

IT 08 029

Examensarbete 30 hp
Augusti 2008

Query-Based Visualization of
Iso-Surfaces for Tetrahedral Meshes

Muhammad Zahid Abbas
Pokala Prasad

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Query-Based Visualization of Iso-Surfaces for
Tetrahedral Meshes

Muhammad Zahid Abbas and Pokala Prasad

This is an application of information visualization in object relational database. This
will present query based visualization of iso-surfaces for tetrahedral meshes. An Amos
2 object-relational database is used for domain modeling of discrete geometrical
objects (like points) and for assigning them temperature values. Java 3D API is used to
visualize the result of graphical queries. AmosQL an extensible query language has
been used for database design and for composing of graphical queries. This report
also has some basic information about OpenGL (API) and spatial query languages
attributes (like their famous algorithms). In this application, Delauny triangulation and
interpolation of vertices play major role for construction of iso-surfaces. Simulation of
work is done by usage of sample queries in different size of meshes according to 3D
coordinates. Interpolation is done for the usage of colors spectrum to display
different isosurfaces based on their temperature values. Finally, we have discussed
scalability of this application for future work. By using of this application users can
compose queries and have 3D visual results against their geometrical and temperature
queries.

Tryckt av: Reprocentralen ITC
IT 08 029
Examinator: Anders Jansson
Ämnesgranskare: Kjell Orsborn
Handledare: Kjell Orsborn

2 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Preface

This research is conducted in Uppsala Database Laboratory of Uppsala University
Sweden. The main goal of this laboratory is to design and implement an object
relational database (Amos 2). An Amos 2 is a main memory database, which has
a property that it can work as a mediator between multiple types of clients and
multiple kinds of data sources. AmosQL an extensible query language is a main
part of Amos 2 project. AmosQL is more flexible to support object oriented user
defined queries and functions. This thesis work is related with AmosQL query
based information visualization of temperature contours in Amos 2 database. This
thesis has been done by two students of Master in Computer Science at Uppsala
University, Sweden. The participants are following:

1. Muhammad Zahid Abbas, MSc student in Computer Science, Uppsala Uni-
versity, Sweden.

2. Pokala Prasad, MSc student in Computer Science, Uppsala University, Swe-
den.

3. Kjell Orsborn, Examiner and supervisor at Department of Information Tech-
nology, Uppsala University.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 3

Table of Contents

1 Introduction . 6
1.1 Thesis Work . 7
1.2 Contributions . 8
1.3 Report Outline . 8

2 Related Work and Theories . 9
3 Finite Element Analysis . 11

3.1 Introduction . 11
3.2 Finite Element Analysis Process . 11

Finite Elements Analysis Importance in Computer Aided design 11
FEA Models . 12
Finite Element Analysis phases . 12
FE Analysis importance . 13

4 Database Techniques . 13
4.1 Different types of database models . 14

Hierarchical data Model . 14
Network database Model . 14
Relational database Model . 14
Object Oriented Database Model . 14
Object Relational Database Model . 14

4.2 Spatial Database Systems . 14
Modeling in spatial databases . 15
Spatial Relationships: . 15
Pros and Cons of spatial data modelling . 15

4.3 AMOS 2 . 15
Amos 2 as a Mediator . 16
Amos 2 java Interface . 16

4.4 Spatial Query processing in databases . 17
Famous algorithms for querying in spatial databases 17
Spatial Operations . 17
AmosQL query language . 18

5 Visualization Techniques . 18
Common Attributes of Standard APIs . 18

5.1 OpenGL . 19
Introduction . 19
Open GL Architecture . 19

5.2 JAVA 3D API . 20
JAVA 3D API Design Goals . 20
JAVA 3D API Versus Other APIs . 21
Scene Graph Programming Model . 21
Using of Java 3D API in iso-surfacess (contours) construction

and visualization . 22
6 Domain Model . 24

6.1 Mesh Techniques . 24
Structured Mesh . 24
Unstructured Mesh . 24

6.2 Mesh Model in Amos 2 . 24
Schema (commands) for designing of Geometrical Mesh model 24

6.3 Finite Elements Mesh . 27

4 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Tetrahedron Mesh . 27
6.4 Finite Element Procedure . 29

Boundary conditions . 29
Finding of iso levels on each edge of the triangle 29
Calculation and generation of iso level points 30

6.5 Contours Generation process . 31
Interpolation(Connection of points and drawing of

Triangulated surfaces) . 31
Contour colors pattern generation on the base of iso levels 31
Contour Generation Steps . 32

6.6 Data Model . 36
7 Spatial Queries and their results . 37

7.1 Sample queries . 37
7.2 Sample models . 38
7.3 Cutting on the base of geometrical queries 39
7.4 Cutting of the planes from 3D Mesh . 39

8 Conclusion and Further work . 40
8.1 Future work . 40

Importance of this application in other fields 40
Further Enhancements . 41

8.2 Reflections . 42

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 5

List of Figures

1 Basic Architecture of Finite Element Analysis . 11
2 Finite Element importance in Computer Aided Design 12
3 Basic elements and their relationships in Amos 2 data model 16
4 Open GL pipeline . 20
5 Scene Graph java 3D API . 22
6 Contour generation data structures (java 3D API) 23
7 Basic Mesh Model . 26
8 Transparent Tetrahedron Mesh . 28
9 One edge of a triangle . 30
10 Division of triangle edge into different iso levels of temperature 30
11 Triangle Element without subdivision into iso-levels 33
12 Triangle Element with subdivision into two iso-levels 33
13 Triangle Element with subdivision into three iso-levels 34
14 Triangulated Element of 2D space . 34
15 Tetrahedral element with 3D triangulated contours 35
16 Temperature Contours on 3D Tetrahedral Mesh . 35
17 3D Iso-Surfaces Generator on the basis of Temperature values 36
18 Amos 2 Query result to display sample models for different size of

Tetrahedral meshes . 38
19 Transparent Tetrahedron Meshes of different size. 38
20 Amos 2 Queries results on the basis of different geometrical

coordinate and temperature values . 39
21 Amos 2 Queries results for planes cutting samples from mesh model

(a) of section 7.2 . 39

6 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

1 Introduction

This thesis treats query-based visualization capabilities of spatially distributed
scientific and engineering data that is usually generated in computational appli-
cations. During this work three main areas of research are explored, importance
of object oriented main memory database in spatial applications, help of compu-
tational work in spatial data modeling and query based information visualization.
Before going into details of this thesis work, first we are describing a bit infor-
mation about these areas of research.

