
Linköping Studies in Science and Technology

Dissertation No. 1238

Processes and Models for

Capacity Requirements in Telecommunication Systems

by

Andreas Borg

Department of Computer and Information Science

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2009

ISBN 978-91-7393-700-9

ISSN 0345-7524

Printed by LiU-Tryck, Linköping 2009

iii

 Abstract

Capacity is an essential quality factor in telecommunication systems. The
ability to develop systems with the lowest cost per subscriber and
transaction, that also meet the highest availability requirements and at the
same time allow for scalability, is a true challenge for a telecommunication
systems provider. This thesis describes a research collaboration between
Linköping University and Ericsson AB aimed at improving the
management, representation, and implementation of capacity requirements
in large-scale software engineering.
An industrial case study on non-functional requirements in general was

conducted to provide the explorative research background, and a richer
understanding of identified difficulties was gained by dedicating
subsequent investigations to capacity. A best practice inventory within
Ericsson regarding the management of capacity requirements and their
refinement into design and implementation was carried out. It revealed
that capacity requirements crosscut most of the development process and
the system lifecycle, thus widening the research context considerably. The
interview series resulted in the specification of 19 capacity sub-processes;
these were represented as a method plug-in to the OpenUP software
development process in order to construct a coherent package of
knowledge as well as to communicate the results. They also provide the
basis of an empirically grounded anatomy which has been validated in a
focus group. The anatomy enables the assessment and stepwise
improvement of an organization’s ability to develop for capacity, thus
keeping the initial cost low. Moreover, the notion of capacity is discussed

iv

and a pragmatic approach for how to support model-based, function-
oriented development with capacity information by its annotation in UML
models is presented. The results combine into a method for how to
improve the treatment of capacity requirements in large-scale software
systems.

v

 Acknowledgements

This work has been funded by the Swedish Foundation for Strategic Research through
the Research center for Integrational Software Engineering (RISE), by the KK
foundation through the research school for industrial IT research at Linköpings
universitet, by Ericsson AB, and by Vinnova.

This thesis is the concluding result from my years of doctoral studies. Even
though I am pleased with the accomplishment, I do not see how it would
have been possible without the input and contributions from several very
competent and appreciated advisors.
First and foremost, I want to express my deepest gratitude to Prof.

Kristian Sandahl: For being an outstanding supervisor, always willing to
share his time and vast knowledge to give useful advice, for being patient
with my progress during parental leaves, and for being both a colleague
and a friend far beyond the duties of a primary supervisor.
I am also truly grateful for the essential contributions by Lic. Eng.

Mikael Patel: For arranging so that I could spend two autumns as his
colleague at Ericsson AB, for sharing his impressive knowledge and
creative mind, for all the inspiration and guidance, and for being a much
appreciated travelling companion when attending conferences.
I am also indebted to Dr. Pär Carlshamre for arranging my first stay at

Ericsson, for raising my interest for and putting me on track with non-
functional requirements, and for serving as a secondary supervisor. Thanks
also to Dr. Joachim Karlsson for letting me combine my first years of

vi

doctoral studies with an employment at Focal Point AB and for serving as
a secondary supervisor during the same years.
In addition to the group of supervisors, I am much indebted to the 40

anonymous industrial practitioners of Ericsson AB, SMHI, and Saab AB
that have generously spent their time and shared their expertise for me to
gain valuable industrial data.
I would also like to express my gratitude to past and present Pelab

colleagues for their friendship and the very entertaining coffee break
discussions. I am particularly grateful to Jens Gustavsson, Levon Saldamli,
and John Wilander for co-organizing our interesting study circle on
research methodology.
Finally, I have many reasons to be grateful to my beloved wife Kristin

and our wonderful children Axel, Klara, and Saga. The reason most
relevant to the results herein, though, is the admirable effort Kristin put up
to take care of our three months old twin daughters and our 2.5 years old
son when I attended RE’06 in Minneapolis – and for doing it again during
my stays at another three conferences within a year from then. I also want
to thank my parents Kristina and Håkan, Kristin’s mother Els-Mari, and
my aunt Birgitta for their generous and extensive support to Kristin and
our children during these conference trips.

Andreas Borg
Rimforsa, February 2009

vii

 Table of Contents

1 Introduction..1

1.1 Background and motivation..1
1.2 Research objectives...3
1.3 Overview of papers...4
1.4 Research methodology ...8
1.5 Contributions .. 15
1.6 Related publications not included in the thesis....................................... 16

2 Frame of Reference... 17

2.1 Background ... 17
2.2 Software requirements... 17
2.3 Non-functional requirements... 21
2.4 Capacity.. 28
2.5 Processes and process improvement .. 35

3 Discussion ..39

3.1 On the acquisition of empirical data... 39
3.2 From refinement to process improvement ... 46
3.3 Revisiting the research questions... 48

 References...57

viii

1

1 Introduction

This chapter presents the background of the thesis and the research objectives it

responds to. Furthermore, a brief description of the papers included in the thesis is

provided, the applied research method and related issues are described, and the

overall contributions are summarized.

1.11.11.11.1 Background and motivationBackground and motivationBackground and motivationBackground and motivation
The complex context of large-scale software engineering is critically
dependent on well-managed requirements on all levels and in all phases:
From overall system level to the level of the smallest sub systems and from
elicitation of requirements to system verification and maintenance. A way
of coping with complexity is to apply processes to bring order and to
facilitate the coordination of people, tasks, artifacts, etc. Such processes,
for example the Rational Unified Process (RUP) [37] supported with UML
modeling tools, have been successful in industry as regards functional
requirements (FRs). However, non-functional requirements (NFRs)
crosscut the system structure [7] and do not easily lend themselves to
smooth refinement in functional models. Hence, specialized methods are
needed to also comprise successful treatment of NFRs.
The term “non-functional requirement” is wide and there is an ongoing

debate regarding the term’s usefulness and regarding its definition [20]
(which is discussed in Chapter 2). However, regardless of the exact borders
of the set denoted “non-functional requirements”, there is no doubt that
quality factors like usability, performance, reliability, maintainability, etc.

Processes and Models for Capacity Requirements in Telecommunication Systems

2

are normally considered as subsets of NFRs. The point-of-view taken
herein is that each quality factor needs to be studied separately in order to
gain an in-depth understanding of the quality factor in scope and to allow
different quality factors to have different properties. Naturally, for instance
usability and reliability share properties, both crosscut the functional
model, but there are also numerous differences to consider.
The NFR type of special interest in this thesis is capacity1. It is an

important property of large-scale telecommunication systems as well as of
other systems with high transaction intensity (such as bank systems,
decision support systems, etc.) and it differs from other quality factors in
that it is relatively easy to specify and measure. For example, we know how
many subscribers a mobile telecommunication system needs to support,
how many simultaneous phone calls that the system must handle, what
response times that are acceptable, etc., and these properties can be
measured.
Capacity provides yet another illustration of how NFRs crosscut the

functional model: A software system’s capacity cannot be isolated to a
single system module. Instead, capacity must be built into the system’s
architecture and design, which means that capacity requirements must be
articulated and present when needed and that organizational issues and
power structures are as important as technical aspects. On the other hand,
it can be argued that it is possible to cope with capacity as if it was isolated
to the system’s hardware. There is limited need of addressing capacity
issues if newer and better hardware can be bought to compensate for poor
system architecture. However, relying solely on upgrading hardware is
risky. There may be a limit where better hardware does not significantly
improve capacity and there may be another limit where upgrades are
simply too expensive for the system to be competitive.
The complex challenge of a telecommunication system is to provide

systems with the lowest cost per subscriber and transaction, but also with
the highest availability, 24/7 systems with 99.999+ % uptime, and at the
same time allow for scalability, that is, the network size and the number of
subscribers to grow. The circumstance that the delivered systems must
meet the needs of today’s tele and data communication networks as well as
tomorrow’s means that more capacity is always needed, both in terms of
bandwidth and transactions per second. Thus, improving capacity is an
issue during the entire lifecycle of the system and within each development
project, and it must be addressed in all development phases. To achieve

1 The meaning of capacity is explained in Section 2.4

Chapter 1: Introduction

3

this, the improved capacity of a new increment is often the combination of
both faster hardware and better software.
The presented research has been conducted in cooperation with the

telecommunication systems provider Ericsson AB. It considers NFRs in
general as an introduction, but its major part concentrates on capacity and
arrives at a method for improved treatment of such requirements in large-
scale software engineering. There are contributions regarding the notion of
capacity and how to annotate UML models with capacity information.
Moreover, a capacity plug-in to the OpenUP software development
process has been constructed and a way of assessing and improving
capacity processes using an anatomy has also been suggested. The
contributions are empirically grounded as described in Section 1.4.6, and
most of the results have been published within the Requirements
Engineering community (see Section 1.3).

1.21.21.21.2 Research objectivesResearch objectivesResearch objectivesResearch objectives
Several research questions have been formulated during the research
project. To start with, the overall research objective is described by the
following research question (Q) and the applied research method is
described by the method hypothesis (H) below:

Q How can capacity requirements be treated so that they are

available when needed and influence all phases of large-scale
software system development?

H It is possible to learn, improve, feed back, and evaluate

knowledge regarding NFR/capacity management in large,
developing, and administering organizations by the means of
industrial case studies.

The research question is based on the assumption that overall capacity
requirements are generally known in large-scale software engineering, but
that they are not always transformed into the representations needed to
fully influence the architecture, design and testing of the system. This
assumption was derived from the investigation of the following closely
related explorative research questions:

Processes and Models for Capacity Requirements in Telecommunication Systems

4

Q1 How are NFRs managed in large, developing, and
administering organizations?

Q2 How are capacity requirements managed in large, developing,

and administering organizations?

Finally, the suggested improvements regarding capacity procedures were
guided by the following research questions:

Q3 How can the routines regarding capacity requirements and

development for capacity be improved in large, developing,
and administering organizations characterized by long
product life cycle and many releases of the same product?

Q4 How can capacity be modeled in large-scale software

development characterized by long product life cycle and
many releases of the same product so that capacity
requirements are refined to design and implementation?

1.31.31.31.3 Overview of papersOverview of papersOverview of papersOverview of papers
The research objectives stated in the previous section are responded by
Papers I-VI in the second part of the thesis. Each paper is described briefly
below to give an early overview and serve as input to the research
methodology discussion in the following section.

Paper I: The Bad Conscience of Requirements Engineering: An
Investigation in Real-World Treatment of Non-Functional
Requirements

Andreas Borg, Angela Yong, Pär Carlshamre, Kristian Sandahl

In the proceedings of the 3rd Conference on Software Engineering Research and Practice
in Sweden (SERPS'03), pp. 1-8, Lund, Sweden, 2003.

The first paper is an explorative study that concentrates on the real-world
treatment of NFRs. 14 practitioners within two software developing
organizations (Ericsson OSS and SMHI) are interviewed regarding NFRs,
their treatment, difficulties related to NFRs, and problems that arise due to
the difficulties. The objectives are to provide empirical data to support or

Chapter 1: Introduction

5

challenge the literature, and to identify potential research opportunities for
the PhD project. A list of difficulties is assembled, analyzed, and discussed,
and the most tangible problems are identified. The reasons to NFR-related
problems are found in the nature of NFRs and in hierarchical organization
structure.
Dr. Carlshamre and I designed the interview series. The interview

series, including the analysis of protocols, were carried out by me and Ms.
Yong. Dr. Carlshamre and Prof. Sandahl contributed to the analysis
results. I wrote the paper.

Paper II: Good Practice and Improvement Model of Handling
Capacity Requirements of Large Telecommunication Systems

Andreas Borg, Mikael Patel, Kristian Sandahl

In the proceedings of the 14th IEEE International Requirements Engineering
Conference (RE'06), pp. 245-250, Minneapolis/S:t Paul, 2006.

The scope is narrowed to only consider capacity requirements in the
second paper. An interview series regarding the treatment of capacity
requirements and related issues was conducted within Ericsson. Focus was
on how difficulties related to capacity are overcome and to what extent
modeling is used to document capacity information. A number of good
practices are identified and put into a methodological context regarding
what is needed to be able to develop for capacity. 19 capacity sub-processes2
(CSPs) are presented related to the capability areas Estimation and prediction,
Specification, Measurement and tuning, and Verification.
I conducted the interview series which was co-designed by me and Lic.

Eng. Patel. We jointly analyzed the results, with Lic. Eng. Patel’s expertise
in telecommunication capacity and the development activities within
Ericsson as prerequisites for putting the results into their methodological
context. I wrote most of the paper.

2 Only 18 CSPs were presented in the original version of this paper. Editorial
revisions have been made so that all papers in the thesis present 19 CSPs.

Processes and Models for Capacity Requirements in Telecommunication Systems

6

Paper III: Integrating an Improvement Model of Handling Capacity
Requirements with the OpenUP/Basic Process

Andreas Borg, Mikael Patel, Kristian Sandahl

In the proceedings of the International working conference on Requirements Engineering:
Foundations for Software Quality (REFSQ'07), pp. 341-354, Trondheim, Norway,
2007.

The third paper proceeds from the CSPs presented in Paper II. The
Eclipse Process Framework (EPF) [15] is applied to transfer the CSPs into
a so called method plug-in to the OpenUP/Basic software development
process [46]. This is done via a series of workshops involving all co-
authors of the paper. The method plug-in facilitates the feedback of Paper
II results within Ericsson (EPF and OpenUP/Basic can be regarded as
open and free variants of the Rational Model Composer and RUP that is
used within Ericsson) and it also makes the communication with other
researchers smoother. The receiver of the method plug-in is typically a
process engineer who can choose to extend a process with support for
capacity development.
Lic. Eng. Patel suggested the idea of a method plug-in to represent the

CSPs as a process extension accessible to both Ericsson employees and
other researchers. The analysis of how to implement the capabilities in a
method plug-in was carried out jointly by me, Lic. Eng. Patel, and Prof.
Sandahl. I did most of the actual plug-in construction and I also wrote
most of the paper with contributions from Prof. Sandahl.

Paper IV: Extending the OpenUP/Basic Requirements Discipline to
Specify Capacity Requirements

Andreas Borg, Mikael Patel, Kristian Sandahl

In the proceedings of the 15th IEEE International Requirements Engineering
Conference (RE'07), pp., 328-333, Delhi, India, 2007.

Paper IV is based on the same foundation as Paper III but concentrates
solely on the requirements perspective. The requirements discipline of
OpenUP/Basic and how our method plug-in can support the specification
of capacity requirements is described. Our approach is compared to
another independent process initiative – called the W project – related to
capacity improvement within Ericsson. The approaches are estimated to be
around 80 percent similar and we get confirmation on our major ideas:

Chapter 1: Introduction

7

modeling real-life capacity, using time budgets, and defining sub-system
tests.
I wrote most of the paper. Lic. Eng. Patel is responsible for the

presentation of W project material.

