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POPULÄRVETENSKAPLIG SAMMANFATTNING

Magnetresonansavbildning (MR) är en av de viktigaste metoderna inom medicinsk avbild-
ning. Genom att mäta ändringar i de magnetiska egenskaperna hos olika vävnadstyper kan
tre-dimensionella bilder av människokroppen skapas. MR är en flexibel teknik, och olika me-
toder kan användas för att mäta olika fysiologiska egenskaper. För studier av hjärnan är de
viktigaste metoderna strukturell MR, som ger bilder med hög upplösning och bra kontrast
mellan olika vävnadstyper, funktionell MR, som kan användas för att studera vilka delar
av hjärnan som är aktiva under olika experiment, och diffusions MR, som främst används
för att studera hur olika delar av hjärnan är sammankopplade via axoner i nervfibrer.

Den här avhandlingen presenterar flera avancerade metoder för att analysera MR bilder, och
dessa metoder följer två spår. Det första spåret handlar om hur bilder från olika MR-metoder
kan komplettera varandra, och hur kombinationen kan leda till bättre resultat. Det andra
spåret handlar om att använda moderna verktyg inom matematik och beräkningsvetenskap,
såsom artificiell intelligens, Bayesiansk statistik och signalbehandling på grafer, för att
analysera MR-bilder.

Publikationerna i den här avhandlingen täcker flera olika ämnen inom hjärnavbildning. De
två första artiklarna presenterar metoder för att förbättra analysen av funktionell MR, ge-
nom att använda information från strukturell MR och diffusions MR. Den tredje artikeln
presenterar en metod för att lokalisera aktiva områden i hjärnan med funktionell MR, och
hur denna information kan användas när en hjärntumör tas bort med hjälp av strålning (för
att inte skada dessa viktiga områden). I den fjärde artikeln används artificiell intelligens för
att öka den spatiala upplösningen i diffusions MR, vilket kan förbättra analysen av nervfib-
rernas orientering i vit hjärnsubstans. Slutligen så visar den femte artikeln att strukturella
MR-bilder som har anonymiserats, genom att ta bort ansiktet, delvis kan återskapas genom
att lägga tillbaka ansiktet. Detta illustrerar att artificiell intelligens har en stor potential
att förbättra medicinsk avbildning och diagnostik, men att den också medför vissa faror.
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ABSTRACT

Magnetic resonance imaging (MRI) is one of the pillars of modern medical imaging, provid-
ing a non-invasive means to generate 3D images of the body with high soft-tissue contrast.
Furthermore, the possibilities afforded by the design of MRI sequences enable the signal to
be sensitized to a multitude of physiological tissue properties, resulting in a wide variety of
distinct MRI modalities for clinical and research use.

This thesis presents a number of advanced brain MRI applications, which fulfill, to dif-
fering extents, two complementary aims. On the one hand, they explore the benefits of
a multimodal approach to MRI, combining structural, functional and diffusion MRI, in a
variety of contexts. On the other, they emphasize the use of advanced mathematical and
computational tools in the analysis of MRI data, such as deep learning, Bayesian statistics,
and graph signal processing.

Paper I introduces an anatomically-adapted extension to previous work in Bayesian spatial
priors for functional MRI data, where anatomical information is introduced from a T1-
weighted image to compensate for the low anatomical contrast of functional MRI data.

It has been observed that the spatial correlation structure of the BOLD signal in brain white
matter follows the orientation of the underlying axonal fibers. Paper II argues about the
implications of this fact on the ideal shape of spatial filters for the analysis of white matter
functional MRI data. By using axonal orientation information extracted from diffusion
MRI, and leveraging the possibilities afforded by graph signal processing, a graph-based
description of the white matter structure is introduced, which, in turn, enables the def-
inition of spatial filters whose shape is adapted to the underlying axonal structure, and
demonstrates the increased detection power resulting from their use.

One of the main clinical applications of functional MRI is functional localization of the
eloquent areas of the brain prior to brain surgery. This practice is widespread for various
invasive surgeries, but is less common for stereotactic radiosurgery (SRS), a non-invasive
surgical procedure wherein tissue is ablated by concentrating several beams of high-energy
radiation. Paper III describes an analysis and processing pipeline for functional MRI data
that enables its use for functional localization and delineation of organs-at-risk for Elekta
GammaKnife SRS procedures.

Paper IV presents a deep learning model for super-resolution of diffusion MRI fiber ODFs,
which outperforms standard interpolation methods in estimating local axonal fiber orien-
tations in white matter. Finally, Paper V demonstrates that some popular methods for
anonymizing facial data in structural MRI volumes can be partially reversed by applying
generative deep learning models, highlighting one way in which the enormous power of deep
learning models can potentially be put to use for harmful purposes.
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1
Introduction

Medical imaging has become an ubiquitous component of medicine, and mag-
netic resonance imaging (MRI) is one of its principal modalities. Its capacity
for generating high-resolution 3-dimensional images of the body without rely-
ing on ionizing radiation makes it a mainstay for both research environments
and clinical practice. Its high soft-tissue contrast makes MRI especially suited
for the study of the brain.

One of the main strengths of MRI is its flexibility. Although complex phys-
ical mechanisms underlie the generation and measurement of the MRI signal,
these mechanisms enable the design of pulse sequences that can sensitize the
measured signal to a variety of tissue properties. Thus, rather than being
a tool solely for the imaging of brain structure, the various MRI modalities
provide a multifaceted picture of the brain, with functional MRI providing
insight into brain activity by measuring changes in blood oxygenation, and
diffusion MRI revealing aspects of tissue microstructure by studying the ran-
dom motion of water molecules.

Another aspect of MRI flexibility manifests after the data have been ac-
quired. The process of gleaning insights from MRI data is based on substantial
theoretical and computational components. The data are limited and noisy,
requiring a combination of preprocessing stages, model fitting, and statistics
in order to reveal their meaning.

The multidisciplinary nature of MRI presents multiple avenues for de-
velopment, with advances in scanner technology, acquisition sequence design,
physical models, preprocessing tools, and statistical analysis methods, all hav-
ing the potential to increase the usefulness of MRI.

The aim of this thesis is to explore two such avenues for improvement.
On the one hand, it takes a multimodal approach to MRI, presenting several
ways in which information from multiple MRI modalities can be productively
combined. On the other, it focuses on ways in which modern mathematical
and computational tools, such as Bayesian statistics, graph signal processing,
and deep learning, can be usefully applied in MRI. It is the hope of the author
that the works presented in this thesis will lay another brick on the road to
uncovering the possibilities afforded by MRI.
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1. Introduction

1.1 Thesis outline

Chapter 2 is a general introduction to the physics of MRI. Chapters 3 and 4
delve deeper into specific physical and processing aspects of the MRI modali-
ties this thesis focuses on, namely, functional MRI and diffusion MRI. Follow-
ing this, Chapters 5 and 6 provide background on graph signal processing and
deep learning, respectively, two of the main computational tools employed
in this thesis. Finally, the main publications resulting from this work are
reviewed in Chapter 7.

1.2 List of publications

This thesis is based on the following publications, referred to in the text with
their roman numeral:

I. David Abramian, Per Sidén, Hans Knutsson, Mattias Villani, and
Anders Eklund. “Anatomically informed Bayesian spatial priors for
fMRI analysis.” In: IEEE 17th International Symposium on Biomed-
ical Imaging (ISBI). 2020, pp. 1026–1030. doi: 10.1109/ISBI45749.
2020.9098342.

II. David Abramian, Martin Larsson, Anders Eklund, Iman Aganj, Carl-
Fredrik Westin, and Hamid Behjat. “Diffusion-informed spatial smooth-
ing of fMRI data in white matter using spectral graph filters.” In: Neu-
roimage 237 (2021), p. 118095. doi: 10.1016/j.neuroimage.2021.
118095.

III. David Abramian, Ida Blystad, and Anders Eklund. “Evaluation of
inverse treatment planning for Gamma Knife radiosurgery using fMRI
brain activation maps as organs at risk.” In: medRxiv preprint. 2023.
doi: 10.1101/2022.12.12.22283334. Submitted to Medical Physics.

IV. David Abramian, Anders Eklund, and Evren Özarslan. “Super-
resolution mapping of anisotropic tissue structure with diffusion MRI
and deep learning.” In manuscript.

V. David Abramian and Anders Eklund. “Refacing: reconstructing
anonymized facial features using GANs.” In: IEEE 16th International
Symposium on Biomedical Imaging (ISBI). 2019, pp. 1104–1108. doi:
10.1109/ISBI.2019.8759515.
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1.3. Additional publications

1.3 Additional publications

This thesis work also resulted in the following publications, which are not the
main focus of this work:

I. Anjali Tarun, David Abramian, Hamid Behjat, and Dimitri Van De
Ville. “Graph spectral analysis of voxel-wise brain graphs from diffusion-
weighted MRI.” in: IEEE 16th International Symposium on Biomedical
Imaging (ISBI). 2019, pp. 159–163. doi: 10.1109/ISBI.2019.8759496.

II. David Abramian, Martin Larsson, Anders Eklund, and Hamid Be-
hjat. “Improved functional MRI activation mapping in white matter
through diffusion-adapted spatial filtering.” In: IEEE 17th Interna-
tional Symposium on Biomedical Imaging (ISBI). 2020, pp. 539–543.
doi: 10.1109/ISBI45749.2020.9098582.

III. Anjali Tarun, Hamid Behjat, Thomas Bolton, David Abramian, and
Dimitri Van De Ville. “Structural mediation of human brain activity
revealed by white-matter interpolation of fMRI.” in: Neuroimage 213
(2020), p. 116718. doi: 10.1016/j.neuroimage.2020.116718.

IV. Hamid Behjat, Iman Aganj, David Abramian, Anders Eklund, and
Carl-Fredrik Westin. “Characterization of spatial dynamics of fMRI
data in white matter using diffusion-informed white matter harmonics.”
In: IEEE 18th International Symposium on Biomedical Imaging (ISBI).
2021, pp. 1586–1590. doi: 10.1109/ISBI48211.2021.9433958.

V. Marco Domenico Cirillo, David Abramian, and Anders Eklund.
“Vox2Vox: 3D-GAN for brain tumour segmentation.” In: Brainle-
sion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.
Springer. 2021, pp. 274–284. doi: 10.1007/978-3-030-72084-1_25.

VI. Marco Domenico Cirillo, David Abramian, and Anders Eklund.
“What is the best data augmentation for 3D brain tumor segmenta-
tion?” In: IEEE International Conference on Image Processing (ICIP).
2021, pp. 36–40. doi: 10.1109/ICIP42928.2021.9506328.

VII. Hamid Behjat, Anjali Tarun, David Abramian, Martin Larsson and
Dimitri Van De Ville. “Voxel-wise brain graphs from diffusion MRI: In-
trinsic eigenspace dimensionality and application to functional MRI.” In:
medRxiv preprint. 2023. doi: 10.1101/2022.09.29.510097. Accepted
for publication in IEEE Open Journal of Engineering in Medicine and
Biology.
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1. Introduction

1.4 Abbreviations

The following is a list of abbreviations appearing in this thesis:

ADC apparent diffusion coefficient
AR autoregressive
BOLD blood oxygenation level-dependent
CSD constrained spherical deconvolution
CNN convolutional neural network
dHb deoxyhemoglobin
dMRI diffusion magnetic resonance imaging
DNN dense neural network
dODF diffusion orientation distribution function
DSI diffusion spectrum imaging
DTI diffusion tensor imaging
EPI echo-planar imaging
FDR false discovery rate
FID free induction decay
FA fractional anisotropy
fMRI functional magnetic resonance imaging
fODF fiber orientation distribution function
FWE family-wise error
FWHM full width at half maximum
GAN generative adversarial network
GLM general linear model
GQI generalized q-sampling imaging
GRE gradient echo
GSP graph signal processing
HCP Human Connectome Project
HRF hemodynamic response function
LTI linear and time-invariant
MD mean diffusivity
MR magnetic resonance
MRI magnetic resonance imaging
ODF orientation distribution function
PD proton density
PGSE pulsed gradient spin echo
OAR organ at risk
QBI Q-ball imaging
ReLU rectified linear unit
RF radiofrequency
rs-fMRI resting state functional magnetic resonance imaging
SD spherical deconvolution
SDF spin density function
SE spin echo
SGD stochastic gradient descent
SH spherical harmonic
SNR signal-to-noise ratio

4



1.5. Data, code, and ethics

1.5 Data, code, and ethics

All the papers included in this thesis are based on open data [1, 2, 3], and all
processing scripts are made available on GitHub1. These two aspects facilitate
the reproducibility of the reported results [4, 5]. The ethics board of Linköping
decided that no additional ethics approvals are required to analyze these open
datasets.

