
The Journal of Systems & Software 202 (2023) 111701

E
a

b

c

u
d
e
i
s
a

✩

H
g

j
(
f

h
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A taxonomy of assets for the development of software-intensive
products and services✩,✩✩

Ehsan Zabardast a,∗, Javier Gonzalez-Huerta a, Tony Gorschek a,b, Darja Šmite a,
mil Alégroth a, Fabian Fagerholm a,c

Software Engineering Research Lab SERL, Blekinge Institute of Technology, Campus Karlskrona, Valhallavägen 1, Karlskrona, Sweden
fortiss GmbH, Guerickestraße 25, 80805 Munich, Germany
Department of Computer Science, Aalto University, Espoo, Finland

a r t i c l e i n f o

Article history:
Received 21 October 2022
Received in revised form 2 February 2023
Accepted 5 April 2023
Available online 11 April 2023

Keywords:
Assets in software engineering
Asset management in software engineering
Assets for software-intensive products or
services
Taxonomy

a b s t r a c t

Context: Developing software-intensive products or services usually involves a plethora of software
artefacts. Assets are artefacts intended to be used more than once and have value for organisations;
examples include test cases, code, requirements, and documentation. During the development process,
assets might degrade, affecting the effectiveness and efficiency of the development process. Therefore,
assets are an investment that requires continuous management.

Identifying assets is the first step for their effective management. However, there is a lack of
awareness of what assets and types of assets are common in software-developing organisations. Most
types of assets are understudied, and their state of quality and how they degrade over time have not
been well-understood.
Methods: We performed an analysis of secondary literature and a field study at five companies to
investigate and identify assets to fill the gap in research. The results were analysed qualitatively and
summarised in a taxonomy.
Results: We present the first comprehensive, structured, yet extendable taxonomy of assets, containing
57 types of assets.
Conclusions: The taxonomy serves as a foundation for identifying assets that are relevant for an
organisation and enables the study of asset management and asset degradation concepts.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The fast pace of the development of software-intensive prod-
cts or services impacts the decision-making process both for
esign and operational decisions. Such products and services are
ngineered by ‘‘applying well-understood practices in an organ-
sed way to evolve a product [or service] containing a nontrivial
oftware component from inception to market, within cost, time,
nd other constraints Klotins et al. (2018)’’.

✩ Editor: Prof W. Eric Wong.
✩ This research was supported by the KK foundation through the SHADE KK-
ög project under grant 2017/0176 and Research Profile project SERT under
rant 2018/010 at Blekinge Institute of Technology, SERL Sweden.
∗ Corresponding author.

E-mail addresses: ehsan.zabardast@bth.se (E. Zabardast),
avier.gonzalez.huerta@bth.se (J. Gonzalez-Huerta), tony.gorschek@bth.se
T. Gorschek), darja.smite@bth.se (D. Šmite), emil.alegroth@bth.se (E. Alégroth),
abian.fagerholm@aalto.fi (F. Fagerholm).

URLs: https://ehsanzabardast.com/ (E. Zabardast),
ttp://gonzalez-huerta.net/ (J. Gonzalez-Huerta), https://gorschek.com/
T. Gorschek).
ttps://doi.org/10.1016/j.jss.2023.111701
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
Acting fast to cope with change can compromise the val-
ues of the delivered product, environment, development process,
and the assets involved, such as source code, test cases, and
documentation (Broy, 2018; Zabardast et al., 2022).

Assets are software artefacts that are intended to be used
more than once during the inception, development, delivery, or
evolution of a software-intensive product or service (Zabardast
et al., 2022). Assets can lose their value and degrade ‘‘due to
intentional or unintentional decisions caused by technical or non-
technical manipulation of an asset or its associated assets during
all stages of the product life-cycle (Zabardast et al., 2022)’’.

During the development of software-intensive products or
services, decisions are usually made quickly to respond to change,
focusing on fast delivery, leaving considerations on the assets
involved as a secondary objective. Thus, these decisions often
result in long-term negative consequences not only on the quality
of the delivered product or service but also on the assets such as
code, architecture, and documentation, to name a few.

Researchers and practitioners have traditionally used the tech-
nical debt (TD) metaphor (Cunningham, 1992) to refer to the
impact of the intentional and unintentional sub-optimal decisions
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111701
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111701&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ehsan.zabardast@bth.se
mailto:javier.gonzalez.huerta@bth.se
mailto:tony.gorschek@bth.se
mailto:darja.smite@bth.se
mailto:emil.alegroth@bth.se
mailto:fabian.fagerholm@aalto.fi
https://ehsanzabardast.com/
http://gonzalez-huerta.net/
https://gorschek.com/
https://doi.org/10.1016/j.jss.2023.111701
http://creativecommons.org/licenses/by/4.0/


E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

f
f
t
t
w
a
o
a
d
a

a
o
p

on assets as a consequence of meeting strict deadlines (Kruchten
et al., 2019; Zabardast et al., 2022). In this work, we are inves-
tigating in assets’ quality degradation; therefore, we explore the
TD field as a representative form of quality degradation.

The motivation behind the work presented in this paper comes
rom industrial collaborations where the concept of TD did not
ully cover their needs since code-based assets, although impor-
ant, only represented a part of the challenge. From a practi-
ioner’s perspective, it is valuable to have the ability to identify
hat assets are available, which of them are important, and how
nd why they degrade. This is especially important as a product
r service evolves over time, when assets are reused many times,
nd when they inevitably become subject to change and degra-
ation. The degradation of assets is central to their maintenance
nd evolution (Avgeriou et al., 2016).
In our previous work (Zabardast et al., 2022), we have defined

ssets and asset degradation. We have articulated the importance
f identifying and studying them. From a research perspective, a
otential benefit of introducing assets as a complementary con-

cept to TD, with a broader definition, is that it takes all so-called
‘‘items of value’’ (Méndez et al., 2019) into account and widens
the view of what can hold value in the context of developing
software-intensive products or services (Zabardast et al., 2022).
The widened definition also fosters an understanding of what
assets can be negatively impacted by degradation and, thereby,
the understanding that overlooking said assets can be detrimental
to the development and evolution of such products and services.
However, to gain such understanding, we must first understand
what assets are subject to the concept, warranting the need for
the taxonomy of assets presented in this work.

The paper is structured as follows: Section 2 provides the
background and related work on the topic. Section 3 describes
the research methodology, which separately covers the anal-
ysis of secondary studies and the field study. The results are
presented in Section 4, together with the proposed asset man-
agement taxonomy. Section 5 discusses the principal findings and
the implications of the results. The threats to validity are also dis-
cussed and addressed in Section 5. And finally, Section 6 presents
the conclusion and the continuation of the work together with
the future directions.

2. Background and related work

Assets related to software products or services have been stud-
ied previously. For instance, from a managerial perspective where
the term asset is used to discuss how products in product lines
are developed from a set of core assets with built-in variation
mechanisms (Northrop et al., 2007), or making emphasis only on
business- or market-related assets, like the in the works by Am-
patzoglou et al. (2018), Cicchetti et al. (2016), Wohlin et al. (2016)
and Wolfram et al. (2020). In contrast, in this work, our focus
is on the inception, development, evolution, and maintenance of
software-related assets.

2.1. Artefacts and assets in software engineering

Describing how a software system is envisioned, built, and
maintained is part of the Software Development Processes (SDP)
(Sommerville, 2015). The SDP prescribes the set of activities and
roles to manipulate software artefacts, e.g., source code, docu-
mentation, reports, and others (Broy, 2018).

Artefacts in software engineering field have been tradition-
ally defined as (i) ‘‘documentation of the results of develop-
ment steps’’ (Broy, 2018); (ii) ‘‘a work product that is produced,
modified, or used by a sequence of tasks that have value to a
 s

2

role’’ (Méndez et al., 2019); and (iii) ‘‘a self-contained work re-
sult, having a context-specific purpose and constitutes a physical
representation, a syntactic structure and a semantic content of
said purpose, forming three levels of perception’’ (Méndez et al.,
2019). Software artefacts are, therefore, self-contained documen-
tation and work products that are produced, modified or used by
a sequence of tasks that have value to a role (Méndez et al., 2019).

Understanding software artefacts, how they are structured,
and how they relate to each other has a significant influence
on how organisations develop software (Broy, 2018). The docu-
mentation in large-scale systems can grow exponentially; there-
fore, there is a need for structurally organising software arte-
facts (Broy, 2018). Artefacts defined by most of the SDPs are
monolithic and unstructured (Tilley and Huang, 2002). The con-
tent of poorly structured artefacts is difficult to reuse, and the
evolution of such monolithic artefacts is cumbersome (Silva et al.,
2009). Therefore, different SDPs present various models for pre-
senting software artefacts, e.g., the Rational Unified Process (RUP)
(Kroll and Kruchten, 2003; Kruchten, 2000). There are ways to
classify and structure software artefacts based on well-known
modelling concepts. Examples of such models are the work of
Broy (2018) and Silva et al. (2009). Moreover, there are ontologies
and meta-models to classify artefacts in specific software devel-
opment areas (e.g., Idowu et al. (2022), Méndez et al. (2010), Zhao
et al. (2009), and Constantopoulos and Doerr (1995)).

However, the definitions of artefacts presented in the litera-
ture do not distinguish between:

i Artefacts that have an inherent value for the develop-
ment organisation (i.e., an asset Zabardast et al., 2022)
from the artefacts that do not have any value for the
organisation1 (Zabardast et al., 2022). The value of each
asset is a property that can characterise its degradation,
i.e., if an asset degrades, although it continues being an
asset, its value for the organisation has degraded.

ii Artefacts that are intended to be used more than once
‘‘An asset is a software artefact that is intended to be
used more than once during the inception, development,
delivery, or evolution of a software-intensive product or
service... Zabardast et al. (2022)’’ ‘‘If an artefact is used
once and discarded or disregarded afterwards, it does not
qualify as an asset (Zabardast et al., 2022)’’. We believe
that the following example clarifies the distinction be-
tween Temporary Artefacts vs. Assets: An API description
used by developers as a reference has value in the develop-
ment effort. If changes are made (new decisions, new ways
to adhere to components, etc.), but the API description
is not updated to reflect this, the utility (value) of the
API description becomes lower (the asset degrades). On
the other hand, an automatically generated test result is
not seen as an asset, as it is transient or intermediate. It
is generally created as a work product used once to be
‘‘transformed’’ into ‘‘change requests’’, ‘‘tickets’’ or other
management artefacts. Once transformed into the new as-
set ‘‘change requests’’, it is discarded. New test results
reports will be created (and discarded) on each execution
of the tests. Therefore, artefacts that are intended to be
used more than once and have value for the organisation
(i.e., assets) need to be monitored by the organisation since
their continuous maintenance and evolution renders the
need for exercising quality control (Reussner et al., 2019;
Zabardast et al., 2022).

1 Méndez et al. (2019) define artefacts as having value for a role which is
ubstantially different from having value for the organisation.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

c
d
o
d
A
i
t
i
l
U
d
a
s
t
s
i
i
t
t
i
t
s
(
a
t
t
u
a

r
b
t
a
t
a
i
i
p
(
s
v
c

2

t
t
T
e
a
1
t
b
2
m
w
t
s
e
c

i

2.2. Asset degradation and technical debt

In our previous work (Zabardast et al., 2022), we coined a con-
ept Asset Degradation ‘‘as the loss of value that an asset suffers
ue to intentional or unintentional decisions caused by technical
r non-technical manipulation of the asset, or associated assets,
uring all stages of the product life-cycle’’ (Zabardast et al., 2022).
ll assets can degrade, which will affect their value for the organ-
sation in different ways. Degradation can be deliberate, uninten-
ional, and entropy (Zabardast et al., 2022). Deliberate degradation
s introduced by taking a conscious decision, understanding its
ong-term consequences and accommodating short-term needs.
nintentional degradation is introduced by taking a sub-optimal
ecision either because we are not aware of the other, better
lternatives or because we cannot predict the consequences of
electing ‘‘our’’ alternative. Finally, entropy is introduced just by
he ever-growing size and complexity that occurs when software
ystems are evolving (Lehman, 1996, 1979). The degradation that
s due to the continuous evolution of the software, and which
s not coming directly from the manipulation of the asset by
he developers, is entropy (Zabardast et al., 2022). We argue
hat Technical Debt (TD), a metaphor introduced by Cunningham
n 1992 (Cunningham, 1992) and which allows reasoning about
he compromises resulting from sub-optimal decisions to achieve
hort-term benefits is one form of quality degradation. All assets
per definition artefacts, too) are subject to TD, i.e., while assets
re created, changed, and updated, one might introduce TD on
hem (Li et al., 2015). We see the introduction of TD aligned with
he three types of degradation mentioned above (i.e., deliberate,
nintentional, and entropy) as we consider TD to be one form of
sset quality degradation.
The TD metaphor has been extended and studied by many

esearchers (Rios et al., 2018). It has been an interesting topic for
oth academia and industry, and it has grown from a metaphor
o a practice (Kruchten et al., 2012). TD is currently recognised
s one of the critical issues in the software development indus-
ry (Besker et al., 2017). TD is ‘‘pervasive’’, and it includes all
spects of software development, signifying its importance both
n the industry and academia (Kruchten et al., 2019). The activ-
ties that are performed to prevent, identify, monitor, measure,
rioritise, and repay TD are called Technical Debt Management
TDM) (Avgeriou et al., 2016; Griffith et al., 2014) and include
uch activities as, for example, identifying TD items in the code,
isualising the evolution of TD, evaluating source code state, and
alculating TD principal (Rios et al., 2018).

