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Abstract
Street lighting continues to face a range of challenges on roads with twisted and curved
shapes. To address this issue, this study proposes that machine learning algorithms,
specifically deep neural networks and multi-output random forests, can be utilized to find
the optimal LED lens design. The use of machine learning can significantly speed up the
design process, reducing time and cost for lens manufacturing companies. Currently, it is
difficult to achieve the desired light distribution with a lens design due to the complexity
of the design and the long optimization process, which typically requires the use of three
expensive and complicated software programs and intensive human supervision over a
period of several weeks. By streamlining this process through the use of machine learn-
ing, factories can save time and money while also improving comfort, reducing glare,
minimizing visual discrimination, and maximizing illumination performance for drivers.

This study employs a mixed-method approach in order to achieve a machine learning
model structure with accurate performance. That succeeds at giving a solution for the ad-
dressed lighting problem for streetlight LED lens design optimization. The ultimate goal
is to replace the existing process and lens manufacturing models, which are inadequate
in addressing these issues, with a more effective solution. Specifically, the study aims to
find the geometric parameters of the lens shape that produce the desired size and shape of
the illumination distribution. Optimizing the lens design is crucial for minimizing light
pollution and energy waste.

keywords: lens optimization, machine learning, deep learning, neural network, multi-
output, regression.
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Introduction

1 Introduction
Ensuring proper lighting on roads is a critical concern worldwide, as it impacts the com-
fort and safety of both drivers and pedestrians. In order to provide the best possible
lighting experience, it is essential to take into consideration all aspects of road lighting.
As demonstrated in Figure 1.1, the use of a lens can significantly impact the distribution
of light on the road. It is important to design an optimal LED lens in order to achieve the
desired lighting outcomes.

To design an effective LED lens, it is necessary to understand the setting specifications
and principles of lens design. This includes understanding the purpose of creating specific
shapes and the concept of total internal reflection (Yi Luo, Z.F. and Han, Y. 2017). As it is
critical for achieving the desired level of output uniformity, efficiency, and illumination.

Figure 1.1: Light pattern with and without using a lens

The accurate design of LED lenses is essential for achieving the desired level of visual
acuity. Machine learning algorithms can significantly improve the accuracy of making a
lens design (Abbasi, M.A. et al. 2022). This can be achieved by utilizing sophisticated
modeling geometry and large volumes of training data. These algorithms have been suc-
cessfully applied in a variety of domains to address complex multivariate and nonlinear
problems. The performance of LED lenses has greatly improved the distribution of light.
This helps to address issues such as light pollution and visual discrimination. By using
machine learning, it is possible to achieve precise beam distribution and light patterns
more easily, which can enhance visibility, comfort, and the overall performance of the
LED lens in lighting.

LEDs are a smart choice for a variety of lighting applications, including street lights,
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Introduction

spotlights, interior lighting, and car lights. However, the use of LEDs alone may not
be sufficient to achieve the desired intensity and focus of light. By adding an optical
component, such as a lens, it is possible to create an integrated lighting system that can
adaptively emit light. Figure 1.2 demonstrates the impact of using different lenses with the
same LED source and area. This shows that different lens designs can produce different
light spot focuses.

Figure 1.2: The effect of using different lenses

Manufacturing of LED lenses involves several stages and various factors can affect the
distribution of light. Some of these factors are:

• Water bubbles inside the lens

• High temperatures that may cause cracking or discoloration

• Broken bond wire, die-attach delamination

• Cracking

The performance of LED lenses and systems depends on multiple factors such as thermal
and mechanical loading. The sophisticated nature of LED lens light distribution goes be-
yond simple fluctuations in luminous output. This study aims to examine the relationship
between geometric parameters and the distribution of light by LED lens products.

1.1 Problem and research questions

1.1.1 Problem

LED lenses are an important aspect of modern lighting technology, as they can help re-
duce energy consumption and contribute to a more sustainable environment. In order to
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maximize the benefits of LED lenses, it is necessary to carefully consider the distribution
of light and ensure that it is evenly distributed on the appropriate surfaces. The process of
configuring LED lens light distribution can be complex and requires consideration of var-
ious elements, including the dimensions of the street, the intensity of the light, and other
factors. If any of these elements are overlooked, it can compromise the overall quality
of the LED lens light distribution. In recognition of the importance of LED lenses, many
governments around the world have invested heavily in energy-efficient LED technology
and related products, as it offers an opportunity to reduce environmental and financial
burdens.

The design process can be complex, requiring specialized software, materials catalogs,
and an in-depth understanding of surface properties. Once all necessary properties have
been identified, the optimization process begins in order to create a lens that is suitable
for a specific road scenario (Chen, W.-C. et al. 2012). However, this process can be
time-consuming and require intensive human supervision. This makes the use of machine
learning algorithms an attractive option to improve the efficiency and accuracy of the
design process.

The current method used in the manufacturing industry involves a multi-step process that
involves careful consideration and expert knowledge. The first step involves manually
selecting the most appropriate base-lens model by human experts who possess the nec-
essary expertise. The second step involves undergoing an optimization process in order
to find the best design. This optimization process can be quite time-consuming, taking
several weeks to complete. It is also costly due to the use of three specialized software
programs. The first software program is used for simulating designs and analyzing their
performance and stress levels. The second software is used to optimize manufacturing
processes. The third is used to design and optimize the performance of LED lighting sys-
tems, while taking into consideration factors such as luminous intensity, luminance, and
illuminance.

1.1.2 Aim and objective

This research aims to investigate the potential of integrating machine learning and artifi-
cial intelligence techniques into the optimization process of LED street light lens designs.
The ultimate goal is to develop an algorithm that can effectively replace current optimiza-
tion methods and produce a lens design that is adaptable to various road scenarios. In
order to achieve this, the study will examine the impact of various geometric parameters
on lens designs.
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1.1.3 Research questions

Can AI/ML be used to improve the area of lighting and optical designs?

