have the optimal average cost in (8) and

(A+BK∗)TP ∗(A+BK∗)− P ∗ +Ry +K
∗TRuK

∗ = 0.

Optimizing the above equation with respect to K∗, results the
optimal policy gain in (6).

B. Proof of Lemma 3

Similar to the proof of Lemma 2, we show that the given
quadratic form satisfies the quality-based Bellman equation
(15). Let zk = [yTk , u

T
k]T , zk+1 = [yTk+1, (Kyk+1)T]T and

M =
[
I KT

]
G

[
I
K

]
. Let uk as uk = Kyk + ηk. Using the

control uk at time k, the next output yk+1 reads

yk+1 = Lxk +Bηk +BKvk + wk + vk+1. (45)

By (16), E[V (yk+1,K)|zk] = E[Q(yk+1,Kyk+1,K)|zk].
Now, we use (45) to compute E[Q(yk+1,Kyk+1,K)|zk]

E[Q(yk+1,Kyk+1,K)|zk] = E[yTk+1Myk+1|zk]

= E[(Lxk +Bηk +BKvk + wk + vk+1)TM

(Lxk +Bηk +BKvk + wk + vk+1)|zk]

= E[xTk L
TMLxk|zk] + 2E[xTk L

TMBηk|zk]

+E[ηTk B
TMBηk|zk] + E[vTkK

TBTMBKvk|zk]

+E[wTkMwk + vTk+1Mvk+1|zk].

Using (43), the above equation reads

E[yTk+1Myk+1|zk]

=yTk L
TMLyk + 2yTk L

TMBηk + ηTk B
TMBηk

− Tr(LTMLWv) + Tr(KTBTMBKWv)

+ Tr(MWw) + Tr(MWv)

=
[
yTk uTk

] [ATMA ATMB
BTMA BTMB

] [
yk
uk

]
− Tr(LTMLWv) + Tr(KTBTMBKWv)

+ Tr(MWw) + Tr(MWv)

=zTk

[
ATMA ATMB
BTMA BTMB

]
zk − Tr(LTMLWv)

+ Tr(KTBTMBKWv) + Tr(MWw) + Tr(MWv).

Replacing the above result in the quality-based Bellman equa-
tion (15)

zTk Gzk = zTk

[
ATMA+Ry ATMB
BTMA BTMB +Ru

]
zk

− Tr(LTMLWv) + Tr(KTBTMBKWv)

+ Tr(MWw) + Tr(MWv)− λ(K).

By matching terms (17)-(18) are concluded.

C. Proof of Lemma 4
According to (16),

P =
[
I KT

]
G

[
I
K

]
. (46)

By Lemma 3, the quadratic kernel of the Q function, satisfies
(17). Pre-multiplying (17) by

[
I KT

]
and post-multiplying

(17) by
[
I
K

]
, we have

[
I KT

]
(

[
AT

BT

]
P
[
A B

]
+

[
Ry 0
0 Ru

]
)

[
I
K

]
− P = 0,

where we have used (46) in the above equation. By expanding
the above equation, (10) is concluded.

D. Proof of Theorem 3
In Algorithm 5, first, a solution to the off-policy Bellman

equation (24) is estimated and then the controller is selected
to be greedy with respect to the average of all previously
estimated value functions, see (28). The proof of convergence
of the algorithm contains two steps. The first step is to
show that solving the off-policy Bellman equation (24) is
equivalent to the model-based Bellman equation (13). This
is guaranteed by Theorem 1 and assuming that the estimation
errors in (22) and (27) are small enough P̂ i ≈ P i, ˆBTP iA ≈
BTP iA, ˆBTP iB ≈ BTP iB. The second step is to show
that by improving the policy to be greedy with respect to the
average of all previous value functions (28), P i+1 ≤ P i for
i = 1, ...,N. By Theorem 2, the algorithm produces stabilizing
controller gain Ki. Let P i > 0 denote the solution to the
model-based Bellman equation (13)

P i = (A+BKi)TP i(A+BKi) +KiTRuK
i +Ry. (47)

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 13

Since A+BKi is stable, the unique positive definite solution
of (47) may be written as [40]

P i =

+∞∑
k=0

((A+BKi)T)k(KiTRuK
i +Ry)(A+BKi)k.