.3. Taxonomies in software engineering

Scientists and researchers have long used taxonomies as a
ool to communicate knowledge. Early examples are noted in
he eighteen century, for instance, the work of von Linné (1735).
axonomies are mainly created and used to communicate knowl-
dge, provide a common vocabulary, and help structure and
dvance knowledge in a field (Glass and Vessey, 1995; Kwasnik,
992; Usman et al., 2017). Taxonomies can be developed in one of
wo approaches; top-down, also referred to as enumerative, and
ottom-up, also referred to as analytico-synthetic (Broughton,
015). The taxonomies that are created using the top-down
ethod use the existing knowledge structures and categories
ith established definitions. In contrast, the taxonomies that use
he bottom-up approach are created using the available data,
uch as experts’ knowledge and literature, enabling them to
nrich the existing taxonomies by adding new categories and
lassifications (Unterkalmsteiner et al., 2014).
Software engineering (SE) is continually evolving and becom-

ng one of the principal fields of study with many sub-areas.
3

Therefore, the researchers of the field are required to create and
update the taxonomies and ontologies to help mature, extend,
and evolve SE knowledge (Usman et al., 2017). The Guide to the
Software Engineering Body of Knowledge (SWEBOK) can be con-
sidered as a taxonomy that classifies software engineering dis-
cipline and its body of knowledge in a structured way (Bourque
et al., 2014). Software engineering knowledge areas are defined
in SWEBOK, and they can be used as a structured way of com-
munication in the discipline. Other examples of taxonomies in
software engineering are the work of Glass et al. (2002) and
Blum (1994). Specialised taxonomies with narrower scopes are
also popular in the field. These taxonomies are focused on spe-
cific sub-fields of software engineering such as Taxonomy of
IoT Client Architecture (Taivalsaari and Mikkonen, 2018), Taxon-
omy of Requirement Change (Saher et al., 2017), Taxonomy of
Architecture Microservices (Garriga, 2017), Taxonomy of Global
Software Engineering (Šmite et al., 2014), and Taxonomy of Vari-
ability Realisation Techniques (Svahnberg et al., 2005) to name a
few.

This paper presents a taxonomy of assets in the inception,
planning, development, evolution, and maintenance of a
software-intensive product or service. The taxonomy is built
using a hybrid method, i.e., the combination of top-down and
bottom-up. The details of the taxonomy creation are presented
in Section 3.3.

2.4. Summary of the gaps

In this paper, we identify and categorise assets in software
development and software engineering. We use the concept of
assets and their intentional and unintentional degradation. More-
over, we aim to address the following real-world problems:

• Bring awareness to practitioners and researchers. A precise
and concise terminology of assets enables practitioners and
researchers to consider new ways of dealing with asset
degradation (Zabardast et al., 2022).

• The ripple effect that the degradation of an asset can im-
pose on other assets is another aspect that necessitates
the creation of taxonomy to understand relations between
assets (Kruchten et al., 2019; Zabardast et al., 2022).

In this paper, we identify the software artefacts that adhere
to this definition of assets and are common in the industry. We
aim to address the following gap: identifying and distinguishing
assets by considering every aspect of software development. For
example, assets related to environment and infrastructure, devel-
opment Process, ways of working, and organisational aspects (Avge-
riou et al., 2016; Rios et al., 2018) that have not received enough
attention. We aspire to identify assets and provide a synthesis of
existing knowledge in the area of asset management.

3. Research overview

This section presents the research methodology of the paper.
The process followed to build the taxonomy is divided into two
main parts: a systematic analysis of secondary studies and a
field study (Stol and Fitzgerald, 2018) of industrial cases using
focus group interviews and field notes as data collection meth-
ods. Combining an SLR and a field study helps us look at the
phenomenon from different perspectives and create a complete
picture of the phenomena of assets. In addition, this multi-faceted
view provides insights that can strengthen the validity of the

results.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

t

R
p
i

s
2

3

s
d
d
A
d
f
a
r
r
b
t
w
t
i
a

a
a
o
o
a
W
f
W
a
e

t
i
a
s
s
2
s
a
p

l
a

Fig. 1. The execution process of the analysis of the secondary studies.
3

u
c
T
a
t
c

f
o
2
t
w

In this work, we are answering the following research ques-
ion:

Q : What assets are managed by organisations during the inception,
lanning, development, evolution, and maintenance of software-
ntensive products or services?

The rest of this section presents the analysis of secondary
tudies (See Section 3.1), the field study (Stol and Fitzgerald,
018) (See Section 3.2), and taxonomy creation (See Section 3.3).

.1. Analysis of secondary studies: Planning and execution

This subsection describes the systematic analysis of secondary
tudies conducted in this work. All assets are subject to degra-
ation. Asset degradation can be classified into three categories
eliberate, unintentional, and entropy (Zabardast et al., 2022).
sset degradation can also be measured and monitored using
ifferent metrics, e.g., the amount of TD. TD is a familiar concept
or practitioners and has received a growing interest in academia
nd the industry (Rios et al., 2018). TD has become a broad
esearch area that has focused on different assets. The fact that TD
esearch studies a particular asset might imply that asset might
e of value for software development organisations, or at least
hat might be perceived as such by TD researchers. Therefore,
e do believe we can use the TD literature as a proxy for iden-
ifying and categorising different types of assets. Since we are
nterested in assets’ quality degradation, we explore the TD field
s a representative form of quality degradation.
In order to study the state of art, we performed an system-

tic analysis of secondary studies to capture the classifications
nd definitions of the various assets addressed by these previ-
us research works (top-down method) (Broughton, 2015). In
ur literature review, the goal was to identify systematic liter-
ture reviews, systematic mapping studies, and tertiary studies.
e reviewed secondary and tertiary research papers by per-

orming an SLR using snowballing, following the guidelines by
ohlin (2014). We selected snowballing as a search strategy

s it allowed us to explore the area as well as its reported
fficiency (Badampudi et al., 2015).
The starting set of papers for snowballing was collected

hrough a database search in Google Scholar in October 2021 us-
ng the following search string in: ‘‘technical debt’’ AND (‘‘system-
tic literature review’’ OR ‘‘systematic mapping study’’ OR ‘‘tertiary
tudy’’). We chose to use the search string only in Google scholar
ince it is not restricted to specific publishers (Badampudi et al.,
015), and it can help avoid publisher bias (Wohlin, 2014). We
elected, with the inclusion and exclusion described below, the
rticles that presented a classification for TD, i.e., articles that
resent different types of TD.
The execution procedure to identify assets included the fol-

owing steps as illustrated in Fig. 1. The results of this process
re presented in Section 4.1.
4

• Step 1: Collection of the start set of relevant articles (seed
papers), including SLRs, SMSs, and tertiary studies on TD, by
using a search string.

• Step 2: Evaluate the papers – start set in the first iteration
– for inclusion/exclusion based on the criteria.

– Inclusion Criteria:

◦ The selected papers should report secondary or
tertiary studies;

◦ the papers should present any classification of TD
and assets affected by TD;

◦ the papers should be written in English; the pa-
pers’ main aim is the literature review.

– Exclusion Criteria:

◦ The papers that present informal literature re-
views and are duplication of previous studies are
not included.

• Step 3: The snowballing procedure for identifying addi-
tional secondary and tertiary studies on TD that satisfy our
inclusion/exclusion criteria:

– Step 3.1: Backward snowballing by looking at the ref-
erences of the selected papers. The backward snow-
balling was finished in one round.

– Step 3.2: Forward snowballing by looking at the papers
that cite the selected papers. The forward snowballing
was finished in one round.

• Step 4: Extracting different types of assets and assets together
with their respective definitions from the selected articles.

• Step 5: Synthesising the definitions of the types of assets and
assets provided by the selected articles.

• Step 6: Creating the matrix of types of assets and assets based
on TD classifications defined by the selected articles.

.2. Field study (Focus group interviews): Planning and execution

To study the state of practice, we performed field studies,
sing focus groups and field notes as data collection in five
ompanies to find evidence on how assets are defined and used.
he five companies were selected using convenience sampling,
s the companies are involved in an ongoing research project
hat focuses, among other topics, on addressing asset degradation
hallenges.
The focus groups’ process is presented in Fig. 2. The reports

rom the focus groups were coded and used for the construction
f the taxonomy. We used the bottom-up method (Broughton,
015) for updating the existing structure that we obtained from
he literature review. The focus groups were planned as a half-
orking day (four hours).



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

f
c
v
n
S
C

t
i
m
i
v
i
c
c
g
p

Fig. 2. The field study execution process.
Table 1
Case company details. The table is ordered alphabetically based on the name of the companies, and does not correspond to the order in Table 4.
Company Domain Investigated site Enterprise size Participants’ roles Number of participants

Ericsson Telecommunication
& ICT

Karlskrona,
Sweden

Large Senior System Architect
Corporate Senior
Strategic Expert
Operations & Testing

3

Fortnox Finance Växjö,
Sweden

Large Head of Development
Product Owner
Development Manager
System Architect
Testing

14

Qtemaa Consultancy Stockholm,
Sweden

SME Chairman of the Board
Requirements Analyst
Sales Manager
Project Manager
IT Administration
Manager

6

Time People Groupa Consultancy Stockholm,
Sweden

SME Data Consultant
Project Manager
Consultant
Senior Agile Coach
IT Project Manager
Team Leader
Chief Executive
Officer (CEO)
Consultant
Test Leader

7

Volvo CE Construction
Machinery

Gothenburg,
Sweden

Large Enterprise Architect
Solution Architect
Business Information
Architect

5

aTime People Group and Qtema participated in the same workshop.
s
t
e

3.2.1. Case company characterisation
We have collected the data for this study by collaborating with

ive companies that work in the area of construction machinery,
ommunication & ICT, consultancy services, and financial ser-
ices. The research partner companies are Ericsson (telecommu-
ication & ICT), Fortnox (Financial Services), Qtema (Consultancy
ervices), Time People Group (Consultancy Services), and Volvo
E (Construction Machinery).
The partner companies are mature in their development prac-

ices and have well-established, successful products. They are
nterested in continuously improving their products and develop-
ent processes, which turns into their willingness to participate

n studies like this. All the collaborating companies work on de-
eloping software-intensive products or services and are involved
n a large ongoing research partnership.2 The details of the case
ompanies are presented in Table 1. Note that the order of the
ompanies in Table 1 does not correspond with the order of focus
roups (focus group IDs) in Table 4, which has been shuffled to
reserve confidentiality.

2 See www.rethought.se.
 c

5

3.2.2. Focus groups’ procedure
The steps taken during the industrial focus groups are pre-

sented in this section. The focus groups include six steps (see
Fig. 2):

• F1. Focus group participants introducing themselves.
• F2. One of the moderating researchers presenting the topic.
• F3. Focus group participants discussing the topic, providing

insight into their views/experiences with TD and document
them in notes.

• F4. Focus group participants discussing assets and asset
management in detail after a second presentation of the
concept.

• F5. Focus group participants discussing what they wrote
before as TD examples and rethinking them in terms of
assets, asset degradation, and asset management.

• F6. A closing discussion and focus groups.

Each Focus group starts with participants introducing them-
elves with background information about their work, including
heir current role in the organisation (step F1). One of the mod-
rating researchers then presents the Focus group’s agenda and
overs the importance of the topic and the growing interest in

http://www.rethought.se


E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

r
a
i
t
t
a
c
m

t
d
n
b
e
F

f
f
a
o
p
h
d

s
t
T
w
d
(
a
o
S

a
c
p

3

t
c
S

o
p
c
F
2
p
i
o
a
d
s
i
c
a

D
l
t
i

value creation and waste reduction both in academia and in the
industry (step F2).