– What is the most suitable machine learning algorithm to use for lens optimiza-
tion to achieve efficient light distribution?

– Find the possibility of using the multi-output ML model in a real world prob-
lem like our optical design optimization problem and replace the current man-
ual lens optimization process?
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1.2 Limitations

While this research can potentially be applied to various environments, such as office
spaces, factories, and homes, this is not the primary focus of the study. Instead, the
research specifically examines the optimization of street-light lens designs. This research
will not cover the full scope of the solution due to a lack of data. Our data-set does not
have sufficient samples to accurately represent the final optimization of the product. We
did not reach the final stage of the optimization process during the data gathering period,
so the final product is not present in the current data-set. As a result, this research only
covers one road scenario

1.3 Outline

This thesis is structured as follows. The first chapter introduces the fundamental concepts
of LED lenses and the real-world challenges faced by this technology in the field of street
lighting. The second chapter provides a theoretical overview of artificial intelligence and
the various types of LED lenses. We will delve into the details of specific models that are
also used in this thesis.
In the third chapter, we describe the architecture of our models in detail and explain how
they operate. The fourth chapter presents the results of the model’s performance and
includes an analysis of the obtained values. Finally, in chapter five we conclude with a
discussion of the findings, including the conclusion and proposed future plans.
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2 Theoretical background

2.1 What is AI?

AI, or artificial intelligence, is the capability of an algorithm to make decisions based on
a large set of data. The accuracy of these decisions is determined by the type of data the
algorithm was trained on. The widespread use of AI in various industries can be attributed
to its ability to process and analyze large data sets and make accurate decisions. AI can
also be utilized to automate tasks that may be too complex or dangerous for humans to
perform, resulting in both time and life-saving benefits (Du-Harpur, X. et al. 2020). The
ability of AI to automate specific tasks enables individuals to concentrate on other vital
activities, leading to improved efficiency, advancement, and the ability to explore creative
possibilities.

AI is a versatile technology that is applied or researched in various fields such as com-
puter vision, natural language processing, robotics, machine learning, and deep learning.
Within machine learning, there are two main approaches: supervised learning and unsu-
pervised learning. Supervised learning involves training a model on a labeled data-set,
where the correct output or label is provided for each input. Common algorithms used
in supervised learning include decision trees, random forest, and neural networks. On
the other hand, unsupervised learning involves training a model on an unlabeled data-
set, with the goal of discovering patterns or relationships within the provided data-set.
Algorithms commonly used in unsupervised learning include k-means, and hierarchical
clustering (Berry, M.W. et al. 2020).

Artificial intelligence (AI) holds a great deal of promise for solving a diverse range of
challenges, such as data analysis, automating complex tasks, Optimizing processes, image
improving, and video analysis.

2.2 Deep neural network

Deep neural networks are a subset of machine learning, which in turn is a subset of arti-
ficial intelligence. They are inspired by the structure of the human brain, and the archi-
tecture that is used in deep learning is known as an artificial neural network. In this type
of machine learning, the neural network extracts features without human intervention. To
achieve good results with deep learning, it is necessary to have a large data-set to train the
algorithm. A diagram of a deep neural network can be seen in Figure 2.1. It comprises
of input and output layers, n hidden layers, and varying numbers of neurons in each layer
(Liu, W. et al. 2017).
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Figure 2.1: The structure of DNN

2.3 Multi-output Random forest regression

Random forest is an algorithm used for both classification and regression tasks in machine
learning. It is a type of ensemble method, meaning that it combines multiple decision trees
to make predictions, rather than relying on a single one. A Multi-Random Forest (MRF)
is a variation of the Random Forest that is specifically developed to handle multi-label
classification tasks, where an instance can belong to multiple classes simultaneously. In
an MRF, each decision tree in the forest can predict multiple labels for a given instance,
and the final prediction is based on the majority vote of all the trees in the forest (Borchani,
H. et al. 2015). MRFs are particularly useful for tasks like image classification, where an
image can have multiple objects that need to be identified, and text classification, where
a document can belong to multiple categories.

2.4 The challenge of handling Multi-Output Param-
eters in Machine Learning

Deep learning models are often used to predict a single feature at the output, and these
models have demonstrated a high level of accuracy in many such situations. Multi-output
parameters, the scenario where a machine learning model needs to predict multiple out-
puts, can present a significant challenge in various applications. Handling multi-output
parameters requires the model to learn multiple, potentially complex, and diverse rela-
tionships between inputs and outputs. This can be a difficult task, especially when the
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relationship between inputs and outputs is non-linear or when the number of outputs is
high (W. Liu. et al. 2019). Additionally, when handling multi-output parameters, the
model’s performance is often evaluated by looking at the performance of each output
separately. However, it could be possible to achieve good performance for these prob-
lems by using Multi-output Decision trees, Multi-output Random Forests, or deep neural
networks.

2.5 LED Lens design challenges

Designing and manufacturing optical lenses that effectively and accurately emit and dis-
tribute light is a significant challenge in the field of lighting design. There are various
technologies that are currently being utilized in the creation of LED lenses for street
lighting, with the goal of achieving optimal light emission and distribution. However,
controlling the distribution of light is not always easy, and LED sources can be char-
acterized by a range of defects, including light pollution, an upward reflection of light,
non-uniform light distribution and patterns, energy waste, and glare. These issues can
be particularly problematic in certain environmental settings. Additionally, LED lighting
technologies have been known to cause visual discomfort and eye strain for pedestrians
and drivers (Lee, X.-H. et al. 2013).

To address these challenges, the concept of adaptive light distribution has been introduced,
whereby the amount of light cast onto the road by the LED lens can be manipulated.
Ensuring uniform illumination is a critical factor in this process, as is studying how the
shape of the LED lens can be adapted to the shape of the road. By carefully considering
these factors, it may be possible to overcome the difficulties associated with using LED
technology and create more effective and efficient lighting systems.