Paper V: A Case Study in Assessing and Improving Capacity Using
an Anatomy of Good Practice (extended version)

Mikael Patel, Andreas Borg, Kristian Sandahl

The 6th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’07), pp. 509-512, Dubrovnik, Croatia, 2007.

This paper proposes an Anatomy of Capacity Engineering (ACE). An
anatomy is constructed from the CSPs in which their internal relations and
ordering are made visible. ACE involves four steps for how an
organization can assess and improve its capacity abilities. The initial two
ACE steps, the assessment activity and visualizing the results in the
anatomy, are tried in three case studies and the results are briefly discussed.
The paper as presented in this thesis has been extended to provide a more
detailed description of ACE.
Lic. Eng. Patel was the main architect behind the construction of the

anatomy and he also carried out the assessments of the Ericsson-internal
cases of the case studies. Prof. Sandahl performed the assessments on the
OpenUP/Basic process. I wrote the paper.

Paper VI: A Method for Improving the Treatment of Capacity
Requirements in Large Telecommunication Systems

Andreas Borg, Mikael Patel, Kristian Sandahl

Submitted to Requirements Engineering Journal.

The final paper is of a special kind. Its major contribution is that it
describes the progress from Paper I through Paper V and how the papers
fit together. Thus, contents from all the previous papers can be found in
this paper too, but it also includes the description of a pragmatic approach
to annotating UML models with capacity information. I wrote the paper.

Processes and Models for Capacity Requirements in Telecommunication Systems

8

1.41.41.41.4 Research methodologyResearch methodologyResearch methodologyResearch methodology

1.4.1 SOLVING REAL-WORLD PROBLEMS
The research approach taken in this project adheres to a problem-oriented
paradigm, in which relevance and usefulness in a relatively near future are
important properties. Thus, research that might lead to a major break-
through in twenty years is less preferred than research that has reasonable
chances to create something useful in the perspective of one to five years.
Applying the concepts of relevance and usefulness means, in the case

of software engineering, to try and solve problems that are faced by
software engineering practitioners in software engineering industry.
Consequently, such problems need to be identified in order to perform the
described research, which can be done indirectly by reading research
papers describing real-world problems. However, the obvious alternative is
to be there, in software engineering industry, to meet with practitioners
and identify problems directly in what is sometimes called industry-as-
laboratory [47]. Fortunately, this opportunity was given several times during
the research project.

1.4.2 CASE STUDIES AND FOCUS GROUPS
The empirical experience presented herein has mainly been acquired from
various organizations within Ericsson AB. However, the explorative
problem inventory of Paper I also involved the Swedish Meteorological
and Hydrological Institute (SMHI), and it is described in Paper VI that
representatives from Saab AB were involved in the validation of ACE. The
research methods that have been applied to acquire this industrial
experience are those entitling this subsection.

Case studies are described in Paper I and Paper V. The problem
inventory of Paper I is a case study in which an interview series from one
case was replicated in a second case (the fact that it is built around an
interview series indicates that the case study type is survey [39]), and ACE –
the capacity assessment and evaluation method proposed in Paper V – is
tried out in three different experimental case studies [39] to investigate the
method’s validity.
The focus group is a qualitative research method that can be used for

several purposes. The method originates from market research where
companies can evaluate their ideas and products in groups of carefully
selected representatives of the target customer [16]. In market research, the

Chapter 1: Introduction

9

typical focus group is video-taped and consists of eight to ten participants
and a moderator.
The focus group described in Paper VI follows the focus group design

as described by Hedenskog [25]: A few people, preferably four to get a
good balance between quantity and depth in discussion, share their
knowledge and thoughts regarding a limited set of questions prepared by
the researcher, and discussion is optimally facilitated by somebody not
involved in the study. Each participant has to think each question over
individually and account for his/her opinion orally one by one before
plenary discussion is allowed (to avoid bias). The researcher takes notes
and records the discussion using audio or video equipment and performs
protocol analysis on transcripts.
The focus group was used to assess the transferability of ACE to

organizations outside of Ericsson. It was conducted strictly according to
Hedenskog’s example, that is, four participants (from the defense and
avionics company Saab AB), an outside moderator, and audio recordings
that were transcribed and analyzed.

1.4.3 ACTION RESEARCH
Parts of the work presented in this thesis can be characterized as action
research. Different views of action research are presented by Cronholm and
Goldkuhl [10] and a short summary is provided below.
An action research project involves both researchers and practitioners

and they collaborate to reach common goals. Thus, the researchers work
together with practitioners to accomplish some kind of business change.
This contrasts with a participatory observation approach which allows
researchers to be present in industrial contexts, but only to observe
procedures from a “fly-on-the-wall” perspective.
Cronholm and Goldkuhl [10] point out that the action researcher must

be interested in both the action and the research. (A consultant could
collaborate with practitioners but is probably only interested in the action.)
The actual change of procedures constitutes the action whereas the
research is about generating new knowledge, which means that reflecting
upon the business change process is an important research activity. McCay
and Marshall [40] have formalized these dual aims into an action research
process that consists of two interlinked cycles: The aim to improve a real-
world situation and the aim to generate new knowledge based on the
research question. This view enables the possibility to apply both a

Processes and Models for Capacity Requirements in Telecommunication Systems

10

research and a business change perspective regarding interest, method, and
result respectively.
Cronholm and Goldkuhl take the above one step further. The dual

cycles of McCay and Marshall are renamed practices (research and business
respectively) and the intersection in between them is recognized as a
practice on its own: the business change practice or the empirical research
practice depending on the perspective.
The methodological context for how to develop for capacity that

emerged from the second interview series described in Paper II is an
example of how researchers and practitioners work together to accomplish
an improvement. This kind of work continued in the development of a
capacity method plug-in (Paper III and Paper IV) and the development of
ACE (Paper V). Finally, Paper VI uncovers the research process and
presents reflections of the research process.
It is important to notice that the collaboration regarding business

change in our context have been carried out on a process level (within the
group responsible for Ericsson’s software development processes,
methods, and tools) and that we have co-authored research papers on our
findings.

1.4.4 QUALITATIVE RESEARCH
The research methods that have been described above have been applied
qualitatively in the research project. Strauss and Corbin [53] describe
qualitative research in the following way:

By the term “qualitative research”, we mean any type of research that produces
findings not arrived at by statistical procedures or other means of quantification.

There are several situations when qualitative research methods are the
most suitable to gain knowledge. The most valid in the context of this
research project is [53]:

… to get out in the field and finding out what people are doing and thinking.

The quote above motivates the choice of research method in important
parts of the research project. The explorative study of Paper I and the best
practice inventory of Paper II are based on interview series with “finding
out what people are doing and thinking” as principal objective.
Qualitative research consists of three major components [53] and

interviews are a good example of the first component: data. Observation

Chapter 1: Introduction

11

and reading documents are other examples of how to acquire data. Thus,
the data component of qualitative research is very similar to the elicitation
stage of requirements engineering.
The second component of qualitative research consists of the procedures

to analyze data. This step is often denoted coding, and involves for instance
conceptualizing and reducing data and constructing categories with respect
to properties and dimensions. In Papers I-II, the dominating procedures to
analyze interview data were to summarize interviews into minutes-of-
meeting (commented upon by respondents) and to perform protocol
analysis, whereas transcription from audio to text preceded the protocol
analysis of the focus group described in Paper VI. The papers are also the
primary instantiations of the final component of qualitative research: written
and verbal reports.

1.4.5 GROUNDED AND MULTI-GROUNDED THEORY
Grounded theory (GT) is a well-known approach to qualitative research
which originates from within the field of sociology. GT, as it was initially
proposed, is strictly inductive. This means that theory is built solely from
the analysis of empirical data without considering existing literature until
after data has been gathered and analyzed. In fact, original GT explicitly
advises against reading literature regarding other theories until a new
theory induced from the data has been built. The rationale is to be able to
keep an open mind and not let existing theory prejudice the mind of the
researcher. Thus, a theory that is “grounded” according to orthodox GT is
grounded in empirical data.
From a practical point-of-view, there is an evident objection to GT and

its reluctance to consider relevant literature; the probability that the wheel
is reinvented increases. However, GT has evolved [53] and its extension
into multi-grounded theory (MGT) has been suggested. The following quote
from Goldkuhl and Cronholm [22] explains how MGT relates to GT:

There is much GT in our MGT approach. We would like to see it as an extension to
or modification of GT. We think that Strauss & Corbin (1998) have taken important
steps away from a pure inductivist position. We will continue this move away from
pure inductivism. This should not be interpreted as we reject an empirically based
inductive analysis as is performed in the coding processes of GT. To have an open-
minded attitude towards the empirical data is one of the main strengths in GT and this
is incorporated in MGT.

Processes and Models for Capacity Requirements in Telecommunication Systems

12

The primary extension in MGT is that the empirically-driven analysis of
GT is complemented with theory-driven analysis. In other words, the new
theory represents a combined view of what is induced from empirical data
and what can be deduced from existing theory. In more detail, MGT
suggests two grounding processes – theoretical grounding and internal grounding
– in addition to the original process of empirical grounding. The grounding
processes of MGT are illustrated in Figure 1 below.

External theories

Theory

Empirical data

Theoretical

grounding

Empirical

grounding

Internal

grounding

Figure 1: The grounding processes of MGT according to Goldkuhl and

Cronholm [22]

The traditional grounded theory is achieved by the analysis of empirical
data – the empirical grounding. Naturally, this analysis shall be as inductive
as possible. This is true for the first step (inductive coding) of MGT too
(“It is harder to introduce an open mind later if one has explicitly used
some pre-categories early in the process for interpretation of the data”).
However, existing literature is allowed to play a part in the successive steps
of the empirical grounding (conceptual refinement, building categorical
structures, theory condensation). Moreover, MGT claims that even
empirically grounded theories need to be explicitly and systematically
checked to ensure its empirical validity.

Chapter 1: Introduction

13

The theoretical grounding of MGT studies relevant published theories to
make use of existing knowledge and to make the new theory coherent with
existing theories. Practically this is achieved with theoretical matching, in
which the evolving theory is confronted with other theories. If there is full
conformity between the new theory and existing theories the former is
explicitly grounded theoretically. However, the comparison with existing
theory may lead to an adaptation of the evolving theory and/or criticism
towards existing theories.
Finally, MGT also incorporates internal grounding to explicitly address

the consistency within the theory, that is, to evaluate the theoretical cohesion
of the new theory.

1.4.6 THE GROUNDING OF THIS THESIS
The research process described herein is not rigorous to such an extent
that it fully complies with the theoretical description of MGT.
Nevertheless, all three grounding processes of MGT are represented in the
research project.
First, the empirical grounding is obvious: Papers I and II explore

industrial practice as important input to the research project, and it can
also be noticed that the focus group of Paper VI represent empirical
validation.
Second, the theoretical grounding is almost as obvious. The empirical

findings are related to existing literature within the field, and one of the
objectives in Paper I was to “corroborate or challenge” what was available
in the literature. However, the existing theories were considered in a too
early stage to conform to MGT.
Finally, the work with the capacity method plug-in and the method to

assess and improve capacity processes (ACE) presented in Papers III-V
constitute the internal grounding of the research. Representing the capacity
sub-processes of Paper II as a method plug-in and an anatomy forced
thinking into terms of internal coherence and consistency. The capacity
method plug-in required the transformation of CSPs into a set of roles,
tasks, and artifacts that resulted in more detailed knowledge regarding
development for capacity. Moreover, constructing an anatomy required
thorough thinking regarding the relations between capabilities and how
they contribute to each other.

Processes and Models for Capacity Requirements in Telecommunication Systems

14

1.4.7 A FEW NOTES ON RESEARCH IN INDUSTRIAL SETTINGS
When Potts proposed the “industry-as-laboratory” approach to replace the
“research-then-transfer” approach he made the following statement [47]:

Industry-as-laboratory research sacrifices revolution, but gains steady evolution.

There are a number of issues to tackle in order to gain this steady
evolution. For example, what distinguishes in-house process improvement
from research? One of the answers given by Potts is how general the
results are. If new knowledge can be gained from the lessons learned
within one organization that proves useful in another organization (the less
adaptation needed the better) there is clearly relevant research. The focus
group described in Paper VI is an example of how to demonstrate a
method’s general relevance.
Research projects in industrial settings face hindrances of practical

kinds as well. An example is how results can be made publically available if
the conducted research is concentrated around a company’s business
secrets. Naturally, most companies are reluctant to share their secrets with
their competitors and to expose problems and failures to potential
customers. This was not a big problem in this research project since the
research was concentrated to methods and processes rather than products.
Other threats are reduced budgets, projects being closed, and that key

persons leave (to another company or department). All these threats were
calculated risks that were accepted to gain the benefits of being able to
perform industrial research and to make unique research findings.

1.4.8 PROTOCOL ANALYSIS
Protocol analysis – how verbal data can be analyzed – has been thoroughly
described within the field of cognitive psychology [17], and a good
example of how verbal data can be gathered and analyzed within the field
of Requirements Engineering is provided by Karlsson et al. [33]. Such
techniques have been used and protocols have been produced and
analyzed in three parts of the research project.
First, each interview of the interview series described in Paper I was

summarized immediately after each interview session based on minutes of
meeting. If need for clarifications arose when producing an interview
summary the interviewee was asked to redeliver his/her message.
The procedure of the second interview series (see Paper II) was

identical to the first with one exception; this time each interviewee read the

Chapter 1: Introduction

15

interview summary to ensure that it was correct. All interview summaries
were accepted by the respective interviewee and only minor changes were
made. The advantages of letting interviewees read and comment are that
any misunderstandings can be corrected and that improved articulation of
vague wordings can be achieved. However, there is also a possibility that
an interviewee wants to change his/her statement in a matter, which can
then be regarded as another data point to the previous ones.
The focus group that was used to validate ACE in Paper VI was the

most rigorous approach to creating protocols, since the discussion was
transcribed from audio to text.
The actual protocol analysis techniques applied to the summaries from

the two interview series were straightforward. The set of questions
provided a structure for coding and analyzing the summaries into themes
and responses could be compared per question. The analysis of the focus
group protocols was somewhat different since the verbal material was a
discussion, not interviews. However, the discussion was structured
according to the contents of the anatomy in focus and participants
suggested anatomy design improvements while assessing the transferability
of each CSP. Thus, themes could be easily identified regarding the
transferability of ACE and regarding the design of the anatomy as such.