(48)

Consider two iteration indices i and j. Using (47) P i − P j
reads

P i − P j =(A+BKi)TP i(A+BKi) +KiTRuK
i

− (A+BKj)TP j(A+BKj)−KjTRuK
j

=(A+BKj)TP i(A+BKj) +KiTRuK
i

−KjTBTP i(A+BKj)−ATP iKj

+KiTBTP i(A+BKi) +ATP iKi

− (A+BKj)TP j(A+BKj)−KjTRuK
j

=(A+BKj)T (P i − P j)(A+BKj)

+ (Ki −Kj)T (Ru +BTP iB)(Ki −Kj)

+ (Ki −Kj)T [(Ru +BTP iB)Kj +BTP iA]

+ [KjT (Ru +BTP iB) +ATP iB](Ki −Kj)

=

+∞∑
k=0

((A+BKj)T)k

((Ki −Kj)T (Ru +BTP iB)(Ki −Kj)

+ (Ki −Kj)T [(Ru +BTP iB)Kj +BTP iA]

[KjT (Ru +BTP iB) +ATP iB](Ki −Kj))
(A+BKj)k, (49)

where we have used (48) to obtain the last equation. By (28)

Ki+1 = −(

i∑
j=1

(BTP jB +Ru))−1(

i∑
j=1

BTP jA),

Ki = −(

i−1∑
j=1

(BTP jB +Ru))−1(

i−1∑
j=1

BTP jA). (50)

Rearranging Ki+1 in (50) and let M :=
∑i−1
j=1(BTP jB +

Ru) > 0

M(Ki −Ki+1) = [(Ru +BTP iB)Ki+1 +BTP iA]. (51)

By setting j = i+ 1 in (49) and using (51), P i − P i+1 reads

P i−P i+1 =

+∞∑
k=0

((A+BKj)T)k

[(Ki −Kj)T (Ru +BTP iB)(Ki −Kj)

+ 2(Ki −Kj)TM(Ki −Kj)](A+BKj)k ≥ 0,

which shows that P i+1 ≤ P i and the sequence is converging.
By repeating this procedure for i = 1, ...,, we can see that
P ∗ ≤ P i+1 ≤ P i ≤ P 1.

E. Proof of Lemma 5
We repeat the estimation problem in (19)-(22)

rk − λi = (yk ⊗ yk − yk+1 ⊗ yk+1)T vec(P i) + n1,

n1 = yTk+1P
iyk+1 −E[yTk+1P

iyk+1|yk]. (52)

The noise in the above equation appears in the regressor (also
called error-in-variables [22])) and can be written as n1 =
νT vec(P i) where vec(P i) is our parameter vector and

νT =yTk+1 ⊗ yTk+1 −E[yTk+1 ⊗ yTk+1|yk]

=(2(wk + vk+1)T ⊗ xTk)(I ⊗ LiT)

+ (2(wk + vk+1)T ⊗ vTk)(I ⊗ (KiTBT))

+ (wk + vk+1)T ⊗ (wk + vk+1)T

− (vTk ⊗ vTk)(AT ⊗AT)

− (2vTk ⊗ vTk)((KiTBT)⊗AT)

− (2vTk ⊗ xTk)(AT ⊗ LiT) + (vec(Wv)
T)(LiT ⊗ LiT)

− vec(Ww)T − vec(Wv)
T

− (vec(Wv)
T)((KiTBT)⊗ (KiTBT)). (53)

The instrumental variable in the estimation (22) is yk⊗yk. To
have an unbiased estimate, E[(yk⊗yk)νT] = 0. In the sequel,
we analyze the correlation matrix

E[(yk ⊗ yk)νT] =E[(xk ⊗ xk)νT] + 2E[(xk ⊗ vk)νT]

+ E[(vk ⊗ vk)νT].

Remembering the facts that xk, vk, vk+1, wk are mutually
independent, Wv is diagonal and using (14), we get the
following results. The term E[(xk ⊗ xk)νT] reads

E[(xk ⊗ xk)νT]

=E[xk ⊗ xk](vec(Ww)T + vec(Wv)
T

− vec(Wv)
T (AT ⊗AT + 2(KiTBT)⊗AT)

+ (vec(Wv)
T)(LiT ⊗ LiT)− vec(Ww)T − vec(Wv)

T

− (vec(Wv)
T)((KiTBT)⊗ (KiTBT))) = 0.