This study also delves into the quality of lighting and beam control. This includes in-
vestigating how optics can effectively and evenly distribute light on the road surface. A
number of factors have been taken into consideration in this research, such as the road
width, the distance between light poles, the mounting height, and the overhang, which are
all properties of the roadway. The parameters of the geometric lens shape, including both
the outer and inner sections of the lens, have also been studied. All of these elements have
a direct influence on the distribution of light in street lighting, which can be seen in the
uniformity of the illumination on both dry and wet roads, the efficiency of the light, and
the reduction of glare. Figure 2.2 shows the appearance of the lens, including the outer
and inner parts.
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Figure 2.2: The lens geometric shape

In this research, we are exploring the use of machine learning algorithms to predict mul-
tiple output parameters.

Before delving further into the use of machine learning algorithms, it is important to first
introduce some fundamental concepts from optics, specifically Snell’s law (Kovalenko,
S. et al. 2001), which is considered the most important principle for light reflection and
refraction. Understanding this law will make it easier to grasp the concept of how a lens
manipulates the light traveling through it and adapts it for use on the road.

Snell’s law is a key formula that describes how a light beam can be altered as it passes
through the medium of a lens. It explains the behavior of light traveling through the lens
and how the light beam can be manipulated, such as focusing on a small area or spreading
out over a wider area, depending on the intended purpose or use of the lens. Figure 2.3
illustrates how light refraction occurs based on the shape and type of lens. The overall
concept of Snell’s law involves determining the degree of refraction when the light hits
the surface of the lens and travels through it, and the second refraction occurs when the
light exits the lens medium. (Kovalenko, S. 2001).

9



Theoretical background

Figure 2.3: Light refraction in different lenses

2.6 Adaptive LED lens

Adaptive LED lenses as in Figure 2.4, are designed to be flexible and adaptable to a
variety of lighting situations. They can be fabricated in a range of shapes and designs
to suit the needs of the user. The internal structure of an adaptive LED lens typically
includes an optics design that is simple and effective. The LED light is directed through
a total internal reflection (TIR) lens, which helps to collimate the light and provide a
high-quality distribution (C. -C. Sun et al. 2017).

One of the key features of an adaptive LED lens is the microlens, which is narrowed to
improve the quality of the light. However, this design is not perfect and may require a
housing box to protect the LED lens. The housing box can help to improve the reflective
capacity of the lens and increase its optical efficiency.

In addition to these features, adaptive LED lenses may also include special microlenses
that promote the shaping and homogenization of the light. This can be especially useful
in applications where a more uniform light distribution is desired. Overall, adaptive LED
lenses offer a range of benefits and can be an effective solution for a variety of lighting
needs.
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Figure 2.4: LED Lens model/System Structure

2.7 Special microlens

The special microlens is an important aspect of the LED lens because it helps to shape the
light distribution. This microlens has the ability to distribute light in a specific pattern,
thanks to its adaptive optical element. This element helps to tailor the light distribution of
the lens to the specific characteristics of the road. For example, special microlens may be
used to produce a beam of light that covers a particular section of the road, ensuring that
the light is not wasted (Ottevaere, H. et al. 2006).

When the road is straight, the microlens is typically parabolic in shape with a rectangular
aperture. By bending the aperture, it is possible to create an illumination pattern with a
curved light distribution. This type of light distribution is known for its high efficiency,
high uniformity, and low light waste.

Through the use of artificial intelligence, it is possible to optimize the shape of the mi-
crolens for maximum efficiency. The width, length, and height of the lens can all be
fine-tuned using machine learning algorithms to increase the adaptability and efficiency
of the light distribution based on the shape of the road (Mahmoud et al. 2022). In this
way, the special microlens helps to improve the performance of the adaptive LED lens.
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2.8 Lens optimization

Finding the significant parameters is an important key to optimizing the lens design and
structure to enhance the performance of the LED lens. Various reflecting cavities have
traditionally been used to define light distribution by LED lenses. The following illustra-
tion shows a top view, three-dimensional, and light distribution in a rectangular aperture,
as (Kamoji et al. 2020) shows in Figure 2.5.

Figure 2.5: Three-dimensional view of lens light distribution

The process of bending the aperture described above is used to create different illumi-
nance profiles for the road. Each aperture has a different microlens that is used to dis-
tribute the light in a unique way. For example, Figure 2.5 shows how a curved light
distribution can be achieved. The parameters of the lens, such as its depth, width, and
size, all influence the shape and size of the light distribution. Additionally, the optical
efficiency of the lens may vary depending on the specific aperture used.

(Sun et al. 2017) have demonstrated that LED lenses can be modified to produce precise
beams of light, highlighting the many benefits of using optimized lenses in street lighting.
Traditional steer road lighting, as shown in the illustration provided by (Sun et al. 2017),
is just one example of how LED lenses can be used to improve the efficiency and effec-
tiveness of lighting systems. However, it is important to note that different lenses may
have varying levels of illumination efficiency and illumination distribution. (Wang et al.
2020) also, highlight the role of microlens in influencing road illumination distribution.
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Figure 2.6: Limitations of traditional lighting

As shown in Figure 2.6, traditional lighting systems are often unable to provide precise,
targeted lighting. In contrast, the use of machine learning algorithms can significantly
improve the performance of adaptive road and street lighting systems. A comparison
between adaptive lighting and traditional lighting illustrates that the latter results in sig-
nificant light loss. This is particularly problematic when lighting roads with irregular
shapes, as it can cause discomfort for drivers and pedestrians.

On the other hand, machine learning algorithms have the ability to direct light in a way
that is tailored to the shape of the road or street. This can help to enhance eye comfort,
reduce glare, and minimize visual discrimination. By using machine learning to design
and control luminaires, it is possible to meet the specific needs of a road or street with a
free-form shape. This is essential for optimizing the performance of the lighting system
and ensuring that it provides the desired level of illumination and visual comfort.