Today, database management systems (DBMSs) plays a vital role in many types
of computer applications, as in conventional business administration, most web-
based applications and in more advanced applications in data warehousing and
mining. The database system is also considered as a basis for complex applica-
tions as found in complex scientific and engineering applications. These appli-
cations are found in many different computational applications in various dis-
ciplines including impact analysis of mobile phones, structural analysis of air-
crafts, earthquake analysis, analysis of blood flow in human hearts and analysis
of weather forecasting.
These complex applications normally require more advanced modeling techniques
as provided by the object-oriented model found in object-oriented and object-
relational database management systems. For example, many applications involve
modeling and mathematical analysis of three-dimensional (3D) spatial and tem-
poral concepts such as geometries and other quantities distributed over these
geometries, like temperature or velocity distributions. Conventional relational
database systems are not well-suited to model and manage these type of data
since the relational data model is to rigid.

Data of this type also normally need tailored data representations to meet the high
requirements on computational performance usually involved. Here, the tech-
niques of main-memory databases have many advantages in comparison to con-
ventional disk-based systems running the database from hard disk since main-
memory database has much faster response time and it helps in computational
work as well [1]. Now a days main-memory is relatively cheap and the size of
memory is quite large, which can further be exploited using network databases.

Main purpose to use spatial data modeling and comuptational (numerical analy-
sis) work in this thesis is to design an application which should work for query
based visualization of scientific data. Query based visualization works for visual-
ization of objects in object oriented databases rather than display of tables against
queries of conventional databases. Query based visualization is a type of informa-
tion visualization, which is normally used to visualize data which is not avaial-
able in visual forms on the base of user queries, like scalar (temperature, density,
volume, pressure etc) and vector (acceleration, displacement, etc) values. Spatial
data modeling is commonly used to design data model for these kinds of the data.
For visualization normally these values are associated with geometrical objects.

Besides, query based visualization can aggregates data in such a way that is easy
to understand, but it is comparatively more difficult and complex to design and

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 7

implement data model for such kind of applications.

1.1 Thesis Work

The main focus of this thesis work was to build an application, which helps for
visualization of queries results in 3D bodies. This work was concerned with query
based visualization of the data in tetrahedron meshes. The project plan was to de-
sign an application that was supposed to be simple in understanding of its domain
model and gave good support for multiple types of views in tetrahedron meshes.
The main important property of this application is its active behavior and quick
response, because it can work on embedded queries and for good response we
used main memory database. We have not used any JDBC/ODBC bridge to con-
nect with database because query language is embedded in database.

This application was mainly involved with designing of domain model for 3D
(tetrahedron) meshes and visualization of iso-surfaces on 3D (tetrahedron) meshes.
Domain model has been designed on the basis of spatial database modeling tech-
niques, which are normally used to design geometrical models for doing of spa-
tial operations on complex scientific data. Firstly, we have designed geometrical
meshes in our domain model, like structured mesh modeling was used for de-
signing of basic mesh but for construction of iso-surfaces we used unstructured
tetrahedron mesh. Our goal was to design tetrahedron meshes but as each tetra-
hedron is made up from triangles so we considered triangles as a basic unit for
our computational work and for the visualization of iso-surfaces. Triangles were
chosed because these are basic geometry elements, which are commonly used in
finite element modeling. Our technique for iso-surfaces constructions was based
on dividing of high order surfaces (like tetrahedrons) into triangles and triangu-
lation was used for the building of iso-surfaces. This triangulation technique was
worked like delauny triangulation to create sub triangles inside of each base trian-
gle. As discussed before in introduction that information visualization works for
representation of scalar (like temperature, density, volume, etc) and vector(like
acceleration, displacement, etc) values by assigning of their values to geometri-
cal objects but specifically in this application we have used temperature value to
represent it on 3D iso-surfaces in tetrahedron meshes.

For Visualization, typically simple techniques are used to represent data, such
as images, diagrams, graphs, bars and tree data structures. In this application we
have used tree like data structure and a high level API (Java 3D API), which have
rich libraries of constructs and its geometrical primitive functions (like points,
lines, triangles, etc) are utilized in visualization of our discrete geometrical ob-
jects. These primitive functions are much more important because they are al-
ways basic identities of any geometrical model. Java 3D API was also used for
visualization of iso-surfaces. Java 3D API has property that it follows tree like
data structure in its scene graph model for rendering of geometrical objects and
have good support of advanced computer graphics, which are normally used in
finite element models. We have designed a specific interpolated colors spectrum
for the display of different iso-surfaces and colors these iso-surfaces were di-
rectly effected with their iso level temperature values. For easy to interact with
application, users have opportunity to compose his own query for visualization

8 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

of iso-surfaces in tetrahedron meshes.

This thesis work is based on integration of the following 3 layers.
1. Database : An object relational main memory database (Amos 2) has been

used in this application, which have support to design spatial data model.
2. Extensible query language: AmosQL query language has been used for spa-

tial operations, which have support to use object oriented queries.
3. Visual Interface: Java 3D API has been used to visualize results of spatial

queries.
AmosQL queries worked for integration of the above layers, like basic geometri-
cal objects and interface objects have been been connected by the use of foreign
functions. Foreign functions are normally used in call-in interface of Amos 2 Java
interface. After completion of this thesis, it is proved that Amos 2 database has a
powerful mechanism to design spatial data model for object oriented applications
and also have a support of extensible query language (AmosQL).

1.2 Contributions

The main contributions this thesis are followings.

1. Designing of data model for geometrical objects (in case of vertices, trian-
gles, tetrahedrons).

2. Assigning of temperature value to each vertice by used of customized spher-
ical formula.

3. Analysis of different visualization techniques.
4. How to create different types of mesh views (different types of cuttings,

display of iso-levels with interpolated colors spectrum)?
5. How model can be more scalable for different size of 3D (tetrahedron) meshes?
6. A prototype model should be establish which can support sample queries

and display expected visual results.
7. Achievements and suggestion for improvements and future work.