The term 2E[(xk ⊗ vk)νT] reads

2E[(xk ⊗ vk)νT]

=− 4E[(xk ⊗ vk)(vTk ⊗ xTk)](AT ⊗ LiT). (54)

The term E[(vk ⊗ vk)νT] reads

E[(vk ⊗ vk)νT]

=−E[(vk ⊗ vk)(vTk ⊗ vTk)](AT ⊗AT + 2(KiTBT)⊗AT)

+ vec(Wv)(vec(Wv)
T)(LiT ⊗ LiT)

− vec(Wv)(vec(Wv)
T)((KiTBT)⊗ (KiTBT)). (55)

Finally by summing (54)-(55), we have the bias term in the
estimation (22)

E[(yk ⊗ yk)νT]

=− 4E[(xk ⊗ vk)(vTk ⊗ xTk)](AT ⊗ LiT)

−E[(vk ⊗ vk)(vTk ⊗ vTk)](AT ⊗AT + 2(KiTBT)⊗AT)

+ vec(Wv)(vec(Wv)
T)(LiT ⊗ LiT)

− vec(Wv)(vec(Wv)
T)((KiTBT)⊗ (KiTBT)) (56)

which is nonzero. Meaning that the estimate is biased.

14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

F. Proof of Theorem 4

We repeat the estimation problem in (25)-(27)

ck = ΥT
k ξ

i + n2, (57)

ck = yTk (Ry +KiTRuK
i − P̂ i)yk + yTk+1P̂

iyk+1 − λ̄i,

Υk =

[
2yk ⊗ (uk −Kiyk)

(uk −Kiyk)⊗ (uk +Kiyk)

]
, ξi =

[
vec(BTP iA)
vec(BTP iB)

]
,

n2 = yTk+1P̂
iyk+1 −E[yTk+1P

iyk+1|yk] + yTk P
iyk − yTk P̂ iyk.

The noise term n2 reads

n2 =yTk+1P̂
iyk+1 −E[yTk+1P

iyk+1|yk] + yTk (P i − P̂ i)yk
=xTk L

iT (P̂ i − P i)Lixk + 2xTk L
iT (P̂ i − P i)BKivk

+ 2xTk L
iT P̂ i(wk + vk+1) + vTkK

iTBT (P̂ i − P i)BKivk

+ 2vTkK
iTBT P̂ i(wk + vk+1) + xTk (P i − P̂ i)xk

+ vTk (P i − P̂ i)vk + 2xTk (P i − P̂ i)vk
+ (wk + vk+1)T P̂ i(wk + vk+1)− λi (58)

− vTk ATP iAvk − 2vTk A
TP iBKivk − 2xTk L

iTP iAvk.

To see if the estimate is biased, we examine E[Υkn2]

E[Υkn2] =

[
0

ηk ⊗ ηk

]
E[n2] +

[
2E[ykn2]⊗ ηk

2ηk ⊗KiE[ykn2]

]
.

So, it is enough to analyze E[n2] and E[ykn2]. Remembering
the facts that xk, vk, vk+1, wk are mutually independent, Wv

is diagonal, E[xk] = 0 (because of running Algorithm 3 to
collect data) and using (14), we have

E[n2] =E[xTk L
iT (P̂ i − P i)Lixk] + E[xTk (P i − P̂ i)xk]

+ E[vTkK
iTBT (P̂ i − P i)BKivk]

+ Tr((P̂ i − P)(Ww +Wv)), (59)

E[ykn2] = E[(xk + vk)n2]

=E[(xk + vk)xTk L
iT (P̂ i − P i)Lixk]︸ ︷︷ ︸
=0

+ 2E[(xk + vk)xTk L
iT (P̂ i − P i)BKivk]︸ ︷︷ ︸
=0

E[2(xk + vk)xTk L
iT P̂ i(wk + vk+1)]︸ ︷︷ ︸

=0

+ E[(xk + vk)vTkK
iTBT (P̂ i − P i)BKivk]︸ ︷︷ ︸

=0

+ E[2(xk + vk)vTkK
iTBT P̂ i(wk + vk+1)]︸ ︷︷ ︸
=0

+ E[(xk + vk)(xTk (P i − P̂ i)xk + vTk (P i − P̂ i)vk)]︸ ︷︷ ︸
=0

+ 2E[(xk + vk)xTk (P i − P̂ i)vk]︸ ︷︷ ︸
=0

+ E[(xk + vk)(wk + vk+1)T P̂ i(wk + vk+1)− (xk + vk)λi]︸ ︷︷ ︸
=0

+ E[(xk + vk)(−vTk ATP iAvk − 2vTk A
TP iBKivk)]︸ ︷︷ ︸

=0

− 2E[(xk + vk)(xTk L
iTP iAvk)]︸ ︷︷ ︸

=0

= 0. (60)

Based (60), E[ykn2] = 0 and only E[n2] contributes to bias.
If the estimation error of P i is negligible P̂ i − P i ≈ 0, then
by (59), E[n2] = 0 and the estimate is unbiased.