(Lévai & Bánhelyi 2015) identified the issue of unnecessary lighting as a problem that
needs to be addressed, particularly in order to conserve energy. They suggest that LED
technologies may offer a solution to this problem, but acknowledge that it can be chal-
lenging to design LED configurations that are effective and efficient. They propose that
machine learning may be the best way to address this challenge, as it can help to influence
the pattern of LED light in a more precise and controlled way.

Other researchers have also recognized the potential of machine and deep learning to im-
prove the quality of street lighting. (Kamoji et al. 2020) suggest that deep learning can be
used to enhance the performance of street lights, while (Nascimento et al. 2018), (Mah-
moud et al. 2021), and (Alvarez et al. 2022) all highlight the role of machine learning
in developing adaptive street and road lighting systems. Overall, it seems that machine
learning may hold the key to achieving more effective and efficient lighting solutions,
particularly in the context of LED technologies.
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3 Method and implementation
This study aims to identify which machine learning algorithms are effective at predict-
ing multiple output parameters. We treat this problem as a supervised machine learning
regression problem due to the nature of the data-set, which contains pure numerical con-
tinuous data and multiple outputs. To address this issue, we will compare the performance
of two machine learning algorithms: a multi-output random forest and a deep neural net-
work to determine which one is the most suitable for our research problem. The goal is to
determine if these algorithms can be used to automatically design LED lenses that meet
standard light requirements for different road scenarios (Lai, W. et al. 2011).

Furthermore, the study will explore the possibility of using artificial intelligence algo-
rithms to replace the existing optimization process. Therefore, the research centers on
achieving the best possible light distribution using multiple lens geometric parameters.
The process of optimizing lenses can differ among companies and designs and tend to be
time-consuming, require significant resources, and involve a lot of human involvement.
Commonly used software in this process include SolidWorks (”3D CAD Design Software.
Solidworks”. (n.d.). Retrieved from https://www.solidworks.com/), ISight (”CAD/CAE
Integrated Framework based on isight optimization platform”. (n.d.). Retrieved from
https://www.researchgate.net/) and Light Tools (”LightTools: Synopsys Optical Solutions
Group”. SOLIDWORKS. (n.d.). Retrieved from https://www.solidworks.com/partner-
product/lighttools/). Additionally, different algorithms using Python are implemented to
achieve lens optimization. Therefore, it is important to establish the best fit implementa-
tion process that helps achieve lens optimization through machine learning. G classifica-
tion and M-Classification will determine the best light distribution (Putrada et al., 2022).
The study will establish how to use machine learning for street-light led lens optimiza-
tion.

Additionally, the study will try to investigate the relationship between light parameters
and the impact of small changes in geometric lens shape on light distribution on the road.
The goal is to understand the properties of all parameters and prioritize them in order
to identify the key ones for the proposed solution. The model will be instrumental in
creating a light pattern and distributed computation. The main challenge is the complexity
of global optimization.

The study will proceed as follows: it will present the data-set used in the research, analyze
the data to uncover relationships between features, and present the proposed solution
through the conduct of three experiments.
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3.1 Data set and analysis

A data-set containing around 50,000 samples was collected for this study, consisting only
of numeric features. The data was obtained from Fagerhult, a company that specializes
in the production of modern lighting materials, including lenses. Data cleaning was per-
formed by removing NaN values and duplicates from the data-set. In order to evaluate the
accuracy of the models, the performance of each model was tested using the data. The
models were tested using different proportions of the data, with the first experiment using
approximately 20% of the data, the second experiment using approximately 60% of the
data, and the final experiment using the entire data-set.

It was observed that the performance and results of both machine learning algorithms
improved with each increment. (Côté et al. 2021) noted that it can be difficult to obtain
reliable results from a data-set of 500,000 samples. The data-set used in this study consists
of 66 features, including 13 light features, 48 lens geometric shape features, and 5 road
features. These road features were not included in the experiments because the data is
only available for one road scenario. These road features, including road width, number of
lines, the distance between light poles, mounting height, and overhang, can be considered
a road setup or scenario and each time one of these features changes it is considered a
new road scenario.

The data was collected over a period of more than three months. As previously men-
tioned, the geometric lens shape consists of an outer and inner lens (cavity), as shown in
Figure 2.2, and each is determined by three sketches. The most important light features
are glare, illumination efficiency, and uniformity. The study also acknowledges the differ-
ences between the expected manufacturing outcomes and the assumed distributions. The
aim of this study is to identify an algorithm that can help achieve the best lens with the
best distribution of light on the road and performs a linear regression analysis to demon-
strate how a data-set relating to street light features can be used to optimize the shape and
lighting features of the lens within street lights. The shape of the lens is the dependent
variable in the presence of various variables, including light and shape parameters.

3.2 Method

At the start of the project, a linear model was used to generate two model scenarios in
order to determine which scenario is the most efficient and provides a suitable solution
for our research problem. The first scenario focuses on lens geometric output, while the
other focuses on light distribution as the output. The results of these two models will
help identify the optimal shape and lighting parameters for the street light lens. After
analyzing the output of both scenarios and consulting with experts in the field, it was de-

15



Method and implementation

termined that the scenario that produces lens geometric shape as output is more efficient
because it eliminates the need for human intervention throughout the entire process. In
contrast, the second scenario requires some human oversight after obtaining light mea-
surements as output to filter and compare to light standards to find the best lens match.
The chosen model, which has a geometric lens shape as output, was also trained and
tested using the data-set to predict lens distribution patterns. The data was split, with 80%
used for training and 20% used for testing, and it was randomly selected to minimize bias.