After the initial introduction of the topic by the moderating
esearchers, the participants are divided into groups. They are
sked to list and discuss the challenges with their ways of work-
ng (while considering varying aspects of TD), i.e., the problems
hey know or have encountered or experienced (step F3). After
he time is up, the notes are read, discussed, and abstracted to
more general description and later put on a whiteboard. The
onnections between the items on the board are identified and
arked down with a marker.
After a second presentation, i.e., introducing the participants

o the concepts related to asset management and asset degra-
ation (step F4), the participants add new items to the previous
otes on the board. Participants then refine the items from the
oard for the rest of the Focus group (step F5). The Focus group
nds with a closing discussion on the topic and the items (step
6).
In the context of this research, we have moved the focus

rom the traditional TD metaphor to asset degradation. In this
ramework, we talk about asset degradation as the deviation of an
sset from its representation. That way, we can focus, potentially,
n any type of asset and its representation. This framework
rovides us with a broader, holistic view that allows us to study
ow an asset’s degradation (e.g., requirements) might introduce
egradation in other assets (e.g., code or test cases).
The researchers’ minutes that were written during each ses-

ion were then aggregated and summarised in a report sent back
o the participants, that were asked to provide us with feedback.
he written notes from the participants and the final reports
ere used as raw data for creating the taxonomy using the
ata extraction method described in Section 3.2.3. The raw data
i.e., participants’ notes and the reports) were used for coding
nd later to extract types of assets and explicit assets. The details
f the data extraction and taxonomy creation are described in
ection 3.3.
Unfortunately, since this research is under non-disclosure

greements (NDA) with participating companies, we cannot dis-
lose any further information about the companies, the partici-
ants, or the collected materials.

.2.3. Data extraction
To create the matrix of assets from industrial insights, we use

he hybrid method of coding, as suggested by Saldaña (2015). The
oding is divided into two main cycles: First Cycle Coding and
econd Cycle Coding.
First Cycle Coding of the raw data happens in the initial stage

f coding. The raw data, which can be a clause, a sentence, a com-
ound sentence, or a paragraph, is labelled based on the semantic
ontent and the context in which it was discussed during the
ocus group. We have used the in vivo coding method (Saldaña,
015) to label the raw data in the first cycle. In vivo coding
rioritises the participants’ opinions (Saldaña, 2015); therefore,
t is suitable for labelling raw data in the first cycle coding in
ur study, where participants’ opinions are used as input. It
dheres to the ‘‘verbatim principle, using terms and concepts
rawn from the words of the participants themselves. By doing
o, [the researchers] are more likely to capture the meanings
nherent to people’s experiences’’ (Stringer, 2014, p. 140). It is
ommonly used in empirical and practitioner research (Coghlan
nd Brannick, 2014; Fox et al., 2007; Stringer, 2014).
The coding was done by two researchers independently (step

1, see Fig. 2). The labels were then compared to validate the
abels and to identify conflicting cases. A third researcher helped
o resolve the conflicts by discussing the labels with the two
nitial researchers (step D2, see Fig. 2).
6

Second Cycle Coding is done primarily to categorise, theorise,
conceptualise, or reorganise the coded data from the first cycle
coding. We have used Pattern Coding (Saldaña, 2015) as the
second cycle coding method. Pattern codes are explanatory or
inferential codes that identify an emergent theme, configura-
tion or explanation (Saldaña, 2015, p. 237). According to Miles
et al. (2014, p. 86), pattern coding is used in cases where: (i)
the researchers aim to turn larger amounts of data into smaller
analytical units. (ii) the researchers aim to identify themes from
the data. (iii) the researchers aim to perform cross-case analysis
on common themes from the data gathered by studying multiple
cases.

Similar to the first cycle coding process, pattern coding was
done by two researchers independently (step D3, see Fig. 2). The
results were compared to validate the classifications and to iden-
tify conflicting cases. A third researcher resolved the conflicting
cases in a discussion session with the two researchers (step D4,
see Fig. 2). The results of the insights gathered from industrial
focus groups are presented in Section 4.2.

3.3. Taxonomy creation

To describe a precise syntax and the semantics of the dif-
ferent concepts used for the taxonomy creation, we created a
metamodel (presented in Fig. 3). The metamodel illustrates the
structural relationships between the metaclasses, i.e., concepts, in
the taxonomy. The metaclasses presented in the metamodel are:

• The ‘‘AssetsTaxonomy’’ metaclass is the container metaclass
for the items in the model.

• The ‘‘TypeOfAsset’’ metaclass represents the hierarchical
classification of assets. The items belonging to this metaclass
can be further broken down into subclassifications repre-
senting various groups of assets. The types of assets are
containers for the assets. Types of assets are identified from
the state-of-the-art (i.e., existing academic literature), state-
of-practice (i.e., the industrial insights gathered through the
industrial focus groups), or the identified by researchers.

• The ‘‘Asset’’ metaclass represents assets. Each asset belongs
to one and only one type of asset, assuring orthogonality
by design. Assets are identified from the state-of-the-art
(i.e., existing academic literature), state-of-practice (i.e., the
industrial insights gathered through the industrial focus
groups), or identified by researchers.

• The ‘‘Reference’’ metaclass represents the references from
which each asset or type of asset has been identified. Ref-
erence can originate from academic literature (the literature
review) or industrial insights (gathered from industrial focus
groups). References can be mapped to individual assets/type
of assets or multiple assets/type of assets.

The creation of the taxonomy included three steps. First, we
summarised the relevant topics on TD types (top-down approach)
with items that we extracted from the literature review. We cre-
ated the matrix based on the literature’s definitions, i.e., by syn-
thesising the definitions to identify similarities, differences, and
hierarchies of identified items. We have grouped the definitions
provided by the literature based on their semantic meaning.

In the second step, we utilised the extracted assets from
industrial focus groups (Section 3.2.3) to create a second asset
matrix (bottom-up approach). Like the previous step, we used
the definitions of the assets and their types and the participants’
statements from the focus groups.

After the creation of the matrices, all the candidate assets in
each matrix were listed and presented to all the researchers that
were part of the industrial workshops. The researchers discussed
whether each candidate asset and asset type should be included



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

t

Fig. 3. Asset management metamodel.
in the taxonomy. The discussion included ensuring each candi-
date asset adhered to two criteria: (1) the candidate asset should
adhere to the definition of an asset, and (2) how a candidate asset
would degrade. We decided to include a candidate after all the
researchers agreed on it adhering to the criterion. The rest of the
candidates were discarded.

By combining the two matrices in the last step, we created
the asset management tree. To complete the tree, we added some
nodes based on the researchers’ expertise and extensive industry
knowledge from decades of industrial research that we perceived
were missing nodes and leaves. We mention such cases as Author
Defined Assets (ADA) when presenting the results.

The process of adding ADA started with researchers suggesting
assets that should be included in the taxonomy. These suggested
assets were brought up in internal workshops3 where all the
researchers discussed, reflected, improved, and added or removed
the suggested assets. User Stories as an example, were suggested
by one of the researchers to be considered as assets during one of
the internal workshops. The discussion was regarding (i) whether
or not User Stories are assets, (ii) if they fit in the taxonomy
according to the definition, (iii) where they belong in the tree, (iv)
what they represent, (v) and how they degrade. After the discus-
sions, the researchers decided that User Stories belong to [AM1]
- [AM1.1] Functional-Requirements-Related Assets in the taxonomy
tree. The assets included in the taxonomy should adhere to the
definition of an asset (Zabardast et al., 2022).

3.4. Taxonomy validation

This section describes the taxonomy validation procedure. Ac-
cording to Usman et al. (2017), the validation process includes
orthogonality demonstration, benchmarking, and utility demon-
stration. The taxonomy was created to be orthogonal by design
(i.e., each element can only be a member of one group), as
described in Section 3.3. Therefore, in this validation we focus on
benchmarking and utility demonstration.

We conducted three separate workshops (one for each com-
pany) to validate the taxonomy and its structure with the six

3 Internal workshops refer to the workshops where the researchers discussed
he taxonomy.
7

participants (including Product Owner, Developer, Software Ar-
chitect, Scrum Master, Test Quality Assurance, and Research En-
gineer) from three companies namely, Ericsson (2 participants),
Fortnox (3 participants), and Volvo CE (1 participant) who were
involved during the industrial workshops for the data collection.
The procedure for the validation workshops is presented below.

1. The taxonomy was sent to the participants to study before
the validation workshops.

2. During the validation workshops, the taxonomy was pre-
sented to the participants.

3. After the presentation, the participants filled in a question-
naire that included four questions:

(a) ‘‘Select the assets from the taxonomy that you were not
aware of.’’

(b) ‘‘Select the assets that you think should not be in the
taxonomy.’’

(c) ‘‘Write down the assets that are missing from the tax-
onomy.’’

(d) ‘‘Prioritise the top 5 assets based on your experience.
(index starting from 1 as the most important asset). You
can add missing assets from the previous question as
well.’’

4. At the end of each workshop, a discussion session was held
where participants asked questions regarding the taxon-
omy and its content. The discussions were recorded.

We decided to apply changes to the taxonomy after the vali-
dation workshops were concluded, in cases when the majority of
the participants suggested a given change in the taxonomy. The
results of the validation workshops together with the discussion
on the results are presented in Section 4.4.

4. Results

This section presents the results of the systematic literature
review and then the results from the field study. We will present
the asset management taxonomy built by aggregating the results
from both. Finally, we will present the results of the validation
workshops.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

s
S
i
a
a
T
f
a
i
p
I
r
C
c
o
i
o
H
a

i
P
t
A
a
i
i

4

p
g
o
c
b
t
I

3
v
T
w
f

b

Table 2
The articles gathered for the literature review during the snowballing process.
Code Title Seed

paper
Backward
snowballing

Forward
snowballing

P1 A Consolidated Understanding of Technical Debt (Tom et al., 2012) ×

P2 An Exploration of Technical Debt (Tom et al., 2013) ×

P3 Towards an Ontology of Terms on Technical Debt (Alves et al., 2014) ×

P4 A Systematic Mapping Study on Technical Debt and Its Management (Li et al., 2015) ×

P5 Identification and Management of Technical Debt: A Systematic Mapping Study (Alves et al., 2016) ×

P6 Managing Architectural Technical Debt: A Unified Model and Systematic Literature Review (Besker et al.,
2018)

×

P7 A tertiary study on technical debt: Types, management strategies, research trends, and base information
for practitioners (Rios et al., 2018)

×

P8 A systematic literature review on Technical Debt prioritisation: Strategies, processes, factors, and tools
(Lenarduzzi et al., 2021)

×

P9 Investigate, identify and estimate the technical debt: a systematic mapping study (BenIdris, 2020) ×
m
e
‘
s
o
i
f
t
M
t

4

s
T
l
a
T
a

(
i
e
a
a
D
r

m
f
(
a

a

4.1. Results from the analysis of secondary studies

The final list of selected papers included nine articles, pre-
ented in Table 2. To create the final assets’ matrix (presented in
ection 4.3), we extracted the data from each article. For example,
n paper P4 (Li et al., 2015), we refer to Fig. 8 on page ten of the
rticle, where the authors summarise the ‘‘TD classification tree’’
nd their respective definitions. The authors define Requirements
D as ‘‘the distance between the optimal requirements speci-
ications and the actual system implementation, under domain
ssumptions and constraints’’ (Li et al., 2015, p.9). Requirements
s also mentioned as a TD item in P3, P5, P6, and P8. Table 3
resents the summary of our findings based on the types of TD.
t is important to mention that the columns P1 to P9 in Table 3
etain the exact extracted words from the data. The ‘‘Emerging
ategory(ies)’’ and ‘‘Phase, during which the artefact is produced’’
olumns are the synthesised information for each row. The codes
f the papers are used as a reference throughout this paper. It is
mportant to mention that Table 3 does not represent an overview
f the final assets but only the ones extracted from the SLR.
owever, this matrix helps us to categorise assets and types of
ssets according to existing classifications.
Looking at Table 3 we can see that there are fewer categories

n the earlier studies (P1 and P2) compared to later studies (P3 to
9). The more recent papers that follow these studies break down
he bigger categories into more specific categories. For example,
rchitecture and Design are put into one category in P1 and P2
nd later, they are broken down into their own categories. It is
mportant to mention that P7 has fewer categories since the study
s on the specific topic of Architectural Technical Debt.

.2. Results from the field study

There were a total of four focus groups, each held with the
articipation of employees from different companies. The focus
roups’ procedure stayed the same, while the closing discussion
f each focus group was on the topic of interest for that fo-
us group’s participants (the stakeholders). The topics included,
ut were not limited to, Lack of Knowledge/Competence, Archi-
ecture Lifecycle, Business Models for Products, and Backlog Update
ssues/Backlog Size.

Two researchers used the in vivo coding method to label
86 statements during the first cycle coding. After matching and
alidating the labels, 14 cases of conflicting labels were identified.
he conflicting labels were resolved during a discussion session
ith a third researcher. The researchers agreed on the new labels

or the conflicting cases during that discussion.
The focus groups are presented in chronological order in Ta-

le 4, i.e., WS1 was the first focus group. It is important to
 T

8

ention that the columns WS1 to WS4 in Table 4 retain the exact
xtracted words from the data. The ‘‘Emerging Category(ies)’’ and
‘Phase, during which the artefact is produced’’ columns are the
ynthesised information for each row. Examining Table 4, we
bserve that assets are mentioned more often than types of assets
n the industrial focus groups, whereas types of assets are more
requent in the literature review (see Table 3). Finally, assets
hat are related to Operations, Management, and Organisational
anagement were highlighted more in the industrial focus groups

han the literature review.