1https://github.com/DavidAbramian
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2
Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging modality which re-
lies on the magnetic properties of chemical elements to generate images of
the body. It is non-invasive, and largely safe for the subject, as it does not
utilize ionizing radiation. This chapter will review the basic physical mech-
anisms that underlie the generation of images through MRI. More in-depth
treatments of the principles of MRI can be found in [6] and [7].

2.1 The MRI scanner

At its simplest, an MRI scanner consists of a large tube, the scanner bore,
into which a sample is placed to be scanned. In our case, this sample is a
healthy human subject or a patient, but it can also be a non-human animal,
a phantom featuring some desirable property, or any other substance.

The walls of the scanner bore are lined with several types of magnets.
Typically, these are electromagnets, and are therefore often referred to as coils.
These magnets are the main elements responsible for generating a measurable
signal from the sample and acquiring said signal. Much of the remaining bulk
of a clinical MRI scanner consists of the electronics needed to control the
magnets.

There are three primary systems responsible for generating the various
magnetic fields required to generate and acquire signal in an MRI scanner:

• The main magnet generates the static B0 field, a very strong and uniform
field oriented along the bore of the scanner, which by convention is
assigned the z axis. Typical field strengths for current medical scanners
are between 0.5 and 3 T, while 7 T units have become available in recent
years. Higher static field strengths allow for larger signal-to-noise ratios
in the acquired signal.

• The gradient system consists of three orthogonal gradient coils capable
of generating a linear magnetic field gradient along arbitrary spatial
orientations. They are fundamental for signal localization, as well as for
traversing k-space.

7



2. Magnetic Resonance Imaging

• A set of radiofrequency (RF) transmitter coils produce a rotating mag-
netic field B1 which excites the spin systems of the sampled nuclei. The
same or a separate set of receiver coils are then used to read out the
signal from the excited nuclear spins.

2.2 Nuclear magnetism

Atomic nuclei posses an intrinsic angular momentum J, called spin angu-
lar momentum. Although a quantum-mechanical property, spin can be in-
terpreted in classical mechanics as a rotation of the nucleus about its axis,
yielding a microscopic magnetic field around it which causes it to behave as a
tiny bar magnet. The magnetic moment of a nucleus µ is related to its spin
angular momentum J by

µ = γJ, (2.1)

where γ is the gyromagnetic ratio of the element. For hydrogen, the main
nucleus investigated in MRI, this constant takes the value 2.675 ⋅108 rad/s/T.

In the absence of an external magnetic field, the magnetic moments µ
within a sample have random spatial orientations, resulting in no measurable
bulk magnetization. However, when placed within the strong B0 field of an
MRI scanner, nuclear spins begin precessing around the orientation of B0 at
the Larmor frequency of

ω0 = γB0. (2.2)

Furthermore, each individual spin takes one of a limited set of possible an-
gles with respect to the orientation of B0. For hydrogen nuclei, only two
spin orientations are possible: parallel and antiparallel with respect to B0

(see Figure 2.1). In a phenomenon known as Zeeman splitting, spins in the
parallel state have a lower energy level than those in the antiparallel state,
which results in the former being very slightly more numerous in a sample.
This small difference in the spin populations is responsible for generating a
bulk magnetization vector M oriented along z. As the precession phase of
individual spins is still random, there is no transversal component to M in
the xy plane. Therefore, the bulk magnetization M at equilibrium is given
by

{ M0
z =

γ2h̵2B0Ns

4KTs
,

M0
xy = 0,

(2.3)

where h̵ is Planck’s constant divided by 2π, K is Boltzmann’s constant, Ns is
the total number of spins in the sample, and Ts is the absolute temperature
of the spin system.

8



2.2. Nuclear magnetism

Figure 2.1: Magnetized spins precess about the B0 field, taking either a par-
allel (µ↑) or an antiparallel (µ↓) orientation with respect to it.

RF excitation
In order to produce measurable signal from the spin system, its bulk mag-
netization M needs to be tilted onto the xy plane. This can be done by
subjecting the spin system to a transient magnetic field B1, itself rotating in
the xy plane at the Larmor frequency of the spin system. This is referred
to as an RF pulse, due to its transient nature and the fact that the Larmor
frequency of hydrogen is in the RF band.

Subjecting the spin system to a magnetic field perpendicular to B0 and
rotating at its Larmor frequency fulfills the resonance condition of the spin
system, prompting the bulk magnetization M of the system to experience a
forced precession about the B1 field, with

ω1 = γB1. (2.4)

The spin system is shifted away from the z axis by the flip angle

α = ∫
τp

0
ω1(t) = ∫

τp

0
γBe

1(t)dt, (2.5)

where Be
1(t) is the temporal envelope of the RF pulse, and τp is the duration

of the pulse. The shape of RF pulses can be controlled in order to influ-
ence various aspects of the excitation process, such as its duration and the
bandwidth of excited spins.

Relaxation
After a spin system has been excited by a transient RF pulse, the tilted
magnetization vector M continues to precess around the B0 field. At the

9



2. Magnetic Resonance Imaging

same time, the spins are subjected to two exponential relaxation processes
that cause the system to return to its earlier equilibrium state:

• Longitudinal relaxation, causing the longitudinal component of magne-
tization Mz to progressively return to the equilibrium state of M0

z . This
process is characterized by time constant T1.

• Transverse relaxation, by which the rotation of the individual spins
about B0 continuously become dephased with each other, resulting in
the progressive disappearance of the transversal magnetization compo-
nent Mxy. This process is characterized by time constant T2, and is
faster than longitudinal relaxation for all ordinary spin systems [8]. Fur-
thermore, in practice, field inhomogenities cause the transversal magne-
tization components to decay at an increased rate characterized by time
constant T ∗2 (“T2 star”).

The temporal evolution of the longitudinal and transversal components of the
magnetization vector M are given by

{ Mz(t) =M0
z (1 − e−t/T1) +Mz(0+)e−t/T1

Mxy(t) =Mxy(0+)e−t/T2
(2.6)

Due to their different chemical environment, various bodily tissues differ in
their T1 and T2 relaxation constants. This difference in relaxation properties
is one of the fundamental ways in which MR images achieve contrast between
different tissues. The magnitude of the magnetization is also proportional to
the proton density (PD) of the sample, making this a third source of contrast.

2.3 MR signals

As was discussed previously, when a spin system is excited by an RF pulse,
its bulk magnetization is tilted away from the z axis and begins precessing
around B0 field at the Larmor frequency. By Faraday’s law, this induces
an oscillating voltage in the receiver RF coils of the scanner. After being
subjected to demodulation and low-pass filtering, the resulting signal can be
described in simplified form as

S(t) = ∫
object

Mxy(r,0)e−t/T
∗
2 (r)e−i∆ω(r)tdr (2.7)

For a spin system of a spin spectral density of ρ(ω) this equation can be
rewritten as

S(t) = ∫
∞

−∞
ρ(ω)e−t/T2(ω)e−i∆ωtdω (2.8)

In the following we describe the main forms that these signals take.

10



2.4. Image formation

Free induction decays
Free induction decays (FIDs) represent the signals obtained when the spins
are permitted to precess freely after a single excitation. In this scenario,
the transversal magnetization component Mxy, and thus the measured signal,
decays exponentially with time constant T ∗2 .

Spin echoes
After the transversal magnetization is allowed to dephase for a period of time,
the FID signal can decay completely. However, it is possible to apply a 180○

RF pulse to flip the magnetization of the spins around an axis determined
by the phase of the pulse in the xy plane. As their magnetization has been
flipped, yet their precession continues in the same direction, their continued
motion results in their progressive rephasing. If the 180○ pulse is applied
at time TE/2, then the spins will become fully rephased at the echo time
TE , producing what is known as a spin echo (SE) signal. The time between
iterations of excitation-dephasing-refocusing is referred to as repetition time
TR. The SE signal is only affected by T2 relaxation, as the field inhomogeneity
effects causing faster T ∗2 relaxation are reverted by the rephasing. SE is one of
the fundamental MR sequence designs, capable of producing T1-, T2-, and PD-
weighted images [9], and used in standard diffusion-weighted sequences [10]
(further discussed in Chapter 4).

Gradient echoes
A different way to generate MR echoes is by using a single RF excitation pulse,
and achieving dephasing and rephasing by using magnetic field gradients.
Following the excitation pulse, a magnetic field gradient is used to induce a
spatial dependence on the rotation frequency of the nuclear spins, causing
quick dephasing. After a time TE/2, this gradient is inverted, resulting in a
progressive rephasing which culminates in the generation of a gradient echo
(GRE) at echo time TE . Unlike for SE, GRE echoes are affected by T ∗2
relaxation, as field inhomogeneity effects are not compensated. In addition
to allowing for very fast TE and TR, resulting in faster acquisition, the T ∗2
weighting in GRE sequences makes them sensitive to susceptibility changes
brought about by blood oxygenation effects, and are thus widely used for
functional MRI (further discussed in Chapter 3).

2.4 Image formation

As implied by equation 2.7 the signal measured by a receiver coil after an
RF excitation pulse will include contributions from the whole scanned object,
which is not conducive to producing an image. The gradient system of the
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2. Magnetic Resonance Imaging

scanner is fundamental for enabling the differentiation of signal components by
their source location. This is done through the mechanisms of slice selection
and spatial encoding.

Slice selection
Slice selection is used to limit the region of nuclear spins that will be excited to
a single slice. This is done by applying a magnetic field gradient at the time
of RF excitation. The gradient causes a spatial dependence in the Larmor
frequency of protons across the imaged object, with only those matching the
frequency of the RF pulse being excited. This limits the excited volume to a
single slice of the object, whose thickness can be selected by controlling the
bandwidth of the RF pulse.

Spatial encoding
Beyond selective excitation through slice selection, the fundamental way in
which magnetic field gradients are used to disentangle the spatial source of
MR signals is by imparting a spatial dependence on the frequency and phase
of the spin precession across the scanned object. These two mechanisms are
known as frequency encoding and phase encoding, respectively.

Frequency encoding is achieved by applying a continuous gradient Gf

during acquisition. Thus, the Larmor frequency across the object becomes

ω(r) = ω0 + γ(Gf ⋅ r). (2.9)

Likewise, the signal can be phase encoded by applying a transient gradient
Gp, which imparts a spatially-dependent phase

ϕ(r) = −γ(Gp ⋅ r)Tp (2.10)

to the system. These two effects can act in unison to influence the frequency
and phase of precession of spins in different locations.