Given the many parameters that need to be taken into account in lens-making, as well as
the need to generate multiple outputs from the light features parameters, it was important
to use an algorithm that could handle the wide range of variables to produce the desired
outputs. To this end, the study chose two algorithms: a multi-output random forest algo-
rithm and a deep neural network. To determine which algorithm was best suited for the
task, a survey was conducted to evaluate which machine learning algorithm could pre-
dict the output parameters most effectively. Additionally, since the problem at hand is
a regression problem, it was important that the algorithm was able to predict continuous
outcomes, which aligned with the data-set we have. Due to these limitations, there were
few options to choose from, as most ML algorithms are not designed to handle multi-
output predictions.

The two algorithms selected were well-suited to create a ML model that incorporated a
wide range of elements. The multi-output random forest algorithm is effective at combin-
ing different data classifications and generating multiple regression responses. Similarly,
deep neural networks function similarly to the human brain by processing information
through layers between inputs and outputs. These networks can be trained to identify and
relate specific features to a given object and can also be configured to generate multi-
output predictions. This makes them well-suited to determining the optimal lens prop-
erties for given features. Both algorithms’ outputs were evaluated to determine which
provided the most accurate and suitable solution for the research problem. When the
model is created successfully, the features of the roads and the desired light can be fed as
input parameters into the model, and a virtual lens will be generated based on the model’s
output which gives the lens geometric shape parameters. This will aid in generating the
most optimal prediction for lens-making based on key aspects, and serve as the foundation
for improving the street lights’ lenses.
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3.3 Experiments

Three experiments were conducted using various settings, configurations, and scenarios
to study different output characteristics. The first experiment focused on the attributes of
light distribution, analyzing how they affect the overall distribution. The second exper-
iment includes the geometric shape parameters to study and analyze the performance of
the model. The third experiment utilized a combination of multiple models to provide a
multi-level prediction.
The aim of these experiments is to gain a deeper understanding of the dynamics and capa-
bilities of our models in order to improve their performance and functionality in different
applications. The results of these experiments will guide future research and development
efforts, leading to more effective and efficient solutions. We will delve into the details of
the three experiments in the coming paragraphs.

3.3.1 Experiment one: Predicting light features

This experiment aims to forecast the characteristics of light through a model that utilizes
lens geometric shape parameters as input. The input data for this model consists of 48
parameters, and the output data contains 13 parameters. It is important to note that road
features were not taken into consideration during this experiment, as the data set used in
this study only includes data for one specific road scenario, thus making the road features
identical across all samples. The model is thus trained based on the geometric parameters
of the lens and predicts the light features.

Setup and implementation

This experiment was conducted three times using three different sized data sets. During
the first run, the experiment included around 10,000 samples, the second run included
around 30,000 samples, and the final run included the entire data set, which consisted
of approximately 50,000 samples. The purpose of this experiment was to compare the
performance of two machine learning algorithms, deep neural network (DNN) and multi-
output random forest (MRF), by implementing each of them twice. This approach was
done in order to find the best model structure for both algorithms that suit the type of data
we have. To achieve that, a process called hyper-parameters tuning was applied, where
different parameters of the model structure were adjusted and tuned to optimize the model
performance. By comparing the performance of the two algorithms under different data
set sizes and with different model structures, this experiment provides valuable insights
into the most suitable algorithms and model structures for the given data set and scenario.
The DNN model architecture that was obtained after applying hyperparameter tuning is
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composed of the following components, as shown in Figure 3.1.

Figure 3.1: The first experiment DNN architecture

The DNN model architecture, obtained after applying hyperparameter tuning, is com-
posed of 14 dense layers with a succession of neurons in each layer, specifically (96, 320,
288, 256, 384, 320, 384, 320, 96, 256, 288, 64, 128, 192). The number of epochs and
batch size used were 350 and 32 respectively. The activation function used is linear, the
mean absolute error is used as the loss matrix, and the optimizer used is Adam with a
learning rate of 0.001.
In addition, the architecture of the Multi-output Random Forest (MORF) model after ap-
plying hyperparameter tuning was found to be best suited for the data-set features. The
parameters used in this model include 400 estimators, which represent the number of
trees, and 30 max depth, representing the number of branches per tree. This configuration
can be seen in Figure 3.2.

Figure 3.2: Diagram of Multi-output Random Forest

The data-set was divided into two parts, where 80% was used for training and 20% for
testing.
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3.3.2 The second experiment: Predicting lens geometric shape
parameters

The second experiment was designed to test a different hypothesis than the first experi-
ment. Specifically, the hypothesis was formulated as follows: The input for this experi-
ment was composed of 13 light distribution parameters, and the output was determined
by 48 parameters for the lens geometric shape shown in Figure 3.3. Given the substantial
discrepancy between the number of input and output features, an additional study was
conducted on the light data in order to identify any potential relationships that could be
incorporated into the original input to aid in the model’s prediction.

Figure 3.3: Second experiment DNN architecture

In this scenario, the ML models were presented with a significant challenge in trying to
predict a large number of features, nearly three times more than the number of features
used as input. After the study and the analysis of the relationships between the light
features, two new features were added to the input, the G-Class and M-Class. These
standards were defined by the traffic authority in Sweden as requirements that street lights
must meet (Traupmann, P. 2017). The G Classification, for example, comprises of six
levels, each level indicating the allowed glare on the road for light beam angles of 80 and
90 degrees. The G standard levels are G1, G2, G3, G4, G5, and G6, where G6 represents
the most optimal level of glare that can be on the road.

Similarly, the M Standard classification is defined by 6 levels for light distribution on the
road; M0, M1, M2, M3, M4, and M5, and each one of these levels fit different types of
roads, it could give a better match for the road needs. It is worth noting that the inclusion
of these additional features helped the models to better predict the output parameters for
the lens geometric shape.