1.3 Report Outline

This whole research report has been organized and divided into 8 chapters. The
1st chapter is comprised of research scope and thesis outline,the 2nd chapte con-
sists of some of the related work of other researchers. Chapter 3 deals with the
Finite Elements Analysis which takes part in our research. As our model has been
designed in a spatial database so we have explained the importance of spatial
databases in Chapter 4. For visualization different types of techniques have been
discussed and this has been confined in Chapter 5. Chapter 6 specifies our work
and pinpoints our domain model, etc. Chapter 7 contains testing results of our
model by using sample of spatial queries. At the end of report, Chapter 8 high-
lights achievements,future work and ideas about further enhancements regarding
this application.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 9

2 Related Work and Theories

Lord Tim and Russold Martin have discussed ideas about mesh modeling and
interpolation technique. Using of FEM was discussed comprehensively in their
project. They discussed about different types of finite elements meshes (struc-
tured and unstructured mesh) with their properties, such kinds of meshes we have
also implemented in our model. They defined structured mesh as it has regular
topology and regular or irregular geometry but geometrical elements should have
regular shapes while unstructured mesh can have irregular topology and geometry
but their geometrical elements can have irregular shapes. Standard user interface
requirements have been explained in a good manner, which are also close to our
application interface and some are left for future in our application. They have
established a very comprehensive data model, our data model is also very close
to their domain model. For example, in their domain model they have explained
that their geometrical model was stored in Amos 2 and they used well organized
order of labels like we used for our geometrical objects [1].

Junkin research was much informative in terms of creating contour surfaces by
using of a triangulation. He discussed a technique to divide base triangles into
sub triangles and hierarchy of triangles is also maintained, by using of similar
triangulation technique we have established iso-surfaces in our application. Their
mesh was made by base triangles then base triangles are divided into nested sub
triangles by using of their labels and common edges [2], we follow same way
but here is some difference between our technique that we used computational
formulas for finiding and drawing of iso level points, then reconstructed triangles
with division of iso levels. We have not used any concept of common edged, each
of base triangle is taken individually.

Ramanujam have discussed good ideas about generation of contour surfaces on
base of some scalar value (such as temperature like we used in our model). His
geometrical model was based on polyhedral elements but intersection of polygons
created contour surfaces or cutting plane. Contour surfaces or cutting planes were
used to divide whole model into different zones. Contour surfaces were associated
with specified ranges of temperature and cutting planes were used to subdivide
surfaces by intersections of planes [3]. His work of plane cutting was some how
related with our work but he divided whole body into zones on the base of planes
but we have divided each edge of the base triangle into different iso levels and
palnes cutting is implemented on edges of the base triangles.

Bel at el has discussed iso-surfaces and contour generation in detail. Descrip-
tion of his domain model was very easy to understand and helpful in ordering of
vertices for mesh. Their ordering can be helpful in contour generation and also
in designing of geometrical models. They attached scalar value with vertices of
mesh then generated iso-surfaces (contour surfaces) on the base of that scalar
value. The main idea behind the generation of iso-surfaces was relying on the use
of a discretized volume [4] for representing the basic geometry, we used similar
idea but our iso-surfaces were based on discretized elements (triangle) surfaces
of tetrahedron meshes.

10 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Shiaofen Feng and Pooja Gupta were discussed new ideas for surface extrac-
tion methods from volume data-sets by applying iso-surface technique of zero-
crossing edges in volumetric domain. First volume data set was filtered then
marching cube process helped to extract the entire zero crossing surface that
could be viewed on various intensity ranges and gradient scales. Their mecha-
nism for extraction of iso-surfaces is better than traditional techniques used for
iso-surfaces retrieval [5], in case of iso-surfaces extraction their work was close
to our work but they used marching cube algorithm for extraction of volumetric
iso-surfaces while we used trianglution for construction of iso-surfaces on the
face of each base triangle.

For contour generation, Michael J Zayada used 3D Grid algorithm, which was
basically designed for 2D sub Grids (slices). Main focus of this algorithm was to
generate 2D contour lines on 3D Grids. In his algorithm only outer surface have
been used for contour lines generation, without any usage of volume rendering.
His algorithm was close to our computational formula but major difference is
that he used 2D iso lines while we have been designed 3D iso-surfaces, which
covers whole 3D mesh not only outer surfaces. The author used tree structures to
organize nodes of different levels and used easy way to traverse nodes. First he
divided 3D grid into 2D slices then contour lines generated on these slices. After
successful generation of contour lines, slices were fixed again in 3D grid. A com-
prehensive way has been used for calculation of nodes positions and connections
of same level nodes, like we used for connection of iso-levels points in our iterpo-
lation technique for sub triangles vertices. Different ways of contour generation,
connections and drawings have been discussed in details in his research report. In
2D contour generation his algorithm can work as a milestone. The most advanced
benefits of his algorithm is that he used components (slices) based technique so
it is easier to mange and efficient to add different functionalities [6].

J. Ramsden and T. D. Charters have discussed triangular elements data structure
(mesh) [23]. Their idea was basically used on rectangular grid and they divided
their grid into triangles. They mapped scalar value on vertices of triangles by us-
ing of interpolation they found and connected the points of same iso-level to draw
contour lines. Searching of vertices was implemented by using of homogeneous
coordinate system and each triangle had a direct link with at least 3 neighboring
triangles and associated points, like nearest neigbour algorithm used in spatial
data modeling, this algorithm is more explained in section 4.4 of this report. Their
work have relationship with our work only because they made body by using of
triangles like we design our base triagles mesh but our contour generation tech-
nique is different because we consider every triangle element separately, their is
no any use of neigbour triangles or combine edges in our model.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 11

3 Finite Element Analysis

3.1 Introduction
FEA (finite element analysis) is a famous computer simulation technique widely
used in engineering applications. FEA is based on FEM (finite element methods).
Finite Element Analysis was invented by researchers of applied Mathematics,
Physics and Engineering. Firstly Richard Courant developed FEA in mathemat-
ics for numerical analysis to obtain approximate solutions for vibration system.
In case of Engineering application FEA was developed for matrix analysis and
later it was emerged with aerospace research [8]. Basically it was developed only
for structured analysis but later due to its better performance it also became im-
portant in physical analysis. The importance of finite elements analysis increased
day by day and was widely used in engineering projects. Now a days it is nothing
wrong to say that finite elements methods are used in almost every field of en-
gineering. By the invention of digital computers it has become easier to use and
also powerful for finite elements analysis in scientific computing. Finite element
analysis is based on mathematical models effectiveness and comprehensiveness.

3.2 Finite Element Analysis Process

Fig. 1. Basic Architecture of Finite Element Analysis

Finite Elements Analysis Importance in Computer Aided design In
the early days of computing science, Finite Element Analysis was only used for

12 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

structured analysis mainly in the field of aerospace and civil engineering indus-
tries. With the passage of time FE analysis has become an integral part of almost
all engineering projects. The current trend in FEA software demands is in increase
due to the flexibility in integration between solid modeling and FEA analysis.
Engineers need FEA for regular updating during the design process of products.
Engineers like to use FEA because it is more robust and collaborative, which also
helps in computer-aided design to eliminate problems in the beginning [8].