By rewriting the received MR signal as

S(k) = ∫ ρ(r)e−ik⋅rdr, (2.11)

it can be shown to be the Fourier transform of the magnetization, where

k(t) = γ ∫
t

0
G(τ)dτ. (2.12)

Therefore, the position in k-space is given by the history of applied gradients
after RF excitation. By performing repeated RF excitations and readouts
while applying various frequency and phase encoding gradients it is possible
to obtain a sampling of k-space. In the simplest case of uniform Cartesian
sampling, the image data can be recovered as the inverse Fourier transform
of the sampled data (see Figure 2.2).
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2.4. Image formation

(a) (b) (c)

Figure 2.2: Sampling of k-space and image reconstruction. (a) 2-dimensional
Cartesian sampling of k-space along the x and y axes. (b) Example k-
space data. (c) Reconstructed T1-weighted image obtained by taking the
2-dimensional Fourier transform of (b).
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3
Functional Magnetic Resonance
Imaging

Functional magnetic resonance imaging (fMRI) is an MRI modality used to
study the ongoing activity of the brain in time. Due to its noninvasive nature,
high spatial resolution, and good temporal resolution, it has become an in-
dispensable tool for studying the brain in both research and clinical contexts.
Despite this, it does have some limitations [11]. It does not measure neuronal
activity directly, but only through the proxy of changes in blood oxygenation.
Furthermore, the signal it measures is weak, requiring a substantial processing
and analysis apparatus in order to extract its meaning.

There are two fundamental modalities of fMRI, each spanning their own
separate, although overlapping, field of study. Task-based fMRI is concerned
with studying the brain’s response to a given set of stimuli or the performance
of specific tasks. Among its applications are functional localization for clini-
cal interventions, pharmacological studies on the effects of drugs, as well as
research in neuroscience and psychology. Conversely, in resting state fMRI
(rs-fMRI), subjects are scanned in a state of rest, i.e., without any specific
stimuli or task prompts. The similarities and differences in the spontaneous
brain activity across brain regions can be studied to extract information about
the inherent organization of the brain, what is known as functional connec-
tivity. Although rs-fMRI is a fertile field of study, the fMRI work carried out
for this thesis concerns only task-based fMRI. This chapter will describe the
fundamental aspects of fMRI and the acquisition and analysis of task-based
fMRI data.

3.1 Origins of fMRI: the BOLD signal

The possibility of studying brain activity through MRI results from two obser-
vations: that brain activity is followed by local changes in blood oxygenation,
and that blood oxygenation can be readily imaged with MRI.

When part of the brain is recruited for a task, its oxygen requirements
are increased. In order to supply it with oxygen, its local bloodflow is in-
creased after a delay of several seconds. Importantly, bloodflow is increased
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3. Functional Magnetic Resonance Imaging

beyond the immediate needs of the region, leading to a temporary surplus of
oxygenated blood, which eventually recedes to pre-stimulus levels.

Deoxyhemoglobin (dHb), whose concentration follows the changes in blood
oxygenation, acts as a natural paramagnetic contrast agent, causing changes
in magnetic susceptibility detectable through MRI. This is known as the blood
oxygenation level-dependent (BOLD) contrast, the signal measured in fMRI,
first described in rodent brains by Ogawa et al. in the 1990s [12, 13], and
used for imaging human brain activity shortly afterwards [14, 15, 16].

The temporal relationship between momentary brain activity and the
changes in local blood flow that follow it can be described by a hemodynamic
response function (HRF), which is a fundamental component in the analysis
of fMRI data. It is a relatively slow response, taking anywhere around 10-20
seconds to return to baseline levels, and is characterized by a short initial
dip followed by a peak and culminating in a long post-stimulus undershoot.
Importantly, the relationship between neural activity and hemodynamic re-
sponse is largely linear and time-invariant (LTI). This makes it possible to
predict the expected hemodynamic response for an arbitrary set of stimuli
just from the timing of the stimuli and the HRF.

White matter fMRI
The BOLD signal has been traditionally thought to originate from local field
potentials, which reflect intracortical activity and are thus constrained to the
gray matter of the brain [17]. At the same time, although activations in white
matter are not unusual, they are commonly dismissed, with the BOLD signal
in white matter being sometimes used as a nuisance regressor for activation
mapping.

However, recent publications reflect the beginning of a shift in perspec-
tive, where the possibility and functional relevance of white matter fMRI is
acknowledged [18, 19, 20, 21]. Part of the reason for the lack of attention
that white matter fMRI has received can be attributed to the anatomical and
physiological differences between white matter and gray matter. An overall
weaker BOLD signal, a different HRF, and acquisition sequences optimally
tuned for gray matter, among others, together make it difficult to detect
relevant activity in white matter [18], and point to the need for developing
methods tailored to white matter fMRI.

Paper II is focused on developing one such method. In particular, it relies
on the observation that the spatiotemporal correlation structure of the BOLD
signal in white matter is anisotropic and generally matches the orientation of
the underlying axonal fiber bundles [22, 23, 24]. This observation suggests
that the isotropic Gaussian filters generally used in fMRI analysis (discussed
further) are not well suited to detecting activations in white matter based on
the matched-filter argument. We propose and evaluate an alternative design
based on diffusion-weighted imaging and graph signal processing (see Chap-
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ters 4 and 5, respectively) which allows filters to adapt to the shape of white
matter fiber bundles, and demonstrate its increased detection power.

3.2 Design of fMRI experiments

In a standard fMRI experiment, a subject is placed in an MRI scanner and
subjected to a timed sequence of stimuli, or asked to perform a certain task
following a specific time scheme. All the while, the subject’s brain is being
repeatedly scanned, resulting in a 4-dimensional dataset describing both the
spatial and temporal aspects of the subject’s brain activity. After the ex-
periment this data is preprocessed to account for various imperfections and
artifacts, and subjected to statistical analysis to identify the brain regions
that were involved in the experiment.

It is common to acquire data for multiple stimuli or tasks (known as condi-
tions) within a single fMRI experiment, often with the purpose of comparing
the subject’s responses to each. At the same time, each condition needs to
be repeated multiple times in a single experiment in order to produce data
with enough statistical power to properly identify the brain activity. The set
of individual conditions and their specific timing parameters constitute a task
paradigm. These can generally be either block-based designs, where conditions
are presented in blocks of constant duration intercut with periods of rest, or
event-related designs, where stimuli are presented in short blocks with uneven
timing. Figure 3.1 illustrates an example fMRI experiment with a block-based
design.

Single voxel
BOLD signal

Task
paradigm

Task
regressor

HRF

Stimuli

Figure 3.1: Example fMRI experiment with a block-based design and a motor
task. The subject alternates block of activity and rest. The BOLD signal is
noisy, but the signal attributed to the performance of the task can be modeled
as the convolution of the task paradigm with the HRF.
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Since fMRI is concerned with the temporal dynamics of blood oxygenation,
it requires fast scanning sequences, with common TR values in the 0.5 – 5

second range. The most common acquisition sequence used for fMRI is GRE
echo-planar imaging (EPI), first described by Peter Mansfield in 1977 [25, 26].
This is a 2D sequence where k-space is traversed in a zig-zagging pattern using
frequency and phase encoding along perpendicular axes. The use of GRE
is optimal to obtain T ∗2 -weighted signal, which is sensitive to the magnetic
susceptibility effects of the BOLD signal, in addition to being relatively fast.

3.3 Preprocessing of fMRI data

The analysis of fMRI data begins with a preprocessing stage, with the purpose
of correcting various data artifacts, increasing the detection power of the
subsequent statistical analysis, and optionally taking the data of multiple
subjects into a common space where they can be compared. This section will
briefly describe some of the most common preprocessing steps taken and their
motivation:

Distortion correction The acquisition of fMRI data with an EPI sequence
is prone to suffer from susceptibility artifacts, substantial distortions
that happen along the phase encoding direction of acquisition due to in-
homogeneities in the B0 field, which generally appear at the boundaries
between air and tissue. These artifacts are quite pernicious, resulting
in a compression or elongation of the brain in the phase encoding direc-
tion which complicates the precise localization of activity in the brain as
well any registration efforts within the fMRI series or with other, unaf-
fected modalities. Methods to compensate for these artifacts generally
involve nonlinearly unwarping the images after estimating the B0 field,
either directly by the calculation of a fieldmap from the phase of the
acquired signal [27, 28], or using methods based on scanning twice with
opposite phase encoding directions, which also inverts the direction of
distortion [29].

Slice timing correction Given that fMRI volumes are acquired using 2D
sequences, different slices of the data are acquired at slightly different
times, with delays between the first and last slice of a volume being
potentially as high as nearly one full TR. This difference in timing can
have detrimental effects for the subsequent statistical analysis of the
data, as it relies on defining a model with precise timing information.
Slice timing is usually corrected by interpolating all the slices to the
timing of a reference slice [30, 31].

Motion correction During the performance of an fMRI experiment, it is
inevitable that the subject in the scanner will move their head, even
if by a small amount. Unfortunately, this can have relatively severe

18
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negative consequences for the remainder of the analysis. For one, head
motion causes the individual time-series at each voxel in the brain to
correspond to different spatial locations at different points in time. The
largest effects from this are seen at the edges of the brain, where voxels
can have large fluctuations in their signal, often resulting in spurious
activations. This effect can be largely controlled by using linear or rigid
registration to spatially align all the fMRI volumes with a reference
volume.
Head motion causes a further, more pernicious effect by influencing the
magnetization of excited spins, which, as discussed in Chapter 2, is
spatially encoded. Because of this, head motion can result in spuri-
ous activations even after applying motion correction [32]. In order to
account for these effects, it is common to extract a set of motion param-
eters (translations and rotations) from the motion correction procedure
and use them in the statistical analysis to model any remaining signal
components correlated with the head motion.

Spatial smoothing There are a number of reasons given for the need of
applying spatial smoothing to fMRI data. First, the BOLD signal is rel-
atively weak, and given that activations are generally expected to extend
over a region, spatial smoothing can increase the signal-to-noise ratio
(SNR) of the data. Furthermore, due to individual subject variations,
there can be some misalignment when trying to compare activations
across subjects. In such cases, spatial smoothing can blur the regions of
activity and increase the potential for overlap across subjects. Finally,
some statistical analyses, such as those based on Gaussian random field
theory (discussed further), require that the data present a certain degree
of smoothness, which can be achieved by applying spatial smoothing.
The most common approach to spatial smoothing is using isotropic
Gaussian filters, which are generally described (in mm) by their full
width at half maximum (FWHM), given by

FWHM = 2σ
√
2 ln(2), (3.1)

where σ represents the standard deviation of the Gaussian. However,
there have been a number of methods incorporating additional assump-
tions or information from other MRI modalities to better match the
smoothing filter to the expected shape of activations. Paper I presents
an analogous method incorporating information from a T1-weighted im-
age to adapt the smoothing to the anatomical features of the brain,
albeit within a Bayesian analysis framework which does not rely on
filtering to achieve smoothness (discussed further). Moreover, as men-
tioned previously, Paper II presents a spatial smoothing method tailored
specifically to increasing the SNR in white matter.
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Detrending It is common for the fMRI voxel time-series to present with
low frequency drifting and trends, which can influence the estimation
of activity if left unaccounted. There are several ways to account for
these, the most common being their removal by high-pass filtering or by
including detrending regressors in the statistical model.

Spatial normalization As mentioned previously, variability between indi-
vidual brains precludes any simple comparison of activations between
subjects. In order to enable such comparisons, it is necessary to spa-
tially warp the fMRI data of all subjects to a common template space
in which they can be compared. Several such templates have been pro-
posed, with the most popular being the Talairach atlas [33, 34], the
MNI305 atlas [35], and the derived ICBM-152 template.
Spatial normalization generally involves a nonlinear registration step.
As fMRI data has very low anatomical contrast, the nonlinear warp-
ing is usually estimated from a high resolution anatomical image (e.g.
T1-weighted). The fMRI data itself needs to be registered to the anatom-
ical image using methods that can account for the difference in contrast
between both modalities. In order to avoid loss of spatial resolution
through repeated interpolation, it is common to combine all steps in-
volving registration (e.g., T1 to template space, fMRI to T1, motion
correction of individual fMRI volumes) into a single transformation.