1.51.51.51.5 ContributionsContributionsContributionsContributions
The contributions reported of herein correspond well to the collection of
papers and can be summarized as follows:

• An industrial survey and empirical data on real-world NFR problems.
• An industrial survey and empirical data regarding how capacity

requirements are treated within Ericsson.
• A set of CSPs that is useful when developing for capacity in large-scale

telecommunication systems.
• A capacity method plug-in that can be used (and adapted) in

conjunction with the OpenUP/Basic software development process.
• A method for how to assess and improve capacity processes (ACE)

validated in a focus group.
• A heuristic suggestion for how to include capacity information in

UML models.
• An integrated method for how to treat capacity requirements in large-

scale telecommunication systems based on the above contributions.

Processes and Models for Capacity Requirements in Telecommunication Systems

16

1.61.61.61.6 Related Related Related Related publications publications publications publications not included in not included in not included in not included in the thesisthe thesisthe thesisthe thesis
Borg, A., J. Karlsson, S. Olsson, and K. Sandahl. "Supporting
Requirements Selection by Measuring Feature Use", in the proceedings of
the 10th International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ'04), pp. 77-82, Riga, Latvia, June 7-8, 2004.

Borg, A., J. Karlsson, S. Olsson, and K. Sandahl. "Measuring the Use of
Features in a Requirements Engineering Tool-An Industrial Case Study",
in the proceedings of the Fourth Conference on Software Engineering Research and
Practice in Sweden (SERPS'04), pp. 101-110, Linköping, Sweden, October
21-22, 2004.

Borg, A. Contributions to Management and Validation of Non-Functional
Requirements. Licentiate thesis no. 1126, Department of Computer and
Information Science, Linköpings universitet, Sweden, 2004.

Gorschek, T., M. Svahnberg, A. Borg, J. Börstler, M. Eriksson, A.
Loconsole, and K. Sandahl. "A Controlled Empirical Evaluation of a
Requirements Abstraction Model", Information and Software Technology, Vol.
49, No 7, pp. 790-805, July 2007.

Sandahl, K., M. Patel, and A. Borg. "A Method for Assessing and
Improving Processes for Capacity in Telecommunication Systems", in the
proceedings of the Seventh Conference on Software Engineering Research and
Practice in Sweden (SERPS'07), Göteborg, Sweden, October 24-25, 2007.

Svahnberg, M., T. Gorschek, M. Eriksson, A. Borg, K. Sandahl, J. Börstler,
and A. Loconsole. "Perspectives on Requirements Understandability: For
Whom Does the Teacher's Bell Toll?", in the proceedings of the Third
International Workshop on Requirements Engineering Education and Training
(REET'08), Barcelona, Spain, September 9, 2008.

Borg, A., M. Patel, and K. Sandahl. "Modeling Capacity Requirements in
Large-Scale Telecommunication Systems", in the Proceedings of the Eighth
Conference on Software Engineering Research and Practice in Sweden (SERPS'08),
Karlskrona, Sweden, November 4-5, 2008.

17

2 Frame of Reference

This chapter provides an overview of issues that form the frame of reference. The

meanings of requirements, non-functional requirements, and capacity are described,

as is the case with processes and process improvements.

2.12.12.12.1 BackgroundBackgroundBackgroundBackground
The contents of this thesis originate from within the field of Requirements
Engineering. The research project started with an initial interest in NFRs
and evolved into investigating capacity requirements. This evolvement is
reflected in the frame of reference. A brief description of requirements in
general is provided to start with, followed by guidance to NFRs before we
end with a detailed description of what is capacity. Processes and process
improvement are also described. Related work is pointed out and discussed
along the way.

2.22.22.22.2 Software requirementsSoftware requirementsSoftware requirementsSoftware requirements

2.2.1 REQUIREMENT DEFINITIONS
Many definitions of the term “requirement” have been proposed. In this
section some well-known suggestions are described in order to provide
basic domain information.

Processes and Models for Capacity Requirements in Telecommunication Systems

18

The general objective of RE is to capture the ideas and needs of various
stakeholders and transform these needs into a solid basis for system
development. Harwell et al. [24] emphasize this when formulating the
purpose of requirements:

… to reproduce in the mind of the reader the intellectual content which was in the
mind of the writer.

Even though this takes into account the transformation of the ideas and
needs of various stakeholders into a proper representation, it does not
define the term “requirement” (and it is also narrowed to the
communication between readers and writers as noted by Carlshamre [6]).
Furthermore, the explanation assumes that the writer has the correct
picture of the requirement(s). Singer [51] provides a more general
definition of the term:

A requirement is a portrait of a user’s needs.

Although excluding all stakeholders but users, this definition nicely
encompasses that requirements can be explicit as well as implicit. Explicit
requirements are those that stakeholders ask for and can express, whereas
implicit requirements are those requirements that are unspoken. The
reason for implicit requirements may be that stakeholders simply do not
know all their needs and/or that requirements are so obvious to
stakeholders that they take them for granted.
A widely adopted “truth” regarding requirements is that they shall

focus entirely on what is needed, leaving any how-aspect for designers to
handle. This seems natural recalling that the requirements should provide a
detached “portrait of users’ needs”. However, how is sometimes inseparable
from what and the questions mean different things to different people. This
is discussed by Davis [13] (page 17) who also provides a useful
requirement definition emphasizing what will go into the product (by the
formulation “external to that system”):

[A requirement is] a user need or a necessary feature, function or attribute of a system
that can be sensed from a position external to that system.

Kotonya and Sommerville [35] moves even further away from user
centered requirements definitions when defining requirements

Chapter 2: Frame of Reference

19

…as a specification of what should be implemented. They are descriptions of how the
system should behave, application domain information, constraints on the system’s
operation, or specifications of a system property or attribute. Sometimes they are
constraints on the development process of the system.

Observing that even this small sample of definitions provide a rather
disharmonious picture of requirements, it is easy to understand that no
universal definition is available so far. However, the IEEE’s definition [28]
of software requirements is widely spread and accepted and concludes this
section: A requirement is:

(1) A condition or capability needed by a user to solve a problem or achieve an

objective.
(2) A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally
imposed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

Note that this definition includes both the user’s perspective and other
system characteristics. Moreover, the definition uses requirement for a user
need as well as for its corresponding documented representation (that is,
the user need is a requirement even before it is documented).

2.2.2 FUNCTIONAL VS. NON-FUNCTIONAL REQUIREMENTS
There are many ways of classifying requirements. However, a very
common way of separating requirements – which is also the most valid
classification for the topic of this thesis – is into functional requirements
(FRs) and non-functional requirements (NFRs).
Functional requirements are characterized by their exclusive devotion

to the already mentioned what-aspect of the system. Revisiting the IEEE
glossary [28], a functional requirement is defined as:

A requirement that specifies a function that a system component must be able to
perform.

“Function” in the above definition can be regarded as semantically
equivalent with the mathematical notion of a function:

)(xfy =

Processes and Models for Capacity Requirements in Telecommunication Systems

20

The mathematical function defines the relation between the variables x and
y for every possible x, and a specific value of x defines the value of y
deterministically. A software function does the same: input variables or
states are deterministically transformed into their corresponding output
variables or states. The following is an example of a functional
requirement:

Pressing the “Calculate BMI” button shall result in the correct BMI3 value for the
current entries being calculated and displayed.

The example requirement clearly describes a function of the forthcoming
system. However, there are further considerations that must be made and
specified to transform this piece of intended functionality into a usable
implementation. What if:

• Most or all intended users do not know the meaning of the BMI value

or how to interpret it?
• The interface location of the button and/or the displaying of the result

are unknown to most intended users?
• The calculation takes a month or two?

Thus, the functional requirement can be literally met, but completely
useless if one or several of these (or similar) situations occur. It is evident
from the above scenario that additional properties of the requirement need
to be specified, and such requirements are often referred to as non-
functional. The following is a non-functional requirement addressing one
of the considerations listed above:

The time elapsed between pressing the “Calculate BMI” button and the result being
displayed shall be less than 0.1 seconds.

Non-functional requirements are described in the following section.

3 BMI (Body Mass Index) uses body mass and body length to indicate overweight
or underweight in a simple but common way.

Chapter 2: Frame of Reference

21

2.32.32.32.3 NonNonNonNon----functional requirementsfunctional requirementsfunctional requirementsfunctional requirements

2.3.1 BACKGROUND
There is a general opinion that NFRs are difficult to capture as well as to
define, and that a major reason is their vague nature (which is supported by
our own research, see Paper I). This vagueness tempts requirements
writers to use words like “easy”, “optimal”, “flexible”, etc. which do not
properly describe what is wanted or how requirements should be tested.
Requirements of the type “The user shall find it easy to …” is a typical
example. Another example is found in a publically available requirements
specification of a system ordered by the Swedish police authority (directly
translated from Swedish):

A 3.16.5 The response-, access- and processing times of the D-System and other
factors that are significant to the D-System from a user’s perspective shall be optimal.
Moreover, variations adhering to different load conditions may not occur in such a
way that the D-System is perceived as slow, inconsistent or unrhythmic from a user’s
perspective.

The example requirement is subjectively stated (the user’s perspective,
optimality, etc.) and makes use of words that are impossible to interpret
correctly (“unrhythmic”). It cannot be sufficiently tested and it is hard to
imagine how it could be satisfied.
NFRs are also generally considered difficult to test. A good example is

usability that often requires either lots of time, extensive effort, many
people, or expertise (or even all of them) to be tested (Carlshamre [6]
provides an overview), whereas subjective evaluation can be done at a
significantly lower cost. The vague nature of NFRs also makes it difficult
to write measurable and unambiguous requirements. Furthermore, the
majority of existing processes and techniques focus on FRs and are not
well-suited for NFRs.
According to Kotonya and Sommerville [35] most existing RE methods

do not adequately cover NFRs simply because it is very difficult to do so.
Reasons are, for instance, that certain constraints are unknown at the
requirements stage, that some constraints need very complex empirical
evaluations to be determined, and that NFRs tend to conflict each other.
Furthermore, they argue that separating NFRs and FRs makes it difficult
to see dependencies between them, whereas functional and non-functional
considerations are difficult to separate if all requirements are stated

Processes and Models for Capacity Requirements in Telecommunication Systems

22

together. Finally they claim that it is difficult to determine when NFRs are
optimally met, since it is almost always possible to refine solutions. Despite
these difficulties, there are approaches that address treatment of NFRs in
various ways, although not yet standardized in for instance mainstream RE
text books and methods.
Chung et al. [7] state that “two basic approaches characterize the systematic

treatment of non-functional requirements”, which are referred to as product-oriented
and process-oriented. Product-oriented approaches received most of the
attention to begin with (see Keller et al. [34] for an overview), whereas
process-oriented (or goal-oriented) approaches have gained a lot of interest
the past decade. The main difference between the approaches is that the
product-oriented approach aims at determining to what extent the
conclusive software system fulfils its NFRs, whereas the process-oriented
approach tries to deal with NFRs during the development process, and
make sure that NFRs will be fulfilled by the conclusive system. Product-
oriented and process-oriented approaches are described in sections 2.3.3
and 2.3.4 respectively.

2.3.2 TERMINOLOGY
Considering the vagueness of NFRs as described above it seems logical
that vagueness applies to the actual term “non-functional requirement” as
well. Nevertheless, the term “non-functional requirement” (NFR) is widely
accepted and is used throughout this thesis to denote what is also called
extra-functional requirement [26], non-behavioral requirement [13], and quality
requirement [34] in related literature. The highly associated term quality
attribute [56] is generally equivalent to NFR type (for example performance,
maintainability, usability), and sometimes the terms goal and constraint are
used as well to label various kinds of NFRs. The definition of “functional
requirement” (see Section 2.2.2) does not have a corresponding definition
of “non-functional requirement” in the quoted glossary, instead
“functional requirements” are claimed to contrast with “design requirements,
implementation requirements, interface requirements, performance requirements, and
physical requirements”. Thayer and Thayer re-formulate this in their RE
glossary [55], explaining the non-functional requirement as:

In software system engineering, a software requirement that describes not what the
software will do, but how the software will do it, for example, software performance
requirements, software external interface requirements, software design constraints,
and software quality attributes.

Chapter 2: Frame of Reference

23

This description presents a common view but it still leaves room for
interpretations (“for example”). The division between what the system
does (FRs) and how the system behaves (NFRs) can also be questioned.
Glinz explains why in a recent paper on NFRs [20], which is begun with
the following sentences:

If you want to trigger a hot debate among a group of requirements engineering
people, just let them talk about non-functional requirements. Although this term has
been in use for more than two decades, there is still no consensus about the nature of
non-functional requirements and how to document them in requirements
specifications.

Glinz presents and analyzes a list of definitions (see Table 1) and arrives at
the conclusion that the problems regarding the notion of non-functional
requirements manifest in their definition, classification, and representation.
He suggests that the traditional classification of functional and non-
functional requirements is replaced by a faceted classification which
separates the concepts of representation, kind, satisfaction, and role. This
conforms well to the suggested aspect-oriented representation of
requirements and their definition as a number of concerns. System
requirements are divided into four concerns: functional, performance, and
quality concerns complemented with constraints. Quality (the “-ilities”) and
performance are combined into attributes, but are treated separately since
they are “typically treated separately in practice”. The reason is explained
to be that there is a consensus for how to measure performance (time,
volume, and volume per time unit) but that no such consensus is available
for other quality factors. This means that the definition of non-functional
requirements – if we want to stick to that term – according to Glinz is:

A non-functional requirement is an attribute of or a constraint of a system.

To conclude, this allows requirements to be classified by applying four
simple rules in the following order. If a requirement was stated to specify
(1) “some of the system’s data, input, or reaction to input stimuli – regardless of the way
how this is done”, then it is a functional requirement. If it was stated to
specify (2) “restrictions about timing, processing or reaction speed, data volume, or
throughput”, then it is a performance requirement. If it was stated to specify
(3) “a specific quality that the system or a component shall have”, then it is a specific
quality. Finally, if it was stated to specify “any other restriction about what the
system shall do, how it shall do it, or any prescribed solution or solution element”, then
it is a constraint.

Processes and Models for Capacity Requirements in Telecommunication Systems

24

Table 1: “Non-functional requirement” definitions compiled by Glinz [20]

Source Definition

Antón [1] Describe the nonbehavioral aspects of a system, capturing the
properties and constraints under which a system must operate.

Davis [13] The required overall attributes of the system, including
portability, reliability, efficiency, human engineering, testability,
understandability, and modifiability.

IEEE 610.12 [28] Term is not defined. The standard distinguishes design
requirements, implementation requirements, interface
requirements, performance requirements, and physical
requirements.

IEEE 830-1998 [29] Term is not defined. The standard defines the categories
functionality, external interfaces, performance, attributes
(portability, security, etc.), and design constraints. Project
requirements (such as schedule, cost, or development
requirements) are explicitly excluded.