This exemplifies how models should be tweaked and fine-tuned to achieve the best results
from the data-set and the problem at hand.
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Setup and implementation

To ensure the most accurate results, the data-set was divided into 80% for training and
20% for testing. Through the process of hyperparameter tuning, an optimal architecture
was determined for the deep neural network (DNN) model, which consists of 18 dense
layers, with a varying number of neurons in each layer (96, 320, 288, 128, 64, 128, 256,
384, 320, 384, 320, 96, 256, 128, 288, 64, 128, 192). Additionally, the model was trained
for 220 epochs with a batch size of 32, used linear activation function, mean absolute
error as the loss matrix, and the Adam optimizer (0.001) as the optimization method.

Similarly, the architecture of the multi-output random forest algorithm was also deter-
mined through hyperparameter tuning, and includes 200 estimators (number of trees) and
a maximum depth of 25.

The architecture of DNN and multi-output random forest was selected based on the best
performance during the training phase, and it was found that this configuration of layers,
neurons, epochs and batch size gives the best results in terms of accuracy, and could be
optimal in predicting the output parameters for the lens geometric shape.

3.3.3 The third experiment: Multi-level prediction

The approach used in this experiment was similar to the second experiment. The in-
put for this experiment was the 13 light distribution parameters and the output was the
48 parameters for the lens geometric shape. To improve the performance of the model,
two additional features were added to the input, exactly like in the previous experiment.
This approach is aimed to achieve better results by using a multi-level prediction process,
which allows for greater accuracy and more insight from the same amount of data.

Setup and implementation

In this experiment, only one of the previous models was utilized. The Multi-output Ran-
dom Forest (MRF) was chosen as it was found to provide better results than the Deep
Neural Network (DNN) model in previous experiments. This approach employed a multi-
level prediction process using different MRF structures for each level. However, the size
of the data-set limited the prediction to only 3 levels.

It was observed from the second experiment that some output features were significantly
far from their actual values when predicted. To address this, the output features were
divided into three categories: easy, normal, and difficult features, based on the predic-
tion error interval. An error interval allowance of 5% was chosen with the guidance of
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an expert in the field of lens optimization. Figure 3.4 illustrates the architecture of the
multi-level prediction model that was constructed. It depicts how the different layers of
the MRF were arranged and configured to form the multi-level prediction model.

Figure 3.4: Third experiment model architecture

Initially, the same MRF model architecture from the second experiment was used as the
first level prediction. However, the data-set was split differently, with 50% of the data
being used for training (DTrain1) and the remaining 50% for testing (DTest1). The output
was then categorized into three types (easy, normal, and difficult predicted features) based
on the 5% error interval allowance.

For the second level prediction, the test data from DTest1 was used as input and the easy
predicted features were added to it, creating new input data. Hyperparameter tuning was
conducted on this level two model, as the new shape of the input data required adjustments
to the model’s architecture. The resulting level two model architecture consisted of 180
estimators, and a maximum depth of 25. The final step was repeated one more time to
prepare the input for the third level prediction. Figure 3.4 illustrates the multiple steps for
this model. After applying hyperparameter tuning, the final model architecture contains
200 estimators and a maximum depth of 15.
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4 Results
In this chapter, we will provide an extensive examination of the outcomes from the three
experiments conducted in the preceding chapter. The experiments were executed to col-
lect information and understanding of a particular research question, and their results will
be presented in a detailed but succinct format with the use of tables that will aid in the
comprehension of the findings.

4.1 Predicting light features

The goal of this experiment is to predict the characteristics of light, based on the geo-
metric shape parameters of the lens. The study utilizes a model with 48 input parameters
to predict 13 light characteristics, using only lens geometric shape parameters, with no
consideration of road features as the data-set only includes a single road scenario.

Results and interpretation

The performance of the deep neural network model is assessed using the R-square score
as the evaluation matrix, while the multi-output random forest model is evaluated using a
combination of the mean absolute error and R-square as the evaluation matrix.

Table 4.1: The results for both ML algorithms

By analyzing the results of both algorithms which are presented in Table 4.1. The table
displays the outcomes of training the model three times using varying amounts of data,
ranging from approximately 10,000 to 50,000. The second column represents the R-
square values of the deep neural network (DDN) model, while the third column shows
the R-square values of the multi-output random forest model. We observe that each time
we increase the size of the data-set the results which presented as R Squere get better.
Actually, the experiment succeeds to achieve a pretty good results. Also the MORF model
gives more accurate results than DNN and that is not only according to the evaluations
matrix we used, because additionally we did a visual analysis for the prediction of both
models and after comparing the output between both of the models, we notice that the
results for MORF it is much closer to the real values of the tested sample.
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4.2 Predicting lens geometric shape parameters

The second experiment was designed to investigate a different hypothesis than the one ex-
plored in the first experiment. The input for this experiment comprised of 13 light distri-
bution parameters and the output was determined by 48 parameters for the lens geometric
shape. The large discrepancy between input and output features prompted us to conduct
an additional study on the light data to identify any potential relationships that could be
incorporated into the input to improve the model’s prediction capabilities.To resolve the
issue of limited input parameters, two new features were added to the input, G-Class and
M-Class. The inclusion of these features helped the models to improve their predictions
of the output parameters for the lens geometric shape. Overall, this experiment highlights
the importance of fine-tuning and customizing models to achieve optimal results for the
specific data-set and problem.

Results and interpretation

The evaluation of results for this experiment involved both visual analysis of the predicted
values in comparison to the actual values from the test data, and an analysis of the R-
square values, determined by utilizing the multi-output function ”uniform average” as the
evaluation matrix.

Table 4.2: The results for both ML algorithms

The results of the second experiment did not match the success of the first experiment, as
can be seen in Table 4.2. Both the deep neural network (DNN) and the multi-output ran-
dom forest (MRF) model performed less well, with lower R2-scores. Furthermore, when
visually comparing the predicted target features to the actual values, it was clear that the
predictions were not as close. By taking into account the 5% error interval between the
actual values and the predicted values, as determined by experts in the field of lighting
systems. However, it was observed that similar to the first experiment, as the size of the
data-set increased, the results, as measured by R-squared, improved. Additionally, it was
also noted that the MRF model performed better than the DNN model when using the
largest data-set, which included around 50,000 samples. The results of this experiment
demonstrate the importance of increasing data-set size in order to improve model perfor-
mance, as well as the fact that different types of models may work better with certain
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types of data.