It should be noted that in practice there is considerable variation in the
preprocessing steps performed for individual fMRI experiments, with no clear
consensus on any single set of procedures. The issue is further complicated by
the widespread reliance in the field on several fMRI software packages [36, 37,
38] developed separately by different groups, which do not share the same pre-
processing and statistical methods, and present some idiosyncrasies regarding
the correct way to analyze fMRI data.

There have been some attempts to increase the interoperability of existing
tools, two of which should be highlighted. Nipype [39] allows the creation
of processing pipelines in Python that can combine individual tools from a
number of software packages. Based on it, fMRIPrep [40] is an attempt to
provide a standardized, complete and reproducible preprocessing pipeline for
fMRI data based on best practices. This was used for preprocessing the fMRI
data used in Paper III.

3.4 Statistical analysis of fMRI data

There exists a multitude of procedures for determining the location and extent
of brain activations in an fMRI dataset. This section will give a standard pre-
sentation of single-subject analysis based on the general linear model (GLM).
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General linear model
A standard way to locate the active voxels in the brain is to formulate a
general linear model problem, in which the signal observed at each voxel is
modeled as a linear combination of a set of known explanatory variables, the
regressors, plus an unaccounted remaining component, the error terms.

Considering an fMRI dataset of T volumes (i.e., time points), with N

voxels and K explanatory variables, the GLM can be formulated in matrix
form as

Y
[T×N]

= X
[T×K]

W
[K×N]

+ E
[T×N]

, (3.2)

where the columns of Y contain the observed time-series at each voxel, the
columns of X contain the time-series of the regressors, W is the parameter
matrix to be estimated, describing the degree to which each regressor is present
in each observed time-series, and E is the error matrix, also to be estimated,
containing the portion of the signals in Y that can not be explained by the
regressors in X.

The design matrix X is composed of several regressors of interest, those
associated with the various task conditions and whose presence we want to
identify in the signals, and a set of nuisance regressors, which are not specifi-
cally of interest but must be included in order to remove spurious components
from the signal. The task regressors are obtained by convolving the time-series
of each condition with the HRF, giving the expected hemodynamic response
for the given time-series of stimuli. This is made possible by the LTI behavior
of the hemodynamic response of the brain. The nuisance regressors typically
include a set of motion regressors, and, optionally, a set of detrending regres-
sors, but it is possible to include a large number of additional regressors that
account for various imperfections in the BOLD signal [41, 42]. Furthermore,
it is possible to include the temporal derivative of regressors, which increases
the flexibility of the model by accounting for small imprecisions in the timing
of events.

The error terms in E are commonly assumed to be normally distributed
with zero mean and a variance of σ2

n for the n-th voxel. If, in addition,
the error terms are temporally uncorrelated, an unbiased and least-squares
optimal solution for the regression parameters W can be found by

Ŵ = (XTX)−1XTY, (3.3)

while the error variance for each voxel σ2
n can be estimated as

σ̂n
2 =
(Y⋅,n −XŴ⋅,n)T (Y⋅,n −XŴ⋅,n)

T − (K + 1)
(3.4)

where T −(K+1) is the number of degrees of freedom of the model. In practice,
however, the errors for a voxel at different time points do tend to be correlated.
A common way to address this issue is to model the serially-correlated errors
as an autoregressive (AR) process of order p.
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Hypothesis testing
To determine whether any one voxel was engaged by a task, we attempt to
reject the hypothesis that one of its regression coefficients is 0. More generally,
it is possible to test for the involvement of a linear combination of regressors by
specifying a contrast vector c and evaluating the null hypothesis of cTŴ⋅,n = 0.
To test this hypothesis, a t-statistic is first obtained by

tn =
cTŴ⋅,n√

σ̂2
nc

T (XTX)−1c
, (3.5)

which, under the null, follows a t-distribution with T − (K + 1) degrees of
freedom. The t-statistics for all voxels can then be arranged into a t-map (see
Figure 3.2a), which can be used to infer the activate voxels in several ways.
The most common inference methods are:

Voxel-level inference The simplest way to determine which voxels are ac-
tive is to threshold the t-map at a given significance level and consider
the voxels that survive the thresholding as active (see Figure 3.2b). This
type of inference provides high spatial specificity in the activations, but
requires correction for the large number of statistical tests performed
(discussed further). All the fMRI analysis presented in this thesis used
voxel-level inference.

Cluster-level inference In an alternative approach, the t-maps are first
thresholded at an arbitrary cluster-forming threshold (e.g., p = 0.001)
to define clusters of activity, i.e., contiguous regions that survive the
threshold. Clusters are then deemed to be significant if they survive a
cluster size or cluster mass threshold [43]. Although this approach has
increased sensitivity, it also results in decreases spatial specificity. For
one, small clusters cannot be deemed active by design. Furthermore,
activity cannot be ascribed to any specific set of voxels within an active
cluster.
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(a) (b)

Figure 3.2: Activation mapping. (a) t-map from emotion processing task. (b)
Activation map obtained obtain by voxel-level inference on the t-map from
(a), overlaid on subject’s T1-weighted image.

Family-wise error correction
The analysis of fMRI data requires performing a large number of statistical
tests. For example, voxel-level inference requires one test per voxel, resulting
in as many as several hundred thousand tests for a single subject. Individual
tests are performed at a significance level of α, which represents the possibility
of obtaining a false positive. However, α vastly underestimates the probability
of obtaining false positives when multiple tests are performed. Instead, it is
reasonable to consider the probability of obtaining any false positives across
all the tests performed, a measure known as the family-wise error rate (FWE
rate).

The simplest approach to control the FWE rate is applying Bonferroni
correction, where individual tests are performed at the adjusted level α/N ,
where N is the total number of tests performed. Under such correction,
there is a probability α of having one or more false positives across all of the
tests performed. However, this correction can be excessively strict, with few
voxels surviving thresholding. A less stringent approach is provided by false
discovery rate (FDR) correction [44, 45], which, when controlled at level α,
ensures that of the voxels deemed active, a faction α is expected to be false
positives. In the case that no correction is applied, a fraction α of all the tests
performed is expected to result in false positives.

Another set of approaches for controlling the FWE rate is based on Gaus-
sian random field theory [46]. These methods are based on the observation
that, for sufficiently smooth data, the number of independent observations
is substantially smaller than the number of voxels in the dataset, and thus
require less stringent correction. These methods can be applied to both voxel-
level and cluster-level inference. However, they rely on assumptions about the
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smoothness of the data, e.g., that it is constant across the brain. Furthermore,
these methods require the application of large smoothing filters in order to
obtain data of sufficient smoothness, which negatively impacts the spatial
specificity of detected activations.

Bayesian analysis of fMRI data
What has been discussed so far covers a large portion of the common practice
for fMRI analyses. However, Paper I involves a substantially different formu-
lation of the statistical aspects of fMRI analysis based on Bayesian statistics,
for which a brief introduction is in order.

The statistical perspective presented so far is frequentist, where proba-
bilities are regarded as long-term rates of occurrence of events. Bayesian
statistics is a different formalization of statistics, based on the concept of sub-
jective probabilities and the use of Bayes’ theorem to update degrees of belief
in the face of data. This updating procedure can be written as

P (θ∣Y)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Posterior probability of θ

= P (Y∣θ)P (θ)
P (Y)

∝

Likelihood function
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
P (Y∣θ)P (θ)

´¹¹¸¹¶
Prior probability of θ

, (3.6)

which expressed how our prior knowledge of parameters θ is modified by the
observation of data Y, producing an updated posterior probability distribu-
tion. The likelihood function expresses the way in which the specific set of
observed data Y would arise from a model with hypothetical parameters θ.
One disadvantage of Bayesian inference is that, with the exception of very
simple models, it is not possible to obtain a closed-form solution for the pos-
terior distribution of a model. Instead it is possible to use approximation
methods, such as variational Bayes, to obtain a closed-form approximation
of the posterior, or sampling methods, such as Markov chain Monte Carlo
(MCMC) to obtain samples from the exact posterior, which can be used to
calculate any point statistics.

The Bayesian fMRI analysis framework employed in Paper I was intro-
duced by Penny et al. [47, 48, 49, 50] and further developed by Sidén et
al. [51, 52]. One fundamental way in which it differs from the frequentist ap-
proach described previously is in its handling of the smoothness of data. While
the frequentist approach requires smoothing the data with a spatial filter of
arbitrary size, the existing smoothness of the data can instead be included in
the Bayesian model in the form of spatial priors. Hyperparameters for these
spatial priors are estimated for each regressor and AR coefficient separately,
allowing them to model different degrees of smoothness. Paper I illustrates
another advantage of this formulation, namely that the priors can be easily
modified to make the smoothing imposed by the model anatomically-adaptive.
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Diffusion Magnetic Resonance
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Diffusion magnetic resonance imaging (dMRI) is an MRI modality used to
probe and characterize the diffusive movements of spin-bearing particles in
the specimen. This, in turn, can reveal important aspects of their local envi-
ronment, e.g., the microstructure of tissues.

This chapter will introduce the main aspects of dMRI related to the pub-
lications presented in this thesis.

4.1 The diffusion process

Diffusion refers to a stochastic process by which particles move from regions
of high concentration to regions of low concentration without bulk motion. A
typical illustration of diffusion is provided by a drop of dye slowly spreading
in a glass of water. From this perspective, the diffusion process is described
by Fick’s first law, which states

J = −D∇C, (4.1)

where J is the net particle flux vector, C is the particle concentration, and D

is the diffusion coefficient. The latter characterizes the rate at which diffusion
takes place, and its value depends on various aspects of the situation, such
as the size of the diffusing molecules, the temperature, and the microstruc-
tural features of the environment. It is this dependence of D on environmental
aspects which makes it possible to infer microstructural features from its mea-
surement.

On a molecular level, the mechanism responsible for the particle flux is
self-diffusion, the random motion of particles, which takes place even in the
absence of a concentration gradient for all particles at temperatures over zero
Kelvin. Einsten showed that, under unconstrained conditions (i.e. free dif-
fusion), the displacements of a large number of particles follow a Gaussian
distribution, with the mean squared displacement, in 3-dimensional space,
being given by

⟨r2⟩ = 6Dt, (4.2)
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where t is the diffusion time.

4.2 Acquisition of dMRI

The diffusion of water molecules in a scanned sample has measurable effects
on the MRI signal. Due to the existence of inhomogeneities in the B0 field,
the random motion of particles causes them to accrue different precession
phases. This dephasing results in a slightly weaker spin echo signal than could
be expected from magnetic relaxation effects alone. As the loss of signal is
proportional to the diffusion distance, it can be used to measure D.

The diffusion-weighting of the signal can be controlled and emphasized by
the use of magnetic field gradients. This is the basis of the pulsed gradient
spin echo (PGSE) sequence introduced by Stejskal and Tanner [10], which is
the basis of most modern dMRI sequences in common usage.

In this sequence, the initial RF excitation pulse is followed by two brief
gradient pulses of duration δ (encoding time) separated by a time ∆ (diffusion
time), and with a 180○ RF pulse applied between them. The first of these
gradient pulses induces a position-dependent phase change on the particles,
which is proportional to q = γδG, where G is the magnitude of the magnetic
field gradient. Afterwards, the 180○ RF pulse flips the sign of the first phase
change, after which the second pulse applies an equal phase change to that
of the first gradient. If the particles remained stationary, the phase changes
from both gradients would cancel out. However, given their random motion
and the location-dependence of the phase changes from the gradients, the
degree to which the phase changes are canceled out becomes a function of the
distance traveled by the particles in the direction in which the gradients were
applied.