G. Proof of Lemma 6
We repeat the estimation problem in (34)-(36)

rk − λi = ΩTk$
i + n1,

n1 = yTk+1P
iyk+1 −E[yTk+1P

iyk+1|yk],

$i =

 vec(P i)
vec(BTP iA)
vec(BTP iB)

 ,Ωk =

 yk ⊗ yk − yk+1 ⊗ yk+1

2yk ⊗ (uk −Kiyk)
(uk −Kiyk)⊗ (uk +Kiyk)

 ,
Θk =

 yk ⊗ yk
2yk ⊗ ηk

ηk ⊗ (ηk + 2Kiyk)

 . (61)

We have shown in the proof of Lemma 5 that the noise term
can be written as n1 = νT vec(P i) where ν is given in (53). In
the sequel, we study E[Θkν

T]. Since ν is zero mean and ηk is
known, we only need to analyze E[yk ⊗ ykνT] and E[ykν

T].
The term E[yk ⊗ ykν

T] is given in (56). Remembering the
facts that xk, vk, vk+1, wk are mutually independent and Wv

is diagonal, we compute E[ykν
T] where ν is given in (53)

E[ykν
T] = E[(xk + vk)νT]

=−E[(xk)(vTk ⊗ vTk)](AT ⊗AT + 2(KiTBT)⊗AT)

− 2E[(vk)(vTk ⊗ xTk)](AT ⊗ LiT)

+ E[xk](vec(Wv)
T)(LiT ⊗ LiT)

−E[xk](vec(Wv)
T)((KiTBT)⊗ (KiTBT)). (62)

Hence, the bias in the classical off-policy is a function of (56)
and (62).

H. Proof of Lemma 7
We repeat the estimation problem in (29)-(31)

c′k = ΨT
k vec(Gi) + n3, (63)

c′k = r(yk, uk)− λi + yTk+1P̂
iyk+1,

Ψk =
[
yTk ⊗ yTk yTk ⊗ uTk uTk ⊗ yTk uTk ⊗ uTk

]T
,

n3 = yTk+1P̂
iyk+1 −E[yTk+1P

iyk+1|zk].

The noise term n3 reads

n3 =yTk+1P̂
iyk+1 −E[yTk+1P

iyk+1|zk]

=xTkA
T (P̂ i − P i)Axk + 2xTkA

T (P̂ i − P i)Buk
+ uTkB

T (P̂ i − P i)Buk − 2vTk A
TP i(Axk +Buk)

+ 2(xTkA
T + uTkB

T)P̂ i(wk + vk+1)

+ (wk + vk+1)T P̂ i(wk + vk+1)− vTk ATP iAvk
+ Tr(ATP iAWv)− Tr(P iWw)− Tr(P iWv). (64)

ADIB YAGHMAIE et al.: LINEAR QUADRATIC CONTROL USING MODEL-FREE REINFORCEMENT LEARNING 15

To see if the estimate is biased, we need to analyze E[Ψkn3].
Since uk is deterministic (we know uk), we examine i :=
uk ⊗ ukE[n3], ii := uk ⊗ E[ykn3] and iii := E[yk ⊗ ykn3].
Remembering the facts that xk, vk, vk+1, wk are mutually
independent, Wv is diagonal, E[xk] = 0 (because of running
Algorithm 3 to collect data), we get the following results

i :=(uk ⊗ uk)(E[xTkA
T (P̂ i − P i)Axk] (65)

+ uTkB
T (P̂ i − P i)Buk + Tr((P̂ i − P i)(Ww +Wv)).

ii :=uk ⊗E[(xk + vk)n3]

=2uk ⊗E[xkx
T
kA

T (P̂ i − P i)Buk]

− 2uk ⊗E[vkv
T
k A

TP iBuk]. (66)

Next, we analyze iii := E[yk ⊗ ykn3] = E[xk ⊗ xkn3] +
2E[xk⊗ vkn3] +E[vk⊗ vkn3]. First, we obtain E[xk⊗xkn3]