.3. The asset management taxonomy

Using the key concepts extracted from the labelled data (pre-
ented in Tables 3 and 4), we build the taxonomy of assets.
he taxonomy contains the assets identified both through the
iterature review and through the industrial focus groups. The
ssets included in the taxonomy are presented in a tree (graph).
he nodes represent the assets (the leaf nodes) and the types of
ssets (non-leaf nodes).
The tree presented in Fig. 4 contains only the types of assets

The full tree is presented in Appendix). Note that the nodes
n the tree in Fig. 4 are mapped to represent their source. For
xample, a node can be assigned with [P1] as a reference for an
rticle in the literature review. Similarly, [WS1] as a reference for
n asset coming from industrial focus groups.4 And finally, Author
efined Assets ([ADA]) are assets included in the taxonomy by the
esearchers.

The process described in Section 3.3, combining the asset
atrices from the literature review, the input from the industrial

ocus groups, and completing the tree with Author Defined Assets
ADA) resulted in the taxonomy containing 24 types of assets and
total of 57 assets.
The eight main types of assets included in the taxonomy are:

• Product-Requirements-Related Assets (AM1) refer to as-
sets (and types of assets) concerned with software require-
ments, including the elicitation, analysis, specification, val-
idation, and management of requirements during the life
cycle of the software product.

• Product-Representation-Related Assets (AM2) refer to the
assets (and types of assets) concerned with system and
architectural design and any documentation related to these
assets.

4 The IDs on the focus groups on Table 4 have been obfuscated to preserve
nonymity and have no relationship with the order of companies shown in
able 1.



E.Zabardast,J.Gonzalez-H
uerta,T.Gorschek

et
al.

The
Journal

of
System

s
&

Softw
are

202
(2023)

111701

Table 3
Asset matrix from technical debt literature.
P1
2012

P2
2013

P3
2014

P4
2015

P5
2016

P6
2018

P7
2018

P8
2019

P9
2020

Emerging category(ies) Phase, during
which the
artefact is
produced

Features Requirements Requirements Requirements Requirements Requirements Requirements Product Requirements Requirements
Usability Usability Usability Quality Requirements

Design\
Architecture

Design and
Architecture

Architecture
Design

Architecture
Design

Architecture
Design

Architecture
Design

Architecture Architecture
Design

Architecture
Design

Architecture Design Decisions
Documentation Design

Documentation Documentation Documentation Documentation Documentation Documentation Documentation Documentation Product Documentation
Design

Specifications
Architectural

Documentation
Architectural Documentation

Code Code Code Code Code Code Code Code Code Source Code

DevelopmentBuild Build Build Build Build Build Build Documentation
Service Service Service Service Web Services

Versioning Versioning Versioning Versioning Versioning Versioning

Testing Testing Test Test Test Test Test Test Functional Test Verification
and
Validation

Defects Defects Defects Defects Defects Defects Defects
Test Automation Test Automation Test Automation Test Automation Test Automation

Test Case
Documentation

Test Documentation

Environment Environment & Infrastructure
OperationsInfrastructure Hardware

Infrastructure
Infrastructure Infrastructure Infrastructure Infrastructure Infrastructure Infrastructure Environment & Infrastructure

Operational
Processes

Operations

Process Process Process Process Process Management Management
Documentation

Specifications
Documentation Internal Rules

& Specifications

Colour Guide: Assets Types of Assets Temporary Artefacts.

9



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701
Fig. 4. The asset management taxonomy. The tree contains only the types of assets. The full tree is presented in Appendix.
4

t

• Development-Related Assets (AM3) refer to the assets (and
types of assets) concerned with the development of the
software product, including the code, build, and versioning.

• Verification-and-Validation-Related Assets (AM4) refer to
assets (and types of assets) concerned with software testing
and quality assurance and the output provided by such
assets that help the stakeholders investigate the quality of
the software product.

• Operations-Related Assets (AM5) refer to assets (and types
of assets) concerned with the data produced or collected
from operational activities, e.g., any data collected during
the use of the product or service.

• Environment/Infrastructure-Related Assets (AM6) refers
to assets (and types of assets) concerned with the develop-
ment environment, the infrastructure, and the tools (includ-
ing support applications) that facilitate the development or
deployment process.

• Development-Process/Ways-of-Working-Related Assets
(AM7) refer to assets (and types of assets) concerned with
product and process management and all the interrelated
processes and procedures during the development process.

• Organisation-Related Assets (AM8) refer to assets (and
types of assets) concerned with organisations, such as team
constellation, team collaborations, and organisational gov-
ernance.

In the remainder of the section, we present the eight major types
of assets labelled AM1-AM8. We include the definitions of each
type of asset together with their corresponding assets. Assets’
definitions are presented in Appendix.
10
4.3.1. Product-Requirements-Related Assets (AM1)
Product-Requirements-Related Assets include the following

three types of assets (see Fig. 5):

• Functional-Requirement-Related Assets (AM1.1) refer to the
assets related to the functions that the software shall pro-
vide and that can be tested (Bourque et al., 2014). We
have identified the following assets belonging to this type:
Feature-Related Backlog Items, User Stories, and Use Cases.

• Quality-Requirement-Related Assets (AM1.2) refer to the as-
sets related to non-functional requirements that act to con-
strain the solution (Bourque et al., 2014). We have identi-
fied the following assets belonging to this type: System Re-
quirements, User Interface Designs, Quality Scenarios (i.e., the
-ilities), and User Experience Requirements.

• Product-Modification-Related Assets (AM1.3) refer to assets
that mandate a change of the system and, but not nec-
essarily, the requirements. Change Requests is an asset we
identified belonging to this type.

.3.2. Product-Representation-Related Assets (AM2)
Product-Representation-Related Assets include the following

wo types of assets (see Fig. 6):

• Architecture-and-Design-Related Assets (AM2.1) refer to the
assets that are used to design, communicate, represent,
maintain, and evolve the software product, which is divided
into:



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

T

Table 4
Asset matrix from industrial input.
WS1 WS2 WS3 WS4 Emerging category(ies) Phase, during

which the artefact
is produced

Contradictory
Requirementsa

Requirementsa Requirementsa Requirementsa Product Requirements Requirements

Architectural
Models

Documentation

Documentation Documentation Product Documentation

DesignArchitectural
Documents

Architectural
Documentation

Architectural Documentation

Architecture Software
Structure

Architecture Architectural (Source Code)

Dangerous
Code

Code Code Code Source Code
Development

APIs API Versions APIs
Libraries Third Party

Products
Libraries\External Libraries

Test Cases Tests Test Cases Test Cases Verification and
ValidationAutomated Tests Test Automation Scripts

Bug Reports

Application Data Application Data Operations
Kubernets Containers

\Kubernets
Tools

Ways of Working Ways of Working Documentation
about Ways of Working

Documentation about Ways
of Working

ManagementCoding Standards Coding Standards Coding Standards
Architectural

Rules
Architectural Internal

Standards
Documentation

Standards
Documentation Internal Rules

\Standards
Product

Roadmap
Product

Management
Product Management

Backlog Product Backlog

Organisation’s
Roadmap

Holistic Strategy Organisation’s Strategy Organisational
Management

Organisation’s
Structure

Organisation’s Structure

Business Models Business Models

Colour Guide: Assets Types of Assets Temporary Artefacts.
he term requirements refers to software requirement area. We use requirement artefact when referring to documents such as SRS.
Fig. 5. Product-Requirements-Related Assets Sub-tree.
– Architectural-Documentation-Related Assets (AM2.1.1)
refer to the assets used to design, communicate, repre-
sent, maintain, and evolve the architectural represen-
tation of a software product. We have identified the
following assets belonging to this type: Architectural
Models and Architectural Documentation.

– Design-Related Assets (AM2.1.2) refer to the assets that
belong to the design that occurs during the develop-
ment process. We have identified the following assets
11
belonging to this type: Design Decisions Documentation
and System Designs.

• Product-Documentation-Related Assets (AM2.2) refer to the
assets that belong to the product documentation and the
process of creating such documentation. We have identified
the following assets belonging to this type: Documentation
Automation Scripts and Product Documentation.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701
Fig. 6. Product-Representation-Related Assets Sub-tree.
Fig. 7. Development-Related Assets Sub-tree.
Fig. 8. Verification-and-Validation-Related Assets Sub-tree.
4.3.3. Development-Related Assets (AM3)
Development-Related Assets include the following three types

of assets (see Fig. 7):

• Build-Documentation-Related Assets (AM3.1) refer to the as-
sets related to the build system itself, the build environment,
and the build process. We have identified the following
assets belonging to this type: Build Plans, Build Results, and
Build Scripts.

• Code-Related Assets (AM3.2) refer to the assets that are re-
lated to the source code. We have identified the following
assets belonging to this type: Source Code, Code Comments,
APIs, Architecture (Code Structure) —i.e., a set of structures
that can be used to reason about the system including the
elements, relations among them, and their properties (Bass
et al., 2003)—, and Libraries/External Libraries.

• Source-Code-Management-Related Assets (AM3.3) refer to the
assets related to managing the source code, such as version-
ing and problems in code versioning and burndown charts.
Versioning Comments is an asset we identified belonging to
this type.

4.3.4. Verification-and-Validation-Related Assets (AM4)
Verification-and-Validation-Related Assets include the follow-

ing four types of assets (see Fig. 8):
12
• Functional-Tests-Related Assets (AM4.1) refer to the assets
related to testing the functionality of the system, its related
features, and how they work together. We have identi-
fied the following assets belonging to this type: Unit Tests,
Integration Tests, System Tests, and Acceptance Tests.

• Non-Functional-Test-Related Assets (AM4.2) refer to the assets
related to testing the quality attributes of the system and
whether they satisfy the business goals and requirements.
We have identified Non-Functional Test Cases as an asset
which belongs to this type.

• Test-Documentation-Related Assets (AM4.3) refer to the assets
related to documenting the testing process. Test Plans is an
asset we identified belonging to this type.

• Test-Automation-Related Assets (AM4.4) refer to the assets
that are utilised for automated testing of the system. We
have identified the following assets belonging to this type:
Test Automation Scripts and Test Automation (Real/Synthetic)
Data.

4.3.5. Operations-Related Assets (AM5)
Operation-Related Assets are all the assets created as the

result of operational activities, extracted during the operational
activities, or used during the operational activities, e.g., any data
collected during the use of the product or service (see Fig. 9). The



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

o
a

4

s
t
T
p

4

t

Fig. 9. Operation-Related Assets Sub-tree.
Fig. 10. Environment-and-Infrastructure-Related Assets Sub-tree.
Fig. 11. Development-Process/Ways-of-Working-Related Assets Sub-tree.
s,

4

o
s
a

4

v
d

t
n
T
s
t

perations-related assets include Customer Data, Application Data,
nd Usage Data.

.3.6. Environment-and-Infrastructure-Related Assets (AM6)
Environment-and-Infrastructure-Related Assets are all the as-

ets used in the development environment or as an infrastruc-
ure for development during software development (see Fig. 10).
he environment-and-infrastructure-related assets include De-
loyment Infrastructure, Tools, and Tools Pipelines.

.3.7. Development-Process/Ways-of-Working-Related Assets (AM7)
Development-Process/Ways-of-Working-Related Assets include

he following three types of assets (see Fig. 11):

• Product-Management-Related Assets (AM7.1) refer to the as-
sets related to the management of the product or service.
These assets come from different stages, such as business
justification, planning, development, verification, pricing,
and product launching. We have identified the following
assets belonging to this type: Product Management Docu-
mentation, Documentation About Release Procedure, Product
Business Models, Product Roadmap, Product Scope, and Product
Backlog.

• Process-Management-Related Assets (AM7.2) refer to the as-
sets related to managing the development process, including
internal rules, plans, descriptions, specifications, strategies,
13
and standards. We have identified the following assets be-
longing to this type: Requirements Internal Standards, Archi-
tectural Internal Standards, Documentation Internal
Rules/Specifications, Build Internal Standards, Coding Internal
Standards/Specifications, Versioning Internal Rules/Specification
Testing Internal Rules/Specifications/Plans/Strategies, Process
Internal Descriptions, Process Data, and Documentation About
Ways of Working.

.3.8. Organisation-Related Assets (AM8)
Organisation-Related Assets are all the assets that represent

rganisations’ properties. The identified organisation-related as-
ets include Organisational Structure, Organisational Strategy,
nd Business Models (see Fig. 12):

.4. Summary of validation workshops

In this section, we present the summary of the taxonomy
alidation workshop carried out with industrial practitioners, as
escribed in Section 3.4.
The industrial participants were asked to select the assets from

he taxonomy that they were not aware of or assets that were
ew to them. The participants collectively selected 33 assets.
hese assets and the number of times they were chosen are pre-
ented in Table 5. The participants were asked to select the assets
hat, based on their experience, should not be in the taxonomy.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

d
m

Fig. 12. Organisation-Related Assets Sub-tree.
t
R

Table 5
This table summarises the assets that the validation workshop participants were
not aware of. The number represented the number of times the asset was
selected by the participants.