When considering the signal produced by this sequence, it is useful to focus
on the effects of diffusion-weighting and disregard the effects of relaxation.
To that end, we can consider the MR signal attenuation E(q) = S(q)/S(0),
where S(q) is the measured signal and S(0) refers to the signal acquired in
the absence of diffusion-encoding gradients. For the case of free diffusion, this
signal becomes

E(q) = e−q
2D(∆−δ/3) = e−bD, (4.3)

where b = q2(∆ − δ/3) = (γδG)2(∆ − δ/3) is the b-value, a metric quantifying
the degree of diffusion sensitization imposed by the sequence.

In practice, most water molecules are found in a complex environment,
where they are hindered by cells and other molecules. Because of this, the
assumption of free diffusion rarely applies, with the true diffusion distances
of particles being smaller than what would be expected. Consequently, it
is common to specify that the quantity generally measured by dMRI is the
apparent diffusion coefficient (ADC) [53], which is lower than the free diffusion
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coefficient D, and is given by

ADC = − log(E(q))
b

. (4.4)

4.3 Reconstruction models

As has been discussed so far, MRI can be used to measure the diffusivity of wa-
ter molecules in tissue. The orientation of the measurement is the same as that
of the diffusion-encoding gradients, while the degree of diffusion-weighting can
be controlled by setting the b-value. Using these tools, there are multiple mod-
els for characterizing the diffusion properties of tissue, which differ in their
complexity, the precision of the description they provide, and the amount and
type of data they require.

For regions of isotropic diffusion, such as the brain gray matter, a single
measurement of ADC in any direction may provide sufficient characterization.
However, for the study of anisotropic regions, where the measured diffusivity
depends on the orientation along which it is being measured, more complex
models are necessary to provide a full description. This is the case for brain
white matter, composed of long axonal fiber bundles which hinder the diffusion
of water molecules across their orientation more than they do along their
orientation. This makes dMRI useful for measuring the orientation of white
matter fibers.

Diffusion tensor imaging
One simple way to model anisotropic diffusion is by retaining the Gaussian
diffusion shape, but introducing a matrix for representing diffusivity, known
as the diffusion tensor, that allows the distribution to extend unevenly in 3
dimensions. Adaptation of this to dMRI has led to diffusion tensor imaging
(DTI) [54, 55]. The diffusion tensor D is a real, symmetric 3×3 matrix written
as

D =
⎡⎢⎢⎢⎢⎢⎣

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤⎥⎥⎥⎥⎥⎦
, (4.5)

whose diagonal elements represent the measured diffusivities along the x-, y-
and z-axes, while the off-diagonal elements are related to the covariance of
displacements along different axes.

In order to derive the most information from the diffusion tensor, it is
useful to take its eigendecomposition. Its eigenvectors Q = [e1,e2,e3] and
eigenvalues λ = [λ1, λ2, λ3] can be used to represent the diffusion tensor as an
ellipsoid oriented in 3-dimensional space, which provides a visual description
of the diffusion process. Furthermore, the eigenvalues can be used to produce
some of the most common scalar metrics used to characterize the diffusion

27



4. Diffusion Magnetic Resonance Imaging

process. The most common of these are the mean diffusivity (MD) and the
fractional anisotropy (FA) [56], given by

MD = ⟨λ⟩ = λ1 + λ2 + λ3

3
=
Dxx +Dyy +Dzz

3
, (4.6)

FA =
√

3

2

√
(λ1 − ⟨λ⟩)2 + (λ2 − ⟨λ⟩)2 + (λ3 − ⟨λ⟩)2√

λ2
1 + λ2

2 + λ2
3

. (4.7)

The MD provides an orientation-independent estimate of the overall diffusivity
from a tissue, and has been shown to be clinically relevant, for example, for the
detection of ischemic stroke lesions [57]. The FA index measures the degree to
which the diffusion tensor differs from an isotropic sphere. Among its clinical
uses are the quantification of white matter integrity.

Although DTI provides valuable insights into tissue microstructure, its
underlying assumptions limit it to recovering a single diffusion peak for each
voxel, causing it to fail in voxels containing more complex fiber configura-
tions, such as crossing or kissing fibers. The next sections will introduce more
complex models capable of representing such fiber configurations.

Nonparametric reconstruction methods
In order to move into more complex representations of the diffusion process
taking place in a voxel, it is useful to consider the ensemble average propagator
p(r,∆), a probability distribution describing the spatial spreading pattern of
water molecules during the diffusion time ∆. Reconstruction models attempt
to estimate the shape of this distribution, relying on modeling assumptions
to different extents. DTI, for example, assumes that the propagator is a 3-
dimensional Gaussian distribution, which prevents it from giving useful results
in regions of multiple fiber populations. DTI can be generalized by assuming
that p at each voxel can be represented as a combination of a fixed number
of Gaussian components [58].

In contrast with these approaches, a number of nonparametric reconstruc-
tion methods have been proposed, which attempt to estimate the distribution
p directly with no or minimal modeling assumptions. These approaches gen-
erally represent the diffusion in each voxel as a spherical function known as an
orientation distribution function (ODF), which they try to estimate. The var-
ious methods differ in the type of ODF that they reconstruct, of which there
are two types. Diffusion ODFs (dODFs) are an estimate of the propagator p,
representing the degree to which water molecules diffuse in various directions.
In contrast, fiber ODFs (fODFs) provide an estimate of the underlying fiber
populations in each voxel. Although these represent different formalism, the
most immediately apparent difference between both types of ODFs is that,
although they are broadly similar, dODFs are comparatively smoother than
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fODFs. Figure 4.1 shows a comparison between the diffusion tensor, dODFs,
and fODFs.

Figure 4.1: Comparison of various reconstruction methods. Left to right:
diffusion tensor [54], dODF from constant solid angle QBI [59], and fODF
from CSD [60]. Each row represents the same voxel. DTI is sufficient to
represent single fiber populations, but more advanced methods are needed for
voxels with multiple fiber populations.

What follows is a brief high-level description of some popular nonparamet-
ric reconstruction methods.

Diffusion spectrum imaging In diffusion spectrum imaging (DSI) [61, 62],
the propagator p is estimated directly by performing an extensive Carte-
sian 3-dimensional sampling of q = γδGg, where g represents the orien-
tation along which the diffusion-encoding gradients are applied. Taking
the Fourier transform of this sampling yields a discrete 3-dimensional
estimate of the propagator p. The value of the dODF along direction r

is then obtained by radially integrating the estimated p from the origin
along r.
The major disadvantage of DSI is that its Cartesian sampling scheme
requires a very large number of measurements of q, frequently exceeding
500.
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Q-ball imaging Q-ball imaging (QBI) [63, 64] provides an alternative ap-
proach for measuring the dODF using more conventional spherical shell
sampling, albeit with high density. Instead of estimating p using the
Fourier transform, QBI produces samples of the dODF directly by ap-
plying the Funk-Radon transform on the spherical measurements of q.
QBI has reduced acquisition and computation requirements in compari-
son to DSI, but results in some loss of accuracy in the estimated dODF.

Generalized q-sampling imaging Unlike the previous methods, general-
ized q-sampling imaging (GQI) [65] estimates a spin density function
(SDF) directly from the q-space samples, and can be applied on data
using either a Cartesian or a spherical shell sampling. The SDF is the
product of the dODF and the spin density, from which the dODF can
be obtained by normalization.

Spherical deconvolution Spherical deconvolution (SD) methods [66, 67]
attempt to estimate the fODF directly by modeling the measured signal
as the expected response for a single fiber population (the fiber response
function) convolved with an ideal fODF representing the fiber popula-
tions present in a voxel. An estimate of the fODF is then obtained by
deconvolution of measured signal and the fiber response function.
Although these methods excel at resolving peaks, they are quite sus-
ceptible to noise, resulting in the detection of spurious peaks. Con-
strained spherical deconvolution (CSD) [60] is a popular enhancement
which imposes constraints to improve the conditioning of the deconvo-
lution problem, with improvements to the angular resolution and noise
susceptibility.

Spherical harmonics
Spherical harmonics (SH) are a set of orthonormal functions defined on the
surface of a sphere. They provide a convenient and compact way to represent
arbitrary spherical functions, and as such are commonly used to express ODFs.

The SH of order l and index m is given by

Yl,m(θ, ϕ) =

¿
ÁÁÀ(2l + 1)

4π

(l −m)!
(l +m)!

Pl,m(cos θ)eimθ, (4.8)

where Pl,m is an l-th order, m-th degree associated Legendre polynomial. A
complex function defined over the surface of the sphere can be written as a
weighted sum of SH functions as

f(θ, ϕ) =
∞
∑
l=0

l

∑
m=−1

cl,mYl,m, (4.9)
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where cl,m is a complex number. Truncation of the series at a finite lmax =
L gives a low-frequency approximation of the function, akin to a truncated
Fourier transform. L = 8 is commonly used for representing ODFs, resulting
in 2(L+ 1)2 unique coefficients. For real-valued functions, this representation
can be simplified, as c∗l,m = (−1)mcl,−m, requiring the calculation of only (L+
1)2 unique coefficients. For antipodally-symmetric functions, such as ODFs,
this can be further simplified, as cl,m = 0 for odd values of l, requiring only
1
2
(L + 1)(L + 2) unique coefficients (45 for L = 8).

Descoteaux et al. [68] employed a modified spherical harmonic basis that
incorporates the antipodal symmetry, and uses only a single index j(l,m) =
(l2 + l + 2)/2 +m. This symmetric, real and orthonormal basis was the one
used to represent fODFs in Paper IV.

4.4 Tractography

One of the main clinical and research uses of dMRI is the mapping of axonal
connections in the brain, through a process known as tractography [69, 70,
71]. The fundamental idea behind tractography is that, to the extent that
the local diffusion orientation information is a reflection of the orientation of
underlying axonal fiber bundles, it can be iteratively “stepped through” in
order to map global brain pathways.

Although a large variety of algorithms have been proposed, tractography
approaches can be broadly placed into two categories:

Deterministic tractography Deterministic tractography is concerned with
estimating individual connections in the brain, called streamlines. Start-
ing from a specified seed point somewhere in the brain, the streamline
is grown by iteratively sampling the peak diffusion direction and taking
a small step in that direction, until a set of stopping criteria are met
(see Figure 4.2).
Imporantly, as the grid sampling pattern for which diffusion data is avail-
able is not anatomically representative of the axonal connections that
are being mapped, the streamline tracking process is done in continuous
space. This requires that interpolation be used in order to sample the
peak diffusion direction in each iteration.

Probabilistic tractography The process of fiber tracking is subject to mul-
tiple sources of uncertainty due to the effects of noise and limited res-
olution. Furthermore, these errors propagate and accumulate over it-
erations, which can lead to increasing uncertainty as the tracking pro-
gresses. Probabilistic tractography approaches account for this uncer-
tainty by considering a distribution of directions which streamlines can
follow from any given position. Such methods allow the estimation of
the uncertainty associated with alternative streamline paths.
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Although tractography faces challenges with regards to its reliability and
accuracy [72], its capacity to identify axonal fiber bundles in vivo has no
counterpart, which has lead to its broad clinical use for, among other things,
preoperative planning for brain tumors and other conditions [73].

Figure 4.2: Streamlines obtained through deterministic tractography, with
seeding of the corpus callosum.
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Graph Signal Processing

Graphs are mathematical constructs that allow the definition of domains with
arbitrary geometry and connectedness. As a tool for investigating the brain,
graphs constitute a natural setting for representing and studying the struc-
tural and functional connectivity of brain regions. Furthermore, the rich
graph-theoretical literature has provided a multitude of perspectives and met-
rics for characterizing and gaining insight from brain graphs [74].