Fig. 2. Finite Element importance in Computer Aided Design

FEA Models
1. Dynamic Modeling: Mostly FEA is used in dynamic modeling because if

there happens any change in finite element formula, then it should effects
the whole model.

2. Modeling Assemblies: This is basically a component based model because
mostly engineers use FEA on some part of the model rather than implemen-
tation on whole model [8].

Finite Element Analysis phases Finite Element Analysis process is typically
divided into 4 phases.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 13

1. Specification: This is the phase to define problem specification and domain
model (geometrical entities, boundary conditions, etc).

2. Discretization: This phase decomposes the mesh into finite elements and
nodes.

3. Analysis: Analysis can be done by using mesh data and boundary conditions
to build equation system.

4. Evaluation: Results are evaluated in this phase by using standards tests.
If once evaluation results do not come accurately then all phases are repeated
until getting the expected results. This works in an iterative fashion where the
complex analysis can be solved in more and more accurate way. Each FEA pro-
cess iteration can refine the whole mesh. An optimization criterion is used to stop
these iterations. FEA complexity of calculation is increased by using of multiple
levels of equations and large numbers of unknowns in equations.

On the basis of problem definition, corresponding FEM is recommended to apply.
Multiple categories of FEA formulations are available and classified on the base
of boundary value problems, initial-value problems, and specific kinds of partial
differential equations. Several Finite Element Methods are available for static
linear elasticity or heat conduction problems [9].

FE Analysis importance FEA Important features:

1. Finite Element Methods are mostly reliable and robust in functionality.
2. Finite Element Methods should not be sensitive to material data and bound-

ary conditions.
3. Results of FE accuracy are directly linked with mesh topology; if mesh

topology is fine the FE methods must give accurate results.
4. Finite Elements Analysis technique is a key to have better check on error

estimation.
Mostly FE analysis is used in designs of some parts in complex engineering ap-
plications to enhance their accuracy. Most of the engineers do not use all of its
processes; rather they just use it in a customized way. In future finite elements,
analysis techniques can be fruitful to use in other engineering fields. It can be
more important in the future if more automatic ways be used for error estimation
and FE analysis parameters will be automatically upgraded [7].

4 Database Techniques

All types of software have databases as their integral part. Basically databases
were designed to store related types of data in an organized way. When the size of
data gradually increases it becomes more complex and difficult to handle ACIDity
(Atomicity, Consistency, Isolation and durability) in databases. Database struc-
ture is designed and manipulated by Database Management System, which pro-
vides logical and physical data independence. DBMS can work as a controller
between user queries and physical databases, it provides opportunity to commu-
nicate, update and modify database schema.

14 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

4.1 Different types of database models

Hierarchical data Model In this model data is stored in a hierarchal tree
structure on the base of related record types. Records have embeded set of op-
erators to traverse the tree for accessing or updating of data. IMS was the most
famous DBMS based on the hierarchical model.

Network database Model As known from its name, data is arranged in the
form of a network. Using set operators, which contain information about con-
nected nodes and their relationships, made the network model. The main feature
of this data model was that, it could support one to many relationships. Data Ma-
nipulation can be done by using of embedded set operators.

Relational database Model This technique is based on a relation (table),
which contains data and relationships with other tables. Instances are represented
by tuples of the tables. In domain modeling it gives more control on data by the
implementation of several constraints. For data manipulation it uses high-level
language, which gives more security on physical data model. It helps to use rela-
tional calculus and relational algebra based on mathematical theories to provide
multiple ways for structured queries. The most famous RDBMS is Oracle.

Object Oriented Database Model This technique was designed on the ba-
sis of objects oriented programming and used object stores. Its basic architecture
is like other high level languages that everything is based on objects (entities).
It supports object-oriented properties of abstraction, methods, encapsulation, op-
erator overloading, inheritance, and configuration management. This modeling
technique uses objects ID, composite objects and methods to store objects and
their properties. The structure and behavior of objects are defined by classes and
objects.polymorphism is an imporatant property of object-oriented modeling.

Object Relational Database Model This technique is almost the same as
the OO database model. Its architecture is based on Methods (functions) and
Types (classes). The idea behind the object relational data models is that object
stores are used to design and manipulate databases, which also support query lan-
guages. Advanced feature of object relational data models is that they can support
high level SQL queries, user defined data types, and user defined functions. Ob-
ject relational database support embedded queries to access stored procedures
(functions). Indexing can also be implemented on stored procedures and data . It
provides strong views for abstraction of entire data and data independence can
also be possible. Generalization, Classification and specialization are the main
attributes of objected oriented database modeling(normally used in Extended ER
diagram).

4.2 Spatial Database Systems

A spatial database is that which supports spatial data types, spatial indexing and
efficient algorithms to work on spatial data. Their basic characteristic is to man-
age large collections of relative geometric objects.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 15

Modeling in spatial databases Abstraction of model is required for model-
ing of spatial databases, discrete geometric objects and algebra used to maintain
relationships between geometrical objects. Some special techniques of DBMS
are used to integrate geometrical objects into data model. Two types of views are
mostly used for the abstraction of spatial models:

1. Geometrical objects position in space.
2. Space relationship with geometrical objects.

Spatial modeling is based on designing of a single object and their relationships.
The best spatial model is that which can avoid intersection of points in geometric
computational operations. For geometrical modeling, objects and operations are
firstly needed to be defined and then numerical analysis (like FEA, etc) are used.

Spatial Relationships: Spatial relationships are mostly designed on the base
of following criteria.

1. Topological: inside, intersects, adjacent.
2. Directional: above, below, north, south, etc.
3. Metrical: To compute distance between objects.

There are many ways to implement these relationships between objects but mostly
it is recommended to divide space into regions and implements relationships
on the geometrical objects in their specific region. Some special operations are
needed in spatial DBMS to manipulate spatial databases. It is very important to
take care of the requirement analysis so that it can be more collaborative and great
care must be needed to design the mathematical model.As mathematical model
can give consistent results by using of numerical analysis.

Pros and Cons of spatial data modelling Limitations

1. Handling of complex polygon structures is very difficult in spatial data mod-
eling, while mixed polygons can be modelled together.

2. Operations on geometrical objects (like intersection, multiplication, subtrac-
tion etc) can be implemented only by using relational algebra computations.

3. Critical numerical operations are mostly difficult to use in spatially opera-
tions.

Benefits
1. It is very easy to understand spatial model by using of simple geometrical

objects.
2. Comprehensive documentation of requirements helps a lot in spatial data

modeling.
3. They are mostly used to represent the scientific data (scalars, vectors) which

cannot be represented normally.
4. Spatial algorithm gives very easy ways to do operations on spatial model [10].

