
Bachelor Degree Project

Investigating Methods to
Accelerate the Solving Process
of Errors and Warnings
Generated by Kotlin
Compilers

Author: Ege Kayıhan
Supervisor: Tobias Ohlsson
Semester: HT 2022
Subject: Computer Science



Abstract

The efficiency of error messages that are generated from compilers is up to a
debate by a lot of programmers. Some believe that by enhancing the error
messages, it would be easier to handle errors faster. In this paper, the ways to
enhance compiler error messages and the efficiency of the found solutions for
Kotlin programming language were investigated. To do this, Kotlin
programmers were interviewed about the severity of the problem and
possible ways to deal with it. An example plugin project was made to
describe the possible concept of solving the problem described in the
compiler's error message. Afterward, the same programmers were
interviewed again to discuss the efficiency and practicality of the plugin.
With the last interviews being done, it was seen that this plugin idea has the
potential to help the computer science society and the programmers by
enhancing error and warning messages.

Keywords: Kotlin, Compiler, Error Messages, Warning Messages
Enhancement, Plugin

1



Preface

In this research, I believe that I worked on a topic that is important to the
computer science society. As a senior Bachelor’s student, I remember the
times that I suffered trying to figure out how to understand and solve errors
myself as a freshman. I believe and hope that this research will be helpful to
Android programmers who have just started to learn coding with Kotlin. I
would like to thank the programmers who gave me the time for me to
interview them twice. I would also like to thank my reader, my examiner and
my peer reviewer fellow student for their valuable feedback. Finally, I would
like to thank my supervisor Tobias Ohlsson, who oversaw this research and
shared with me his expertise and professional comments on the matters that I
worked on.

2



Contents
1 Introduction 3

1.1 Background 4
1.2 Related work 5
1.3 Problem formulation 6
1.4 Motivation 6
1.5 Results 7
1.6 Scope/Limitation 7
1.7 Target group 7
1.8 Outline 7

2 Method 9
2.1 Research Project 9
2.2 Research methods 9
2.3 Reliability and Validity 10
2.4 Ethical Considerations 10

3 Theoretical Background 12

4 Research project – Implementation 13

5 Results 16
5.1 RQ1: First Round of Interviews 16
5.2 RQ2: The Plugin and Error Enhancement 17
5.3 RQ3: Second Round of Interviews 18

6 Analysis 19
6.1 Before the Plugin 19
6.2 After the Plugin 20

7 Discussion 21

8 Conclusions and Future Work 22

References 23

A Appendix 1 26
Interview Round 1 26
Interview Round 2 29
Plugin 31

3



1 Introduction
This is a 15 HEC Bachelor thesis in Computer Science. It will mainly be
focusing on Android (Kotlin) Programming, compiler error and warning
clarity and message enhancement.

Mobile applications have gained great importance in our lives. Nearly
everyone uses smart devices nowadays with apps that are used in our daily
lives. But how difficult is it for programmers to code these applications?
Depending on the targeted platform, the programmer uses different
languages and compilers. There are a variety of combinations to choose from.
Today`s mobile application programmers use compilers to turn their projects
into machine code and spot errors that cause problems for their apps.
However, it is up to a discussion about the clarity of the received error and
warning messages. Descriptions of some errors or warnings that come up are
not very explanatory to the programmer.

This research will mainly focus on Kotlin which is an Android Programming
Language. This research will be about evaluating compiler errors and
warnings specifically for Kotlin in order to make suggestions on how to deal
with compiler messages as fast as possible. It will also investigate if these
suggestions truly accelerate the process.

1.1 Background
Programming, nowadays, is conducted in integrated development
environments (IDEs). An IDE is a piece of software for creating programs
that incorporate standard developer tools into a single graphical user interface
(GUI). IDEs have built-in compilers to spot situations that would cause
problems in running the code known as errors or warnings. Programmers
need to solve these errors and warnings to be able to run their code according
to common standards and its intended purpose. Enhanced descriptions of
these compiler outputs decrease the time spent on fixing these errors and
warnings [1]. This leads to a financial impact in the manner of cost reduction
on programming efforts [5].

JetBrains developed the language Kotlin in 2010 to enhance the Java Virtual
Machine programming environment [2]. It is a multi-paradigm language that
supports both object-oriented and functional programming, allowing

4



developers to combine them as is the case with the majority of contemporary
languages today. Applications may be less likely to get null pointer
exceptions because Kotlin supports non-nullable types. Additionally, it has
extension functions, higher-order functions, and smart casting [3]. In this
research, the android programming language, Kotlin will be focused to
conduct the investigation of error enhancement.