4.3 Multi-level prediction

In this experiment, we employed a multi-level prediction approach to enhance the out-
comes achieved in previous experiments. This method of prediction involved breaking
down the problem into smaller sub-problems, and making predictions at each level before
consolidating the predictions at the final level. It allowed us to work with the data more
efficiently, and increase the accuracy of the predictions. By using this approach, we were
able to extract more information from the data and improve the overall performance of the
model. Overall, this experiment demonstrated the importance of fine-tuning the models
and adapting them to the specific problem and data-set.

Results and interpretation

In this experiment, the model was run using the entire data-set as input. After the ini-
tial level of prediction, the outcomes were categorized, resulting in 24 easily predicted
features. The 24 easily predicted features were added as an additional component to the
input data for the next level of prediction. In the second level of prediction, the model
was provided with a data-set of 37 input features, which included the original input of 13
features along with the easy predicted features from the previous level. With this data,
the model was able to predict an additional 7 features with an error prediction interval of
less than 5%. These features were categorized as easy predictions and were taken into
consideration to be added to the input for the next stage of the prediction process.

The third level of prediction resulted in the identification of 10 more easy features, bring-
ing the total number of good predicted features with an error interval of less than 5% to
41 out of 48 features. This can be seen in Table 4.3.

Table 4.3: The number of the easy features predicted in each prediction level

This method of multi-level prediction allows the model to break down the problem into
smaller sub-problems, and make predictions at each level before consolidating the pre-
dictions at the final level. This approach enables the model to work more efficiently with
the data and increase the accuracy of the predictions. In this specific case, it allowed the
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model to extract more information from the data and improve the overall performance of
the model. Additionally, by classifying the outcomes and focusing on easy predicted fea-
tures the model was able to achieve better results in the second level of predictions. This
experiment demonstrates the importance of fine-tuning models, adapt them to the specific
problem and data-set and to approach the prediction in multiple levels.

4.4 Research questions

The research effectively addresses the key question and sub-questions by providing thor-
ough and detailed responses. Through in-depth analysis and experimentation, the study
has effectively responded to the questions at hand, delivering insights and findings that
are relevant and useful to the field. Overall, the research has demonstrated that it has ad-
equately and effectively responded to the questions and sub-questions being studied, and
has provided a solid foundation for further inquiry and exploration in this area.

• Can AI and ML be used to improve the area of lighting and optical designs?

- As claimed, the results obtained from our experiments, show that AI and ma-
chine learning can serve as powerful tools for enhancing lens design optimization
in our research case. This can be seen as an important step forward for the applica-
tion of AI and ML in other areas of optics. The results suggest that AI and ML are
promising for optimization in lens design and for advancement in this field.

• What is the most suitable machine learning algorithm to use for lens optimiza-
tion to achieve efficient light distribution?

- Based on the results obtained from the three experiments, when evaluated in light
of the type and size of the data-set used and the performance of the two algorithms
studied, indicate that the Multi-output Random Forest algorithm outperformed the
deep neural network.

• Find the possibility of using the multi-output ML model in a real-world prob-
lem like our optical design optimization problem and replace the current man-
ual lens optimization process?

- We explored the potential of using a multi-output machine learning model to im-
prove the current manually-driven lens optimization process in our optical design
problem. Although we were not able to fully optimize the lens design using ma-
chine learning, we made progress by identifying starting points for optimization.
This serves as a promising foundation for future work in this field.
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5 Discussion and conclusions

5.1 Discussion

5.1.1 Predicting light features

Result discussion

The results of the experiment are presented in a Table 4.1 that shows the R-square values
of both models while increasing the size of the data-set from 10,000 to 50,000. The
results show that as the size of the data-set increases, the R-square values for both models
improve. Additionally, the MORF model is observed to give more accurate results than
DNN as observed from both the evaluation matrices and visual analysis of the predictions
of both models, MORF is much closer to the real values of the tested sample.

The aim of this research is to identify a straightforward and practical solution that can be
applied in real-world scenarios. However, some experts in the field have raised concerns
that the proposed solution may not be as effective as hoped. The designed model is
used to anticipate the light distribution parameters and then filter the results by software
to identify the best sample that meets the desired requirements for road lighting. Then
trace back the sample index to find the input sample which includes the geometric lens
shape parameters. In order to implement this solution, it is essential to incorporate both
software and human involvement. The software is used for model generation and result
filtering, while human input is needed to validate the accuracy of the predictions and make
adjustments for optimal results. This is why we persisted in searching for alternative
solutions, despite obtaining favorable results from one of our models.

5.1.2 Predicting lens geometric shape parameters

Result discussion in relation to the other experiments

The second experiment attempted to explore a different hypothesis than the first experi-
ment and utilized 13 light distribution parameters as input and 48 lens geometric shape
parameters as output. However, the experiment was challenging for the machine learning
models due to the large number of input features. The R-squared scores for both DNN
and MRF models were much lower than the first experiment and the visual comparison of
predicted target features to actual values also showed that predictions were not as close.
With increasing data-set size, the results improved and the MRF model performed bet-
ter than the DNN model using a data-set of 50,000 samples. Table 4.2 shows the low R
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square values for both models which means that to analyze the results we need an addi-
tional way. That is why we did the visual comparison for the result of the testing samples
between the actual and predicted values.

The second experiment produced less precise predictions of the output compared to the
first experiment. Although the results were not entirely satisfactory, they were still useful
as a starting point for lens optimization. This experiment demonstrates that it is possible
to create a lens that can provide the desired distribution of light on roads with an abstract
shape, even if it may not be the optimal solution. This experiment has the potential to
reduce the time required for optimization and minimize human involvement, especially if
the model is further improved by increasing the size of the training data. particularly if
the model continues to demonstrate improved performance by being trained with a larger
data-set. Actually, the model shows us its potential for future work and development.