4.3 AMOS 2

Amos 2 is an object relational main memory database. The object relational
database was used for the first time in Iris research institute to develop a re-
search database. Amos 2 can work as an intelligent mediator between users and
data sources. Basically Amos 2 is based on the object-oriented technique for data

16 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

abstraction (data models) but on the other hand it can support declarative queries.
It provides a more flexible model for implementation of databases and query-
ing. Amos 2 users can customize their models by creating their own data types
and functions; they can also use customized queries. It works like a middleware
between multiple databases that can communicate with each other and multiple
languages can be used for querying.

Fig. 3. Basic elements and their relationships in Amos 2 data model

Amos 2 and Iris system have the same data model. Instead of using tables and
tuples they use types, functions and objects for data modeling. Amos 2 data
model uses extended ER diagram, which can normally supports Object Oriented
attributes like specialization and generalization. While in schema designing it can
use classification and inheritance of the objects.

Amos 2 as a Mediator As discussed before, Amos 2 can work as middle-
ware by using the mediator approach. As a mediator Amos 2 can works in four
ways, as an integrator, as monitor, as domain model, and as a locator to find
other databases. As an integrator it can combine heterogeneous data models for
higher level applications. As a monitor Amos 2 mediator works like a controller;
which have regular integrity checks of data sources and provide consistency of
data. The idea behind the use of the domain model was that it could provide sup-
port for better designing of schema and to provide easy control on transactions.
Locators organize the data sources for transparent communications and for the
manipulation of records (which data belongs to which data source) [11].

Amos 2 java Interface Amos 2 has several interfaces to coordinate with other
languages like C, LISP or Java. In contrast, java interface is more convenient than
C and Lisp interfaces. It is safer to use java interface because errors in java do not
affect Amos 2 database. In the case of best memory usage, java interface is better
because memory is automatically reallocated by using of garbage collector. Java
is a high-level language that contains rich libraries, packages for window and web
applications Amos 2 can take benefits of these java packages. Due to usage of
high-level language java interface is not so fast but still for Amos 2 java interface
is the best than other interfaces.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 17

Using Callin Interface Amos 2 methods can be called in java programs by
using callin interface, which can support both ways of queries (embedded queries
and fast path interface). Tight connection is established between java and Amos 2
by shared libaraies and a special driver used to maintain this connection and data
transferred in jar files. Tuple is a basic data type of Amos 2 for callin interface
and the Scan method is used to extract data from Amos 2 datasets. Tuples has
many attributes to organize or update objects during communication.

Using Callout Interface Amos II uses foreign functions to import java meth-
ods. Simple and multidirectional foreign functions are used in callout interfaces.
These are mostly user defined functions and classes with the same name in java
and Amos can call these functions by using same names of foreign functions.
AmosQL queries can be used for functions definition and implementation. Cost
estimation of functions can also be possible. Foreign functions are mainly used
by two parameters, callContext (to maintain communication) and tpl used for
transferring of datasets (results). The bag valued functions are used for getting
streams of data. For better optimization, multidirectional function capabilities are
used. Foreign functions can also handle exceptions(like no more data exception
and Amos Exception) [12].

4.4 Spatial Query processing in databases

The most popular spatial queries are range search queries, nearest neighbours
queries, closest pairs and distance joins queries in spatially connected geometrical
objects. Conventional spatial query languages cannot work properly for mobile
applications, so extended queries language is needed to fulfil these requirements.
The main spatial constraints are implemented on nodes and their connections in
space. In most of the cases nodes are static but their connections are dynamically
manipulated on the base of queries.

Famous algorithms for querying in spatial databases R-Tree is the most
popular indexing criteria in spatial databases based on B-Tree indexing but it can
also work on multi dimensions for range search spatial queries. Nearest neighbour
algorithm is used to find the nodes, which are closer to queried node. Intersect-
ing joins can retrieve all the objects, which belongs to their data sets intersection.
Closest pair queries retrieve the pairs of objects, which have mimimum distance
between each other, almost same like nearest neighbour algorithm but with addi-
tion of spatial joins (in pairs) [13].

Spatial Operations Spatial queries almost work like relational algebra queries
but implemented on geometrical objects with some geometrical constraints. Spa-
tial queries are needed for selection of geometry objects in space and to retrieve
groups of objects by using spatial join algorithms. Spatial queries can use alge-
braic data sets operations (overlay of graphical objects, combinations of graphical
objects, etc) but it is not easy to handle these operations. DBMS has difficulty to
differentiate spatial algebra from relational algebra. Spatial queries operations
normally work under some specific circumstances (like needs spatial data types,
overlay functions to combine regions, graphical display for queries results, math-
ematical functions of geometric algebra). Most of the graphical queries may have

18 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

three parts, firstly describe all objects, Secondly divide set of objects into subsets,
thirdly each subsets objects renders their graphical results and latterly combine
their results into a graphical scene [10].

AmosQL query language This is an object relational query language used
to update or manipulate Amos 2 (Object relational database). This is designed to
support the function of simple relational algebraic SQL queries by using geomet-
rical objects.
Syntax of AmosQL queries is based on BNF (context free grammar) notations.
AmosQL is basically case sensitive (mostly written in lowercase) other than
Amos 2 identifiers (which are mostly capitalized). AmosQL uses two kinds of
variables, local variables are mostly used to identify data types and interface vari-
ables mostly used to hold their sessions results. Expressions (single valued or
multiple valued) can be used in AmosQL queries; to retrieve sets of objects used
bags (unsorted and can be duplicate) or vectors (sequence of objects).

AmosQL general statements are used for designing database scheme and manip-
ulation like create types, create functions, update queries, etc. Objects oriented
properties (generalization and specialization) can be implemented by using in-
heritance in Amos 2 types (using under keyword for inheritance).
Example of inheritance query in AmosQL.

create type point under triangles;

Key is a specific word used for implementation of candidate key constraint. If
the attribute is specified as unique then all instances of this attribute must be
unique. Multiple inheritances of objects can be implemented by using more than
one super type (parent types). AmosQL functions are normally used to define the
attributes of data types [14].

5 Visualization Techniques

Many tools and technologies are used to implement visualization operations.
Most famous are OpenGL and Java3D API. Basically these are designed to es-
tablish graphical (geometrical objects) applications.

Common Attributes of Standard APIs

Primitive functions These are used to define geometrical objects, which can be
utilized for visualization (like points, lines, etc). They are basic identities of any
geometrical model.