The recently-developed field of graph signal processing (GSP) provides
an alternative approach for the study of the brain. Rather than the graph
being the main object of study, in GSP graphs provide the substrate on which
signals can be defined and studied. Thanks to its continued development,
GSP is largely analogous to traditional signal processing in regular domains,
with operations such as the Fourier transform, spectral filtering, and wavelet
decomposition of signals being readily available.

Within this thesis, GSP is the fundamental mathematical tool underlying
the methods developed in Paper II. This chapter will provides a brief introduc-
tion to the GSP principles relevant to that work. The presentation is based on
Paper II and our previous works [75, 76]. For the interested reader, a number
of introductory and advanced treatments of this topic are available [77, 78].

5.1 Introduction to graphs

A graph is a discrete mathematical object consisting of a set of vertices and
a set of edges connecting pairs of vertices. Together, these elements can be
used to describe a set of objects and their relationships to each other.

Graphs can be classified on the basis of the types of connections that they
allow between vertices. Simple graphs are those which allow only a single
edge to exist between any pair of vertices, as well as disallowing loops, that
is, edges connecting a vertex to itself. In weighted graphs, each edge has an
associated weight specifying the degree of relatedness or connectedness it rep-
resents, whereas unweighted graphs do not allow specifying the strength of
connections. Regarding the orientation of connections, graphs can be undi-
rected when connections between vertices are symmetric, or directed in case
connections can be asymmetric.
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The ensuing discussion of GSP is focused specifically on simple, weighted,
undirected graphs (see Figure 5.1). Formally, we define a simple, weighted,
undirected graph G = (V,E ,A) as a set V of Nv vertices, a set E of edges
connecting pairs (i, j) of vertices, and an adjacency matrix A, whose nonzero
elements ai,j represent the weights of edges (i, j) ∈ E . Given that the graph
is undirected, ai,j = aj,i, i.e., A is symmetric.

Figure 5.1: Example of weighted, undirected graph, with corresponding adja-
cency matrix A and degree matrix D.

Graphs provide a versatile domain on which to define signals. Common
regular domains such as time-series or images can be represented as simple
cyclic or lattice graphs, respectively. However, the same graph formalism is
equally capable of representing irregular and abstract domains of arbitrary
complexity.

5.2 Graph signals

In order to perform any kind of signal processing on graphs it is first necessary
to bring the concept of signal to the graph domain. Informally, graph signals
can be seen as vectors of data defined on a graph vertex set V. Formally, for a
given graph G = (V,E ,A), real graph signals are defined as elements of 
2(G),
denoting the Hilbert space of all square-summable vectors f ∈ RNv with inner
product

⟨f1, f2⟩ =
Nv

∑
n=1

f1[n]f2[n], ∀f1, f2 ∈ 
2(G) (5.1)

and norm
∥f∥22 = ⟨f , f⟩ =

Nv

∑
n=1
∣f[n]∣2 <∞, ∀f ∈ 
2(G). (5.2)
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A graph signal f ∶ V → R is a vector whose n-th component is the value of the
signal at the n-th vertex of the graph. Although in this work we focus on real
signals, complex graph signals can be similarly defined in this way.

5.3 Graph spectral domain

We can define a diagonal degree matrix D, with elements di,i = ∑j ai,j . The
i-th diagonal element of D is the degree of the i-th vertex of G, that is, the
sum of all edge weights associated to it.

The adjacency and degree matrices of G can be used to define a desired
Laplacian matrix of G, which can be defined in either combinatorial form L

or normalized form L as [79]:

L =D −A, (5.3)

L =D−1/2LD−1/2 = I −D−1/2AD−1/2. (5.4)

Given that both definitions of the Laplacian matrix are symmetric and positive
semi-definite, their eigendecomposition leads to a set of real non-negative
eigenvalues:

Λ(G) = {0 = λ1 ≤ λ2 ≤ ⋯ ≤ λNv

def= λmax}. (5.5)

The associated eigenvectors {ul}Nv

l=1 can be complex, but a real set can always
be found, given that the Laplacian matrices are real and symmetric. The
eigenvectors form an orthonormal basis, i.e., ⟨ui,uj⟩ = δi,j , and span the
ℓ2(G) space.

The set Λ(G) represents the spectrum of the graph G. The smallest eigen-
value is always 0, and the multiplicity of zeros matches the number of con-
nected components of the graph. The maximum eigenvalue is unbounded for
L, whereas for L it is always ≤ 2. The spectrum of a graph shows similarities
to frequency in the classical domain, with the eigenvectors associated with
higher eigenvalues being less smooth (i.e., more variable) than those of lower
eigenvalues [80]. However, as opposed to the complex exponentials in the
classical domain, which constitute the basis of the Fourier domain, the Lapla-
cian eigenvectors are not necessarily delocalized, especially those associated
to higher eigenvalues. Figure 5.2 provides an illustration of the relationship
between graph Laplacian eigenvalues and frequency.
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Figure 5.2: Axial slices of eigenvectors corresponding to first six Laplacian
eigenvalues of a white matter graph (left to right and top to bottom). Red
and blue correspond to positive and negative values, respectively. As can
be seen, higher eigenvalues are related to higher spatial frequencies. Image
reproduced from Abramian and Larsson [75].

Graph Fourier transform
The classical continuous Fourier transform is defined in terms of complex
exponentials eiωx, which, in turn, represent the eigenfunctions of the one-
dimensional Laplacian operator:

d2

dx2
eiωx = −ω2eiωx. (5.6)

The inverse Fourier transform can therefore be seen as the expansion of a
continuous signal f in terms of the eigenfunctions of the Laplacian operator:

f(x) = 1

2π
∫ f̂ (ω) eiωxdω. (5.7)

In analogy to this, Hammond et al. [81] defined the graph Fourier trans-
form as the expansion of a graph signal in terms of the eigenvectors of the
graph Laplacian. For any graph signal f ∈ 
2(G), its graph Fourier transformed
representation, denoted f̂ ∈ 
2(G), is defined as

f̂[l] = F{f} = ⟨ul, f⟩ =
Nv

∑
n=1

f[n]ul[n], (5.8)
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with the corresponding inverse transform given by

f[n] = F−1{f̂} =
Nv

∑
l=1

f̂[l]ul[n]. (5.9)

Using this definition for the graph Fourier transform, it can be shown that
the Parseval relation holds [81]:

⟨f1, f2⟩ = ⟨f̂1, f̂2⟩, ∀f1, f2 ∈ ℓ2(G). (5.10)

Continuous spectral kernels
Having established the graph spectral domain and the graph Fourier trans-
form, it is possible to extend some general signal processing procedures from
the classical Euclidean setting to the graph setting. In particular, we are
interested in filtering graph signals with a filter defined by its profile in the
graph spectrum. A convenient way of defining such a filter is by sampling a
continuous function K ∶ [0, λmax] → R+, which we denote as a spectral graph
kernel:

k̂[l] = K(λl), l = 1, . . . ,Nv. (5.11)

Signal processing on graphs
For any two graph signals f1, f2 ∈ RNv , their convolution product is defined as

(f1 ∗ f2) [n]
def=

Nv

∑
l=1

f̂1[l]f̂2[l]ul[n]

= F−1{f̂1[l]f̂2[l]}. (5.12)

As can be seen, the convolution operation in the vertex domain is equiva-
lent to multiplication in the spectral domain, just like in conventional signal
processing. The filtering of a graph signal is then defined based on this op-
eration. Given a graph signal f ∈ ℓ2(G) and a spectral graph kernel k̂, the
filtered signal (Fkf) is obtained as

(Fkf) [n]
def= (k ∗ f) [n]

=
Nv

∑
l=1

k̂[l]f̂[l]ul[n]. (5.13)

The impulse response associated with a given spectral kernel k̂ can be
obtained, as in conventional signal processing, by filtering an impulse signal
δ. However, this impulse response is not shift-invariant, and varies depending
on the vertex m on which the impulse is localized:

δ̂m[l] = ⟨ul,δm⟩ = ul[m], (5.14)
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ψK,m[n]
def= (Fkδm) [n]

=
Nv

∑
l=1

k̂[l]δ̂m[l]ul[n]

=
Nv

∑
l=1

k̂[l]ul[m]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ψ̂K,m

ul[n]. (5.15)

where ψK,m denotes the impulse response, also commonly referred to as an
atom, associated to spectral kernel k̂ and localized at vertex m. Therefore,
for a given spectral kernel there are Nv possible atoms, produced by filtering
an impulse localized on each vertex of the graph.

Finally, it can be shown that filtering a signal f with spectral kernel k̂ is
equivalent to calculating the inner product between the signal and the atoms
of the kernel:

(Fkf) [m] =
Nv

∑
l=1

k̂[l]f̂[l]ul[m]

=
Nv

∑
l=1
ψ̂K,m[l]f̂[l]

= ⟨ψ̂K,m, f̂⟩
(5.10)= ⟨ψK,m, f⟩. (5.16)

Polynomial kernel approximation
Both the filtering of graph signals and their decomposition onto sets of spec-
tral kernels are operations realized through (5.16). However, this equation
depends on the availability of the full set of atoms for every kernel, which
in turn requires the calculation of all the eigenvectors of the Laplacian ma-
trix. Such an approach becomes infeasible for larger graphs. Instead, a fast
approximation algorithm can be used.

Let P be a polynomial approximation of kernel K. For a graph signal f ,
its filtering with kernel K, or equivalently, its decomposition coefficients when
projected on the atoms of K, can be approximated using P as

c̃K =
Nv

∑
l=1
P(λl)f̂[l]ul (5.17)

= P(L)
Nv

∑
l=1

f̂[l]ul (5.18)

= P(L)f , (5.19)

where c̃K ∈ ℓ2(G) with c̃K[m] = cK,m. In (5.18) we use the fact that for any
polynomial P

Lul = λlul ⇒ P(L)ul = P(λl)ul. (5.20)
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This approximation has the benefit that it does not require the calculation of
the Laplacian eigenvectors. Instead, a polynomial of the Laplacian matrix is
applied to the signal, which can be efficiently implemented with matrix-vector
multiplication. In Hammond et al. [81], a truncated Chebyshev expansion
was used as it has the benefit of approximating a minimax polynomial. This
minimizes an upper bound on the approximation error in the coefficients and
is the method we used in Paper II.
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Deep Learning

In the last few decades, machine learning methods, and in particular the subset
commonly referred to as deep learning, have exploded in popularity in all fields
for their combination of relative ease of use with remarkable versatility and
performance. Medical imaging is no exception, with deep learning gaining
traction for many different tasks ranging from disease classification and organ
segmentation to view synthesis for surgical recording [82].

It is not surprising that deep learning will constitute a substantial ele-
ment in a work concerned with modern approaches to medical imaging. This
chapter will introduce the deep learning aspects relevant to Papers IV and
V. For an in-depth treatment of deep learning, several reference texts are
available [83, 84].

6.1 Machine learning

Before discussing neural networks, it is useful to introduce some general ma-
chine learning concepts. Machine learning refers to a set of model-based
optimization methods that learn to perform tasks in a data-driven way, that
is, the model parameters are iteratively optimized in a training process to
maximize the task performance of the model on a given set of data.

A machine learning model can generally be seen as a function that trans-
forms a set of inputs x into a set of outputs y on the basis of some parame-
ters θ:

y = f(x,θ). (6.1)

The learning aspect consists in finding the set of parameters θ that best fulfill
the task of the model. While machine learning can be applied to a wealth
of different tasks, we will narrowly focus on the subset of supervised learning
tasks. This describes task where for every training input x there is a known
target output t that the network is trained to generate. This encompasses
common tasks such as classification and regression, among many others.
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Loss functions
Machine learning relies on various optimization strategies to arrive at the
optimal parameters for a model. For this to be possible, it is first necessary
to formalize the goals of the machine learning model and express them in
mathematical terms. This is done with a loss function L, which provides a
quantitative expression for the “badness” of fit of a given model. In the case of
supervised learning, the loss function usually expresses the degree to which the
model outputs y differ from the target outputs t. Optimal model parameters
are then obtained by minimizing the loss function on a set of training data:

θ̃ = argmin
θ

L(y, t) = argmin
θ

L(f(x,θ), t). (6.2)

A trained model can then be applied to make predictions on data outside of
its training set.