1.2 Related work
Compiler error messages are frequently insufficient and frequently
discouraging, which is a major obstacle for beginners learning to program [1,
6, 7, 8, 13]. Brett Becker has looked into improving compiler error messages,
although few offer meaningful empirical evidence of their effectiveness [6].
Effective error message implementation in a compiler or interpreter faces
numerous theoretical and practical technical difficulties [7, 13]. For example,
according to research by Brett Becker, students find it difficult to identify and
fix syntax issues when they are limited to the normally brief error messages
offered by the average compiler [7]. The studies of Becker show that error
messages require more enhancement since current error messages`
descriptions are not enough for teaching new programmers about coding [1,
6, 7, 8].

Enhanced compiler error messages may positively affect programming [1, 6,
8]. In a study on programming students, error enhancement managed to
reduce factors such as the number of overall errors that have been received,
errors made per/by students and repeated error types per the compiler error
message [6].

Apart from enhancing the error messages with explanations, you can also
direct to solutions that have been found by previous programmers that
received the same error. Thiselton made a tool that automatically queries
errors in Stack Overflow [4]. In summary, two ways have been used in the
previous research for their example plugin; either explaining the errors better
or explaining how to solve errors more clearly. Both of these factors made the
plugin helpful for participants who used it [4].

5



1.3 Problem formulation
Programmers get different types of errors and warnings from compilers, some
of which are moderately difficult to understand. Understanding and solving
these errors and warnings takes time. This loss of time is costly for the
company or institution [5].

A compiler`s function is to transform the code to executable format and
establish errors and warnings. However, showing this to the programmer in
an understandable way and advising a way to solve them in a user-friendly
way may be challenging for the compiler. There is a clear gap regarding this
missing functionality of the compiler and the development environments [6,
7, 8]. There is also a gap in the Android programming area regarding the
clarity of the error descriptions. There is not much research conducted on
Kotlin compilers.

To research this gap, the following research questions will be the main focus:

RQ1 How difficult are the Kotlin compiler error messages to understand
and formulate a solution for common errors according to Kotlin
programmers?

RQ2 How can you enhance specific error messages in Android Studio?

RQ3 How effective do the Kotlin programmers find the plugin
implementation for error enhancement?

Table 1.1: Thesis Research Questions

1.4 Motivation
The problem that is stated in this research is an obstacle for Kotlin
programmers. The time it takes to understand errors and find a way to solve
them takes valuable time. The wrong ways to solve errors also delay the
deployment of the applications. These situations are harmful to companies,
individuals and the country's economy as economical and reputational [5].

6



1.5 Results
The results will be presented mainly in Section 5. This research discussed
possible ways to enhance errors with Kotlin programmers. After the
interviews, it is proposed that using a plugin tool might be helpful for the
error enhancement process. With this idea, the procedure of technique was
followed and a plugin concept was coded to show the purpose more clearly.
This concept showed enhanced versions of three errors that were designated
as the hardest by the Kotlin programmers from the first interview round.
Plugin's effectiveness was discussed afterward in the second interview round
with the same Kotlin programmers.

1.6 Scope/Limitation
There will be interviews to find three of the most difficult errors only in
Kotlin. The interviews will be done with three Kotlin programmers. At the
end of the interviews, there will be data present for the solving process of the
errors and some of the most difficult errors to solve while coding with Kotlin.
However, considering the time given for this research and since multiple
reasons can trigger a specific error, it may not be possible to find a faster
solving method for all of the errors. That is the reason why the plugin concept
will be done for three errors only. Thus this research will be aiming to find
methods to accelerate the solving process of some of these errors. The only
environment that the research will be conducted in is Android Studio.

1.7 Target group
Target group of this research will be Android programmers who started to use
Kotlin as their programming language and Android IDE developers to realize
the necessity of error enhancement. This research will be beneficial to
programmers who started learning to code with Kotlin and to programmers
who need to address errors quickly by having a stack overflow site suggested
by the plugin as they mostly do a copy-paste of the error and lookup from
google anyway.

1.8 Outline
This report is structured as follows. In Section 2, the methodological
framework, research methods and ethical considerations will be discussed.

7



Section 3 gives detailed information on the theoretical background and
discusses the knowledge gap. In Section 4, the objectives for an evaluation
technique will be discussed, which will guide the design of a technique that
will be included in Section 5. This section also presents and discusses,
experiences and results from the demonstration and interviews. Sections 6
and 7 describe the validation of the technique. These will be analyzed and
discussed further in Section 8, where also threats to the validity of the work
will be discussed with a conclusion.