5.1.3 Multi-level prediction

Result discussion and relation to the other experiments

This paragraph describes an experiment in which a machine learning model is used to
predict certain features of a data-set. The model starts by using the entire data-set as input,
and in the first level of prediction, it identifies 24 easily predicted features it shows in Table
4.3. These features are then added as additional inputs for the second level of prediction,
where the model is able to predict an additional 7 features with a low error prediction
interval of less than 5%. This process is repeated in a third level of prediction, resulting
in the identification of 10 more easy features, bringing the total number of good predicted
features to 41 out of 48. This approach of breaking down the problem into smaller sub-
problems and making predictions at each level, before consolidating the predictions at the
final level, increases the accuracy of the predictions and allows the model to work more
efficiently with the data and improve overall performance.

In order to fully comprehend the outcome of the experiment, it is important to first explain
the three base settings that were utilized.

• The reason for only utilizing three-level predictions was due to limitations in the
size of the data-set.

• A specific split ratio was employed between the prediction levels to ensure that
there would be sufficient data for the final prediction level. It should be noted that
as the number of prediction levels increases, the input data for each subsequent level
becomes the testing data for the previous stage.

• Additionally, it’s worth mentioning that the 5% error allowance is a ratio determined
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by a select group of experts, and may be viewed differently by other experts in the
field or by professionals working within different organizations.

The multi-level model, which employed multi-output random forest algorithms, was able
to predict 41 of the total 48 features for the geometric lens with an error interval of less
than 5%. These findings indicate that utilizing a larger data-set improves the overall
quality of the results, as the prediction capacity is significantly greater in comparison
to the second experiment. In the second experiment, it was used as the first level, and
subsequently, better results were obtained for each prediction level that was implemented.
In this specific case, it allowed the model to extract more information from the data and
improve the overall performance of the model. Additionally, by classifying the outcomes
and focusing on easily predicted features the model was able to achieve better results in
the second level of predictions. This experiment demonstrates the importance of fine-
tuning models, adapting them to the specific problem and data set, and approaching the
prediction at multiple levels.

5.1.4 General discussion and reflections

The experiments carried out in this study indicate the potential of machine learning and
artificial intelligence to enhance the optimization of LED street light lenses and in the
general lighting domain. By using the data-set we have, the first experiment demon-
strated that machine learning can yield accurate results in predicting the light distribution
produced by LEDs and optics. Despite the limitations of using few machine learning al-
gorithms that support multi-output predictions, the second and third experiments showed
promising results. Though these models may not be able to solve all lens optimization
problems single-handedly by this small size of data-set, but at least they can provide a
starting point for the optimization processes, helping to save time, resources, and costs
compared to traditional lens optimization techniques.

The focus of this paper is to explore the potential of using machine learning and artificial
intelligence to optimize the design of LED street light lenses. The aim is to evaluate how
these technologies can be applied to achieve optimal light distribution and lens design.
The research aims to determine the geometric lens parameters that result in the optimal
light distribution on roads and to find an alternative to current lens optimization methods.

The study’s results indicate that machine learning can be used to enhance the accuracy of
LED street light lenses, which lead to improved driver comfort, reduced glare, better vi-
sual discrimination, and optimal illumination performance. Overall, the study highlights
that using machine learning in lens optimization holds great promise for enhancing the
performance of LED street light lenses.

The study aimed to investigate the integration of machine learning and artificial intelli-
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gence in the optimization of LED street light lens designs, with the goal of examining
how these technologies can be used to achieve efficient light distribution and optimize
lens design. By utilizing the power of machine learning, lens manufacturers can improve
the performance of their products and potentially expand in the field of adaptive road
lighting. The results of the study can be useful for the development of new adaptive road
lighting prototypes, which can be tested to evaluate the proposed concepts. The use of
machine learning has the potential to enhance the capabilities of adaptive road lighting
systems, leading to a range of benefits for road users.

5.2 Conclusions

This research proposed and confirmed that machine learning can be effectively utilized
in optimizing the design of LED street-light lenses. This optimization can contribute to
reducing pollution and energy waste, as well as enhancing driver comfort, reducing glare,
and minimizing visual discrimination. The proposed adaptive LED lens design includes
an optical lens that distributes light based on the shape of the road. Hence, the study con-
firmed that machine learning can help attain efficient light distribution. Among the two
algorithms studied, Multi-output Random Forest algorithm proved to be more efficient
in achieving this goal than the neural network algorithm, under the given conditions and
limitations.

The secondary objective of the research is to determine if the data at hand can aid lens
manufacturing companies in creating a lens with optimal light distribution for use on
roads. The log-likelihood function will be utilized to evaluate the optimal value of the
estimates. The outcome of the model is of interest to lens manufacturing companies to
see if it can achieve the desired lens design.

This proposed solution is limited by the data-set used in this study. If another company
were to use a different approach for collecting data and different measurement parameters
for the lens, it is uncertain how the model would perform and if it would achieve similar
results or potentially worse or better results. As a conclusion, the study did not result in
an optimal lens design. However, it serves as a starting point for future research and can
be useful in taking into account the limitations encountered and finding ways to overcome
them in future work.

Finally, future studies can enhance the current solution by collecting more data that in-
cludes various road scenarios, which can be interesting to evaluate the performance of
the model over time. Reinforcement learning can be an appropriate approach for this
problem, as it is based on the interaction between AI/ML systems and their environment.
Through this interaction, the model receives feedback in the form of rewards or penalties
for its predictions (Du et al., 2022) which can aid in optimizing the lens design over time.
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Furthermore, it allows real-time optimization and can help to find the best lens design for
different scenarios.
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