Attribute functions Behavior of objects can be defined by using these func-
tions. In primitive functions, objects are defined but their functionalities are im-
plemented in the attribute functions.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 19

Viewing functions As discussed before, geometrical objects are defined in prim-
itive functions, their functionalities are implemented by attribute functions, but
graphical views (orientations and positions) are necessary to display geometrical
objects. Viewing functions are designed to specify various types of views.

Transformation functions These functions help for transformation operations
(rotation, scaling) by giving stability to objects in space.

Input functions The idea behind using these functions is to handle input devices
and provide more control on their different input modes.

Control functions In real time work many users can interact simultaneously
with the domain model (h/w devices). For better control these functions are im-
plemented, to check and balance the entire system.

Inquiry functions These functions support in the operation of different devices.
Every device has specific parameters and limits so these functions record devices
and regularly updates their information in advance [15].

5.1 OpenGL

Introduction Open graphics library is an API, which can works as interface
of graphics hardware. It helps programmers to use its implicit functions and pro-
cedures for interaction with graphical hardware. Normally it is difficult to coor-
dinate directly with geometrical objects but Open GL interface provides a user
friendly environment for programmers.

Open GL Architecture Open GL functionality is totally based on the H/W
frame buffer that helps to respond against calling of geometrical objects (points,
lines, polygons, etc). In programmer prospective it works like a low level lan-
guage. A programmer needs to establish a framework buffer by calling basic ge-
ometrical objects. After the establishment of the framework, programmer is free
to use other OpenGL functions (commands) for rendering of geometrical objects.
Programmers can implement controls (boundary conditions) over geometrical ob-
jects by using OpenGL commands. Open GL contains a set of commands that can
be used for operations on graphical objects. CPU needs an interface to separate
the graphics hardware commands. Basically OpenGL commands works implic-
itly but in modern versions it is tried to be more user friendly by adding of explicit
calls. There is nothing wrong to say that Open GL works as a state machine for
controlling of drawing operations. If once objects behaviors are set, then objects
persist in the same state until changed explicitly [16].

20 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Fig. 4. Open GL pipeline

Open GL supports geometric and raster primitives and the whole flow of Open GL
applications works in the pipeline made by these primitives. Geometrical primi-
tives are used to design a problem domain and abstractions. The raster primitive
are used to visualize these results in pixels on the screen. They work as building
blocks of the whole model. Geometric primitives cannot be visualized in space
until they pass from raster primitives for visualization [15].

5.2 JAVA 3D API

Java 3D API was basically designed for structure analysis applications but later
started to be utilized in scientific visualizations application, online business inter-
face developments and many kinds of advanced engineering applications. Due to
good responses, currently it is becoming more important in the development of
interactive graphical applications (real time application). JAVA 3D is high level
API, which can support in most features of graphics applications. Its programing
architecture is designed by scene graph modelling. Geometrical objects (nodes)
are defined hierarchically but compliers join them during building of scene graph.
JAVA 3D API is an extension of java and contains high level constructors. In pro-
grammers prospective other than low level API, Java 3D API works fast and easy
to write program. For spatial modeling and operation it is good to use java 3D
API because it gives high-level support of functionality.

For next generation graphical abstraction, java 3D API gives broad spectrum of
views (in different directions, with different frequencies of light, different ranges
of colors, different amplitudes and computational functions). To implement con-
straints in domain models, it gives very easy way of management and controls. It
becomes more portable by implementation of transformation on scene graphs. It
can support to display multiple screens with different sizes.

JAVA 3D API Design Goals It is important to use java 3D API in Computer
Aided Design. Still one questions that is not answered is ”Why was java 3D API
designed? ”. As already low level APIs were available in the market but the reason
behind creation of JAVA 3D API was to provide more user friendly environment
for programming.

JVM Support Java 3D API is derived from core Java,so it has support from Java
that it can use java libraries with additional features of itself. It is more portable by

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 21

using java virtual machine (JVM). With little modification it is easy to integrate
in the already available java application. Already available graphical tools of java
can also be helpful for programmers (like swings, applets) to establish better
strcuture of scene graph.

Scalabilty Java 3D API always follows standard of java so it is more scalable
than low-level APIs. For Programmer it is comparatively a fast way to build an
application on java 3D API due to familiarity of JAVA programming.

Communication with other API s JAVA 3D API can communicate and use
features of other low-level API (2D, OpenGL, Direct3D, etc) of java. Java 3D
API can also communicate with graphical hardware designed by low level API
(Open GL, Direct3D).

Importance in Complex Application Java 3D API was basically designed
to build more complex application, which is difficult to handle in low-level APIs.
For Scientific application it has rich libraries and can also take advantage of using
core java functions. Large and complex applications can be designed very easily
in Java 3D API

JAVA 3D API Versus Other APIs Java 3D API provides a user-friendly
environment for interaction with geometrical objects by using many input de-
vices (mouse, keyboard, etc). This high level interface provides more realistic
interaction between objects. Rendering of objects is very simple in java 3D API.
Within a short time its drawing frame can be established but in Open GL it is a
complicated way to establish frame for graphical display [17].

Scene Graph Programming Model JAVA 3D applications are based on tree
like data structures, called scene graphs. Scene graphs give an easy way of render-
ing and representing geometrical objects. A scene graph works like a container
(which has all the information about virtual objects their attributes and relation-
ships). Nodes are the basic building blocks of scene graph tree (DAG) [18].

It follows hierarchical tree structure. There must be one virtual universe object,
which can contain many scene graphs and establish a visualization platform for
other objects. Branch group nodes are used in scene graphs to isolate different
kinds of objects on the bases of their scene graphs. Leaf nodes were designed to
implement the spatial functionalities of shapes (geometry and appearance) and
behaviour (rotation, scaling) in geometrical domains [19].

22 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Fig. 5. Scene Graph java 3D API

Java 3D API provides 4 different kinds of rendering objects in scene graph. It is
used to establish connection between all geometrical objects. Leaf nodes must be
inherited from branchgroup nodes and branchgroup nodes must have connection
with virtual universe object. In real times applications it is needed to reuse the
objects, java 3D API also supports reusability of scene graph by the use of shared
group nodes. Geometrical objects can be accessed only during creation of scene
graphs. To make objects alive, then they should be explicitly needed to SET or
GET before scene graph creation [18].

Using of Java 3D API in iso-surfacess (contours) construction and vi-
sualization Java 3D Application Programming Interface contains a number of
packages, which can help for virtual universe application development. Scene ob-
ject creates instances of branch group class and works as root of the scene graph.
To set the graphical visualization frame, several objects are needed to attach with
the scene graph, like scaling, rotation, background, and light. There are many vi-
sualization policies available to design the views. Simple universe object contains
all the necessary attributes to set visualization frame with a small piece of code.