8



2 Method
In this research, interviews will be conducted with Kotlin programmers to
gather the information to answer research questions 1 and 3.

2.1 Research Project
Before starting the project, detailed literature research will be conducted
about compiler error description usefulness for understanding by the
programmers, compiler error enhancement with different techniques for
different coding languages, Kotlin programming language and Android
Programming. During the project, interviews will be conducted with Kotlin
programmers about the solving process of errors in general and some of the
most difficult errors that can come up during programming. After the
interviews, a plugin for Android Studio will be coded to enhance some of the
error messages. Then another session of shorter interviews will be conducted
again with the same programmers to discuss the plugin's usefulness.

2.2 Research methods
Literature research will be conducted to get a general idea about the research
done in the past. Moreover, some research will also be conducted to make an
Android Studio plugin. The literature research method is one of the most
common initial methods to gain information about research topics, areas of
research and areas of application [9].

Mainly, semi-structured interviews will be conducted to gain insight into
information regarding past experiences, from the Kotlin programmers, are
required. There are some situations where some answers need elaboration for
the research [10]. The interviewees will be selected from members of a
mobile development team of a company where the researcher did his
internship in. The interviewees have been selected to form a team at the
company less than a year ago, thus they have experience from different
companies in their previous work. Surveys are also another method to get this
information, but it would be risky to get a certain number of people to do the
survey and it would be impossible to get extra elaboration about the answers
[11].

9



2.3 Reliability and Validity
When others replicate one's work and get the same results, that is when
reliability is attained. The actions and decisions made throughout this
research's conduct are openly stated in order to reduce reliability concerns.
Interviews will be recorded and they will be transcribed afterward. The
questions that have been asked during the interviews will be the same and
there will be no persuasion to any possible answers.

Regarding validity, all of the programmers that will be interviewed are
assigned to different mobile apps that require Kotlin programming. Their
general programming experience is in various mobile programming
languages. However, opinions are relative to the problems they faced in their
pasts. Some of them had dealt with some errors more than others, which
might be why they classified that error as the hardest for them among all the
given. There will be three interviews conducted. If the results that will be
received from the interviews create high inconsistency, additional interviews
will be conducted. Also, while doing the interviews, interview bias should be
avoided. That is why the interviews will be conducted through an online
meeting. While the questions have been asked, it will be paid attention to not
recommend giving certain answers with as much objectivity as possible by
not giving any leading questions.

2.4 Ethical Considerations
Ethical considerations will be paid attention to during the interviews. For
confidentiality, the interviews will be recorded by a device that has a
passcode only the researcher knows and they will not be shared with anyone.
Generalization, which is predicated on the idea that samples are chosen at
random from the population being studied, is where sampling bias originates
[12]. For sampling/bias, it is important to eliminate interview bias when
conducting the interviews. In general, it is acknowledged that the
interviewer's personality traits play a significant role in determining the
outcome of the interview. Interviewer biases might have a direct impact on
the study's final findings' validity and reliability [13]. To avoid this, the
interviewees are programmers with a substantial amount of professional
experience. The interviews will be performed via an online meeting, and

10



while the questions will be posed, care will be taken to ensure that all
responses will be given objectively. Finally, for participation and consent, all
of the interviewees will be notified about the reasons for the interview and
their consent will be taken to record the interview and use the data that they
will give for the research.

11



3 Theoretical Background

A few themes appear to be prevalent among the numerous program
improvement techniques employed by programmers (manually) and
compilers (automatically). Two of them are commonly referred to as
frequency reduction and precomputation, respectively and refer to
groups of optimizations for detaching calculations that can be
relocated to contexts in which they will be executed less frequently or
in which efficiency is less important [14].

The crucial field of compiler error messages appears to have been
overlooked in research on compiler design and building. The topic
can be approached in some ways or from some perspectives,
according to a review of the literature. The subject is still far from
being fully resolved, and numerous intriguing and unresolved
problems have been found that merit additional study. Real-world
examples of error messages have been given, demonstrating how
badly designed some of these messages can be and how this might
impact a programmer's productivity or ability to learn [15]. The issues
regarding compiler error messages not being clear enough will be
creating the main problem focus of this research.