Asset Selected by

1 AM2.2 - Documentation Automation Scripts 4
2 AM7.1 - Product Management Documentation 3
3 AM1.2 - Quality Scenarios 2
4 AM3.1 - Build Plans 2
5 AM7.1 - Product Business Models 2
6 AM7.2 - Requirements Internal Standards 2
7 AM7.2 - Architectural Internal Standards 2

8 AM7.2 - Documentation Internal
Rules/Specifications

2

9 AM7.2 - Build Internal Standards 2
10 AM7.2 - Versioning Internal Rules/Specifications 2

11 AM7.2 - Testing Internal Rules/Specifications/Plans/
Strategies

2

12 AM7.2 - Process Internal Descriptions 2
13 AM7.2 - Process Data 2
14 AM1.1 Feature-Related Backlog Items 1
15 AM1.2 - User Experience Requirements 1
16 AM2.1.1 - Architectural Models 1
17 AM3.1 - Build Results 1
18 AM3.2 - Architecture (Code Structure) 1
19 AM3.2 - Libraries/External Libraries 1
20 AM3.2 - Web Services 1
21 AM3.3 - Versioning Comments 1
22 AM4.1 - Acceptance Tests 1
23 AM4.4 - Test Automation (Real/Synthetic) Data 1
24 AM5 - Usage Data 1
25 AM6 - Deployment Infrastructure 1
26 AM6 - Tools 1
27 AM7.1 - Documentation About Release Procedure 1
28 AM7.1 - Product Scope 1
29 AM7.1 - Product Backlog 1
30 AM7.2 - Coding Internal Standards/Specifications 1
31 AM7.2 - Documentation About Ways of Working 1
32 AM8 - Organisation’s Structure 1
33 AM8 - Organisation’s Strategy 1

Overall, the participants selected 13 assets. These assets and the
number of times there were chosen are presented in Table 6.

In an open question, the participants were asked to write
own the assets that were missing from the taxonomy. Git Com-
ents, Code Review Data, Contract Documentation, and Commu-

nication Channels were mentioned in the questionnaire. Finally,
we asked the participants to prioritise the top five assets based
on their experience. The answers to the last question are sum-
marised in Table 7.

The utility of the taxonomy is demonstrated through the use
of taxonomy by practitioners and classification of existing knowl-
edge (Britto et al., 2016). The participants in the validation work-
shops were able to use the taxonomy to identify and classify
assets.

There are no existing taxonomies to compare the classification
schemes; therefore, the taxonomy benchmarking was done with
experts’ knowledge. The validation workshop participants did not
make any suggestions regarding the structure of the taxonomy.
14
Table 6
This table summarises the assets that the validation workshop participants,
based on their experience, deemed not needed to be included in the taxonomy.
The number represented the number of times the asset was selected by the
participants.

Asset Selected by

1 AM1.2 - Quality Scenarios 1
2 AM3.1 - Build Plans 1
3 AM3.2 - Libraries/External Libraries 1
4 AM4.1 - Unit Tests 1
5 AM5 - Usage Data 1
6 AM7.1 - Product Management Documentation 1
7 AM7.2 - Requirements Internal Standards 1
8 AM7.2 - Architectural Internal Standards 1

9 AM7.2 - Documentation Internal
Rules/Specifications

1

10 AM7.2 - Build Internal Standards 1
11 AM7.2 - Versioning Internal Rules/Specifications 1

12 AM7.2 - Testing Internal Rules/Specifications/Plans/
Strategies

1

13 AM8 - Business Models 1

Table 7
This table summarises the assets that the validation workshop participants,
based on their experience, selected as the top five assets. The number
represented the number of times the asset was selected by the participants.
Asset Selected by

AM1 - Product Requirements Related Assets 4
AM1.1 - Functional Requirements Related Assets 1
AM1.3 - Product Modification Related Assets 1
Use Cases 1
System Requirements 1
AM2 - Product Representation Related Assets 1
AM2.1.2 - Design Related Assets 2
Product Documentation 1
AM3 - Development Related Assets 3
AM3.2 - Code Related Assets 1
Source Code 1
Architecture 1
AM4 - Verification and Validation Related Assets 2
AM4.1 - Functional Tests Related Assets 1
AM5 - Operation Related Assets 1
AM6 - Environment and Infrastructure Related Assets 3
AM7 - Development Process/Ways of Working Related Assets 3
AM7.1 - Product Management Related Assets 1
AM8 - Organisation Related Assets 1

All participants agreed that the schema and categories (i.e., types
of assets) were adequate.

The participants in the validation workshops selected the im-
portant assets based on their experience. The six most selected
assets are [AM1] - Product Requirements Related Assets, [AM3] -
Development Related Assets, [AM6] - Environment and Infrastruc-
ure Related Assets, [AM7] - Development Process/Ways of Working
elated Assets, [AM2.1.2] - Design Related Assets, and [AM4] - Ver-

ification and Validation Related Assets (see Table 7). The selected
important assets come from different asset types illustrating the



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

q
t

5

i
t
c
a
a
d
i

c
c

s
P
a
e
r
t
h
t

t

t
t
T
a
a
o
s
d
t
t
b
n
e
t

t
t
t
w
s

importance of all assets. This emphasises the need to identify and
maintain all assets in the organisation.

5. Discussion

This section discusses our findings in light of the research
uestion, followed by the general lessons learned and implica-
ions.

.1. Principal findings

RQ : What assets are managed by organisations during the
inception, planning, development, evolution, and maintenance of
software-intensive products or services?

In Section 4.3 we have presented a taxonomy of assets, which
ncludes eight major types of assets AM1 to AM8. Although the
axonomy is orthogonal by design (i.e., an asset or a type of asset
an only be classified as a member of one type of assets), assets
nd types of assets are not isolated, i.e., some assets and types of
ssets are interrelated. For example, architectural documentation is
irectly related to architecture since architectural documentation
s a representation of the architecture of the system.

During internal workshops and the taxonomy creation pro-
edure, presented in Section 3.3, we identified several meta-
haracteristics of assets. These meta-characteristics are:

• Easier to contextualise: It is easier for the stakeholders
to identify such assets in the software product context.
For example, the data that the company acquires from the
operation of the product, i.e., Application Data, can be used
as input to improve the product.

• More tangible: Some assets are more prominent in industry
and have been studied and discussed more deeply before,
and therefore the asset is not alien anymore. For example,
every software company, one way or another, has Code,
in one form or another, or a Product Backlog with specific
characteristics which is familiar to all people involved in the
development of the software-intensive products or services.

• Easier to measure: There are already existing metrics used
to measure the state of such assets. For example, there are
many metrics available to measure Source Code, such as LOC
and Cyclomatic Complexity.

• Used universally: The assets that are defined in the same
way across different organisations and academia, meaning
that they are not organisation-specific. For example, the
software’s architecture (Code Structure) is a universal and
inherent aspect of any software-intensive product or service.

Out of the eight major types of assets, two types have been
tudied more extensively, namely Development-Related Assets and
roduct-Representation-Related Assets. These results are not new
nd have been highlighted in previous studies such as Avgeriou
t al. (2016), i.e., prior studies on TD focus on source-code-
elated assets. These types of assets are easier to study due to
he abundance of metrics and evaluation methods and, therefore,
ave been studied in many research articles. The reason behind
his might be that:

• The TD metaphor was initially introduced in the context of
prevalent assets (Avgeriou et al., 2016). Therefore the re-
searchers have spent more time investigating and exploring
this specific phenomenon. For example, many papers inves-
tigate a software product’s architecture, exploring different
ways of evaluating architecture using different tools and
measurements.
15
• These types of assets are easier to contextualise in the TD
metaphor, i.e., identifying such assets and how they can
be subject to incur debt. For example, the concept of code
smells is easier to grasp since it is a more tangible artefact.
It is simple to define how the software product can incur
debt if the code does not align with certain ‘‘gold standards’’;
i.e., it is smelly.

The rest of the types of assets have not received extensive time
o be explored. The reason behind this might be that:

• These types of assets were added later as ‘‘types of technical
debt’’, such as Requirements Debt (Ernst, 2012; Lenarduzzi
and Fucci, 2019) and Process Debt (Martini et al., 2019).
The TD metaphor was not initially used to deal with these
types of assets (Avgeriou et al., 2016). These types of TD
were introduced in an effort to extend the metaphor and,
therefore, have not been investigated thoroughly.

• Unlike the other types (i.e., Development-Related and
Product-Representation-Related Assets), it is harder to iden-
tify and/or define how and to what extent one can incur debt
in software products. For example, incurring Documentation
Debt might differ in different companies and development
teams.

We have seen that the existing literature on TD classifies
various TD types and presents ontologies on the topic. These clas-
sifications have evolved since the introduction of the extended
TD metaphor. We observe that the relevant asset categories we
have extracted from industrial insights can be mapped to the
classifications provided in TD literature. We observe that:

• Some existing TD types and categories, such as code that are
well-defined and well-recognised, fit into similar categories
as in the presented taxonomy.

• Some types of assets that are relevant to the industry have
been understudied or not even studied at all. There is room
for extending the research in such areas (Rios et al., 2018),
e.g., Operations-Related Assets (AM5) and Environment-and-
Infrastructure-Related Assets (AM6) (see Section 4.1).

• By creating the taxonomy, we highlight both the areas of
interest and the gaps in research. Therefore, identifying the
areas in the software engineering body of knowledge that
need to be investigated and the areas that need to evolve
according to the current interest.

Finally, our taxonomy of assets has an innate relationship with
he TD research and the taxonomies, ontologies, secondary, and
ertiary studies in the TD topic since as mentioned in Section 3.1,
D is one form of asset quality degradation. The taxonomy of
ssets is created using empirical evidence from peer-reviewed
rticles and co-production with industrial practitioners. The tax-
nomy of assets provides actual tangible assets, whereas other
tudies mainly present areas where assets belong to. Asset degra-
ation goes beyond TD and considers different types of degrada-
ion, including the ripple effect and chain reactions of degradation
hat stems from the relations between assets. TD is a part of a
igger problem, i.e., managing asset degradation when compa-
ies deal with software-intensive products or services (Zabardast
t al., 2022). And there is a need to consider a more holistic view
o be able to address the asset degradation problem.

The synthesis of the results of taxonomy validation shows that
he variety of processes followed by the participants’ organisa-
ions is what makes some asset types well-known for some par-
icipants while seeming alien for others. The taxonomy can help
iden practitioners’ understanding regarding assets, by making
ome practitioners aware of assets that they are not used to.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

i
t
u

Moreover, we observe that the assets in AM7 were selected more
often than the other asset types (see Table 5). The results of the
validation step solidify the need for the creation of the taxonomy.

5.2. Lessons learned

This section presents the lessons learned from running the
ndustrial focus groups, synthesising the findings, and creating
he taxonomy. The importance of source-code-related assets is
ndeniable (i.e., assets in AM1, AM2, AM3, and AM4). However,

we observe that the social and organisation aspect of the devel-
opment is very important to the industry, through these aspects
have not received as much attention in the TD area (Avgeriou
et al., 2016; Rios et al., 2018), although the TD community has
already identified them as a research area that deserves more
attention (Martini et al., 2019). Taking a look at some statements
from participants in the industrial focus groups highlights this
fact. Examples of such statements are:

• ‘‘There are many people who work in the same area in the same
code base. Creates conflicts and slow releases’’.

• ‘‘The problem is the delta operation, and the plan is at such a
high level that it is impossible to understand. Too abstract’’.

• ‘‘... training the teams in what is considered best practices
improves team cohesion and eases collaboration’’.

• ‘‘[There is] no holistic platform strategy (Conway’s law)’’.

The large-scale software projects developed in large organisa-
tions are highly coupled with the social and organisation aspect
of work. The prevalence of assets related to the social and organ-
isation aspect of development, e.g., Business Models and Product
Management Documentation, indicates the necessity to charac-
terise and standardise such assets, how they are perceived, and
how they are measured and monitored.

While creating the taxonomy, we observed that assets do not
exist in isolation, i.e., they are entities with characteristics and
properties that exist in a software development environment. In
the following, we will discuss the assets with similar character-
istics and properties and assets that have implicit relations with
each other.

Assets that have similar characteristics and properties. For
example, Unit Tests have similar characteristics and properties as
Source Code, i.e., unit tests are code, and therefore, their value
degradation can have analogous connotations. This means that
there are possibilities to evaluate such assets’ degradation with
similar characteristics and properties using similar metrics. Still,
the degradation of one asset (e.g., Source Code) might impact
or even imply the degradation of the other asset (e.g., Unit
Tests) (Alégroth and Gonzalez-Huerta, 2017). Therefore, such
coupling and relations of the assets should be considered when
analysing and managing such assets.