E[xk ⊗ xkn3]

=E[xk ⊗ xkxTkAT (P̂ i − P i)Axk]

+ E[xk ⊗ xk]uTkB
T (P̂ i − P i)Buk

+ E[xk ⊗ xk]Tr((P̂ i − P i)(Ww +Wv). (67)

Second, we obtain 2E[xk ⊗ vkn3]

2E[xk ⊗ vkn3] =− 4E[xk ⊗ vkvTk ATP iAxk]. (68)

Third, we obtain E[vk ⊗ vkn3]

E[vk ⊗ vkn3]

=E[vk ⊗ vkxTkAT (P̂ i − P i)Axk]

+ E[vk ⊗ vkuTkBT (P̂ i − P i)Buk]

+ E[vk ⊗ vk]Tr((P̂ i − P i)(Wv +Ww)) (69)

+ E[vk ⊗ vk]Tr(ATP iAWv)−E[vk ⊗ vkvTk ATP iAvk].

As a result, iii is given by the summation of the terms in (67)-
(69). Because the terms in (65)-(69) are nonzero, the estimate
in (31) is biased.

I. Proof of Lemma 8

We repeat the estimation problem in (38)-(40)

rk − λi = (Ψk −Ψk+1)vec(Gi) + n4, (70)

ΨT
k = [zTk ⊗ zTk] = [yTk ⊗ yTk , yTk ⊗ uTk , uTk ⊗ yTk , uTk ⊗ uTk],

n4 = zTk+1G
izk+1 −E[zTk+1G

izk+1|zk]

= yTk+1P
izk+1 −E[yTk+1P

iyk+1|zk].

The noise term n4 is obtained by P̂ i ≡ P i in (64)

n4 =− 2vTk A
TP i(Axk +Buk)

+ 2(xTkA
T + uTkB

T)P i(wk + vk+1)

+ (wk + vk+1)TP i(wk + vk+1)− vTk ATP iAvk
+ Tr(ATP iAWv)− Tr(P iWw)− Tr(P iWv). (71)

We study E[Ψkn4]. Since uk is deterministic (we know uk),
E[uk ⊗ ukn4] = 0. We examine uk ⊗E[ykn4], E[yk ⊗ ykn4].

uk ⊗E[ykn4] = −2uk ⊗ (E[vkv
T
k A

TP i(Axk +Buk)]

+ E[xk]E[(wk + vk+1)TP i(wk + vk+1)]

−E[xk]E[vTk A
TP iAvk] + E[xk]Tr(ATP iAWv)

−E[xk](Tr(P iWw) + Tr(P iWv)))

=− 2uk ⊗E[vkv
T
k A

TP i(Axk +Buk)], (72)

E[yk ⊗ ykn4] = −4E[xk ⊗ vkvTk ATP i(Axk +Buk)] (73)

+ E[vk ⊗ vk]Tr(ATP iAWv)−E[vk ⊗ vkvTk ATP iAvk].

Since (72)-(73) are nonzero, the estimate is biased.

REFERENCES

[1] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv:1312.5602, 2013.

[3] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking Deep Reinforcement Learning for Continuous Control,”
in International Conference on Machine Learning, 2016, pp. 1329–1338.
[Online]. Available: http://arxiv.org/abs/1604.06778

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015. [Online]. Available:
http://arxiv.org/abs/1509.02971

[5] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An Application of
Reinforcement Learning to Aerobatic Helicopter Flight,” in Advances in
Neural Information Processing Systems 19, 2007, pp. 1–8.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
and Others, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[7] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, and Others, Nonlinear
and adaptive control design. Wiley New York, 1995, vol. 222.

[8] K. J. Åström and B. Wittenmark, Adaptive control, 2nd ed. Prentice
Hall, 1994.

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. MIT press Cambridge, 2018, vol. 1, no. 1.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[11] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Systems, vol. 32, no. 6, pp.
76–105, 2012.

[12] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE circuits and systems
magazine, vol. 9, no. 3, 2009.

[13] F. Adib Yaghmaie and D. J. Braun, “Reinforcement learning for a
class of continuous-time input constrained optimal control problems,”
Automatica, vol. 99, pp. 221–227, 2019.