Jacobson, Booch
and
Rumbaugh [30]

A requirement that specifies system properties, such as
environmental and implementation constraints, performance,
platform dependencies, maintainability, extensibility, and
reliability. A requirement that specifies physical constraints on a
functional requirement.

Kotonya and
Sommerville [35]

Requirements which are not specifically concerned with the
functionality of a system. They place restrictions on the product
being developed and the development process, and they specify
external constraints that the product must meet.

Mylopoulos, Chung
and Nixon [41]

“... global requirements on its development or operational cost,
performance, reliability, maintainability, portability, robustness,
and the like. (...) There is not a formal definition or a complete
list of non-functional requirements.”

Ncube [42]

The behavioral properties that the specified functions must
have, such as performance, usability.

Robertson and
Robertson [48]

A property, or quality, that the product must have, such as an
appearance, or a speed or accuracy property.

SCREEN Glossary
[49]

A requirement on a service that does not have a bearing on its
functionality, but describes attributes, constraints, performance
considerations, design, quality of service, environmental
considerations, failure and recovery.

Wiegers [56] A description of a property or characteristic that a software
system must exhibit or a constraint that it must respect, other
than an observable system behavior.

Wikipedia:
NFRs [57]

Requirements which specify criteria that can be used to judge
the operation of a system, rather than specific behaviors.

Wikipedia:
Requirements
Analysis [58]

Requirements which impose constraints on the design or
implementation (such as performance
requirements, quality standards, or design constraints).

Chapter 2: Frame of Reference

25

2.3.3 PRODUCT-ORIENTED APPROACHES
When applying a product-oriented approach to NFR treatment the
conclusive software system is considered. Measuring and verifying the
performance of features before releasing a product is a basic example of
this. Thus, the ability to specify testable quality requirements is essential
and with that metrics are placed in focus.
A product-oriented approach requires some kind of formal framework

that describes the quality attributes that need to be measured and which
metrics to use when evaluating to what extent the quality attributes are
met. An early and well-known example of such a framework was
accounted for already in 1990 by Keller et al. [34] based on the extensive
work of the Rome Air Development Center (RADC). The quality
attributes are classified into a structure and metrics are used to provide
visibility to decision makers, adherence to documented standards, and to
serve as input to prediction models. The framework as such is “a
hierarchical metrics structure in which metrics are organized into metric-
aggregates”, which means that metrics on one level are computed from
metrics of another level.

Software quality of system X

Quality factor

Direct metric(s)

Quality factor

Direct metric(s)

Quality factor

Direct metric(s)

Quality subfactor Quality subfactor Quality subfactor

Metric Metric Metric

Figure 2: Software quality metrics framework as presented in the "IEEE

standard for a software quality metrics methodology” [27]

Processes and Models for Capacity Requirements in Telecommunication Systems

26

The IEEE Standard for a Software Quality Metrics Methodology [27] is similar to
the above in several ways. It shares the approach of applying metrics on
several levels and an example is shown in Figure 2. The standard also
comprises a methodology that “is a systematic approach to establishing
quality requirements and identifying, implementing, analyzing, and
validating the process and product software quality metrics for a software
system”.

2.3.4 PROCESS-ORIENTED APPROACHES
In contrast to product-oriented approaches, process-oriented approaches
focus on the actual software development process. The idea can be
described as to let the positive and negative contributions of design
decisions with respect to NFRs drive the development process. Thus,
these contributions can imply that certain NFR aspects are met or describe
why they are not.
Process-oriented approaches are often called goal-oriented methods as

well, due to the fact that they focus on the goals (such as “the system shall
be secure”, “serve more subscribers”, etc.) of the software system. These
approaches do not concentrate on NFRs exclusively; both FRs and NFRs
are derived from the stated goals.
Goal-oriented requirements engineering, its basic principles, and its

approaches and frameworks have been described by van Lamsweerde [38],
and his description is still informative. Four major approaches, which are
briefly described below, can be distinguished in goal-oriented RE. These
have many interconnections and three of them actually originate from the
Knowledge Management Laboratory4 of the University of Toronto.
A goal-oriented method that is concentrated on NFRs is the NFR

Framework that has been developed by Chung et al. [7], which is also one of
the most comprehensive approaches to NFRs. The method is based on the
decomposition of a few general NFRs (security and performance for
example) that are considered important, using so called Softgoal
Interdependency Graphs (SIGs) and catalogued design knowledge. The term
“softgoal” denotes a specific non-functional goal and is used to point out
that such a goal has no clear-cut criteria to whether it is satisfied or not.
Similarly, the term “satisfice” (can be read as “sufficiently satisfied”) is
used to indicate the same thing, that is, stating that a goal is satisficed
means that it is sufficiently satisfied. The decomposition goes all the way

4 See http://www.cs.toronto.edu/km/. Accessed Feb 16, 2009.

Chapter 2: Frame of Reference

27

from the initial softgoals to design decisions and implementation
suggestions (“operationalizations”) using AND/OR refinement. The
framework models ambiguities, tradeoffs and priorities as well as
interdependencies between softgoals and operationalizations.
The KAOS5 [12] approach is complementary to the NFR Framework.

The NFR Framework is a qualitative framework oriented towards
satisficing quality goals (the use of negative and positive contributions to
drive the design process is clearly qualitative). In contrast, KAOS can be
described as a formal framework concentrated on goal satisfaction and
how to build complete requirements models with no internal conflicts. The
approach extends requirements modeling beyond traditional what
statements to also include the aspects of why, who, and when. Roughly, goals
are identified and refined, and objects and actions are also identified from
the goal refinement procedure. Requirements on objects and actions are
derived that explains how constraints can be met, and these constraints,
objects, and actions are assigned to the agents of the system. However, it
can also be noted that efforts have been made to make the NFR
Framework quantitative: The Attributed Goal-Oriented Requirements Analysis
Method (AGORA) [32] is an attempt to add metrics, basically by assigning
values to the positive and negative contributions mentioned above.
The i* framework is claimed to extend goal-oriented RE as described

by Yu and Mylopoulos [60], particularly regarding the softgoal concept that
continues from the techniques applied in the NFR Framework. However,
i* is an agent-oriented approach useful in RE as well as in business process
modeling that consists of several autonomous parties. An agent can be
described as a non-human actor that is:

• Situated – it senses and changes the environment
• Autonomous – it has control of its actions and can act without human

intervention
• Flexible – it responds to environmental changes
• Social – it can interact with humans and other agents

The above approaches are mainly directed to the requirements phase of
system development. Tropos is an agent-based software development
methodology and framework that reuses the notions of actor, goal, and

5 See http://www.info.ucl.ac.be/~avl/ReqEng.html. Accessed Feb 16, 2009.

Processes and Models for Capacity Requirements in Telecommunication Systems

28

dependency from i* and proceeds from requirements to architecture and
detailed design.
Finally, in addition to modeling requirements and providing basis for

design decisions, process-oriented approaches can serve as requirements
elicitation techniques as well. Decomposing high-level goals and properties
means adding more refined requirements that need to be discovered. For
instance, decomposing the top-level requirement “the system shall be secure”
requires further specification (in several steps) regarding the system’s
security and how it is to be achieved.

2.42.42.42.4 CapacityCapacityCapacityCapacity

2.4.1 CAPACITY, PERFORMANCE, AND EFFICIENCY
Terms like capacity, performance, and efficiency are used with slight
differences in practice and in the literature. Hence, before the meaning of
capacity in the context of this research project is described in the next
section a few definitions from the literature are provided.
The Software Quality Characteristics Tree [5] has been influential to

software quality and provides the foundation to successive quality models,
such as the one described in the ISO/IEC 9126-1:2001 standard. In both
these models, efficiency is the quality factor that contains capacity issues. The
factor is built from the sub factors accountability, device efficiency, and
accessibility in the former model and consists of time behavior and
resource behavior in the latter model. Put in text, efficiency is the
following in the ISO/IEC standard:

A set of attributes that bear on the relationship between the level of performance of
the software and the amount of resources used, under stated conditions.

Davis’s [13] definition of capacity is simple: capacity, timing constraints,
degradation of service, and memory requirements are subsets of efficiency [5].
Capacity is stated to respond to the question “How many?” and also to
take into account peak versus normal periods.
The efficiency definition above rely on the concept of performance, which

is described in the following way in the IEEE Standard Glossary of Software
Engineering Terminology (Std 610.12-1990) [28]:

The degree to which a system or component accomplishes its designated functions
within given constraints, such as speed, accuracy, or memory usage.

�������	
�	���
�	��	����������
�

���

����	�
��
�� ���� ���
	��	�
�������������
���
���	�������������� �	��
���
��
�	��� ��
�������� ����
�
	��� ������ ��	�� ���
���� ��� !� "	��#���� ����
����	�
�� 	�� $	������� ����	�
��
�� %����������� �$�% � �&���
	�
���������
���
������ 	�� ��
�������� ���� ������� ����� '������
����	 ��	 ���	 ������	 ��	 �����	 �	
��������	 �����
	 ��	 ��
������	
����	 ���	 ����������	 ���	 ��
��������!� (������
	����
����	�
��
�� ��� ������� �	���#�� ��	���
����	��)� ��������������� �����	 �������	 ��	

���	����������	���	��������	��
�	��	���� ��� ��!����������������	��������������	�
����
������	�*�
��#���'+���	���	��
���	���	��������	� �������	���������, !�

-������������	��
���������������������#��
	

��������	����$�%�����	�����
����
��� 	�� �	������� ���� ����	�
��
��� ���� ���� "������������	 #��$����	 ��	
%�������	 ���	 &�����
����� �./$�' � ���� ����� 	�����0��� ��#��� ��
��� ���
��
1��2��	����!�3���	�*�
��#��	�������������	�4��	�������	�*	��������	�
���	��
���� �	������� ������������
	

������ ���� ���� ����	�
��
�� ���������

	

�����!� /��� ��	���
�
	5
����� ���� ���	������ ��	
� ������� ��
��

	

������ ���� ���� ��������
����� ���� 6	����� 7!� $
����� ���� ����	�� 	��
'&�����
����	%�� ������	(&��������) ���	��	��������	����������*	%�������	%���������
�&��!� $��� ���� ����� ����� 	�� ���� ��	���
�
	

������ �#��� ���
�� ���� ����
	#������ �	��� 	�� ���� �	�4��	�� ��
����� ���� ��
�)� �	� ������ �����
������
����	�
��
�� ���	� �	������� ��� 8���������#��
����!� 9	������� �		��� ����
��
���8���� ��#�� ����� �
�	������ ������ 	�� ��������� ��	
� ���� ������ ���� ���
./$�� �::2� ���� ��	���
�
	5
����� �	����	��� ����� ����
����� �	� �	�������
����
	������� �����
��#���!� ;����� ��	
� <�!� $
����� 	����� ����54�	���
������
����� ����� ���8������� ��#�� ����� ����� 	�� ���� �	�4��	�=�� ��	���
�

	

������ ����� �	�� ���
����� %������ .���4���� >���� $���
�� ?���	��	�
6	�����������@�����
��6��������	���-�#��������$�
	������>����
	��A������
<�
4�������B	�C�9��������!�

�!D!�� 6;�;6-3E�-F�3"-$�A%$%;A6"��A/B%63�
6���
�������	�����	�����8���������
�	�����������������������	��������������������
��� %��
��	�� ���� ���
��� ��� ���
������
	�
������ ��� �� �����
=�� �������� �	�
��	#���	����+��� ��	�������	��	�	�����+��� ��	�
���	��	� ���������,�3��������
�������
�����5	��G� ����� ����
���
�
����#�
�5��#���
���
�0��� �����	���������
����
	������
�����������#�
��#����!�-�����	� �����������������
���
���� ���
	��������
����
	�
��������	�������	�����8�����	��'"	��
���H,�-��������������
��#��
����������������	��'
���
���,����������
�	����	�'����
���
�,�������
���������
���� ���#�	��� ��
��	�!�3����
����� ����� ����	�
��
��
��� ��� ��������� ��� ��
�������	��
���
���!�

�� �������������������
I�$�������)JJ���!���!��
��!��J�	��J!�;

������(���1I,��::�!�

Processes and Models for Capacity Requirements in Telecommunication Systems

30

The capacity view that we have adopted reflects the ambition to undertake
the research effort of improving the treatment of capacity requirements
and refining these into design and implementation using terminology that
reduces the risk of misunderstandings. Thus, our capacity view focus the
parts considered especially important for representing requirements when
developing for capacity, and can be depicted as in Figure 3 below (using
the AND tree notation from the NFR Framework [7]). This is the view
that is used throughout the remainder of this thesis.

Throughput

(req/s)

Static

dimension

Response

time

Dynamic

dimension

Dimensioning Performance

Capacity

Characteristics

ISP Other

Figure 3: The adopted capacity view

Capacity is one of several quality factors within Ericsson which are
normally referred to as characteristics. The most important quality factor is a
combination of reliability and availability denoted in service performance (ISP),
which can be described as the system’s ability to be up-and-running and
providing service. However, capacity and several other quality factors (such
as security and maintainability) are considered important as well.
Capacity consists of two parts: dimensioning and performance.

Dimensioning is equivalent to Davis’s description of capacity [13] with one
important extension: The difference between static and dynamic
dimension is made explicit. The typical example is to specify both the
maximum number of subscribers (static) in the network and the maximum
number of active subscribers, for example placing a call simultaneously

Chapter 2: Frame of Reference

31

(dynamic). The adopted capacity view emphasizes the elaboration of
capacity requirements before design and/or implementation. The
implementations of these requirements are typically in memory, disk, and
processor clock cycles. The limits of the resources are also plain
requirements. The dynamic dimensioning in a telecommunication system
often reflects upper limits of communication resources. This means, in the
case of real-time operating systems, dynamic dimensioning resources such
as number of processes, sockets, I/O buffers, switching hardware, etc.
Performance, on the other hand, is similar to how it is described in the

Software Performance Engineering (SPE) [52] approach; both response time and
throughput need to be considered, but maximizing throughput
(transactions per second) is emphasized over minimizing response time.
What really counts is throughput with respect to groups of transactions,
which is what customers measure and care about. It is, however, very
important to notice that optimizing throughput on an individual
transaction level can actually reduce overall throughput. The reason is
simple and relies on the relation between latency and parallelism. The
response time of a transaction can be defined in the following way:

processinglatencyresponse TTT +=

Latency is the “idle” time elapsed between the time of a request being
issued and the start of the actual processing. The throughput is at its top if
latency is at its bottom if each transaction is considered respectively. This
means that latency should be minimized if processing is strictly sequential.
However, longer latency at the individual transaction level is acceptable if it
facilitates parallelism among transactions. When managing several
transactions in parallel, internal queues are introduced and with that longer
latency. This means that it might be beneficial for overall throughput to
purposely slow down single transactions by the introduction of internal
queues. If the response time of an individual transaction is set to its
maximum limit it will also allow for maximum latency regarding the
transaction in scope. Maximum latency means maximum number of
parallel transactions and thus maximum overall throughput. Hence,
response time can be regarded as an upper limit for what is acceptable for
a single transaction, and maximizing capacity is then all about maximizing
the number of transactions within the response time limit. In other words,
response time contributes to “good-enough service level” and throughput
to “large-enough number of subscribers”.