Assets that have implicit relations between each other. Im-
plicit relations between assets can arise from their inherent cou-
pling properties. Different assets related to certain aspects of the
product will have implicit relations that are not visible in the
taxonomy as presented now. For example, Architectural Models
and Architecture (Code Structure) have an inherent relationship.
Architectural Models should be the representation of the archi-
tecture of the system, i.e., the code structure. Therefore, similar
to the previous point, the value degradation of the assets with
such implicit relations can have analogous connotations. Their
degradation might impact the degradation of the other related
assets. For example, the degradation of any of the functional-
requirements-related assets will eventually be reflected in the
degradation of functional-test-related assets.
16
5.3. Contributions

The contribution of this work is the following:

• Providing common terminology and taxonomy for assets
that are utilised during software development and;

• Providing a mapping over the assets and the input used to
create the taxonomy, i.e., input from the literature and input
from the industry

One contribution of the taxonomy is that it is a guideline
for future research by providing a map of different types of
assets. The map illustrates the different areas defined and stud-
ied and those that lack a shared understanding or are under-
explored. Therefore, the taxonomy provides a summary of the
body of knowledge by linking empirical studies with industrial
insights gathered through the industrial focus groups. Providing
a common taxonomy and vocabulary:

• Makes it easier for the different communities to communi-
cate the knowledge.

• Creates the opportunity to find and build upon previous
work.

• Helps to identify the gaps by linking the empirical studies
to the taxonomy.

• Highlights potential areas of interest.
• Makes it possible to build and add to the taxonomy (new

assets, details) as knowledge is changed over time by re-
searchers in the field.

• For practitioners, the evolving taxonomy can be used as a
map to identify assets and the degradation that can im-
pact other assets (ripple and chain effects that can spread
the degradation to other assets like degradation of code
causing degradation on test-code or vice-versa Alégroth and
Gonzalez-Huerta, 2017), where such implicit degradation
are not immediately detectable.

Finally, it might help large organisations to deal with develop-
ing software-intensive products or services that rely on external
resources to help them achieve the business goals of their prod-
ucts. A major external contributor to new knowledge that can
help practitioners in the industry is research findings. Therefore,
understanding and applying the research findings is crucial for
them. Having a taxonomy of assets summarising the state-of-the-
art and state-of-practice body of knowledge for the assets utilised
for developing software-intensive products or services is useful.
Practitioners can refer to the taxonomy systematically built with
the accumulated knowledge of academia and other practitioners
to extract what they need in specific domains.

We believe that our findings to collect and organise the differ-
ent assets and terminologies used to describe the assets will help
practitioners be more aware of each type of asset and how they
are managed in the context.

5.4. Limitations and threats to validity

In this section, we cover the limitations of our work and how
they might affect the results. The taxonomy is created based on
the data extracted from the literature review, the field study,
and academic expert knowledge. We combined the inputs from
the mentioned sources to create the taxonomy. We designed
the taxonomy to be extendable with new data identified by us
and others in future studies as software engineering areas evolve



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

i
(

h
a
i
d
d
t
a
s
t
d

n
t
e
a
i
m
w
b
i
b
q

i
a
p
a
f
c
c

a
D
a

l-
(See Section 3.3). We encourage researchers and practitioners to
consider the taxonomy within their organisation and identify the
potential new types of assets and assets that can complement the
asset management taxonomy’s representativeness.

In the rest of this section, we cover the threats to construct,
nternal, and external validity as suggested by Runeson and Höst
2009) and Runeson et al. (2012).

Construct validity reflects the operational measurements and
ow the study represents what is being investigated. We are
ware that the literature review is conducted in a limited area,
.e., TD. We chose the TD field as representative form of quality
egradation since we believe TD is one form of asset quality
egradation, as mentioned in Section 3.1. We acknowledge that
he performed snowballing and limiting the literature review to
specific topic might affect the construct validity of this work

ince we could not cover all the topics and the articles related to
hose topics. However this threat is mitigated with the additional
ata collection from the focus groups.
We acknowledge that the participants of the focus groups do

ot include all the relevant stakeholders in organisations. We
ried mitigating this threat by involving participants with differ-
nt roles and varying expertise from the companies. We are also
ware that the participants’ statements in the focus groups can be
nterpreted differently by the researcher and the participants. We
itigate this threat in three ways. First, by sending the summary,
ith the transcription of their statements and our own notes,
ack to the participants, asking for their feedback; second, by hav-
ng two researchers code the raw data independently; and third,
y choosing to code the data using the in vivo coding method, the
ualitative analysis prioritises the participants’ opinions.
External validity refers to the generalisability of the results and

whether the results of a particular study can hold in other cases.
We acknowledge and understand that the results are not compre-
hensive and might not be generalisable. The created taxonomy is
based on the collected data and is extendable. We have provided a
systematic way of extending the taxonomy, i.e., the meta-model.
Finally, other threats that can affect the study’s external validity
are the number of involved companies, the country where the
companies (investigated sites) are located, i.e., Sweden, and the
involvement of all the roles in these organisations.

Reliability refers to the extent that the data and analysis are
dependent on the researchers. When conducting qualitative stud-
ies, the goal is to provide results that are consistent with the
collected data (Merriam and Tisdell, 2015). We have tried to
mitigate this threat, i.e., consistency of the results. Firstly, by
rigorously documenting and following the procedures of the focus
groups to collect consistent data (Yin, 2009). And secondly, by
relying on consistency during the analysis, i.e., blind labelling of
the data by multiple researchers and peer reviewing the labels.

6. Conclusions and future work

This paper presents a taxonomy for classifying assets with
nherent value for an organisation subject to degradation. These
ssets are used during the development of software-intensive
roducts or services. The creation of the taxonomy of assets
ttempts to provide an overarching perspective on various assets
or researchers and practitioners. The taxonomy allows us to
haracterise and organise the body of knowledge by providing a
ommon vocabulary of and for assets.
Eight major types of assets are introduced in the taxonomy:

ssets related to Product Requirements, Product Representation,
evelopment, Verification and Validation, Operations, Environment
nd Infrastructure, Development Process/Ways-of-Working, and Or-

ganisation.
17
The taxonomy could be used for:

• Identify the gaps in research by providing the points of
interest from practitioners’ perspectives.

• Identify the state-of-the-art research for individual assets
and their properties for practitioners.

• Communicate and spread the body of knowledge.

The taxonomy helps draw out the assets with similar charac-
teristics and implicit relations among them. Most of such sim-
ilarities of characteristics, properties, and relations are not im-
mediately visible when considering the assets from only one
perspective. Taking a more abstract and high-level look at the as-
sets involved in the development of software-intensive products
or services can help facilitate the management activities and the
overall development process.

The dimensions provided by our taxonomy are not exhaus-
tive, nor are the assets we identified. Therefore, we intend to
conduct further investigation to complement the taxonomy by
incorporating the new knowledge. Furthermore, we would like
to study the relationship between assets, how the degradation of
an asset can have a ripple effect and chain reactions, causing the
degradation of other assets, and how the degradation impacts the
development process. Lastly, we intend to investigate the individ-
ual properties of assets to identify the metrics used for measuring
assets, their value, and their degradation (or lack thereof).

Besides, future and ongoing work will use the taxonomy as a
base for further studies and exploration of assets, their charac-
teristics, and the concepts of value, degradation and its different
types.

CRediT authorship contribution statement

Ehsan Zabardast: Conceptualization, Methodology, Formal ana
ysis, Investigation, Data curation, Writing – original draft. Javier
Gonzalez-Huerta: Conceptualization, Methodology, Investigation,
Data curation, Writing – review & editing, Project administration.
Tony Gorschek: Conceptualization, Writing – review & editing,
Supervision. Darja Šmite: Formal analysis, Data curation, Writ-
ing – review & editing. Emil Alégroth: Investigation, Writing –
review & editing. Fabian Fagerholm: Investigation, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Appendix. The asset management taxonomy

Assets’ definitions are presented in this section in
Tables 8 to 15. The full tree of the asset management taxonomy
is presented in Fig. 13.



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701
Fig. 13. The asset management taxonomy.
18



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701
Table 8
Product-Requirements-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Feature-Related
Backlog Items

AM1.1 Feature-Related Backlog Items are the results of refining and breaking down the user stories to create executable tasks
(Müter et al., 2019).

User Stories AM1.1 User Stories are, according to the agile development paradigm, a way to specify the features of the software that is
being developed (Müter et al., 2019).

Use Cases AM1.1 Use Cases are lists of actions or events that describe how a user will achieve a goal in a system (Kruchten, 2004).

System Requirements AM1.2 ‘‘System Requirements are the requirements for the system as a whole. System Requirements [...] encompass user
requirements, requirements of other stakeholders (such as regulatory authorities), and requirements without an
identifiable human source (Bourque et al., 2014)’’.

User Interface Designs AM1.2 ‘‘User Interface Design is an essential part of the software design process. User interface design should ensure that
interaction between the human and the machine provides for effective operation and control of the machine. For
software to achieve its full potential, the user interface should be designed to match the skills, experience, and
expectations of its anticipated users (Bourque et al., 2014)’’.

Quality Scenarios
(The -ilities)

AM1.2 ‘‘A quality attribute (QA) is a measurable or testable property of a system that is used to indicate how well the system
satisfies the needs of its stakeholders (Bass et al., 2003)’’. A quality scenario is a way of stating a requirement in an
unambiguous and testable manner (Bass et al., 2003).

User Experience
Requirements

AM1.2 User Experience Requirements ‘‘are considered key quality determinants of any product, system or service intended for
human use, which in turn can be considered as product, system or service success or failure indicators and improve
user loyalty (Law and Van Schaik, 2010; Kujala and Miron-Shatz, 2013)’’.

Change Requests AM1.3 Change Requests are the modifications to the software product that are not coming from the requirements analysis of
the product.
Table 9
Product-Representation-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Architectural Models AM2.1.1 Architecture Models are partial abstractions of systems, they capture different properties of the system
(Kruchten, 1995). ‘‘Architecture modelling involves identifying the characteristics of the system and
expressing it as models so that the system can be understood. Architecture models allow visualisation of
information about the system represented by the model (Kumar et al., 2014)’’.

Architectural
Documentation

AM2.1.1 Architectural Documentation are the representations of the decisions made to construct the architecture of
the software (Kruchten, 1995).

Design Decisions
Documentation

AM2.1.2 Design Decisions Documentation are the results of the design decisions that architects create and document
during the architectural design process (Bourque et al., 2014).

System Designs AM2.1.2 System Designs are the processes of defining elements of a system. These elements are specified in the
requirements and are extracted to create modules, architecture, components and their interfaces and data for
a system.

Documentation
Automation Scripts

AM2.2 Documentation Automation Scripts are the scripts that generate documentation based on the state of the
source code.

Product
Documentation

AM2.2 Product Documentation are the operational guidelines (such as user manuals and installation guides) for when
the product is in use.
Table 10
Development-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Build Plans AM3.1 Build Plans are the descriptions of how developers intend to build the software, i.e., by compilation of
artefacts in a build chain, which will end in a running software.

Build Results AM3.1 Build Results are the results of the build process, including the comments, documentation, and other artefacts
that are generated during the build process. This is seen as a persistent asset if it holds more data than just
an automated ‘‘throw away’’ report, and/or if the asset is used for reference over time.

Build Scripts AM3.1 Build Scripts are the scripts that are used to run the build process.

Source Code AM3.2 Source Code is the collection of code written in a human-readable and comprehensible manner stored as
plain text (Kernighan, 1974).

Code Comments AM3.2 Code Comments are the comments that developers integrate and write within the source code to clarify and
describe certain parts of the code or its functionality (Grubb and Takang, 2003).

APIs AM3.2 APIs (Application Program Interfaces) are the interfaces that are created to facilitate interaction of different
components and modules.

Architecture (Code
Structure)

AM3.2 Architecture is the actual and fundamental relationships and structure of a software system and its source
code (Bass et al., 2003).

(continued on next page)
19



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701
Table 10 (continued).
Asset AM type Definition

Libraries/External
Libraries

AM3.2 Libraries/External Libraries are source code that belongs to the product but is not developed or maintained
within the project, i.e., the developers. The software project depends on it and references the library.

Web Services AM3.2 Web Services are running services on devices handling requests coming from networks

Versioning Comments AM3.3 Versioning comments are the comments that developers submit to any version control application they use
for the development. Such comments can later be extracted and viewed to identify the purpose of each event.
Table 11
Verification-and-Validation-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Unit Tests AM4.1 Unit Tests are the tests written to examine the individual units of the code (Hamill, 2004). ‘‘Unit tests
generally focus on the program logic within a software component and on correct implementation of the
component interface (Berner et al., 2005)’’.