The type of additional information contained in the detailed error
messages containing mostly technical details presented in the console
does not appear to improve message comprehension, speed up
mistake detection, or help beginners more effectively spot errors.
Similar research for several compiler error message characteristics
(such as the technicality of the error message, visual representation,
messages with examples, etc.) could pinpoint the features that have a
significant favorable impact on programmers. Compiler error
messages might be customized for them using this information [16].
According to research by Titus Barik, more comprehensible,
human-friendly errors across a range of programming languages and
compilers will result from generalizable, theory-driven methods to the
design and evaluation of error messages [17]. The approach of
human-friendly error messages stated in this paragraph will be helpful
in a way to solve the problem of this research.

12



4 Research project – Implementation

During the research, interviews have been conducted and a plugin has been
developed. In this section, the plugin implementation will be mainly
described, since interviews have been and will be discussed in detail in the
other sections, there will be less information here.

When the first round of interview questions were made, the main focus was
errors that made understanding for the programmer hard and ways to solve
them with an additional method/tool. The default console of the Android
Studio compiler gives the error descriptions as shown in Figure 4.1, Figure
4.2 and Figure 4.3; it can clearly be seen that it does not give a clear picture
of what the error is for a novice programmer. When the second round of
interview questions were made, the main focus was the effectiveness of the
plugin and ways to improve its features.

Figure 4.1: ArrayIndexOutOfBounds exception from Android Studio Compiler

13



Figure 4.2: IndexOutOfBounds exception from Android Studio Compiler

Figure 4.3: IllegalArgument exception from Android Studio Compiler

The plugin idea was to implement a tool that would automatically run when
the developer builds and runs the source code. This tool would scan the
output in the Logcat (logging component) and create a popup with a detailed
description and propose a way to solve the error or errors that come up.
Considering the given time, it was only possible to do a subset of errors.

In order to make the plugin concept work, the following steps were
implemented. Firstly, in order to read the log, the AdbController.kt file was
created with AndroidLogcatService class and ILogcatListener interface.
Listeners were created to take the errors from the Logcat and save them. To
do the initialization of the device change listener in this file,
AndroidDebugBridge class was also used.

Secondly, in order to find the error, an analysis of the console output needed
to be done. In LogFactory.kt object file, the IUIAction interface was used for
getting the instance. A pumpLog method was coded to place the necessary

14



information in the popup and a findGivenError method was coded to find the
error that came up in the Logcat from the ErrorType.kt enum class.

Finally, in order to create the popup with the error information, the
showErrorMessage.kt file was created. In the showError method, the popup
was created as a notification and in the actionPerformed method, the
information was placed in the popup after getting it from the LogFactory
object.

Three errors were chosen to implement this concept. An enum class was
updated to store the errors with their names that come up in the received
exception, descriptions and a basic way to solve them in a user-friendly way.
Storing errors was easy but not the main challenge in the process. Making the
plugin a way that it would run itself after the source code ran automatically
and being able to scan Logcat was the main challenge. To do so, the classes
that would solve this issue were researched and by so, AndroidLogcatService
and AndroidDebugBridge classes were used. By using these classes a test
environment for the plugin was also able to be created. The directory of the
Android Studio’s binary file was given in the “runIde” section of the
“build.gradle” file to create this environment. Finally, the application looks
like in Figure 4.4 below.

Figure 4.4: IllegalArgument exception from Android Studio Compiler

15



5 Results
5.1 RQ1: First Round of Interviews
The first step in the research was to get data by talking to programmers who
are programming with Kotlin. Three interviews have been conducted on
matters of error analysis, enhancement and difficulties and they have been
transcribed and they are presented in Appendix 1 as Interview Round 1.

In the first interview, the interviewee said that the algorithms they use to deal
with the errors might not be compatible with the components they use. This
means they can encounter an error where it is the least expected. These
situations make the solving process longer. With time, they learn to take
precautions that are useful until new technology and developments make
these precautions unusable and/or inefficient. The interviewee said that they
would expect this situation to be solved by the IDE developers. The
interviewee also said that they believe “Field/method confusion”, “Array out
of bounds” and “Incorrect for-loop statement” errors are the hardest ones to
solve.

In the second interview, the interviewee said that not knowing how to debug
made error understanding and solving harder than it was supposed to be.
With time, they decreased their need to use the internet for this process. They
said special search queries with Stack Overflow integration might be a good
idea to accelerate the process. They believe “Field/method confusion”,
“Variable misspelled or not declared” and “Incorrect for-loop statement” are
the hardest errors to solve.