Processes and Models for Capacity Requirements in Telecommunication Systems

32

Space (memory) has, as is also the case in SPE [52], deliberately been left
aside in this view since it to a great extent can be regarded as a direct
function of the dimensioning requirements. However, it still needs to be
considered when making capacity trade-offs as described in Paper VI.
The dimensionless unit Erlang is often used to describe the volume of

telecommunications traffic [19]. Traditionally the goal has been to
minimize system cost while achieving the maximum quality of service and
profit.

2.4.3 MODELING CAPACITY
Research questions Q4 and Q5 of section 1.2 are aimed towards modeling
in general and UML modeling in particular. They respond to the wish to
remedy the established requirements traceability failure by accomplishing a
full chain of capacity refinement in models. The principal source of
inspiration to this approach was the work by Dimitrov et al. [14], in which
several constructions of annotating UML diagrams with performance
information were suggested and compared.
The release of the UML Profile for Schedulability, performance, and time

(SPT) [45] launched a new platform for suggestions regarding performance
and capacity. Unlike the requirements engineering perspective of this
research project, most of the work that has been done on the modeling of
NFRs and capacity/performance originates from within the modeling
community. However, Bernardi and Petriu [4] have compared SPT and its
annotation techniques with the NFR annotations of the broader UML
Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms (QoS) [44].
Model-based performance prediction in general is surveyed by Balsamo

et al. [2]. One of the problems that have received a lot of interest in the
new millennium is how formal performance models can be derived from
UML design. Bernardi and Merseguer [3] have compiled the most
important works in the field and contribute with a method for how to
transform UML design into a Stochastic Well-formed Net (SWN)
performance analysis model from which metrics such as response time and
throughput can be calculated.
Cortellessa et al. [9] observe that available methodologies tend to take a

transformational approach to create performance models from
software/hardware models and how to automate these (the SWN
approach above). In their own approach they propose a framework to
integrate a software model with a hardware model from which a

Chapter 2: Frame of Reference

33

performance model can be built. The integrated model is annotated with
performance data such as operational profiles and resources as an
intermediate step towards the performance model. They also make the
following interesting statement when describing the framework:

The idea of integrating a software model with platform specifications for performance
validation goals can be accepted by software developers only if the integration does
not bring changes to their development practices.

The attitude imposed by this quote is totally conformant with the attitude
to change that is embraced in this thesis: to improve capacity with minimal
interference of current procedures. The means differ, however. It becomes
evident from the examples above that there is a lot of work done on the
modeling, analysis, and prediction of capacity/performance. The major
problem that is addressed herein is not only to investigate how capacity
can be modeled, analyzed, and predicted. Instead, the focus is on how to
improve the development for capacity, the treatment of capacity
requirements, and how to make them available for architects, designers,
programmers, and testers to consider. Thus, the ability to predict capacity
is important but only one part of the problem treated herein.
The attitude of this thesis – that new procedures are more easily

adopted if changes to current procedures are minimal rather than extensive
– does not mean that a paradigm shift to for example model-based
architecture can never happen. However, it is likely to believe that risks are
bigger when implementing radical changes compared to achieving change
via many small steps. Nevertheless, situations may occur when this risk is
acceptable in relation to the time it takes to perform “many small steps”.

2.4.4 REQUIREMENTS AND ARCHITECTURE
The overall objective with the improved modeling of capacity is for
requirements to influence the choice of architecture, design alternatives,
and implementation solutions (even though an existing architecture is
often present in an Ericsson context). The relation between requirements
and architecture has been described in the following way [43]:

Compelling economic arguments justify why an early understanding of stakeholders’
requirements leads to systems that satisfy their expectations. Equally compelling
arguments justify an early understanding and construction of software-system
architecture to provide a basis for discovering further requirements and constraints,
evaluating a system’s technical feasibility, and determining alternative design solutions.

Processes and Models for Capacity Requirements in Telecommunication Systems

34

A set of selected requirements may reduce the set of candidate
architectures, and respective candidate architecture may prevent specific
requirements from being implemented. The “Twin Peaks” model offers a
trade-off between requirements and architecture as depicted in Figure 4
below:

Requirements Architecture

Level

of detail

Implementation dependence

DependentIndependent

Detailed

General

Figure 4: The Twin Peaks model as depicted by Nuseibeh [43]

The Twin Peaks model illustrates that an iterative spiral model can be
extended to involve both requirements and architecture, in order to
incorporate both early requirements and architectural thinking into the
system development process.
Grünbacher et al. propose a refined method that builds on the Twin

Peaks model which has been tested in a real-life case-study [23]. The
approach introduces a third peak between the twin peaks of Figure 4 as an
intermediary representation that is generated from the requirements. A
knowledge base with mappings from the intermediary representation to
architectural styles guides the designer in finding the most appropriate
alternatives for system design.

Chapter 2: Frame of Reference

35

2.52.52.52.5 Processes and process improvementProcesses and process improvementProcesses and process improvementProcesses and process improvement

2.5.1 EPF AND OPENUP
The Eclipse Process Framework (EPF) [15] is an open framework in which a
process engineer can compose and reconfigure process descriptions that is
similar to the commercial tool Rational Model Composer (RMC) that is used
in Ericsson today:

The Eclipse Process Framework (EPF) aims at producing a customizable software
process engineering framework, with exemplary process content and tools, supporting
a broad variety of project types and development styles.7

Moreover, the process framework project is stated to have the following
goals:

• To provide an extensible framework and exemplary tools for software process
engineering - method and process authoring, library management, configuring and
publishing a process.

• To provide exemplary and extensible process content for a range of software
development and management processes supporting iterative, agile, and
incremental development, and applicable to a broad set of development platforms
and applications.

EPF can be downloaded with method libraries for the OpenUP, XP, and
Scrum processes, and there is also a method library available for the
OpenUP contents packaged as independent practices. Papers III and IV
describe how the findings from the interview series of Papers II have been
represented as a method plug-in to the OpenUP/Basic 0.9 in order to
make it possible to communicate results within Ericsson as well as with
other researchers and industrial practitioners.
OpenUP/Basic is, as the name implies, the most basic version of

OpenUP. The process is simply referred to as OpenUP in later versions
1.0 and 1.5, to contrast with the currently available8 plug-ins
OpenUP/DSDM (Dynamic Systems Development Method) and
OpenUP/ABRD (Agile Business Rule Development). The most important
news in OpenUP 1.0 are that contents have been rewritten as a result of
field testing reports and that many content areas have been removed to

7 www.eclipse.org/projects/project_summary.php?projectid=technology.epf
8 February 11, 2009

Processes and Models for Capacity Requirements in Telecommunication Systems

36

make the OpenUP core even more general and extensible. This means that
more specific content areas are supposed to be added as plug-ins extending
OpenUP, just like the capacity plug-in presented in this thesis. The major
news of OpenUP 1.5 is that practices are available and that a first process
using these practices has been published.
Regardless of version number, OpenUP is an iterative open-source

software development process that is intended to be minimal, although
complete, and with extensibility as an important characteristic. It is
organized into four major areas of content (Communication and
Collaboration, Intent, Solution, and Management), and it is based on four
core principles:

• Collaborate to align interests and share understanding
• Balance competing priorities to maximize stakeholder value
• Focus on articulating the architecture
• Evolve to continuously obtain feedback and improve

The most central concepts in OpenUP are roles, tasks (organized by
discipline), activities (time oriented sets of tasks), and artifacts (organized by
domain). A role performs tasks that use, modify, and create artifacts. Each
concept has attributes, often consisting of links to other concepts, texts
and external files, such as templates and guidelines. The resulting process
description is published as a set of web pages with hypertext links viewed
from different perspectives. The most dominating perspective is the four
phases of iteration: Inception, Elaboration, Construction and Transition.
Another perspective is constituted by the disciplines and the process
model can also be used to generate project plans, for example Microsoft
Project documents.

2.5.2 PROCESS IMPROVEMENT
Both the efforts made in EPF and OpenUP as well as the effort of creating
the Anatomy of Capacity Engineering count as process improvements.
The CSPs and the CSPAs presented in Paper II are transformed into ACE
in Paper V and both contents and terminology has a flavor of CMMI.
The Capability Maturity Model Integration (CMMI), and before that the

Capability Maturity Model (CMM), is a well-known and influential process
improvement model. A CMMI model describes the characteristics of good
processes, how appraisal can be conducted within an organization and
what can be done to improve to a higher level. Taking CMMI for

Chapter 2: Frame of Reference

37

development as an example [50], it contains 22 process areas (such as
configuration management, risk management, project planning, etc.).
CMMI distinguishes between continuous representation and staged representation;
the former is described by six capability levels and the latter by five maturity
levels as depicted in Table 2 below:

Table 2: Comparison of Capability and Maturity Levels by the SEI [50]

Level Continuous Representation
Capability Levels

Staged Representation
Maturity Levels

Level 0 Incomplete N/A
Level 1 Performed Initial
Level 2 Managed Managed
Level 3 Defined Defined
Level 4 Quantitatively Managed Quantitatively Managed
Level 5 Optimizing Optimizing

The capability levels are the means for improving the processes within a
single process area whereas the process improvement achievements across
several process areas are reflected by the maturity level. The levels 2
through 5 have intentionally identical names (if all process areas reach the
“managed” capability level this is also the maturity level).
The capacity process improvement model and the anatomy presented

herein are not intended to also be maturity models. However, there are two
ways of relating the capacity process improvement model to CMMI. First,
the presented CSPAs correspond well to the process area concept of
CMMI and it would be possible to apply capability levels to the CSPAs. To
achieve a likewise corresponding maturity model, maturity levels would
need to be defined across the CSPAs which have not been done. Instead,
the process improvement model has been further detailed by making the
relations between CSPs explicit in an anatomy. The other way to relate the
capacity process improvement model to CMMI is to actually use it
together with CMMI to aid in process improvement efforts when climbing
the capability and maturity levels. In such a perspective, different parts of
the anatomy would correspond to the CMMI maturity levels 2, 3, and 4
respectively.

2.5.3 THE ANATOMY CONCEPT
The use of anatomies stem from changing the procedures to utilize
integration and verification resources more efficiently. In traditional system

Processes and Models for Capacity Requirements in Telecommunication Systems

38

development test crews and test facilities will have little to work with until
a system is designed and implemented. A remedy is to let integration drive
development, which means that the question “What can we give to the
testers tomorrow?” is in focus from day one. To be able to answer this
question – how testers can be fully occupied all the time – some kind of
map is needed that states what is dependent of (or even requires)
something else. This map is the anatomy, a body of many parts represented
with boxes and arrows. The anatomy shows where to start the
development and it has the positive side effect that the most important
system parts have been tested many times when the system is finally
released. Thus, the anatomy supports an evolutionary approach to system
development
According to Taxén and Lilliesköld [54] the anatomy approach has

been used successfully in Ericsson development practice in more than 250
projects since the early 1990s, and they describe the anatomy approach as
below:

The system anatomy, or “anatomy” for short, is a comprehensive picture – on one
page – of how the system is working. It shows the functional dependencies in the
system from start-up to an operational system. The gist of the anatomy approach is to
develop, integrate and verify the system in the same order as it “comes alive”. In order
to do so, two types of plans are defined based on the anatomy: the increment plan and
the integration plan. The increment plan structures the development work in verifiable
steps – increments – that can be successively integrated. The integration plan shows
sub-project responsibilities and dates for deliveries of increments.

The evolutionary aspects of anatomies are further discussed by Jönsson
[31], who distinguishes between product anatomy and project anatomy. A
product anatomy represents an entire system that is going to evolve over
several releases and a project anatomy is a subset of a product anatomy
that describes the contents of one particular project that will lead to one
particular release of the system.
Anatomies are currently used within Ericsson not only to represent

system structure but also methodology and organizations’ abilities. The
notion of an anatomy in this thesis is the same as this notion within
Ericsson. The anatomy of Paper V has been constructed to comply with –
in structure and shape – an anatomy describing the capabilities needed
when developing systems. This general anatomy is called Anatomy of
Excellent Development (AED) and one of its specified capabilities is to know
the system’s characteristics. The capacity anatomy described in Paper V
responds to this particular need with respect to capacity.

39

3 Discussion

This chapter presents my view of some of the issues described in the thesis. Since the

discussion is based on material presented in the papers it is recommended to read

those – or at least Paper VI – prior to this chapter.

3.13.13.13.1 On the acquisition of empirical dataOn the acquisition of empirical dataOn the acquisition of empirical dataOn the acquisition of empirical data

3.1.1 BACKGROUND
The empirical grounding of this thesis is the data acquired in two interview
series (Paper I and Paper II) and the focus group described in Paper VI.
The first interview series involved 14 interviewees from two different
organizations and the second interview series involved 17 interviewees. In
addition, it is described in Paper IV that one of the organizations that
participated in the second interview series was revisited, and five new
practitioners contributed in a discussion. Finally, the focus group described
in Paper VI involved another four practitioners, which means that 40
industrial practitioners have contributed to the empirical data.
Did the interviews provide any new knowledge? If so, would half the

number of people have been enough to gain this knowledge and/or would
we have learnt even more if 100 industrial practitioners had been
interviewed? A large number of interviewees will enable the possibility to
perform quantitative (statistical) analyses on the interview material so that
statements of the type “22 percent of the respondents think that …” can

Processes and Models for Capacity Requirements in Telecommunication Systems

40

be made, whereas each respondent has a greater impact on the result if
there is only a few of them. It is also possible that a single interviewee
could have provided all of the information in the interview series results if
this person has enough experience and insight. However, deducing the
results from several or many interviewees is a considerably stronger result.
To be able to respond to the above questions in more detail we have to
recapitulate what was gained from the interview series.