Integration Tests AM4.1 Integration Tests are the tests written to examine the combined set of modules as a group (Berner et al.,
2005; ISO/IEC/IEEE, 2010).

System Tests AM4.1 System Tests are the tests written to examine the system’s compliance with the requirements.

Acceptance Tests AM4.1 Acceptance Tests are the tests conducted to examine and determine whether the requirements are met
according to the specifications of the requirements.

Non-Functional Test
Cases

AM4.2 Non-Functional Test Cases are the tests that examine the quality of the system, i.e., non-functional aspects
such as performance, availability, and scalability.

Test Plans AM4.3 Test Plans are the documents that describe the testing scope and test activities that will be performed on the
system throughout the development lifecycle.

Test Automation
Scripts

AM4.4 Test Automation Scripts are the scripts that automate part of the testing process. More specifically, the
scripts automate distinct testing activities or types of tests.

Test Automation
(Real/Synthetic) Data

AM4.4 Test Automation (Real/Synthetic) Data is the generated data that are used by the automation scripts to test
the system.
Table 12
Operations-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Customer Data AM5 Customer Data is data that is collected from the customers (end users) of the software product such as user
feedback.

Application Data AM5 Application Data is the data that is created, collected, used, and maintained while developing the software
product such as system performance.

Usage Data AM5 Usage Data is the data that is collected while the software product is operational such as the data related to
the performance of the system.
Table 13
Environment-and-Infrastructure-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Deployment
Infrastructure

AM6 Deployment Infrastructure are all the steps, activities, tools, process descriptions, and processes that facilitate
the deployment of a software-intensive product.

Tools AM6 Tools are any physical and virtual entities that are used for the development of a software product such as
integrated development environments (IDE), version control systems, spreadsheets applications, compilers,
and debuggers.

Tools Pipelines AM6 Tool Pipelines are automated processes and activities that facilitate and enable developers to reliably and
efficiently compile, build, and deploy the software-intensive product.
Table 14
Development-Process/Ways-of-Working-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Product Management
Documentation

AM7.1 Product Management Documentation is any documentation that is used to facilitate the management
activities and processes during the product development.

Documentation About Release
Procedure

AM7.1 Documentation About Release Procedure is the description of the product release plan and the entities and
activities associated with release.

Product Business Models AM7.1 Product Business Models are the descriptions of how the organisation creates value for the customers with
the software-intensive product.

Product Roadmap AM7.1 Product Road Map is the abstract, high-level description of the evolution of the product during the
development.

(continued on next page)
20



E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

A

A

A

A

B

B

B

B

B

Table 14 (continued).
Asset AM type Definition

Product Scope AM7.1 Product Scope is the description of the characteristics, functionality, and features of the software-intensive
product.

Product Backlog AM7.1 Product Backlog is any document that acts as a list where the features, change requests, bug fixes, and other
similar activities are stored, listed, and prioritised.

Requirements Internal
Standards

AM7.2 Requirements Internal Standards are the specific rules that the company introduces and utilises internally for
dealing with the requirements of the product.

Architectural Internal Standards AM7.2 Architectural Internal Standards are the specific rules that the development team introduces and utilises
internally for designing, creating, and maintaining the architecture of the software-intensive product.

Documentation Internal
Rules/Specifications

AM7.2 Documentation Internal Rules/Specifications are the specific rules that the development team introduces and
utilises internally for creating and maintaining the documentation.

Build Internal Standards AM7.2 Build Internal Standards are the specific rules that the development team introduces and utilises internally
for the build activities.

Coding Internal
Standards/Specifications

AM7.2 Coding Internal Standards/Specifications are the rules that the development team introduces and utilises
internally while developing the software-intensive product.

Versioning Internal
Rules/Specifications

AM7.2 Versioning Internal Rules/Specifications are the rules that the development team introduces and utilises
internally for version control during the development of software-intensive products.

Testing Internal Rules/
Specifications/Plans/Strategies

AM7.2 Testing Internal Rules/Specifications/Plans/Strategies are the rules that the development team introduces and
utilises internally for testing activities and procedures.

Process Internal Descriptions AM7.2 Process Internal Descriptions are the descriptions of the procedures and activities that the development team
introduce and utilise during the development of software-intensive products.

Process Data AM7.2 Process Data is are the metrics and other information that concern the past and current status of the
development process. Examples of such data are velocity, issues, bugs, backlog items, etc.

Documentation About Ways of
Working

AM7.2 Documentation About Ways of Working are the description of work plans and working patterns, i.e., how the
organisation and the development team plan to create and release the software-intensive product.
Table 15
Organisation-Related Assets are listed in this table. The table contains the definitions of the assets and their type.
Asset AM type Definition

Organisation’s
Structure

AM8 Organisation’s Structure is the description of how the organisation directs the activities to achieve
organisational goals.

Organisation’s
Strategy

AM8 Organisation’s Strategy is the description of the plans that guide the organisation how to allocate its
resources to support the development of the software-intensive product.

Business Models AM8 Business Models are the descriptions of how the organisation creates value with the software-intensive
product for the organisation.
References

Alégroth, E., Gonzalez-Huerta, J., 2017. Towards a Mapping of Software Technical
Debt onto Testware. In: 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications. Vienna, Austria, pp. 404–411, URL:
http://dx.doi.org/10.1109/SEAA.2017.65.

lves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Sea-
man, C., 2016. Identification and management of technical debt: A systematic
mapping study. Inf. Softw. Technol. 70, 100–121.

lves, N.S., Ribeiro, L.F., Caires, V., Mendes, T.S., Spínola, R.O., 2014. Towards an
ontology of terms on technical debt. In: 2014 Sixth International Workshop
on Managing Technical Debt. IEEE, pp. 1–7.

mpatzoglou, A., Bibi, S., Chatzigeorgiou, A., Avgeriou, P., Stamelos, I., 2018.
Reusability index: A measure for assessing software assets reusability. In:
International Conference on Software Reuse. Springer, pp. 43–58.

vgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016. Managing technical debt
in software engineering (dagstuhl seminar 16162). In: Dagstuhl Reports.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

adampudi, D., Wohlin, C., Petersen, K., 2015. Experiences from using snow-
balling and database searches in systematic literature studies. In: Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering. pp. 1–10.

ass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice.
Addison-Wesley Professional.

enIdris, M., 2020. Investigate, identify and estimate the technical debt: a
systematic mapping study. Int. J. Softw. Eng. Appl. (IJSEA) 9 (5).

erner, S., Weber, R., Keller, R.K., 2005. Observations and lessons learned
from automated testing. In: Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005. pp. 571–579. http://dx.doi.org/10.
1109/ICSE.2005.1553603.

esker, T., Martini, A., Bosch, J., 2017. Time to pay up: Technical debt from a
software quality perspective. In: CIbSE. pp. 235–248.
21
Besker, T., Martini, A., Bosch, J., 2018. Managing architectural technical debt: A
unified model and systematic literature review. J. Syst. Softw. 135, 1–16.

Blum, B.I., 1994. A taxonomy of software development methods. Commun. ACM
37 (11), 82–94.

Bourque, P., Fairley, R.E., et al., 2014. Guide to the Software Engineering Body
of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Britto, R., Wohlin, C., Mendes, E., 2016. An extended global software engineering
taxonomy. J. Softw. Eng. Res. Dev. 4 (1), 1–24.

Broughton, V., 2015. Essential Classification. Facet Publishing.
Broy, M., 2018. A logical approach to systems engineering artifacts: semantic

relationships and dependencies beyond traceability—from requirements to
functional and architectural views. Softw. Syst. Model. 17 (2), 365–393.

Cicchetti, A., Borg, M., Sentilles, S., Wnuk, K., Carlson, J., Papatheocharous, E.,
2016. Towards software assets origin selection supported by a knowledge
repository. In: 2016 1st International Workshop on Decision Making in
Software ARCHitecture. MARCH, IEEE, pp. 22–29.

Coghlan, D., Brannick, T., 2014. Doing Action Research in Your Own Organization,
fourth ed. Sage, London.

Constantopoulos, P., Doerr, M., 1995. Component classification in the software
information base. Object-Oriented Softw. Compos. 177.

Cunningham, W., 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4 (2), 29–30.

Ernst, N.A., 2012. On the role of requirements in understanding and man-
aging technical debt. In: 2012 Third International Workshop on Manag-
ing Technical Debt. MTD, pp. 61–64. http://dx.doi.org/10.1109/MTD.2012.
6226002.

Fox, M., Green, G., Martin, P., 2007. Doing Practitioner Research. Sage.
Garriga, M., 2017. Towards a taxonomy of microservices architectures. In:

International Conference on Software Engineering and Formal Methods.
Springer, pp. 203–218.

Glass, R.L., Vessey, I., 1995. Contemporary application-domain taxonomies. IEEE
Softw. 12 (4), 63–76.

http://dx.doi.org/10.1109/SEAA.2017.65
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb2
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb4
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb6
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb7
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb8
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb8
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb8
http://dx.doi.org/10.1109/ICSE.2005.1553603
http://dx.doi.org/10.1109/ICSE.2005.1553603
http://dx.doi.org/10.1109/ICSE.2005.1553603
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb12
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb13
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb13
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb13
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb14
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb15
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb16
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb18
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb18
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb18
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb20
http://dx.doi.org/10.1109/MTD.2012.6226002
http://dx.doi.org/10.1109/MTD.2012.6226002
http://dx.doi.org/10.1109/MTD.2012.6226002
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb24
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb24
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb24


E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

G

G

H

I

I

K

K

K

K

K
K

K

K

K

K

K

L

L

L

L

L

L

v

M

M

M

M

M

M

N

Glass, R.L., Vessey, I., Ramesh, V., 2002. Research in software engineering: an
analysis of the literature. Inf. Softw. Technol. 44 (8), 491–506.

riffith, I., Taffahi, H., Izurieta, C., Claudio, D., 2014. A simulation study of
practical methods for technical debt management in agile software develop-
ment. In: Proceedings of the Winter Simulation Conference 2014. IEEE, pp.
1014–1025.

rubb, P., Takang, A.A., 2003. Software Maintenance: Concepts and Practice.
World Scientific.

amill, P., 2004. Unit Test Frameworks: Tools for High-Quality Software
Development. O’Reilly Media, Inc..

dowu, S., Strüber, D., Berger, T., 2022. Asset management in machine learning:
State-of-research and state-of-practice. ACM Comput. Surv. http://dx.doi.org/
10.1145/3543847.

SO/IEC/IEEE, 2010. Systems and Software Engineering ISO/IEC/IEEE 24765:2010.
Technical Report, ISO/IEC/IEEE.

ernighan, B.W., 1974. Programming in C- A Tutorial. Bell Laboratories,
Unpublished Internal Memorandum.

lotins, E., Unterkalmsteiner, M., Gorschek, T., 2018. Software-intensive product
engineering in start-ups: a taxonomy. IEEE Softw. 35 (4), 44–52.

roll, P., Kruchten, P., 2003. The Rational Unified Process Made Easy: A Practi-
tioner’s Guide to the RUP: A Practitioner’s Guide to the RUP. Addison-Wesley
Professional.

ruchten, P.B., 1995. The 4+ 1 view model of architecture. IEEE Softw. 12 (6),
42–50.

ruchten, P., 2000. The rational unified process 2nd edition: an introduction.
ruchten, P., 2004. The Rational Unified Process: An Introduction. Addison-

Wesley Professional.
ruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to

theory and practice. IEEE Softw. 29 (6), 18–21.
ruchten, P., Nord, R., Ozkaya, I., 2019. Managing Technical Debt: Reducing

Friction in Software Development. Addison-Wesley Professional.
ujala, S., Miron-Shatz, T., 2013. Emotions, experiences and usability in real-

life mobile phone use. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pp. 1061–1070.

umar, A., Nori, K.V., Natarajan, S., Lokku, D.S., 2014. Value matrix: From value
to quality and architecture. In: Economics-Driven Software Architecture.
Elsevier, pp. 205–240.

wasnik, B.H., 1992. The role of classification structures in reflecting and building
theory. Adv. Classif. Res. Online 3 (1), 63–82.

aw, E.L.-C., Van Schaik, P., 2010. Modelling user experience–An agenda for
research and practice. Interact. Comput. 22 (5), 313–322.

ehman, M.M., 1979. On understanding laws, evolution, and conservation in the
large-program life cycle. J. Syst. Softw. 1, 213–221.

ehman, M., 1996. Laws of software evolution revisited. In: European Workshop
on Software Process Technology. Springer, Berlin, Heidelberg, pp. 108–124.

enarduzzi, V., Besker, T., Taibi, D., Martini, A., Arcelli Fontana, F., 2021. A
systematic literature review on technical debt prioritization: Strategies,
processes, factors, and tools. J. Syst. Softw. 171, 110827. http://dx.doi.org/10.
1016/j.jss.2020.110827, URL: https://www.sciencedirect.com/science/article/
pii/S016412122030220X.

enarduzzi, V., Fucci, D., 2019. Towards a holistic definition of requirements debt.
In: ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. pp. 1–5. http://dx.doi.org/10.1109/ESEM.2019.8870159.

i, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt
and its management. J. Syst. Softw. 101, 193–220.

on Linné, C., 1735. Systema Naturae; Sive, Regna Tria Naturae: Systematice
Proposita Per Classes, Ordines, Genera & Species. Haak.

artini, A., Stray, V., Moe, N.B., 2019. Technical-, social- and process debt
in large-scale agile: An exploratory case-study. In: Hoda, R. (Ed.), Agile
Processes in Software Engineering and Extreme Programming – Workshops.
Springer International Publishing, Cham, pp. 112–119.