In the third interview, the interviewee said that when they are dealing with an
open dialogue or a fragment, which are major parts while programming in
Kotlin, it is harder to spot the problems. They said that, especially in Kotlin,
gradle file issues are harder to solve considering the lack of elaboration in the
build feedback. They also said that some errors do not allow them to build the
project either. They believe “Field/method confusion”, “Array out of bounds”
and “Variable not initialized” are the hardest errors to solve.

16



5.2 RQ2: The Plugin and Error Enhancement
The implementation of the plugin was described in detail in Section 4. With
the plugin, it has been managed to create warnings as shown in Figure 5.1,
Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6 below. The
repository that has the plugin code can be found in the Plugin section in
Appendix 1.

Figure 5.1: ArrayIndexOutOfBounds exception as a popup warning

Figure 5.2: ArrayIndexOutOfBounds exception in events section

Figure 5.3: IndexOutOfBounds exception as a popup warning

Figure 5.4: IndexOutOfBounds exception in events section

Figure 5.5: IllegalArgument exception as a popup warning

Figure 5.6: IllegalArgument exception in events section

17



5.3 RQ3: Second Round of Interviews
In these interviews, the plugin was discussed with the Kotlin programmers
from the first interview round about its practicality and ways to improve it.
These interviews have been transcribed and they are presented in Appendix 1
as Interview Round 2.

In the first interview, the interviewee found the plugin implementation useful
but believed that there would be some features that could be added to make
the plugin more practical for error enhancement. Some of the features that
could be added for them were, forwarding to a Stack Overflow page and
making a separate window inside Android Studio that shows possible
solutions for the problem at hand.

In the second interview, the interviewee found the plugin implementation
useful and they believed that more features could be added to make the
plugin more useful for error enhancement. They believed that forwarding to
the designated Stack Overflow page would be quite useful. Also checking the
other questions from Stack Overflow using the same tags of the current
problem would make the plugin more practical. They also thought that
clicking the error name in the popup and forwarding it to the error page on
Android Studio's website would also be a nice feature. Finally showing the
previous users' methods to solve the error would be useful as well for the
Kotlin programmers.

In the third interview, the interviewee found the plugin implementation
practical and gave ideas to make the plugin better. They assumed that the aim
would be for the programmer to use the console less, so they believe that the
popup should also show the line where the error is generated. Other than that,
they thought a button could be added to the popup to automatically search the
received error from the developer's website and forward it to that page. They
also thought that showing the verified comment from the Stack Overflow
page that is about the received error would also be a great feature to add.
Finally, showing an example of usage of the component, loop or iteration like
SwiftUI, which is an IOS coding language, would also be a good idea.

18



6 Analysis
This section will provide the analysis for the research.

6.1 Before the Plugin
For analysis, each interview in both of the interview rounds were transcribed.
The transcription is presented in Appendix 1. According to the interviews in
the first round; when they first started interviewees had problems with
debugging, finding the reasons for the errors and finding solutions to errors.
All of them thought that using search queries in Stack Overflow would be a
solution that would speed up the process. To establish the errors to focus on
for the plugin, an analysis was made to find the most complex errors by the
programmers. For interview question 3, one of Brett Becker’s studies was
used [6]. 10 errors listed below were chosen from that study. The errors were
adjusted for the Kotlin programming language for the interviewees to choose
from. This analysis has been graphed in Graph 6.1 below.

1 - API function misspelled
2 - Incorrect for-loop statement
3 - Braces
4 - Other Punctuation
5 - Parenthesis
6 - Variable misspelled or not declared
7 - Array out of bounds
8 - Field/method confusion
9 - Variable not initialized
10 - Class name misspelled

19



Graph 6.1: Ordered Errors According to the Interviews by Complexity

The interviewees thought that “API function misspelled” and “Array out of
bounds” were the hardest and most complex errors to deal with and “Other
Punctuation” and “Variable misspelled or not declared” errors were the
easiest among all of the errors. “Field/method confusion” and “Incorrect
for-loop statement” errors were also confusing and harder to solve among all
of the errors. “Braces”, “Parenthesis” and “Class Name Misspelled” errors
are also quite high in difficulty. For the plugin, errors that are higher in
difficulty and easier to enhance should have been focused on. According to
the replies from the first interview round, the errors that were chosen are
“Array out of bounds”, “Incorrect for-loop statement” and “Field/method
confusion”.

6.2 After the Plugin
The plugin is supposed to make the error understanding and solving process
faster than the default features that the developers currently offer. For this to
happen, a concept project has been created and this example was shown to
the interviewees to get their opinions. The transcription is presented in
Appendix 1. According to the interviews in the second round; the
interviewees found the concept practical but it could be further developed
with new features. They believed that forwarding to relevant Stack Overflow
pages with a link in the popup would be making the plugin more efficient.