3.1.2 THE INTERVIEW STUDY ON NFR-RELATED DIFFICULTIES
The results of the interview series on difficulties related to NFRs were to a
great extent conformant with our expectations and with existing literature.
This means that the results did not pinpoint any new and never reported
NFR-related problems, but provided empirical evidence to support
commonly accepted knowledge regarding difficulties related to NFRs. The
premier contribution of the interview series was in that respect the
empirical evidence as such, underpinning the commonly accepted
knowledge with real facts. This is essential and the foundation of what
research is about – to build theory from what we actually know, not what
we think or think we know. This attitude is sententiously formulated in the
famous quote “In God we trust, all others bring data” usually referred to
William Edwards Deming.
Besides providing empirical data regarding NFR-related difficulties, the

interview study revealed an important source of difficulties that has
significantly influenced the perspective of the research effort: the socio-
economical aspect of company organization. It became very clear when
interviewing practitioners from one hierarchical organization and from one
less hierarchical that NFR difficulties relate to organizational structures.
Hence, to successfully manage NFRs it is required that competence,
interest, and authority is present on a high-enough level in hierarchically
structured organizations to make NFRs influence all system parts. This
also means that the decisions regarding NFRs on a high-enough
hierarchical level needs to be propagated to all relevant sub systems to gain
the needed impact.
Interviewing people from two organizations – two different cases – was

necessary in order to highlight the differences in organizational structures.
The number of interviewees, seven in each case, was sufficient to gain
reasonable diversity in responses. How interviewees are selected is also
important and analyzing results is very different if a homogeneous group
of interviewees provides very heterogeneous results compared to a

Chapter 3: Discussion

41

heterogeneous group of interviewees that provides homogeneous results.
This is further discussed in Section 3.1.5.

3.1.3 THE INTERVIEW SERIES ON CAPACITY
We learned more from performing two interview series than only one,
since the second series had a shift of focus compared to the initial series:
The interest was narrowed from NFRs in general to the specific quality
factor capacity. Still, the capacity interview series provided new insights
regarding one of the findings from the NFR interview series. It was stated
in the findings from the NFR series that one of the most tangible
difficulties is that NFRs are not discovered, which was true on that level of
abstraction. However, it is interesting to note that moving on to reach a
more profound description of this difficulty provided new findings and
made further research interesting. The preparations and realization of the
capacity series led to the reformulation of this statement of non-discovered
NFRs: Overall capacity requirements are known and the principal difficulty
lies in making these requirements cause the intended impact on
architecture, design, implementation, and test. Thus, the reason that
capacity requirements appear to be non-discovered is that capacity
requirements are not adequately refined from overall requirements to
refined requirements, design decisions, implementation solutions, test
cases, etc. It is likely to believe that a more focused treatment of other
difficulties identified in the NFR interview series can give rise to similar
enrichments of findings on more detailed levels.
17 practitioners were interviewed in the capacity series, which was

sufficient to identify several good practices and to provide the required
information regarding how capacity issues are tackled. The number was
also sufficient to serve as the foundation for the methodological context
for how to develop for capacity. The presence of expertise regarding
Ericsson development made it easier to analyze the interview material and
to compare and relate statements from different interviewees. On the
other hand, it can be argued that an external analyst would have been
better suited to analyze the results and come up with a general solution
that is less targeted towards an Ericsson context. This is addressed in the
focus group that is described as part of Paper VI.
It can be noticed from the results that the intersection between

interview results is relatively small: Only two CSPs are applied in all the
organizations that participated in the interview series. Moreover, additional
seven CSPs are applied by some organizations, which means that around

Processes and Models for Capacity Requirements in Telecommunication Systems

42

half of the CSPs were not in practice in the participating organizations at
the time of the study. However, several CSPs were discussed with
interviewees although not yet in practice, especially those related to
modeling and how to represent and refine capacity in models. The
remaining CSPs were added during analysis in order to form the complete
methodological context for how to develop for capacity.

3.1.4 REVISITING THE METHOD HYPOTHESIS
It was hypothesized in Section 1.2 that “it is possible to learn, improve, feed
back, and evaluate knowledge regarding NFR/capacity management in large,
developing, and administering organizations by the means of industrial case studies.”
The discussion presented above shows that it was possible to learn which
difficulties related to NFRs that occur in industrial contexts and how
capacity issues are tackled. The captured empirical findings were analyzed
and a suggestion of improved procedures was made when CSPs were
compiled in the methodological context for how to develop for capacity.
The CSPs and their context were evaluated and fed back when revisiting
one of the participating organizations to present the CSPs and the method
plug-in. This evaluation also provided useful input to the later work with
the capacity anatomy.
All in all, the above means that the method hypothesis has been valid

and useful and that all its parts have been successfully conducted in the
research project. However, the method depends on the interviewees and
their abilities to reason about capacity on an abstraction level beyond
product-specific technicalities. Thus, the biggest threats to a case study
based approach as this are that findings are too scattered and/or too
product-specific. The latter implies the former, but findings can be
scattered on a higher abstraction level as well; if each interviewee brings up
new issues that are not relevant to the other interviewees there are no good
chances to produce any useful findings.

3.1.5 THREATS TO VALIDITY
The previous section calls for a more comprehensive treatment of
potential validity threats. Wohlin et al. [59] describe four categories of
validity in the context of software engineering experiments (originally
presented by Cook and Campbell [8]): Conclusion, internal, construct, and
external. These categories and the most relevant validity threats within
each category are presented below.

Chapter 3: Discussion

43

Conclusion validity addresses the relationship between the treatment of an
experiment and its outcome and is sometimes referred to as statistical
conclusion validity. This type of validity is threatened if there are
hindrances to drawing the correct conclusions, for instance if wrong type
of statistical tests are chosen. The statistical part of these threats is not
directly applicable to the qualitative research presented in this thesis, but
other parts are:

• Fishing and the error rate. This is applicable in all interview settings
that are not strictly structured and with that free from discussion. The
researcher may be looking for a certain type of result and is thus more
likely to find that result. However, the opposite happened during the
capacity interview series. We set out to improve capacity treatment by
the means of UML, but the interviews showed that a much larger
context needs to be considered.

• Reliability of measures. For instance poor wordings in questions
and subjective measurements. In contrast to the above threat, this
threat was mitigated by semi- or unstructured interviews since
misunderstandings due to poor wordings can be corrected
immediately by the interviewer. The risk of subjective measurements
was addressed by involving an Ericsson expert that did not participate
in the interview sessions.

• Random heterogeneity of subjects. If the interviewees are very
heterogeneous it will affect the conclusion validity negatively, since
variations based on individual differences can be larger than variations
due to the treatment. On the other hand, very homogeneous
interviewees will reduce the external validity as described below. The
interviewees of the first interview series were selected to cover several
aspects of software development, and the interviewees of the second
interview series were selected since they had been working with
capacity improvements lately.

Conclusion validity is achieved if a statistical relationship with a given
significance between treatment and outcome can be observed. Internal
validity is concerned with causality; that the outcome is actually caused by
the treatment. The threat is that the outcome can be caused by a factor
beyond the researcher’s knowledge or control. The most relevant internal
validity threats in the present context are the following:

Processes and Models for Capacity Requirements in Telecommunication Systems

44

• Instrumentation. This is connected to the reliability of measures as
described above and is concerned with the quality of the artifacts used
in the experiments. This means primarily the interview questions and
protocols in this thesis. The interview questions have already been
commented upon and the interview protocols of the capacity
interview series were sent to all interviewees for confirmation.

• Selection. The results of an experiment can vary based on who
participates, which is applicable in the interview series. It has already
been mentioned that the interviewees of the first interview series were
selected to cover several aspects of software development, and the
interviewees of the second interview series were selected since they
had been working with capacity improvements lately.

• Interactions with selection. There is always a risk that interviewees
are biased with the thoughts – or presumed thoughts – of the
researcher. Semi-structured interviews have their drawbacks and
advantages, but they offer a useful trade-off between the threat of
poor wordings in questions and the threat of interacting too much
with interviewees. The prepared questions drive the discussion and
reduce the risk of biasing interviewees.

Construct validity is concerned with the generalization of experiment results
to theory and concepts. The most relevant threats in this context are:

• Inadequate preoperational explication of constructs. That

constructs are not sufficiently defined before used in experiments.
This is not a major issue in explorative interviews, even though
different notions of capacity constituted a potential threat. However, it
is relatively easy to detect and discuss this type of matters in a face-to-
face interview setting, and we believe the threat did not cause any
harm to the data.

• Hypothesis guessing. Interviewees may try to guess the hypotheses
and intentions of the researcher and act or respond accordingly. This
is connected to “Fishing …” above, and – once again – the results
from the capacity interview series indicate that we succeeded in
avoiding this threat. An Ericsson expert taking part of the analysis of
interview protocols made it possible to identify symptoms of the
threat during analysis; the answers of the interviews could be
compared with the expert’s knowledge about each organization’s
situation.

Chapter 3: Discussion

45

• Evaluation apprehension. Interviewees may feel that they are being
graded or assessed and try to look better than they actually are. The
main decision taken to avoid this threat in the capacity interview series
was to not involve Ericsson experts in the interviewer’s role. We
believe that the answers were more open-hearted with me as the only
interviewer than would have been the case otherwise, which were
considered outweighing the drawbacks of being only one interviewer.

• Experimenter expectancies. Relates to “Fishing …” above and is
concerned with the fact that the researcher may have expectations on
results and bias the analysis – consciously or unconsciously.

Finally, the external validity is concerned with how general the results are
and if they can be transferred to industrial practice. There are three types
of interactions to be considered:

• Interaction of selection and treatment. This means to select the

right people in the sense that they constitute a representative sample
of the population that we want to generalize. As has been described,
interviewees were selected to be as representative as possible.

• Interaction of setting and treatment. This means to make use of
the right material and tools to make results transferrable to industrial
practice. Since the interview series were explorative this was not a big
issue. However, it can be discussed to what extent results are
applicable to domains outside telecommunication systems. The focus
group of Paper VI is a direct response to this.

• Interaction of history and treatment. This means to consider the
time of an experiment so that results are not affected. Wohlin et al.
[59] gives the example of conducting a questionnaire on safety-critical
systems only a few days after a major software-related crash. However,
this was used to our advantage in the capacity interview series since it
was possible to select interviewees that had been involved in recently
conducted capacity improvement projects.

Processes and Models for Capacity Requirements in Telecommunication Systems

46

3.23.23.23.2 From refinement to process improvementFrom refinement to process improvementFrom refinement to process improvementFrom refinement to process improvement

3.2.1 THE INTENTIONS BEHIND THE CAPACITY RESEARCH EFFORT
It was shown in the NFR interview study that NFRs are not always present
when needed during system development. It was hypothesized when
planning the research effort on capacity that the major reason for this is
that capacity requirements are not always refined to design and
implementation. Moreover, it was also hypothesized that it is possible to
annotate UML models with capacity information to support the
refinement of capacity requirements to be available whenever needed.
Since Ericsson development is use case-oriented to a great extent it is
appealing to also make capacity concerns part of the use cases and the
underlying model.
Based on the above hypotheses, the capacity interview series included

questions explicitly dedicated to the use of modeling and how capacity
issues can be tackled by the means of modeling.

3.2.2 THE NEED OF A LARGER CONTEXT
During interviews, discussions, and analysis of interview material it became
evident that the task of improving the representation and refinement of
capacity requirements in UML models cannot be separated from the
context where new procedures shall be introduced. A trivial example is that
UML must be used throughout the system development process for a
UML approach to make impact in all its parts. Some organizations within
the Ericsson context would be able to adopt such an approach as an
extension of current procedures, whereas most organizations currently do
not use modeling to an extent that short-term benefits from such an
approach can be gained. However, if a developing organization uses
modeling to some extent and intends to move towards model-based
development, an approach that builds on UML modeling can act as a
vehicle to support that intention. The experience from the capacity
interview series shows that three out of ten represented organizations use
modeling to an extent that is fairly close to being model-based; use case
diagrams, sequence diagrams, and class diagrams are the most frequent
diagrammatic representations in these cases and they also make good use
of code generation from models. Four out of ten use only basic modeling
for some aspects of development (typically use case diagrams) and the
remaining three are somewhere in between.

Chapter 3: Discussion

47

The conclusion drawn from the above is that it is not feasible just to
present an approach for how to refine capacity into various design and
implementation models. The reason is that the abilities to manage capacity
requirements and to develop systems with respect to capacity require a
larger context to be considered. Of course, an approach to refine capacity
requirements to design and implementation that is complete, consistent,
correct, useful, etc. is desirable and would be a welcome scientific
contribution. However, if the primary goal of the research is to improve
current procedures and understand what capacity development is all about,
then optimizing an isolated part of the development process may cause
sub-optimization of limited value to the overall goal. In other words, it is
better to improve all development stages before improvements at a
detailed level of optimization are feasible and useful. This is the core idea
of maturity models like CMMI; it is of limited value to improve in one area
unless related areas are mature enough to benefit from improvements.
The overall system development within Ericsson is certainly mature

enough to motivate focus in a single area like capacity. However, the
lessons learned from the interviews on capacity are that capacity
improvements address a wide range of issues and that improved
refinement of capacity in models belongs to a larger context. This context
must be understood before an organization can fully benefit from
improvements in refinement and specification of capacity requirements.
Thus, the focus shifted from specificational concerns only to the overall
ability to develop for capacity (of which refinement in models is one part).
The primary objective became to describe what is needed to be able to
develop for capacity and how to improve an organization's abilities. With
this shift of perspective we allow different organizations to improve in
different ways. Some organizations are well suited to improve the
specification of capacity requirements whereas other organization may be
better suited to start with improving their abilities to verify capacity
requirements.

3.2.3 SOCIO-ECONOMICAL ASPECTS
Capacity has to be implemented as a result of many trade-offs and the
socio-economic perspective is highly present. It does matter how a
developing organization is structured, where decisions are made, by whom,
etc. The example of specificational or verificational approach builds on the
two main types of attitudes that can be distinguished from the interview
series: The attitude that better specification and refinement is a feasible

Processes and Models for Capacity Requirements in Telecommunication Systems

48

approach to the improvement of capacity processes, and the attitude that
the best way to improve is to enable short “feedback loops” from testers
to developers so that developers get real data to react upon.
I strongly believe, with support in the interview series, that it is not

specification or verification. Instead, the overall context must be
considered and support must be provided for organizations to prioritize
the most needed improvement actions. Capacity in large-scale
telecommunication systems is achieved in a shared environment;
organizational aspects and where competence, interest, and authority
regarding capacity are located play important roles.
The capacity interview series point out many actions of improvement

that can be implemented, but few organizations have the time and budget
to implement all actions at once. Thus, the CSPs developed from the
interview series must be accompanied by a method for how to assess an
organization’s capacity abilities and to recommend the vital few CSPs that
contribute the most to overall improvement. This was the driving objective
behind the research described in Papers III-V.

3.33.33.33.3 Revisiting the research questionsRevisiting the research questionsRevisiting the research questionsRevisiting the research questions
The method hypothesis has already been revisited and stated valid in
section 3.1.4. This section revisits the research questions, one by one,
starting with the research questions labeled Q1 through Q4 in section 1.2
before the overall research question (Q) is summarized and discussed.