Optimizers
Non-trivial machine learning models are generally complex and nonlinear,
requiring numerical methods to arrive at optimal parameters. In the context
of neural networks, the algorithm responsible for minimizing the loss function
is called the optimizer. The fundamental optimizer relevant to neural networks
is gradient descent, a greedy algorithm which consists on iteratively generating
model outputs for the training data, calculating their loss, and applying a
small update on the model parameters in the direction of the negative gradient
of the loss with respect to the parameters:

y(e) = f (x,θ(e)) , (6.3)

θ(e+1) = θ(e) − α
dL (y(e), t)

dθ(e)
, (6.4)

where e is the iteration index, known as the current epoch, and α represents
the learning rate, specifying the size of the parameter update.

In gradient descent, the loss is evaluated on all the training data at once.
Stochastic gradient descent (SGD) [85] is an essential development of this
method, where gradient updates are calculated on portions of the data, known
as batches, with a full epoch being completed when all the training data has
been used once. This modification presents several distinct advantages over
ordinary gradient descent. First, as parameters are updated multiple times
per epoch, training is faster and more computationally-efficient. Further-
more, although SGD parameter updates are not globally-optimal for the whole
dataset, a certain degree of noise in the updates can be beneficial for avoiding
suboptimal local minima and exploring a wider region of the parameter space.
Lastly, computational limitations (e.g., limited CPU or GPU memory) may
preclude calculating gradient updates from an entire dataset at once, making
the use of batches a necessity in many cases.
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The SGD algorithm forms the basis of a number of modern optimizers
with better stability and convergence properties. Among the most significant
of these are RMSProp [86] and Adam [87].

Model generalization
Machine learning models are trained by minimizing the loss on a training
dataset. However, training data performance is not necessarily a good esti-
mate of generalization performance, that is, the performance of the model on
new, yet unseen data. One of the main reasons for this is overfitting, which
describes a situation when models learn to reproduce minute aspects of the
training data that are not representative of all similar data. Overfitting is gen-
erally caused by an excess of model parameters with respect to the number of
training datapoints available. Regularization describes the set of approaches
aimed at minimizing overfitting.

The simplest strategy for measuring the generalization performance of
machine learning models is based on dividing the available deta into training,
validation and test sets. Training data is used to calculate parameter updates,
but the model performance on validation data is also periodically evaluated
during training, giving an unbiased estimate of generalization performance.
Validation data is then used as the primary measure of model performance,
and to determine the optimal time to stop training.

It is commonly desirable to compare the performance of multiple mod-
els. One common case is the search for optimal model hyperparameters, non-
learnable model parameters that need to be set before training and can have a
substantial performance effect (e.g., the learning rate of the optimizer). When
used for model comparison, validation performance itself becomes biased, as
it favors models that happen to perform well on the specific set of validation
datapoints. Because of this, after selecting a model on the basis of validation
performance, the final estimate of generalization performance is obtained by
evaluating it on test data reserved for this purpose.

6.2 Neural networks

Neural networks are a multipurpose machine learning framework in which
data is transformed by a sequence of operations, called layers. The specific
choice and arrangement of layers define the architecture of the network. Fur-
thermore, they serve as one of the primary means to categorize neural net-
works, either by their reliance on certain types of layers (e.g., dense neural
networks, convolutional neural networks), or by features of their arrangement
(e.g., recurrent neural networks are characterized by the presence of feedback
connections).

When unqualified, the term neural networks generally refers to dense
neural networks (DNNs), also known as artificial neural networks or fully-
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connected neural networks. This is the original style of neural networks,
inspired in the workings of biological neurons, and with origins in the per-
ceptron algorithm [88]. Each network layer consists of a number of artificial
neurons, each of which produces as output a linear combination of its inputs,
further subjected to a nonlinear activation function. The input features of the
model are the inputs of the first layer of neurons, with every subsequent layer
taking as inputs the outputs of the previous layer.

The output y of the operation performed by a single neuron can be ex-
pressed as

y = σ(wTx + b), (6.5)

where x is a [Ni × 1] vector of input features, w is a [Ni × 1] vector of linear
weights, b is a scalar bias, and σ is a nonlinear activation function. For a layer
of No neurons, the same can be written as

y = σ(Wx + b), (6.6)

where X is a [No ×Ni] weight matrix and b is a [No × 1] vector of biases.
Neurons in subsequent layers perform a similar operation, taking as input the
neuron outputs from the previous layer. For example, a two layer network
with output y is described by

z = σ(W(1)x + b(1)), (6.7)
y = σ(W(2)z + b(2)) (6.8)
= σ(W(2)σ(W(1)x + b(1)) + b(2)), (6.9)

where superindices represent the layer number. This network is schematically
presented in Figure 6.1. The number of neurons in a layer is referred to as its
width, while the number of layers in a network is referred to as its depth. The
weights and biases of each layer constitute the set of model parameters θ to
be optimized by training the network.
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Figure 6.1: Example of a two layer neural network. Square nodes represent
inputs, while circular nodes are neurons. Layer biases are omitted for sim-
plicity.

Activation functions
Neural networks are remarkable in that, given sufficient width [89, 90] or
depth [91], they are capable of approximating any well-behaved function.
However, these results crucially depend on the use of nonlinear activation
functions after each layer, which enable the network to learn nonlinear map-
pings. In the absence of activation functions, neural networks of any depth
will be constrained to learning linear mappings of their inputs.

There are multiple aspects involved in the choice of an activation function.
Some of the most common activation functions will be briefly described.

Sigmoid One of the early activation functions, the sigmoid has since been
phased out in favor of variations of the rectified linear unit, due to their
improved convergence properties. The sigmoid function constrains its
output to the (0,1) range, which makes it useful as an output activation
for binary classification networks.

sigmoid(x) = 1

1 + e−x
∈ (0,1). (6.10)

Hyperbolic tangent The hyperbolic tangent function has a similar shape
and properties to the sigmoid function, but gives output in the (−1,1)
range instead.

tanh(x) = ex − e−x

ex + e−x
∈ (−1,1). (6.11)

Softmax The softmax takes a vector of inputs and returns a vector of positive
elements which sums to 1. As such, it is used in the output of multi-class
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classification networks.

softmax(x) = exi

∑j e
xj
∈ (0,1). (6.12)

ReLU The rectified linear unit (ReLU) is a general purpose activation func-
tion which zeros out negative values from its input. It is arguably the
most popular activation function currently in use, as its large positive
gradients are favorable for training.

ReLU(x) =max(0, x) ∈ (0,∞). (6.13)

Leaky ReLU The use of ReLU activations can leave some network neurons
constantly operating in the negative range, where they produce no out-
put. These are known as dead neurons, as the lack of a gradient for the
negative input range of ReLU makes these neurons irrecoverable. Leaky
ReLU activations introduce a small negative gradient α for the negative
input range to prevent this problem.

LeakyReLU(x) =max(−αx,x) ∈ (−∞,∞). (6.14)

Layer types
The main learning units of a DNN are dense layers, implementing the mapping
between successive layers of neurons described in Eq. (6.6). However, there
exist additional layer types that fulfill other purposes in the network:

Dropout layers Dropout layers [92] generally follow dense layers, and ran-
domly set a fraction of their inputs to zero during training, effectively
disabling certain neurons in each training iteration. This has a regular-
izing effect on the network, forcing it not to rely too strongly on any
one set of connections.

Normalization layers Normalization layers [93, 94, 95] are generally placed
after a linear transformation but before the activation function in a dense
layer. These layers have the effect of replacing the mean and standard
deviation of a set of data with learned values β and γ, respectively.
Thus, they update the data range to a more useful one learned during
training, which increases the speed of training convergence and improves
gradient flow (discussed further).

Although many of these layers were introduced in the context of convolutional
neural networks (discussed further), they can equally be applied to DNNs.
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Practical training aspects
Neural networks are trained using iterative optimizers in accordance to what
was previously discussed. However, several of their unique aspects have impor-
tant consequences for training performance, driving many practical decisions
of practitioners as well as new developments in the field.

Each training iteration begins by sending training data through the net-
work to generate output, in what is known as the forward pass. It is then
necessary to calculate the gradient of the loss with respect to the network
weights, which is done using the backpropagation algorithm, so called because
the gradient flows backwards from the network output to the input. The
calculation of these gradients constitutes the backwards pass of training.

The successful backwards flow of the gradient is essential for the network
to converge to a useful solution, and generally implies achieving a usable mid-
dle ground between two undesirable situations: exploding gradients, where
excessively large gradients cause the training to diverge, and vanishing gradi-
ents, where zero or negligible gradients prevent any training from happening.
Multiple factors influence the proper flow of gradients:

• The gradient at each layer is generally proportional to the layer out-
put. Therefore, excessively large or small layer outputs can result in
exploding or vanishing gradients, respectively.

• Gradients are also affected by the activation function at each layer.
Specifically, incoming gradients are multiplied by the derivative of the
activation function of a given layer. This can cause the gradients to
become nullified, as in the case of sigmoidal functions with large positive
or negative inputs.

• As the gradient flows backwards, exploding or vanishing gradient effects
are compounded for each successive layer. This constitutes a limiting
factor on the practical depth of a network, beyond which training be-
comes unstable or stops happening.

In practice, these issues are addressed by a combination of several inter-
acting factors:

Activation function As was discussed previously, ReLU and its variants
have largely replaced sigmoidal functions as the standard due to their
improved gradient flow properties.

Data normalization The specific range of values that input data takes de-
termines the size of layer activation, impacting gradient flow. It is com-
mon to normalize the input data to have zero mean and unit standard
deviation, or conversely to shift it to a fixed small range, such as [−1,1].
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Weight initialization Prior to training, network weights are initialized to
random values. As the output of a layer is a function of the inner
product of input and weights, the optimal initialization scheme depends
on the range of the input data, the number of neurons, and the chosen
activation function [96, 97].

Network architecture Certain layers (e.g., normalization layers) and net-
work architectures (e.g., residual networks) are more conducive to the
flow of gradients.

It can be said that deep learning, the development of ever deeper neural
networks capable of fulfilling increasingly complex tasks, has largely been
enabled by the progressive development of methods for managing the flow of
gradients throughout the full length of a network.

6.3 Convolutional neural networks

Although theoretically capable of learning any well-behaved function, prac-
tical considerations make DNNs unsuited to many tasks. For a wide variety
of image- and signal-based tasks, convolutional neural networks (CNNs) have
been the dominant paradigm for more than two decades. As their name
suggests, rather than linearly combining all inputs, CNNs are fundamentally
based on the convolution operation, which is given by

y[n] = (x ∗ h)[n] =∑
m

x[m]h[n −m] (6.15)

for 1-dimensional signal x and convolutional kernel h, and can be extended
to any number of dimensions. Convolutional kernels are also referred to as
filters.

CNNs can be seen as a subset of DNNs, where neurons are replaced by
learned filters. This offers distinct advantages for image and other signal data:

• Convolutional kernels have limited spatial extents, and as such, their
output is based on a limited set of points from their input. Unlike the
full weight matrix W of DNNs, CNNs have very sparse weight matrices,
which makes them more parameter-efficient. Furthermore, the num-
ber of parameters is specified by the number and size of filters, and is
therefore decoupled from the size of the input image.