Drawing of scene graph geometrical model Java 3D API provides several dif-
ferent kinds of geometry classes (like point array, line array, triangle array, quad
array, strip array, etc). For contours display, mostly strip arrays and fan array are
used. In most of the geometrical models, point array is used for nodes. Connec-
tions of nodes are depend upon their conditions and implemented by goemetrical
object of java 3D API. These geometrical classes have rich constructors, and a

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 23

large geometrical model can be constructed with their help [20]. Geometry Strip
Arrays for drawing of contours

Fig. 6. Contour generation data structures (java 3D API)

LineStripArray is mostly used for drawing of polygons boundaries. A line array
needs two points to draw a line in space but a line strip can take more than 2
points, normally it starts drawing line from first point and stop drawing at last
point. Triangle fan array and triangle strip array are very close in their function-
alities; the main difference is just their sequences of reused vertices. As shown
in the above figure, Triangle Fan Array always use first points in drawing of all
triangles just 2nd and 3rd points are changed.

Due to limitations in strip arrays we used simple triangle array objects for visu-
alization of temperature contours. Triangle class is derived from basic geometry
array classes. Our model is based on vertices positions and temperature values.
Points are passed as arguments to a triangle array constructor. Triangles are drawn
by taking of points with their positions in space. A triangulation technique is used
for drawing of connected triangles, nested sub triangles and also used to generate
dynamic contour strips [22].

24 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

6 Domain Model

6.1 Mesh Techniques

A mesh is always constructed by using of finite set of elements. Different types
of elements are used in different types of meshes, for example triangles, quadran-
gles, etc are used commonly in 2D meshes. In case of 3D meshes tetrahedrons,
cubes elements can be used. In mesh each element has specific set of nodes and
edges in order to form specific shape of that element. In finite elements methods
commonly problem area is splitted into finite elements.Mesh is always estab-
lished by nodes in space and commomnly nades have extra attributes like some
scalar or vector values. Before going in details of our mesh model first we would
like to introduce types of meshes. There are two main kinds of meshes used in
Finite Elements Modeling.

Structured Mesh By using basic parameters for meshes, structured mesh must
have regular connections between nodes but it can have regular or irregular ge-
ometry. Regular topology elements of structured mesh always maintain specific
shapes. Mostly it is recommended to use structured mesh because it is more ef-
ficient in utilization of memory and easy in implementation rather than unstruc-
tured mesh.

Unstructured Mesh Unstructured mesh has properties almost opposite to
structured mesh. Elements of unstructured mesh usually do not have uniform
shapes because it has no regular geometry and nodes are connected irregularly
and just depend on formula for connections. For customized models unstructured
mesh is better and more efficient in rendering of objects [1].

6.2 Mesh Model in Amos 2

Our basic mesh model is organized and designed intellectually so that spatial
operations can be implemented on the whole mesh. Mesh should have flexibil-
ity to support division and connections of finite elements. In our application we
have utilized both techniques of mesh modeling, like structured mesh modeling
for designing of nodes positions in space and unstructured mesh modeling for
tetrahedron mesh. To implement constraint of , different kinds of boundary con-
ditions are used on finite elements mesh [22]. In our data model, geometrical
objects with their positions and temperature values are designed and stored in
Amos 2 database. In case of any disaster our database model has backup, because
we kept original database separetly and by using of Amos 2 stored procedures its
easy to reload original database. Amos 2 is based on object oriented programming
technique so it was more compatible for us to work with other Object oriented
languages like java classes.

Schema (commands) for designing of Geometrical Mesh model In
Amos 2 database schema is normally designed by using of following three object
oriented attributes of AmosQL.

1. Types

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 25

2. Functions
3. Objects

In database schema we have considered types as classes of object oriented lan-
guages. Type means any thing, which have existence in universe like an entity in
relational database.

Designing of Basic Mesh Model As our work is based on geometrical objects
like points, triangles and tetraherdons, so we have created three main types of
them to create their objects for establishment of basic mesh model.

1. Points (Vertices)
2. Triangles
3. Tetrahedrons

To set position of vertices in 3D space and assigning of temperature values in
geometrical objects we used following functions.

1. Position ()
2. Temperature ()

Construction of Basic Mesh Model In our basic Mesh model, nodes (points)
are considered as basic building blocks of geometrical model. We have construc-
tred our basic mesh by creation of unique nodes (points) and setting of their po-
sitions in 3D space. For generation of nodes (points), we have created type point
by using of below command.

create type point properties(Id Integer);

In our data model each node (point) must have two attributes (coordinate posi-
tions and temperature value). We have added these attributes to each point by the
using of following Amos 2 functions.

Create function position (point p)->
<real x,real y,real z>as stored;

Create function temperature (point p)->
<real> as stored;

On requirement of geometrical model first we have declared and initialized point
objects, which are necessary for our mesh model. For example following Amos
2 commands were used for creation of point instances, setting of their coordinate
positions in 3D space and assigning of temperature values to these nodes (points).

create point(Id,position,temperature)
instances :p000(0,<0.0,0.0,0.0>,0.0);

create point(Id,position,temperature)
instances :p001(1, <0.0,0.0,0.6>,6.0);

26 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Fig. 7. Basic Mesh Model

After establishment of nodes (points) mesh, our next step was to establish tri-
angles and tetrahedron meshes. Each triangle object was considered as a unique
object and it always require at least three Nodes (points) as arguments. Triangle
objects were created by these kinds of AmosQL commands.

create type Triangle properties(Id Integer);

create function triangle(Triangle t) ->
<point,point,point> as stored;

create Triangle(Id, triangle)
instances :t0(0,<:p000,:p003,:p300>);

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 27

As each tetrahedron must needed at least 4 triangles for construction of tetrahe-
dron element so first it was required to have triangles objects. Tetrahedral ele-
ments are created by using of these available triangle objects and this was done
by these kinds of AmosQL commands.

create type Tetra properties(Id Integer);

create function tetra(Tetra t) ->
<Triangle t1,Triangle t2,Triangle t3,Triangle t4>

as stored;
create tetra(Id, Tetra)

instances :r0(0, <:t0,:t1,:t2,:t3>);

6.3 Finite Elements Mesh

Tetrahedron Mesh It is well known that nodes (points) are always basic units
in almost all kinds of geometrical models. Our basic mesh model is also designed
by setting of nodes (points) positions and their relationships in 3D space. After
creation of all points instances we have passed these points as argumnets to tri-
angle objects. Our main goal was to construct tetrahedron mesh and construction
of terahedron elements need triangles, so our model designend in a sequential
way. First we start from construction of structured mesh nodes (points) by or-
ganization of points in 3D space then construction of triangles mesh is done by
utilization of available points and at the end we construct tetrahedron mesh by
using of available triangle objects. This whole work became clear by looking on
our tetrahedron mesh and we used below code for construction of Tetrahedron
Mesh.