3.3.1 Q1: THE MANAGEMENT OF NFRS
The first interview series (see Paper I) presents and discusses the
management of NFRs and related difficulties at Ericsson OSS and SMHI.
Even though two organizations constitute only a small sample, it is evident
from the study that the management of NFRs and related difficulties are
well conformant with common knowledge and what is stated in the
literature. Their vague nature makes NFRs harder to incorporate in
methods and tools, which in turn makes FRs focused in everyday system
development. The management of NFRs as perceived in Paper I is briefly
summarized and commented upon below.
The elicitation of NFRs is a vital step in order to build quality into a sys-

tem. Undiscovered NFRs cause an incomplete requirements set, which
may affect system architecture negatively and with that result in poor
runtime properties. There are in the general case no specific activities

Chapter 3: Discussion

49

dedicated to the elicitation of NFRs. Instead, the development process
trusts the organizations’ abilities to build good-enough systems and to
cope with NFRs as they occur (which they do as consequences of FRs or
as requirements from related systems in the Ericsson OSS case), even if
some NFRs are elicited too late for them to influence the architecture. The
improvements proposed by interviewees are to focus NFRs at an early
stage and SMHI respondents stress the benefits of involving the
customer/user (which is usually not possible in the context of Ericsson
OSS). The use of NFR checklists that are applied to all FRs has been
suggested in the literature [11, 48], and the approach can be complemented
with prototyping, scenarios and other elicitation techniques [21]. If using
the NFR Framework or similar approaches, refining overall NFRs is an
elicitation process in itself.
The analysis and specification of NFRs is where the consequences and

impact of NFRs are investigated, estimations are made, and where the
NFRs are represented as testable requirements. It is considered tedious and
difficult to quantify NFRs, despite the fact that metrics are available for
any kind of NFRs [18]. The main remedies proposed by interviewees are
the well-known advice to involve testers when analyzing and specifying the
NFRs to ensure their testability, to use prototyping techniques, and to
create theoretical models to analyze what is needed for an NFR to be
considered fulfilled. The latter means – in a performance context – to
apply techniques such as SPE [52] to ensure that needed performance will
be possible to achieve. It was also suggested to relate NFRs to design
patterns to know in advance to which extent various NFRs will be fulfilled
if a certain design pattern is chosen. Again, this type of reasoning is well
conformant with the NFR Framework and other goal-oriented methods
since these specifically address the fulfillment of non-functional goals (that
may be in conflict with each other).
The verification of NFRs generally follows the same procedures as the

verification of FRs. What is in the requirements specifications gets verified,
which means that the specification of requirements is crucial for
verification as well as for design. Ericsson OSS sometimes uses a statement
of compliance (SOC) document to “SOC away” requirements that are not
fulfilled in the tested system version. Some respondents think that NFRs
are disregarded this way more often than FRs, whereas other respondents
claim the opposite: A required feature that is not there has to be admitted
in the SOC, but NFRs are often vaguely stated which makes it easier to
argue that they have been met in some interpretation. Both Ericsson and
SMHI, however, find it relatively easy to measure and verify performance

Processes and Models for Capacity Requirements in Telecommunication Systems

50

requirements, and they also agree that the testability differs a lot among
NFR types. Many NFRs – such as availability, usability, and security
requirements – are tedious and difficult to verify even though they are well
specified. An example is the availability requirement that “The down-time
of the system may not exceed three hours in a year”, which is a quantified
requirement that still is difficult to verify before releasing the system.
Finally, Ericsson and SMHI respondents also agree that the most
important improvement with respect to NFR verification is the sufficient
specification and quantification of NFRs: Vaguely stated NFRs are difficult
to test.
The overall conclusion of how NFRs are managed is that FRs is the

primary focus and that NFRs receive no more interest than is needed.
Reasons are both the vague nature of NFRs and that industrial methods
are generally better suited for FRs than NFRs (which may also be because
of the vague nature of NFRs). However, the interviewees show that they
understand NFR related difficulties and they present remedies to the most
important of those difficulties. It is reasonable to believe that a lot of
improvement could be achieved if NFRs were paid more attention.
Workshops dedicated to the elicitation, analysis, and specification of NFRs
constitute a simple remedy that can be accompanied with guidelines for
how to quantify NFRs and refine them to design and implementation.
The organizational structure may be an obstacle for dealing with NFRs.

A hierarchically structured organization needs to consider NFRs on a high-
enough hierarchical level in order for NFRs to be reflected in architecture,
design, etc. and for NFRs to be distributed over sub-systems and design
units. This means that NFR interest, authority and competence must be
present at a high enough level, regardless of designers’ skills. Even if the
designers of a design unit are very skilled, they do not possess the required
overview. This means that two things must apply for the successful
treatment of NFRs in large and hierarchically structured organizations:

1. There must be enough competence and interest regarding NFRs on a
system management level.

2. System level NFRs need to be identified, analyzed, and refined to be
represented in architecture, design, implementation, and test.

The subsequent investigations on capacity conclude that the refinement of
capacity requirements from system level to sub systems and design units is
not straight-forward. This complexity is discussed in the capacity context
when revisiting Q4 in Section 3.3.4, but its findings apply to NFRs in

Chapter 3: Discussion

51

general: The process of refining NFRs is iterative and involves numerous
design decisions on various levels of detail.
Finally, the primary target of a software system vendor is to make

money. Thus, investing time and effort in improving NFR management
needs to be the result of an ROI-calculation that analyzes improved quality
against increased cost. Some of the findings herein, especially the anatomy
approach presented in Paper V, lower the investment threshold of capacity
improvements.

3.3.2 Q2: THE MANAGEMENT OF CAPACITY REQUIREMENTS
The second interview series revealed how capacity requirements are treated
within Ericsson. Capacity requirements are generally not paid extra
attention unless overall capacity requirements seem to be challenged.
An interesting finding arose from one of the organizations that

participated in the interview series. The organization in scope takes care of
everything that is not included in use cases using so called base scenarios that
are specified in a base scenario specification (which all requirements that
relate to characteristics refer to). Around 15 base scenarios are created for
the system in scope and these are split into around 100 event scenarios that
are associated with a few requirements each. The NFRs that are derived
from the combination of FRs and event scenarios are documented in
supplementary specifications, and each supplementary specification is
based on a single base scenario. Thus, there is one set of NFRs for each
base scenario. These scenarios and specifications serve as a basis for
requirements as well as testing, but the point made by one of the
interviewees – as described in the papers – was that the 1000 pages of
characteristics requirements “are more useful to testers than designers”,
since there is simply too much information to take into consideration. This
is a good illustration of the assumed requirement traceability failure of
Paper II, even though it is caused by information overflow rather than lack
of information in this example.
Even though the hypothesis was supported the interview series also

reminded of the socio-economical aspect that was mentioned above. The
successful treatment of capacity requirements involves both specification
and refinement, but it also involves the ability to predict the capacity of a
new system. The circumstance that Ericsson develops a new release of an
existing system more often than a system is developed from scratch
enables the opportunity to consider the capacity of the current release and
how it is used in operation. However, the successful treatment of capacity

Processes and Models for Capacity Requirements in Telecommunication Systems

52

requirements also involves the ability to test for capacity and let architects
and developers know when required capacity is not going to be reached.
Moreover, some improvements regarding capacity can be achieved by
optimizing and tuning the system. This means that system capacity is
achieved in cooperation between people responsible for requirements and
people responsible for testing, which has also relations to the improvement
of an existing system version based on measurement and tuning and how
to predict system capacity. Thus, many people and various organizational
units contribute to the capacity of a forthcoming system and the capacity
requirements need to be traded against other requirements of the system.
There is a concluding point to make regarding the requirement that a

new release of a system must have at least the same performance as its
predecessor. This requirement stands to reason: People do not expect to
perceive a new version of something as slower as and less capable than the
previous one. However, it is important to notice that this requirement has
to apply to a new release that typically has a number of new features.
These features need resources and, unless addressed, more functionality
will share the same set of resources and with that lead to a performance
loss. Thus, what seems as a modest requirement at first sight – to maintain
the acquired performance level – means improved performance in reality.

3.3.3 Q3: IMPROVING THE CAPACITY ROUTINES
Each one of Papers II-V presents strategies of how to improve overall
capacity routines. The foundation is the findings from the capacity
interview series; the CSPs which are beneficial when developing for
capacity. I believe that any large-scale software developing organization
that implements most of the presented CSPs are capable of delivering
systems with the right capacity in the right time, even though some of the
CSPs need to be further investigated and adapted with respect to the
organization’s context. However, efforts were made to make the acquired
knowledge more accessible and easier to comprehend in Papers III-V.
First, the results were packaged as a method plug-in to the OpenUP

process component of the EPF project for process engineers to include in
an OpenUP-compatible process. It is possible for the process engineer to
customize the process and adapt the capacity contents to adequately reflect
the context of the organization in scope.
Second, the results were packaged in the shape of an anatomy which

was associated with a corresponding method (ACE). ACE provides
support on how to improve capacity procedures in the sense that ACE

Chapter 3: Discussion

53

includes a step to select the most important CSPs to be included in an
improvement effort. Thus, the anatomy shows how CSPs relate to each
other and contribute to improved organizational capacity capability, and
support is provided for capacity capability assessment as well as
identification of the CSPs that are likely to generate the best ROI.
The assessment of an organization’s current status with respect to the

CSPs of the anatomy is essential. An assessment workshop can be carried
out in a few hours and the discussion as such brings capacity issues in
focus and has the potential to increase the capacity awareness. Moreover,
when discussing and assessing CSPs it is probable that workshop
participants intuitively feel which CSPs that need to be prioritized.
The support for prioritization of candidate improvement efforts is

necessary for practitioners to accept the method, and it was an explicitly
stated requirement by the organization of the second interview series that
validated the CSPs and the method plug-in.

3.3.4 Q4: MODELING CAPACITY
It has already been noticed that one of the research goals was to model
capacity and to benefit from such models in order to mitigate the
“requirements traceability failure” described in Paper II. A pragmatic
approach to represent capacity information in UML is described in Paper
VI along with the thoughts behind it. The objective of the approach is to
enter capacity information into a model (important, not only a set of
diagrams) and to show how overall capacity requirements need to be
reflected in diagrams. This requires a strategy for how to use regular UML
constructs and how to make capacity information visible in diagrams and
traceable in models. We suggest a <<capacity>> stereotype with
associated tagged values for the latter and Figure 5 shows how this
stereotype extends the UML metaclass “Class”.

Figure 5: The <<capacity>> stereotype

<<metaclass>>

Class

<<stereotype>>

Capacity

dynamicNumber: Integer

staticNumber: Integer

responseTime: TimeExpression

requestsPerSecond: Integer

expectedShare: Float

Processes and Models for Capacity Requirements in Telecommunication Systems

54

Dimensioning and throughput requirements are represented with plain
integers, whereas response time is represented using TimeExpression
from the SimpleTime package of UML. In addition, the expectedShare
tag has been included in the stereotype to enable the possibility to model
operational profiles, primarily in the context of state machine diagrams and
activity diagrams. The circumstance at Ericsson – and in many other
developing organizations – that development usually starts from an
existing system version improves the chances to feed the expectedShare
tag with reasonable figures.
The instance specification of the stereotype is depicted in Figure 6

below:

:Stereotype

name=”Capacity”

:Property

name=”dynamicNumber”

:PrimitiveType

name=”Integer”

:ValueSpecification

name=”TimeExpression”

:Property

name=”staticNumber”

:Property

name=”responseTime”

:Property

name=”requestsPerSecond”

ownedAttribute

ownedAttribute

ownedAttribute

ownedAttribute

type

type

:Property

name=”expectedShare”

ownedAttribute
:PrimitiveType

name=”Float”

type

:ExtensionEnd

isComposite = true

:Extension

isRequired = false

:Property

isComposite = false

:Class

name=”class”

ownedAttribute

type

metaclass

memberEnd

memberEnd ownerEnd

extension

type

Figure 6: Instance specification of the <<capacity>> stereotype

The <<capacity>> stereotype can be applied to any UML element which
enables a pragmatic and straight-forward approach to representing
capacity: Capacity aspects are separated from functional requirements and
are represented as requirements of their own. Capacity figures are
represented as tagged values that can be further refined in later stages, for
instance time budgets in sequence diagrams and defined multiplicity in
class diagrams.
What really motivates a UML approach to representing and refining

capacity requirements is if it can be shown that capacity requirements
actually influence the development to a sufficient extent (by being present
at all levels when needed). However, it is also necessary to acknowledge
that it is not only “refinement” it is all about. The process of achieving
“refinement” is iterative and involves complex design decision making that

Chapter 3: Discussion

55

needs to conform to the current deployment structure. Each iteration of
refinement includes design choices that constrain the further refinement of
requirements etc. For example, describing the distribution of time budgets
in sequence diagrams requires decisions regarding components, classes,
and objects. This means that the requirements analyst must perform
his/her work in close cooperation with architects and designers and that
conscious design decisions and traceability to the capacity requirements is a
better description of reality than “refinement”.

3.3.5 Q: THE OVERALL RESEARCH QUESTION
Recall the overall objective of this research project:

Q How can capacity requirements be treated so that they are

available when needed and influence all phases of large-scale
software system development?

The response to this question involves parts from all papers in the thesis
and is best described by the integrated method presented in Paper VI,
which also serve as a summary of the thesis as a whole. The method [36]
consists of the following elements:

• Capacity requirements as the method’s underlying model,
• EPF and UML as applied languages,
• the method plug-in as process model, and
• ACE as the method’s guidance.

It is my opinion that the integrated method contains the knowledge
needed to initiate an improvement program within the domain of large-
scale software engineering. I also believe that ACE is a useful vehicle to
conduct and customize improvement efforts and it has been shown in a
focus group (reported of in a working paper) that the ACE method – as
well as the anatomy contents – is sound and transferable from the
telecommunications domain to the domain of avionics. However, as with
any improvement program there must be an interest from management
level and I have repeatedly pointed out that there is a need of competence,
interest, and authority regarding capacity (and NFRs in general) to gain full
impact of capacity requirements (and NFRs in general).

Processes and Models for Capacity Requirements in Telecommunication Systems

56

Is it feasible to initiate a capacity improvement effort, then? Is it possible
to “engineer” capacity or is capacity an emergent property of the system
that cannot be controlled even if we try? If so, software engineering must
be different from for instance mechanics; no engineer would build a bridge
without having performed the calculations showing that the construction is
strong enough and I do believe that such calculations goes without saying
in mature software engineering as well. SPE [52] is a good example of that
it is possible and the contents of this thesis place such calculations in a
larger context. Thus, capacity engineering is a valid discipline within
software engineering, but my impression is that capacity is often treated as
being an emergent property (that is addressed when needed) in reality
anyhow. However, this impression is neither limited to large-scale software
engineering nor capacity: NFRs in general in software engineering are
often given the least possible attention and are prioritized only if they are
absolutely crucial to product success.