20



7 Discussion
In this research, a lot of information was gained. The programmers believe
that error messages can be enhanced more to accelerate the understanding
and solving processes of errors. This matter is important considering it is an
obstacle in learning the programming language for programmers. Getting rid
of this obstacle might also help programmers to spend less time dealing with
errors since one of the interviewees stated that it takes 20% - 30% of their
time during a project.

The plugin that has been made to deal with this issue might be considered
helpful for programmers to understand and solve the errors while they are
learning how to code with Kotlin. The interviewees finding this plugin
effective shows that the plugin may have a similar effect on programming
students like Becker’s study [1], but it has to be tested on them to be sure.

Adding a link to the Stack Overflow site could not be managed because of
the given time period for the research. However, it could have been a more
efficient solution on the matter according to the interviewees and Thiselton’s
research [4].

21



8 Conclusions and Future Work

In this research, it has been found that current error descriptions that have
been received from the compilers are not nearly fully understandable. It can
be seen that this situation could be worked on to enhance error messages in a
way it would be more helpful to the programmers. By doing this plugin
concept, an example was created to address the problem. With this plugin,
error messages became easier to understand by the programmers. This helps
Kotlin programmers to learn errors appearing, reasoning and ways to fix
them. This solution generally benefits programmers, since it decreases the
time they spend on errors during a project, which also benefits the company.

In the future, with extended time, the plugin could be upgraded to a more
efficient tool. In this project, it was only possible to focus on three errors due
to the time period allowed for the research. More errors could be added to the
plugin to check for more errors. Other than that, the descriptions of the
plugin’s popups could be upgraded to have a link to a Stack Overflow page
that is related to the errors or to the error situation to be more precise. Using
AI assistance might also be a great idea. This AI can look at the code and the
error message to make suggestions as well. Also, another research could be
conducted by interviewing students new to programming in order to find out
the problems that they face the most during their learning process.
Furthermore, doing the same research on different programming languages
and platforms might also be a good idea for gaining new information about
the necessity and effects of error enhancement.

22



References
[1] Becker, Brett. “An Exploration of the Effects of Enhanced Compiler Error
Messages for Computer Programming Novices.” Nov. 2015,
https://doi.org/https://www.researchgate.net/profile/Brett-Becker/publication/
308890128_An_Exploration_of_the_Effects_of_Enhanced_Compiler_Error_
Messages_for_Computer_Programming_Novices/links/57f50eef08ae886b89
7f6afd/An-Exploration-of-the-Effects-of-Enhanced-Compiler-Error-Message
s-for-Computer-Programming-Novices.pdf.

[2]A. Breslav, History of Kotlin, [online] Available:
https://www.coursera.org/lecturelkotlin-for-java-developerslhistory-of-kotlin-
K8pZr.

[3] V. Oliveira, L. Teixeira and F. Ebert, "On the Adoption of Kotlin on
Android Development: A Triangulation Study," 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
2020, pp. 206-216, doi: 10.1109/SANER48275.2020.9054859.

[4] Thiselton, Emillie, and Christoph Treude. “Enhancing Python Compiler
Error Messages via Stack.” 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2019,
https://doi.org/10.1109/esem.2019.8870155.

[5] Hoopes, David G., and Steven Postrel. “Shared Knowledge, ‘Glitches,’
and Product Development Performance.” Strategic Management Journal,
vol. 20, no. 9, 1999, pp. 837–865.,
https://doi.org/10.1002/(sici)1097-0266(199909)20:9<837::aid-smj54>3.0.co;
2-i.

[6] Becker, Brett A. “An Effective Approach to Enhancing Compiler Error
Messages.” Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, 2016,
https://doi.org/10.1145/2839509.2844584.

[7] Becker, Brett A., et al. “Compiler Error Messages Considered Unhelpful.”
Proceedings of the Working Group Reports on Innovation and Technology in