[14] T. Bian, Y. Jiang, and Z.-P. Jiang, “Adaptive dynamic programming
for stochastic systems with state and control dependent noise,” IEEE
Transactions on Automatic Control, vol. 61, no. 12, pp. 4170–4175,
2016.

[15] B. Kiumarsi, F. L. Lewis, and Z.-P. Jiang, “H∞ control of linear
discrete-time systems: Off-policy reinforcement learning,” Automatica,
vol. 78, pp. 144–152, 2017.

[16] H. Modares and F. L. Lewis, “Linear quadratic tracking control of
partially-unknown continuous-time systems using reinforcement learn-
ing,” IEEE Transactions on Automatic Control, vol. 59, no. 11, pp. 3051–
3056, 2014.

[17] F. Adib Yaghmaie, S. Gunnarsson, and F. L. Lewis, “Output Regula-
tion of Unknown Linear Systems using Average Cost Reinforcement
Learning,” Automatica, vol. 110, p. 108549, 2019.

[18] F. Adib Yaghmaie, F. L. Lewis, and R. Su, “Output regulation of
heterogeneous linear multi-agent systems with differential graphical
game,” International Journal of Robust and Nonlinear Control, vol. 26,
no. 10, pp. 2256–2278, 2016.

16 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

[19] F. Adib Yaghmaie, K. Hengster Movric, F. L. Lewis, and R. Su,
“Differential graphical games for H∞ control of linear heterogeneous
multiagent systems,” International Journal of Robust and Nonlinear
Control, vol. 29, no. 10, pp. 2995–3013, 2019.

[20] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Athena
Scientific, 2019.

[21] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, no. 6, pp. 1107–1149, 2003.

[22] S. J. Bradtke and A. G. Barto, “Linear Least-Squares algorithms for
temporal difference learning,” Machine Learning, vol. 22, no. 1-3, pp.
33–57, 2004.

[23] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annual Review of Control, Robotics, and Autonomous Systems,
2018.

[24] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” 31st International Confer-
ence on Machine Learning, ICML 2014, vol. 1, pp. 605–619, 2014.

[25] L. Ljung, System Identification - Theory for the user, 2nd ed. PTR
Prentice Hall Inforamtion and System Sciences series, 1999.

[26] L. Ljung and T. Söderström, Theory and practice of recursive identifi-
cation. MIT press, 1987.

[27] Y. Abbasi-Yadkori, N. Lazic, and C. Szepesvari, “Model-free linear
quadratic control via reduction to expert prediction,” The 22nd Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 3108–3117, 2019.

[28] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the Sample
Complexity of the Linear Quadratic Regulator,” Foundations of Compu-
tational Mathematics, pp. 1–47, 2019.

[29] S. Tu and B. Recht, “Least-squares temporal difference learning for
the linear quadratic regulator,” International Conference on Machine
Learning, pp. 5005–5014, 2018.

[30] N. Matni, A. Proutiere, A. Rantzer, and S. Tu, “From self-tuning
regulators to reinforcement learning and back again,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 3724–3740.

[31] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global Convergence
of Policy Gradient Methods for the Linear Quadratic Regulator,” in
International Conference on Machine Learning, 2018, pp. 1467–1476.

[32] A. Cohen, A. Hassidim, T. Koren, N. Lazic, Y. Mansour, and K. Talwar,
“Online linear quadratic control,” International Conference on Machine
Learning, pp. 1029–1038, 2018.

[33] S. Tu and B. Recht, “The Gap Between Model-Based and Model-Free
Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint,”
in Conference on Learning Theory, 2019, pp. 3036–3083. [Online].
Available: http://arxiv.org/abs/1812.03565

[34] M. Ferizbegovic, J. Umenberger, H. Hjalmarsson, and T. B. Schon,
“Learning robust LQ-controllers using application oriented exploration,”
IEEE Control Systems Letters, vol. 4, no. 1, pp. 19–24, 2020. [Online].
Available: https://ieeexplore.ieee.org/document/8732482/

[35] F. Adib Yaghmaie and F. Gustafsson, “Using Reinforcement Learning
for Model-free Linear Quadratic Gaussian Control with Process and
Measurement noises,” in IEEE Conference on Decision and Control,
2019, pp. 6510–6517.

[36] M. Simchowitz, K. Singh, and E. Hazan, “Improper Learning for
Non-Stochastic Control,” in CONFERENCE ON LEARNING THEORY
(COLT), 2020. [Online]. Available: http://arxiv.org/abs/2001.09254

[37] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Logarith-
mic Regret Bound in Partially Observable Linear Dynamical Systems,”
in Advances in Neural Information Processing Systems 33 (NeurIPS
2020), 2020, pp. 20 876—-20 888.