• Filters are applied by sliding them over the extent of the input image,
giving as output a feature map. Thus, unlike the distinct rows of the
W matrix of DNNs, in CNNs the rows are identical but shifted, as
outputs at different places are based on different pixels but the same
filter weights. This is known as weight sharing, and is a further way in
which CNNs are more parameter-efficient than DNNs.
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• Learned filter kernels can perform ordinary image-processing operations,
customized to the particular needs of the task.

Spatial context in CNNs
As the output of a convolution is based on a limited set of input data, it is
only based on a limited spatial context, which can prevent the network from
making determinations based on distant regions of an image. For a given
point of a layer output, receptive field describes the region of the input data
on which it is based. The receptive field increases as a function of layer depth,
as every layer output is based on a region of the previous layers’ output.

The receptive field of a CNN can also be increased by forcibly decreasing
the size of a feature map, causing subsequent convolutions to cover a larger
area of the input. This is can be done by the use of pooling layers, which
replace each [N ×N] group of pixels with a summary metric of it (e.g., max-
imum, average), or by the use of strided convolutions.

It is often also necessary to increase the size of feature maps, such as for
encoder-decoder architectures or in the generation of images from small latent
vectors (discussed further). This is done by the use of upsampling convolution
layers, such as transposed convolution and resize-convolution.

CNN architectures
Like DNNs, CNNs are primarily composed of a set of convolutional layers
arranged in sequence, each of which is made of a number of learned filters.
Each input image is convolved with each filter in a layer, producing feature
maps as output. The set of feature maps produced by filters from one layer
constitutes the input for the next layers’ filters.

CNN filters are generally very small, with sizes of [3× 3] being most com-
mon. As such, they act as local feature detectors, with early layers detecting
basic features such as lines, edges and corners in various orientations. Sub-
sequent layers combine these simple features into increasingly complex and
high level features. In this way, features are learned in a hierarchical pattern.

For certain tasks like classification, a common solution uses a stack of
convolutional layers as a feature extractor, with several dense layers performing
the classification on the basis of the obtained features (see Figure 6.2). On
the other hand, tasks where the output takes the form of image data, as the
input, can often be performed with fully-convolutional networks, i.e., without
the use of dense layers.

Encoders and decoders are common elements in CNN architectures, with
the former progressively reducing the size of feature maps and the latter in-
creasing them. Both can be combined in the encoder-decoder architecture,
which features a spatial bottleneck in the middle that leads to a very com-
pressed representation of the input data. The U-Net architecture [98] is a
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very successful example of this architecture, originally developed for medical
image segmentation and since then applied to multiple image tasks.

Feature extraction
Classification

Flatten

Convolution Pooling

Convolution Pooling

Figure 6.2: Example CNN architecture for image classification. The network
consists of a convolutional portion for feature extraction, followed by a set of
dense layers for classification.

6.4 Generative adversarial networks

Generative adversarial networks (GANs) are a type of deep learning model
used to generate realistic images in the style of a provided dataset. Specifically,
during training the model learns the distribution of the training data. The
trained model can then generate new samples from this distribution using
random seed vectors as input. In contrast with earlier generative models, such
as variational autoencoders, GANs are capable of generating highly realistic
images. Figure 6.3 presents synthetic brain images generated with a 3D GAN.

The fundamental idea of GANs resides in their novel loss function, which
requires training two separate networks: a generator, G, responsible for cre-
ating synthetic images from noise seeds, and a discriminator, D, which judges
the realism of images. The two networks are trained simultaneously in an
adversarial manner, where the discriminator judges the images generated by
the generator, and the generator updates its weight based on this judgment.
For image data, both the generator and discriminator are CNNs.

GANs were originally introduced in 2014 by Goodfellow et al. [99]. Since
then the fundamental idea has been developed further and extended to more
tasks. Conditional GANs [100] were proposed in the same year, where models
learn conditional distributions of data, and can be sampled to generate data
of specific classes. These, in turn, led to the development image-to-image
GANs.
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(a) (b)

Figure 6.3: Synthetic T1-weighted brain volumes generated with a 3D GAN.
(a) Axial slices from a single synthetic volume. (b) Single axial slice from
multiple synthetic volumes.

Image-to-image GANs
One of the most exciting developments in the fields of GANs is the devel-
opment of image-to-image models, which enable the “translation” of images
between different domains or representations. Although this is a somewhat
abstract idea, we can consider cases where a piece of data can be represented
in two different domains {A,B} between which there exists some mapping.
For example, the same scene x can be represented as a color image, xA, or a
grayscale image, xB . An image-to-image GAN can be trained to convert data
between these domains, i.e., GA→B(xA) = x̂B . In practice, image-to-image
GANs can be trained to perform difficult and underdetermined tasks, such
as colorization and inpainting. Two particularly influential models will be
highlighted:

Pix2Pix Pix2Pix [101] is a paired image-to-image translation GAN. As it
uses supervised loss terms, it requires the training data to be paired,
that is, the same data needs to be expressed in both domains. Once
trained, it can convert data from one domain to another.

CycleGAN In contrast to Pix2Pix, CycleGAN [102] is an unpaired image-
to-image translation network, that is, it requires training data from both
domains, but it does not require it to be the same data. This is widely
expands its range of applicability, as there are numerous applications
where paired data is effectively impossible to obtain. For example, it can
be used to translate pictures between the styles of various painters, a sce-
nario which, for a paired model, would have required multiple painters
to have painted identical scenes in their own style.
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In order to achieve unpaired translation between domains, CycleGAN
relies on two sets of image-translation GANs: one from domain A to do-
main B, and one in the opposite direction. Having translation networks
in both directions, CycleGAN incorporates a cycle-consistency loss that
ensures that the transformations given by both networks are invertible:

GA→B(GB→A(xA)) ≈ xA, (6.16)
GB→A(GA→B(xB)) ≈ xB . (6.17)

Image-to-image GANs have found multiple applications in medical imag-
ing, such as translating between image modalities (e.g., CT to MRI or vice
versa, conversion between MRI modalities, see Figure 6.4), generating high-
resolution images from low-resolution images, correcting image distortions,
and performing segmentation [103].

Figure 6.4: Image-to-image translation between T1- and T2-weighted MRI im-
ages using CycleGAN, which simultaneously learns to translate both domains
into each other. Top: T1 to T2 translation. Bottom: T2 to T1 translation.
Left: original image. Center: translated image. Right: cycle consistency im-
age, obtained by translating the central image back to its original domain.
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Summary of papers

This chapter provides a brief summary of the papers included in this thesis.

7.1 Paper I - Anatomically informed Bayesian spatial
priors for fMRI analysis

In this paper we propose a modification to the Bayesian fMRI data analy-
sis framework developed by Penny et al. [36, 47, 48] and refined by Sidén et
al. [51]. The existing model uses isotropic spatial priors, where every voxel is
considered to be equally related to all its neighbors, causing fMRI signal to
be averaged across anatomical boundaries such as sulci. We propose to make
these priors anatomically adaptive by incorporating anatomical information
from T1-weighted images. We estimate the local orientation of anatomical
structures using structure tensor methods, and incorporate it into two pro-
posed 2-dimensional adaptive priors which prevent the averaging of signal
across anatomical boundaries. The priors are evaluated on data from a single
subject from the Human Connectome Project (HCP), with the resulting re-
gressor coefficients and posterior probability maps more closely following the
anatomical features of the brain.

7.2 Paper II - Diffusion-informed spatial smoothing of
fMRI data in white matter using spectral graph
filters

As was discussed in Chapter 3, activation mapping in white matter is a con-
troversial topic, and in order to be successful may require the development of
tailored methods [18]. It has been observed that the correlation structure of
the BOLD signal in white matter is anisotropic, and its orientation follows
that of the underlying axonal fiber bundles [22, 23, 24]. This fact suggests that
isotropic Gaussian smoothing is suboptimal for activation mapping in white
matter. In this paper, we propose a diffusion-informed, GSP-based spatial
smoothing approach that accounts for this correlation structure. We specify
a dense, voxel-level graph representation of brain white matter. The connec-
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tions between adjacent voxels are weighted by the coherence in the orientation
of their fiber populations, estimated from dODFs calculated from dMRI data.
fMRI signals are defined on this graph, and low-pass filtered with graph heat
kernel filters. Due to the shift-variant properties of filters defined on the
graph spectral domain, and in combination with the specific graph weighting
scheme used, filters instantiated at any graph vertex (i.e., voxel) adapt to the
shape of the underlying fiber bundles. The proposed method is exhaustively
tested on data from 95 HCP subjects, showing improved activation mapping
performance for both single-subject and group analyses.

7.3 Paper III - Evaluation of inverse treatment
planning for Gamma Knife radiosurgery using
fMRI brain activation maps as organs at risk

Stereotactic radiosurgery (SRS) is a noninvasive surgical modality where tis-
sue is ablated by the applications of focused beams of ionizing radiation, and
is a common treatment option for small intracranial tumors. However, the
use of ionizing radiation can cause damage to important brain regions. SRS
treatment planning requires the careful specification of placement, intensity,
and collimator settings for a potentially large set of radiation shots. For-
tunately, the introduction of inverse planning systems automates the treat-
ment planning process, producing treatment plans by formulating and solving
an optimization problem. This facilitates the introduction of organs at risk
(OARs), critical brain regions where radiation doses should be limited, to the
treatment planning process. These typically include anatomically-identifiable
regions, such as the brainstem and optic nerve. However, the use of functional
OAR to spare functionally-relevant areas of the brain is more rare.

The Gamma Knife, developed by the company Elekta, is one of the prin-
cipal radiation delivery systems for SRS. In this paper, done in collabora-
tion with Elekta, we make use of the recently-introduce Lightning inverse
planning system for Gamma Knife SRS to examine the possibility of incor-
porating fMRI-derived functional OARs into the treatment planning process.
We implement a pipeline for analyzing fMRI data, transferring the result-
ing activation maps to the treatment planning software, and using them as
OARs for treatment planning. We evaluate the effects of incorporating such
functional OARs on brain tumor data from 5 patients, with results showing
that the Lightning optimizer successfully follows the dose constraints imposed
by functional OARs, reducing the radiation dose incident on eloquent brain
regions.
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with diffusion MRI and deep learning

7.4 Paper IV - Super-resolution mapping of anisotropic
tissue structure with diffusion MRI and deep
learning

Diffusion MRI is limited by the spatial resolution of the available data. In
this paper, we propose a deep-learning based approach to upsample fODFs
obtained through CSD. We use dMRI data from 95 HCP subjects to gener-
ate CSD fODFs, and convert them to a SH representation. In parallel, we
downsample the dMRI data by averaging 2 × 2 × 2 voxel regions to produce a
low-resolution version of the data, and apply the same procedure to generate
SHs of CSD fODFs. We use both sets of data to train DNN networks that take
a small cube of low-resolution data as input and predict the high-resolution
version of the central voxel. By applying this single-voxel model through-
out the brain, it is possible to double the resolution along each spatial axis
of a brain fODF dataset. Our results show that the proposed model, while
relatively simple, shows upsampling performance superior to spline interpola-
tion of any order. In addition, the model has a substantial denoising effect,
removing spurious fODF peaks present even on the original high-resolution
data.

7.5 Paper V - Refacing: reconstructing anonymized
facial features using GANs

The removal of facial features is a standard anonymization procedure for MRI
data, especially important for open datasets, as the 3-dimensional volumes can
be rendered, revealing the face of subjects. In the final paper we investigate
the potential of image-to-image GANs for reverting the facial anonymization
of MRI datasets. We apply two different face-removal methods on T1-weighted
volumes from 581 subjects from the IXI dataset, which is available without any
facial anonymization. We then train CycleGAN models to translate 2D sagit-
tal slices of data between the original and anonymized domains, which learn
to deanonymized the data. Our results show that the tested anonymization
algorithms can be partially reverted, illustrating that deep learning models
can pose some danger to data anonymization procedures.
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