23

https://doi.org/https://www.researchgate.net/profile/Brett-Becker/publication/308890128_An_Exploration_of_the_Effects_of_Enhanced_Compiler_Error_Messages_for_Computer_Programming_Novices/links/57f50eef08ae886b897f6afd/An-Exploration-of-the-Effects-of-Enhanced-Compiler-Error-Messages-for-Computer-Programming-Novices.pdf
https://doi.org/https://www.researchgate.net/profile/Brett-Becker/publication/308890128_An_Exploration_of_the_Effects_of_Enhanced_Compiler_Error_Messages_for_Computer_Programming_Novices/links/57f50eef08ae886b897f6afd/An-Exploration-of-the-Effects-of-Enhanced-Compiler-Error-Messages-for-Computer-Programming-Novices.pdf
https://doi.org/https://www.researchgate.net/profile/Brett-Becker/publication/308890128_An_Exploration_of_the_Effects_of_Enhanced_Compiler_Error_Messages_for_Computer_Programming_Novices/links/57f50eef08ae886b897f6afd/An-Exploration-of-the-Effects-of-Enhanced-Compiler-Error-Messages-for-Computer-Programming-Novices.pdf
https://doi.org/https://www.researchgate.net/profile/Brett-Becker/publication/308890128_An_Exploration_of_the_Effects_of_Enhanced_Compiler_Error_Messages_for_Computer_Programming_Novices/links/57f50eef08ae886b897f6afd/An-Exploration-of-the-Effects-of-Enhanced-Compiler-Error-Messages-for-Computer-Programming-Novices.pdf
https://doi.org/https://www.researchgate.net/profile/Brett-Becker/publication/308890128_An_Exploration_of_the_Effects_of_Enhanced_Compiler_Error_Messages_for_Computer_Programming_Novices/links/57f50eef08ae886b897f6afd/An-Exploration-of-the-Effects-of-Enhanced-Compiler-Error-Messages-for-Computer-Programming-Novices.pdf


Computer Science Education, 2019,
https://doi.org/10.1145/3344429.3372508.

[8] Becker, Brett A., et al. “Unexpected Tokens.” Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science
Education, 2019, https://doi.org/10.1145/3304221.3325539.

[9] Snyder, Hannah. “Literature Review as a Research Methodology: An
Overview and Guidelines.” Journal of Business Research, vol. 104, 2019, pp.
333–339., https://doi.org/10.1016/j.jbusres.2019.07.039.

[10] Gill, P., Stewart, K., Treasure, E. et al. Methods of data collection in
qualitative research: interviews and focus groups. Br Dent J 204, 291–295
(2008). https://doi.org/10.1038/bdj.2008.192

[11] Roztocki, Narcyz, and S. D. Morgan. "The use of web-based surveys for
academic research in the field of engineering." Proceedings from the 2002
American Society for Engineering Management (ASEM) National
Conference. 2002.

[12] Andringa, Sible, and Aline Godfroid. “Sampling Bias and the Problem
of Generalizability in Applied Linguistics.” Annual Review of Applied
Linguistics, vol. 40, 2020, pp. 134–142.,
https://doi.org/10.1017/s0267190520000033.

[13] Salazar, Mary Kathryn. “Interviewer Bias.” AAOHN Journal, vol. 38,
no. 12, 1990, pp. 567–572., https://doi.org/10.1177/216507999003801203.

[14] Jørring, Ulrik, and William L. Scherlis. “Compilers and Staging
Transformations.” Proceedings of the 13th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages - POPL '86, 1986,
https://doi.org/10.1145/512644.512652.

[15] V. Javier Traver, "On Compiler Error Messages: What They Say and
What They Mean", Advances in Human-Computer Interaction, vol. 2010,
Article ID 602570, 26 pages, 2010. https://doi.org/10.1155/2010/602570

24

https://doi.org/10.1038/bdj.2008.192
https://doi.org/10.1155/2010/602570


[16] Nienaltowski, Marie-Hélène, et al. “Compiler Error Messages.” ACM
SIGCSE Bulletin, vol. 40, no. 1, 2008, pp. 168–172.,
https://doi.org/10.1145/1352322.1352192.

[17] Barik, Titus, et al. “How Should Compilers Explain Problems to
Developers?” Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2018, https://doi.org/10.1145/3236024.3236040.

25



 

A Appendix 1

Interview Round 1

Interview Questions

● Are the current error messages; displayed by Android Studio as
console output, clear enough?

● Do you have an idea on how to improve the error-solving process?

● Which are the hardest errors to understand and solve that are
displayed by Android Studio?

1 - API function misspelled
2 - Incorrect for-loop statement
3 - Braces
4 - Other Punctuation
5 - Parenthesis
6 - Variable misspelled or not declared
7 - Array out of bounds
8 - Field/method confusion
9 - Variable not initialized
10 - Class name misspelled

Interview 1

1) Errors are one of the things that us programmers deal with the most. The
algorithms we use to deal with these might not be compatible with the
components we use, which means we can come by an error where we expect
the least. Since we have deadlines that we must strictly follow, if the dealing
process with errors is way too long, it creates a decrease in our motivation.
Many colleagues I talked to and work with, think the same on this matter.
However, developing technology and community help online (Stack
Overflow, Git Hub Discussion part) brings good solutions with it. You also
gain experience with going through these situations which helps you in the
future such as expecting potential errors in certain places.