[38] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for
partially observable dynamic processes: Adaptive dynamic programming
using measured output data,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 41, no. 1, pp. 14–25, 2011.

[39] H. Yu and D. P. Bertsekas, “Convergence results for some temporal
difference methods based on least squares,” IEEE Transactions on
Automatic Control, vol. 54, no. 7, pp. 1515–1531, 2009.

[40] G. A. Hewer, “An iterative technique for the computation of the steady
state gains for the discrete optimal regulator,” IEEE Transactions on
Automatic Control, vol. 16, no. 4, pp. 382–384, 1971.

[41] L. A. Prashanth, N. Korda, and R. Munos, “Fast LSTD using stochastic
approximation: Finite time analysis and application to traffic control,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2014, pp. 66–81.

[42] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed. The
John Hopkins University Press, 2013.

[43] The MathWorks, “MATLAB system identification toolbox (R2018a).”

Farnaz Adib Yaghmaie received the B.E. and
M.E. degrees from the school of Electrical En-
gineering department, K. N. Toosi University of
Technology, Tehran, Iran in 2009 and 2011. She
received her Ph.D degree from the school of
Electrical and Electronic Engineering, Nanyang
Technological University (EEE-NTU), Singapore
in 2017. She is the recipient of the best thesis
award from EEE-NTU among 160 Ph.D stu-
dents. Currently, she is a postdoc research fel-
low at Linköping University, Sweden. Her current

research interest is reinforcement learning and distributed control of
multi-agent systems.

Fredrik Gustafsson is professor in Sensor In-
formatics at Department of Electrical Engineer-
ing, Linköping University, since 2005. He re-
ceived the M.Sc. degree in electrical engineering
1988 and the Ph.D. degree in Automatic Con-
trol, 1992, both from Linköping University. His
research interests are in stochastic signal pro-
cessing, adaptive filtering and change detection,
with applications to communication, vehicular,
airborne, and audio systems. He is a co-founder
of the companies NIRA Dynamics (automotive

safety systems), Softube (audio effects) and Senion (indoor positioning
systems). He was an associate editor for IEEE Transactions of Signal
Processing 2000-2006, IEEE Transactions on Aerospace and Electronic
Systems 2010-2012, and EURASIP Journal on Applied Signal Pro-
cessing 2007-2012. He was awarded the Arnberg prize by the Royal
Swedish Academy of Science (KVA) 2004, elected member of the
Royal Academy of Engineering Sciences (IVA) 2007, and elevated to
IEEE Fellow 2011. He was awarded the Harry Rowe Mimno Award
2011 for the tutorial "Particle Filter Theory and Practice with Positioning
Applications", which was published in the AESS Magazine in July 2010,
and was co-author of "Smoothed state estimates under abrupt changes
using sum-of-norms regularization" that received the Automatica paper
prize in 2014.

Lennart Ljung received his PhD in Automatic
Control from Lund Institute of Technology in
1974. Since 1976 he is Professor of the chair
of Automatic Control In Linkoping, Sweden. He
has held visiting positions at Stanford and MIT
and has written several books on System Iden-
tification and Estimation. He is an IEEE Fellow,
an IFAC Fellow and an IFAC Advisor. He is as
a member of the Royal Swedish Academy of
Sciences (KVA), a member of the Royal Swedish
Academy of Engineering Sciences (IVA), an

Honorary Member of the Hungarian Academy of Engineering, an Hon-
orary Professor of the Chinese Academy of Mathematics and Systems
Science, and a Foreign Member of the US National Academy of En-
gineering (NAE). He has received honorary doctorates from the Baltic
State Technical University in St Petersburg, from Uppsala University,
Sweden, from the Technical University of Troyes, France, from the
Catholic University of Leuven, Belgium and from Helsinki University of
Technology, Finland. He has received both the Quazza Medal (2002)
and the Nichols Medal (2017) from IFAC. In 2003 he received the
Hendrik W. Bode Lecture Prize from the IEEE Control Systems Society,
and he was the 2007 recipient of the IEEE Control Systems Award.
In 2018 he received the Great Gold Medal from the Royal Swedish
Academy of Engineering.

	Försättsblad
	RLforLQ2c