57

 References

[1] Antón, A. I. Goal Identification and Refinement in the Specification of Software-Based

Information Systems, Doctoral thesis, Georgia Institute of Technology, 1997.

[2] Balsamo, S., A. D. Marco, P. Inverardi and M. Simeoni. "Model-Based
Performance Prediction in Software Development: A Survey”, IEEE

Transactions on Software Engineering, Vol. 30, No 5, pp. 295-310, 2004.

[3] Bernardi, S. and J. Merseguer. "Performance evaluation of UML design
with Stochastic Well-formed Nets", Journal of Systems and Software, Vol. 80,
No 11, pp. 1843-1865, 2007.

[4] Bernardi, S. and D. C. Petriu, "Comparing two UML profiles for non-
functional requirement annotations", in the proceedings of the International
Workshop on Specification and Validation of UML Models for Real Time and

Embedded Systems, 2004.

[5] Boehm, B., J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod and M. J.
Merrit. Characteristics of Software Quality. North-Holland, Amsterdam, 1978.

[6] Carlshamre, P. A Usability Perspective on Requirements Engineering: From

Methodology to Product Development, Doctoral thesis, Dissertation No 726,
Linköping University, 2001.

[7] Chung, L., B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional

Requirements in Software Engineering. Kluwer Academic Publishers, Boston,
2000.

����������	
������
�������	�	��������������
����
���
������
��	���
���������

���

���� ���	
����
������
�����������������	�����������
�	���
������
�	
��!
	
�����
"����������#��
�������
 �$�����������������
��� ���
�!"#"���

�"�� ��$����� �
�%�
�&��&��$��������
��'� �
�()����$������*���+�$������� �����
&�����$������� ���$�&�$��$���,��-���. � (
�"������	
�	����
�� �
�����%	���
�
 �
����
 &�/����00
�����0���12!
�322#���

�!2�������$������
� *�� ���� 4�� 4���	���
� (5���$ �������� ���� �$�,��,� � ��� �,�����
$� ��$,�(
���������$�,������ ��������������	
���
����
����
�����	��'����'�����
�
(���
����	
���	
	 ���
��)�����*++,-&������!�"!
�3220���

�!!�������. ���$�
�6����
�7�����*�����&��6���������7��������*��8�����(-�9$���+�$	���$�
)����$������ 8���9��,������� '�:��$����� � ����� ���,������� ����� (
�
���������
����
 �
����
 �.���
	
&�%����;
�8��3
�����"#�!!�
�322!���

�!3������
�$�����
� '�
� <��
���$
� &�� �� ����� ���� -�� /��� 6�� +��$��
�
(4'-)6=>-?*@� -�� <�/�$������� ��$� 4����
$�/��� '�:��$����� �
<������$���(
���������
 �� ��� �'��/001�)/0�'-� "
���
	���
	
���
����
��� �
�����%	���
�
 �
����
 &�����;!3�;!0
�!""#���

�!0������
�/�
�-���������%	������������
����234����&�#�
����
��	
����	���$�&$����,������
�
5���$�*������'�/�$
�87
�!""0���

�!1������
����$�/
�<�
�-��*,���������$������'��
��	���(5�6��� ���&�$��$���,��
<������$����&� �������� � ������,���:�� (
� "��������%	��&�%����!"
�8��!
�
����#1��0
�3223���

�!�������<,��� �� &$�,� � 9$���+�$	
� ����@==+++��,��� ���$�=���=
� -,,� ��� 9���
!;
�322 ���

�!;������<�����
� ��� �'�� #����� 5����� ����	��'� 6	
�3��7$� 8��� �� ��� � ���	
�
6��,���+���
�!"""���

�!#������<$�, ��
�>��-�� �������-��*�������������
�!
	
������8��3	
��������� 	���	�	$�
�)��&$�
�����$����
��-
�!""0���

�!�������9�����
�8�� <�� ���� *�� 6�� &������$�� ����%	������������ !� �� ������ 	
�� ��	����	
�
!����	�'$�&A*�&���� �����������.
��� ���
�!""#���

�!"������9$�����
� '�� 6�� ��
������
��	���
� ������� �
 �
����
 $� 9��$��� ���
� A���.
�
����	��
�87
�3221���

�32������4���B
���� (?��8���9��,�������'�:��$����� (
� ��� �����$�,������ ���� ����
/9�'� "����"
���
	���
	
����������
����
 �
����
 ���
����
���)��� :+1-&�����3!�
3;
�322#���

"

References

59

[21] Goguen, J. A. and C. Linde, "Techniques for requirements elicitation", in
the proceedings of the 1st IEEE International Symposium on Requirements

Engineering, pp. 152-164, 1993.

[22] Goldkuhl, G. and S. Cronholm, "Multi-grounded theory – adding
theoretical grounding to grounded theory", in the proceedings of the Second
European Conference on Research Methods in Business and Management (ECRM

2003), Reading, UK, pp. 177-186, 2003.

[23] Grünbacher, P., A. Egyed and N. Medvidovic. "Reconciling Software
Requirements and Architectures with Intermediate Models", Journal of

Software and Systems Modeling, Vol. 3, No 3, pp. 235-253, 2004.

[24] Harwell, R., E. Aslaksen, I. Hooks, R. Mengot and K. Ptack. "What is a
Requirement?", in Software Requirements Engineering, IEEE Computer
Society, Los Alamitos, CA, 2000.

[25] Hedenskog, Å. Perceive those things which cannot be seen: A cognitive systems

engineering perspective on requirements management, Doctoral thesis, Dissertation
No 1054, Linköping University, 2006.

[26] Hochmüller, E. "Towards the Proper Integration of Extra-Functional
Requirements", The Australian Journal of Information Systems, Vol. 7, 1999.

[27] IEEE_Std_1061-1998, "IEEE standard for a software quality metrics
methodology".

[28] IEEE_Std_610.12-1990, "IEEE standard glossary of software engineering
terminology".

[29] IEEE_Std_830-1998. "IEEE Recommended Practice for Software
Requirements Specifications", in Software Requirements Engineering, IEEE
Computer Society, Los Alamitos, CA, 2000.

[30] Jacobson, I., G. Booch and J. Rumbaugh. The Unified Software Development

Process. Addison-Wesley, Reading, 1999.

[31] Jönsson, P., "The anatomy - an instrument for managing software
evolution and evolvability", in the proceedings of the Proceedings of the Second
International IEEE Workshop on Software Evolvability, Philadelphia, USA, pp.
31-37, 2006.

[32] Kaiya, H., H. Horai and M. Saeki, "AGORA: Attributed goal-oriented
requirements analysis method", in the proceedings of the IEEE Joint

International Conference on Requirements Engineering, Essen, Germany, pp. 13-
22, 2002.

Processes and Models for Capacity Requirements in Telecommunication Systems

60

[33] Karlsson, L., Å G. Dahlstedt, B. Regnell, J. N. o. Dag and A. Persson.
"Requirements engineering challenges in market-driven software
development - An interview study with practitioners", Information and

Software Technology, Vol. 49, No 6, pp. 588-604, 2007.

[34] Keller, S. E., L. G. Kahn and R. B. Panara. "Specifying Software Quality
Requirements with Metrics", in System and Software Requirements Engineering,

IEEE Computer Society Press, Los Alamitos, 1990.

[35] Kotonya, G. and I. Sommerville. Requirements Engineering: Processes and

Techniques. John Wiley & Sons, Chichester, 1998.

[36] Kronlöf, K., A. Sheehan and M. Hallmann. "The Concept of Method
Integration", in Method integration: concepts and case studies. Wiley, New York,
pp 1-18, 1993.

[37] Kruchten, P. The Rational Unified Process: An Introduction. Addison-Wesley,
Reading, Massachusetts, 2000.

[38] Lamsweerde, A. v., "Goal-oriented requirements engineering: A guided
tour", in the proceedings of the 5th IEEE International Symposium on

Requirements Engineering (RE'01), pp. 249, 2001.

[39] Lindvall, M. An Empirical Study of Requirements-Driven Impact Analysis in Object-

Oriented Software Evolution, Doctoral thesis, Dissertation No 480, Linköping
University, 1997.

[40] McKay, J. and P. Marshall. "The dual imperatives of action research",
Information Technology & People, Vol. 14, No 1, pp. 46-59, 2001.

[41] Mylopoulos, J., L. Chung and B. A. Nixon. "Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach", IEEE

Transactions on Software Engineering, Vol. 18, No 6, pp. 483-497, 1992.

[42] Ncube, C. A Requirements Engineering Method for COTS-Based Development,

Doctoral thesis, City University London, UK, 2000.

[43] Nuseibeh, B. "Weaving together requirements and architectures", Computer,

Vol. 34, No. 3, pp. 115-119, 2001.

[44] OMG, "UML profile for modeling quality of service and fault tolerance
characteristics and mechanisms", OMG, Tech. Rep. OMG Adopted
Specification, ptc/2004-06-01, 2004.

[45] OMG-UML-SPT. UML Profile for Schedulability, Performance, and Time. 2005.

References

61

[46] OpenUP Component,
http://www.eclipse.org/epf/openup_component/openup_index.php,
Accessed Feb 12, 2009.

[47] Potts, C. "Software-Engineering Research Revisited", IEEE Software, Vol.
10, No 5, pp. 19-28, 1993.

[48] Robertson, S. and J. Robertson. Mastering the Requirements Process. Addison-
Wesley, Harlow, 1999.

[49] Glossary of EU SCREEN Project,
http://cordis.europa.eu/infowin/acts/rus/projects/screen/glossary/gloss
ary.htm, Accessed Feb 12, 2009.

[50] SEI, "CMMI for development", Software Engineering Institute, Carnegie
Mellon, Pittsburgh, USA, Tech. Rep. CMMI-DEV, V1.2, 2006.

[51] Singer, C. A. A requirements tutorial. Quality systems and software requirements,
Special Report SR-NWT-002159, Bellcore, 1992.

[52] Smith, C. U. and L. G. Williams. Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software. Addison Wesley Longman Publishing
Co, Redwood City, USA, 2002.

[53] Strauss, A. and J. Corbin. Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory. Second ed., Sage Publications,
Thousand Oaks, California, 1998.

[54] Taxén, L. and J. Lilliesköld, "Manifesting shared affordances in system
development - the system anatomy", in the proceedings of the The 3rd

International Conference on Action in Language, Organisations and Information

Systems (ALOIS 2005), Limerick, Ireland, pp. 28-47, 2005.

[55] Thayer, R. H. and M. C. Thayer. "Software Requirements Engineering
Glossary", in Software Requirements Engineering, IEEE Computer Society, Los
Alamitos, CA, 2000.

[56] Wiegers, K. E. Software Requirements. Microsoft Press, Redmond, 1999.

[57] Non-Functional Requirements,
http://en.wikipedia.org/wiki/Non-functional_requirements,
Accessed Feb 12, 2009.

[58] Requirements Analysis,
http://en.wikipedia.org/wiki/Requirements_analysis,
Accessed Feb 12, 2009.

Processes and Models for Capacity Requirements in Telecommunication Systems

62

[59] Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A.
Wesslén. Experimentation in Software Engineering - an Introduction. Kluwer
Academic Publishers, Boston, 2000.

[60] Yu, E. and J. Mylopoulos, "Why goal-oriented requirements engineering",
in the proceedings of the 4th International Workshop on Requirements

Engineering: Foundations of Software Quality, Pisa, Italy, pp. 15-22, 1998.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-

tionsystem, 2003, ISBN 91-7373-618-X.
No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-
Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-
usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-
isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-
79-8.

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and Specifica-
tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natu-
ral Language Processing, 2006, ISBN 91-85643-
88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of
Glasses - Applying Systemic Accident Models on
Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-
not be seen - A Cognitive Systems Engineering per-
spective on requirements management, 2006, ISBN
91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for
Semantic Web Technology, 2007, ISBN 91-85643-
31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion
in Software Testing, 2007, ISBN 978-91-85715-74-
9.

No 1075 Almut Herzog: Usable Security Policies for
Runtime Environments, 2007, ISBN 978-91-
85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for satisfiability and related prob-
lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-
tures, 2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogene-
ous Scheduling Policies, 2007, ISBN 978-91-
85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous
Shape Writing for Text Entry and Control, 2007,
ISBN 978-91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007,
ISBN 978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting
socially through embodied action, 2007, ISBN 978-
91-85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Manage-
ment in Conversational Recommender Systems,
2007, ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in Em-
bedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predicta-
ble Design of Real-time Embedded Systems, 2007,
ISBN 978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN
978-91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008,
ISBN 978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven
Development Environments for Equation-Based
Object-Oriented Languages, 2008, ISBN 978-91-
7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies - Ethno-
graphic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for
Description and Reconstruction of Object Configu-
rations Based on Qualitative Relations, 2008, ISBN
978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems,
2009, ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and
Assessment of Data Quality, 2008, ISBN: 978-91-
7393-792-4

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att
skapa samstämmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-

296-8.

No 2 Stefan Cronholm: Metodverktyg och användbar-
het - en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden -
Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-
963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med
hjälp av effektiva förvaltningsobjekt, 2005, ISBN
91-85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -
mot ett ramverk för en verksamhetsnära kravspeci-
fikation vid anskaffning av komponentbaserade in-
formationssystem, 2006, ISBN 91-85643-22-X.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 85.04 points
 Normalise (advanced option): 'original'

 32

 D:20090218094407
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 129
 361
 Fixed
 Down
 85.0394
 0.0000

 Both
 16
 AllDoc
 18

 CurrentAVDoc

 None
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 200
 199
 200

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070330093304
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 AllDoc
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 200
 199
 200

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090218120431
 708.6614
 Blank
 496.0630

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 CurrentPage
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 70
 211
 70
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090218120431
 708.6614
 Blank
 496.0630

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 CurrentPage
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 90
 211
 90
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090218120431
 708.6614
 Blank
 496.0630

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 CurrentPage
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 104
 211
 104
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090218120431
 708.6614
 Blank
 496.0630

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 CurrentPage
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 126
 211
 126
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090218120431
 708.6614
 Blank
 496.0630

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 CurrentPage
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 142
 211
 142
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090218120431
 708.6614
 Blank
 496.0630

 Tall
 1
 0
 No
 129
 361
 None
 Down
 85.0394
 0.0000

 Both
 16
 CurrentPage
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 156
 211
 156
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070330093304
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 129
 361

 None
 Up
 5.6693
 0.0000

 Both
 16
 AllDoc
 18

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 70
 211
 210
 211

 1

 HistoryList_V1
 qi2base