26



One of the main reasons that the solving process of these errors is so long is
when you search for these errors on Google, it gives you a programmer´s
comment after the code that he/she wrote and we do not see the factors that
trigger the error in the background. Most of the time shared solutions do not
help our situation because of the different algorithms and infrastructures we
work with. I spent a lot of time on the errors I received (nearly 4-5 days)
when I was a junior developer.

In a development cycle, you spent %20 - %30 of your time dealing with
errors. You start to take precautions with some of the errors with experience,
but newly developing technology changes the situation all the time. For
example, a couple of years ago "Null Pointer Exception" was a thing in our
lives and there are a lot of articles and books written about it. With new
technology, this error is nearly out of our lives.

2) If you ask me, all of the developers thought about this at some point in
their lives. However, if you ask me I expect IDE developers and/or
component developers to handle this issue. Some IDEs started to make AIs to
handle these situations which predict errors while writing the code and
recommend solutions.

3) 8-7-2-1-9-6-10-3-5-4

"Field/method confusion" might be triggered by any reason. "Array out of
bounds", "Incorrect for-loop statement" and "API function misspelled" takes
quite a bit of time in dynamically created arrays (while inserting data in the
array and receiving data from APIs). Most of the IDEs show "Other
Punctuation" as a lint error which makes it the less difficult one.

Interview 2

1) When I was learning Kotlin newly and especially when I did not know
how to debug, I had times when I was a complete stranger to the error. With
experience, I have come to a point where I do not need to search the errors
on the internet anymore. Before I started to understand the errors I had times
when I did not know how to search for and solve an error as well.

27



2) Special search queries could be made to directly search a specific error or
forward it to the correct Stack Overflow page. An integration with Stack
Overflow makes sense since we programmers mostly use it while solving our
errors.

3) 8-2-6-1-7-5-10-9-3-4

Punctuation and parenthesis errors in general have an easy and
understandable solution suggested by the IDE and you can also assume if
they will appear in certain places with experience before running.

Interview 3

1) As an experienced programmer while you are dealing with an open
dialogue or fragment, you understand the error but you do not where the
problem is.

2) In Kotlin, usually gradle problems are harder to solve because the console
feedback is not explaining enough and it does not tell you what to do. I think
a lot of Kotlin programmers suffer from the same situation. After some
errors, the compiler does not let you build the code as well.

3) 8-7-9-6-1-2-4-5-3-10

The errors where you can jump to from the console after the build is easier to
solve. However, those same errors can also be viewed before the build. For
example, the "Array out of bounds" error requires that you need to insert
inside the array, remove elements or etc. to understand the actual problem.

28



Interview Round 2

Interview Questions:

Did you find the plugin useful for error enhancement?

What more features can be added to make the plugin more useful?

Interview 1

1) I found this plugin concept quite useful, however, I believe there are some
things that could be added to make the plugin more practical such as in the
solving side.

2) Forwarding to a Stack Overflow page would be more useful. Other than
that, making a separate window inside Android Studio that shows possible
solutions for the problem at hand would be useful.

Interview 2

1) I found the plugin concept nice. I usually use one of the bars at the top of
the IDE and event log to check the exceptions. That is why I liked this
concept.

2) I believe forwarding to the designated Stack Overflow page would be quite
useful. I also think that checking the other questions from Stack Overflow
using the same tags of the current problem would be useful. I also thought
that clicking the exception name in the popup and forwarding it to the
exceptions page on Android Studio's website would also be a nice feature.
You can also show the previous users' methods to solve the exception.

Interview 3

1) I found the plugin concept nice and useful, but I believe it lacks some
features that can make the plugin more useful.

29



2) I am assuming the aim would be for the programmer to use the console
less, so I believe the popup should also show the line where the error is
generated. Other than that, I believe a button could be added to the popup to
automatically search the received exception from the developer's website and
forward it to that page. This would also be faster than searching the exception
in Google. I also think that showing the verified comment from the Stack
Overflow page that is about the received exception would also be a great
feature. You can also show an example of usage of the component, loop or
iteration like SwiftUI does.

30



Plugin
GitHub Repository for the Plugin:
https://github.com/egekayihan/ErrorEnhancer

31

https://github.com/egekayihan/ErrorEnhancer