éndez, D., Böhm, W., Vogelsang, A., Mund, J., Broy, M., Kuhrmann, M., Weyer, T.,
2019. Artefacts in software engineering: a fundamental positioning. Softw.
Syst. Model. 18 (5), 2777–2786.

éndez, D., Penzenstadler, B., Kuhrmann, M., Broy, M., 2010. A meta model
for artefact-orientation: fundamentals and lessons learned in requirements
engineering. In: International Conference on Model Driven Engineering
Languages and Systems. Springer, pp. 183–197.

erriam, S.B., Tisdell, E.J., 2015. Qualitative Research: A Guide to Design and
Implementation. John Wiley & Sons.

iles, M.B., Huberman, A.M., Saldaña, J., 2014. Qualitative data analysis: A
methods sourcebook. 3rd.

üter, L., Deoskar, T., Mathijssen, M., Brinkkemper, S., Dalpiaz, F., 2019. Re-
finement of user stories into backlog items: Linguistic structure and action
verbs. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, pp. 109–116.

orthrop, L., Clements, P., Bachmann, F., Bergey, J., Chastek, G., Cohen, S.,
Donohoe, P., Jones, L., Krut, R., Little, R., et al., 2007. A framework for
software product line practice, version 5.0. SEI.–2007–http://www.sei.cmu.
edu/productlines/index.html.
22
Reussner, R., Goedicke, M., Hasselbring, W., Vogel-Heuser, B., Keim, J., Märtin, L.,
2019. Managed Software Evolution. Springer Nature.

Rios, N., de Mendonça Neto, M.G., Spínola, R.O., 2018. A tertiary study on
technical debt: Types, management strategies, research trends, and base
information for practitioners. Inf. Softw. Technol. 102, 117–145.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14 (2), 131–164.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons.

Saher, N., Baharom, F., Ghazali, O., 2017. Requirement change taxonomy and
categorization in agile software development. In: 2017 6th International
Conference on Electrical Engineering and Informatics. ICEEI, IEEE, pp. 1–6.

Saldaña, J., 2015. The Coding Manual for Qualitative Researchers. Sage.
Silva, M., Oliveira, T., Bastos, R., 2009. Software artifact metamodel. In: 2009

XXIII Brazilian Symposium on Software Engineering. pp. 176–186. http:
//dx.doi.org/10.1109/SBES.2009.28.

Šmite, D., Wohlin, C., Galvin, a, Z., Prikladnicki, R., 2014. An empirically based
terminology and taxonomy for global software engineering. Empir. Softw.
Eng. 19 (1), 105–153.

Sommerville, I., 2015. Software engineering. 10th. In: Book Software Engineering.
10th, Series Software Engineering. Addison-Wesley.

Stol, K.-J., Fitzgerald, B., 2018. The ABC of software engineering research. ACM
Trans. Softw. Eng. Methodol. 27, 1–51. http://dx.doi.org/10.1145/3241743.

Stringer, E.T., 2014. Action Research, fourth ed. Sage, Thousand Oaks, CA.
Svahnberg, M., Van Gurp, J., Bosch, J., 2005. A taxonomy of variability realization

techniques. Softw. - Pract. Exp. 35 (8), 705–754.
Taivalsaari, A., Mikkonen, T., 2018. A taxonomy of IoT client architectures. IEEE

Softw. 35 (3), 83–88.
Tilley, S., Huang, S., 2002. Documenting software systems with views iii:

towards a task-oriented classification of program visualization techniques.
In: Proceedings of the 20th Annual International Conference on Computer
Documentation. pp. 226–233.

Tom, E., Aurum, A., Vidgen, R., 2012. A consolidated understanding of technical
debt. In: ECIS 2012 Proceedings.

Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J. Syst.
Softw. 86 (6), 1498–1516.

Unterkalmsteiner, M., Feldt, R., Gorschek, T., 2014. A taxonomy for requirements
engineering and software test alignment. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 23 (2), 1–38.

Usman, M., Britto, R., Börstler, J., Mendes, E., 2017. Taxonomies in software engi-
neering: A systematic mapping study and a revised taxonomy development
method. Inf. Softw. Technol. 85, 43–59.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering.
pp. 1–10.

Wohlin, C., Wnuk, K., Smite, D., Franke, U., Badampudi, D., Cicchetti, A., 2016.
Supporting strategic decision-making for selection of software assets. In:
International Conference of Software Business. Springer, pp. 1–15.

Wolfram, K., Martine, M., Sudnik, P., 2020. Recognising the types of software
assets and its impact on asset reuse. In: European Conference on Software
Process Improvement. Springer, pp. 162–174.

Yin, R.K., 2009. Robert k. Yin. Case Study Res.: Design and Methods 4.
Zabardast, E., Frattini, J., Gonzalez-Huerta, J., Mendez, D., Gorschek, T., Wnuk, K.,

2022. Assets in software engineering: What are they after all? J. Syst.
Softw. 193, 111485. http://dx.doi.org/10.1016/j.jss.2022.111485, URL: https:
//www.sciencedirect.com/science/article/pii/S0164121222001662.

Zhao, Y., Dong, J., Peng, T., 2009. Ontology classification for semantic-web-based
software engineering. IEEE Trans. Serv. Comput. 2 (4), 303–317.

Ehsan Zabardast is a Ph.D. candidate of Software Engineering in Software
Engineering Research Lab Sweden at Blekinge Institute of Technology. He holds
a master’s degree in informatics and data science. His main research involves
software assets, asset management and degradation, technical debt, and software
architecture. His current work includes studying how assets degrade, considering
other aspects of software development. A major part of his research involves
studying technical debt and growing out of the metaphor.

Javier Gonzalez-Huerta is an associate professor in the Software Engineering
Department at BTH. He received his Ph.D. in Computer Science from the
Universitat Politècnica de Valencia (UPV) in 2014, after working in the industry
for about 15 years. Javier’s research focuses on the Asset Management and
Technical Debt areas, and he has been doing applied research together with
the SERT industrial partners for more than five years.

Prof. Dr. Tony Gorschek is a Professor of Software Engineering at Blekinge
Institute of Technology — where he works as a research leader and scientist in
close collaboration with industrial partners. Currently he is leading the S.E.R.T.

http://refhub.elsevier.com/S0164-1212(23)00096-1/sb25
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb25
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb25
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb26
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb27
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb27
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb27
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb28
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb28
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb28
http://dx.doi.org/10.1145/3543847
http://dx.doi.org/10.1145/3543847
http://dx.doi.org/10.1145/3543847
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb30
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb32
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb32
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb32
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb34
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb34
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb34
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb35
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb36
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb37
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb37
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb37
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb38
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb38
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb38
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb39
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb39
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb39
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb39
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb39
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb40
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb40
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb40
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb40
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb40
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb41
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb41
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb41
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb42
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb42
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb42
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb43
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb43
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb43
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb44
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb44
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb44
http://dx.doi.org/10.1016/j.jss.2020.110827
http://dx.doi.org/10.1016/j.jss.2020.110827
http://dx.doi.org/10.1016/j.jss.2020.110827
https://www.sciencedirect.com/science/article/pii/S016412122030220X
https://www.sciencedirect.com/science/article/pii/S016412122030220X
https://www.sciencedirect.com/science/article/pii/S016412122030220X
http://dx.doi.org/10.1109/ESEM.2019.8870159
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb47
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb47
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb47
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb48
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb48
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb48
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb49
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb50
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb52
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb52
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb52
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb53
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb53
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb53
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb54
http://www.sei.cmu.edu/productlines/index.html
http://www.sei.cmu.edu/productlines/index.html
http://www.sei.cmu.edu/productlines/index.html
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb56
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb56
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb56
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb57
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb57
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb57
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb57
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb57
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb58
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb58
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb58
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb59
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb59
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb59
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb60
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb60
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb60
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb60
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb60
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb61
http://dx.doi.org/10.1109/SBES.2009.28
http://dx.doi.org/10.1109/SBES.2009.28
http://dx.doi.org/10.1109/SBES.2009.28
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb63
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb63
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb63
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb63
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb63
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb64
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb64
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb64
http://dx.doi.org/10.1145/3241743
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb66
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb67
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb67
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb67
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb68
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb68
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb68
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb69
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb70
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb70
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb70
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb71
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb71
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb71
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb72
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb72
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb72
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb72
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb72
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb73
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb73
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb73
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb73
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb73
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb74
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb75
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb75
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb75
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb75
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb75
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb76
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb76
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb76
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb76
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb76
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb77
http://dx.doi.org/10.1016/j.jss.2022.111485
https://www.sciencedirect.com/science/article/pii/S0164121222001662
https://www.sciencedirect.com/science/article/pii/S0164121222001662
https://www.sciencedirect.com/science/article/pii/S0164121222001662
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb79
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb79
http://refhub.elsevier.com/S0164-1212(23)00096-1/sb79


E. Zabardast, J. Gonzalez-Huerta, T. Gorschek et al. The Journal of Systems & Software 202 (2023) 111701

r
g
i
J

research profile, the PLEng industrial research school, the Ericsson SPACE lab for
software engineering, and several other industrially applied research projects. Dr.
Gorschek has over fifteen years industrial experience as a CTO, senior executive
consultant and engineer.

Darja Smite is a Professor of Software Engineering at Blekinge Institute of
Technology and a part-time research scientist at SINTEF ICT. She has dedicatedly
focused on understanding the impact of globalisation and offshoring in software
companies. Smite has conducted research with and for a number of international
companies such as Ericsson, ABB, Emerson Process Management, Boss Media,
CALVI and DXC, and has insights from cooperating with offshore vendors in
India, China, Poland, Latvia, Ukraine and Russia.

Dr. Emil Alégroth is a researcher at Blekinge Institute of Technology. His main
esearch area is software verification and validation with specialist interest in
raphical user interface (GUI) testing. This research has been conducted mostly
n co-production with software industry, including companies like Spotify, Saab,
eppesen, Ericsson, AddQ, Handelsbanken, Swedbank, and more. Whilst much
23
of this research has been focused on Software Engineering, Emil has also
conducted cross-disciplinary research within Psychology (How human-factors
such as team-cohesion and stress influence testing), Didactics (How student
knowledge/experience of online platforms influence their learning) and Economy
(How to model the cost and alternative costs of creating/maintaining/removing
tests). In addition to his academic background, Emil is also operational in a
couple of start-up companies and the non-profit organisation SAST (Swedish
Association for Software Testing) that hosts free conferences on testing to
Swedish test professionals.

Fabian Fagerholm is associate senior lecturer at Blekinge Institute of Technol-
ogy. His research interests include developer experience, human and behavioural
aspects of software engineering, continuous experimentation and evidence-
driven software product development, open source software development, and
experiential and project-based software engineering education. At Blekinge
Institute of Technology, his teaching is related to behavioural and human aspects
of software engineering, and Lean and Agile software processes. He received his
Ph.D. in computer science from the University of Helsinki.


	A taxonomy of assets for the development of software-intensive products and services
	Introduction
	Background and Related Work
	Artefacts and Assets in Software Engineering
	Asset Degradation and Technical Debt
	Taxonomies in Software Engineering
	Summary of the Gaps

	Research Overview
	Analysis of Secondary Studies: Planning and Execution
	Field Study (Focus Group Interviews): Planning and Execution
	Case Company Characterisation
	Focus Groups' Procedure
	Data Extraction

	Taxonomy Creation
	Taxonomy Validation

	Results
	Results from the Analysis of Secondary Studies
	Results from the Field Study
	The Asset Management Taxonomy
	Product-Requirements-Related Assets (AM1)
	Product-Representation-Related Assets (AM2)
	Development-Related Assets (AM3)
	Verification-and-Validation-Related Assets (AM4)
	Operations-Related Assets (AM5)
	Environment-and-Infrastructure-Related Assets (AM6)
	Development-Process/Ways-of-Working-Related Assets (AM7)
	Organisation-Related Assets (AM8)

	Summary of Validation Workshops

	Discussion
	Principal Findings
	Lessons Learned
	Contributions
	Limitations and Threats to Validity

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix. The Asset Management Taxonomy
	References