create function points(point p1)-> Vector v as
select v from real r1, real r2, real r3, real r4
where <r1,r2,r3> =position(p1) and r4 =temperature(p1)
and v={r1,r2,r3,r4};

create function tripoints(Triangle t) -> vector ve as
for each point p1, point p2, point p3
where <p1,p2,p3> = triangle(t)
begin
set ve = {points(p1), points(p2), points(p3)};
result ve;
end;

create function tetrapoints(tetra t) -> vector ve as
for each triangle t1,triangle t2,triangle t3,triangle t4
where <t1,t2,t3,t4> = tetra(t)
begin
set ve={tripoints(t1),tripoints(t2),
tripoints(t3),tripoints(t4)};
result ve;
end;

28 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Foreign functions are used in Amos2 java interface for sending of Amos2 tuples
to JAVA 3D API primitive functions. In interface of our application we have used
primitive function of java 3D API, for example drawT for drawing of triangles
and drawTR for drawing of Tetrahedron Meshes. These AmosQL commands are
used for establishment and connection of foreign functions with primitve inter-
face function.

create function displayTriangles(Vector v)->object as
foreign "JAVA:Viewer/drawT";

create function displayTetra(Vector v key)->object as
foreign "JAVA:Viewer/drawTR";

Fig. 8. Transparent Tetrahedron Mesh

After establishement of tetrahedron mesh, we have taken triangles one by one
from Tetrahedral mesh and used them for our computational work. Iso level points
were generated on each edge of the each base triangle by using of its corner points
temperature values and computational formulas. Delauny triangulation is used for
drawing of nested triangles inside of each base triangle to construct iso-surface.
There is no any restriction for defining of temperature values in our mesh but it is

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 29

purely depend upon temperature formula. In our application we have used follow-
ing spherical formula for smoothly distribution of temperature in our tetrahedron
mesh.

T(x,y,z) = T(xˆ2 + yˆ2 + zˆ2) - 10

6.4 Finite Element Procedure

Tetrahedron mesh was used for temperature contours generation. For computa-
tional work our technique was based on division of higher surface (tetrahedrons)
to lower order surfaces (triangles). First we took one tetrahedron element then
each triangle of that tetrahedron element was considered as a basic unit for com-
putation of temperature and contours development, because triangle is a basic
geometry element of finite element modeling. All functions and constraints were
implemented on each triangle element of all tetrahedron elements. After creation
of iso-surfaces on each triangle face we fix these triangles back into tetrahedron
mesh, which is more clearly shown later in data model (iso-surfaces generator).
We have tried to use finite element procedure which would have to be more flex-
ible and can be implemented smoothly on whole mesh.

Boundary conditions As each triangle of tetrahedron elements was consid-
ered as a basic unit of our model, so boundary conditions were implemented on
each triangle element. Each triangle used its local coordinates and edges made by
using of their corner points. Great care has been taken that base triangles should
not be overlapped each other. For drawing of sub triangles, connection of vertices
should always start from the minimum temperature corner point toward the max-
imum temperature corner point of the base triangle. Dynamically generated iso
level points must have positions on the edges of the base triangles neither inside
of triangle nor outside of triangle boundary.

Finding of iso levels on each edge of the triangle Before going into details
about iso level, first we would like to define iso levels. In this application iso lev-
els are created during visualization of iso-surfaces and mainly used to divide each
edge of the base triangle into temperature regions by using of user queries and
temperature scale of tetrahedron mesh. For finding of different iso level points,
each edge of the base triangle is taken individually, ordered their vertices sequen-
tially on the base of their temperature values (min-mid, mid-max, max-min). Af-
ter finding of iso level points on edges, each base triangle was reconstructed by
using of updated edges. We used distance function to find the exact positions and
temperature values of the dynamically generated iso level points on each edge of
the base triangles, These formulas were discussed later in this section.

For example: First we took one edge of the base triangle, which had following
values (temperature and coordinates).

30 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Fig. 9. One edge of a triangle

If T(min)=0 // Mininmum temperature of the mesh
T(max)=100 // Maximum temperature of the mesh
difference = T(max)-T(min)/n(total no of isolevels)
So by using of above values if (Number of isolevels)n = 4
Then each edge of this triangle divided in to 5 regions.

Fig. 10. Division of triangle edge into different iso levels of temperature

This procedure was repeated with all edges of the each base triangle and after
this process each base triangle was divided into different no of iso levels. Iso
level points were calculated and generated by using of below formula.

Calculation and generation of iso level points After finding of different
no of iso levels, we were needed to calculate exact position for iso level points.
For this purpose, we used specific distance formula and temperature parameters
to generate dynamic isolevel points on each edge of the base triangle on the base

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 31

of temperature values. We have implemented this functionality by using of the
following formula and formula is designed for our basic finite elements (triangles
of tetrahedron mesh). Finding of new iso level point coordinates was done by us-
ing of temperature value and adding of 4value in X, Y and Z coordinate.
X1+4X, Y1+4Y, Z1 +4Z
Dynamic points are generated in 3D space so all coordinates value are changed
after calculation.

T1(x1,y1,z1) = Minimum temperature and positions of edge corner point
T2(x2,y2,z2) = Maximum temperature and positions of edge corner point
Tc(4x,4y,4z) = Temperature value and coordinates of iso level point

4X= (x2-x1)(Tc-T1)/T2-T1 X coordinate of iso level point.
4Y= (Y2-Y1)(Tc-T1)/T2-T1 Y coordinate of iso level point.
4Z= (Z2-Z1)(Tc-T1)/T2-T1 Z coordinate of iso level point.

Above process is shown for calculation of one iso level point but this formula was
used for calculation of all iso level points in the whole points. After generation of
first iso level point T(min) was changed to T(min)+ diff (difference between first
two iso levels) and used as T(min) in calculation of second iso level point, this
updation in T(min) was repeated for generation of all remaining iso level points.

6.5 Contours Generation process

Interpolation(Connection of points and drawing of Triangulated sur-
faces) After finding of the all iso level points by using of above distance formula,
we used delaunay triangulation to divide face of each face of the triangle into iso-
surfaces. As discussed in boundary conditions that triangulation was performed
in local coordinates of the each base triangle of tetrahedron mesh.Delaunay trian-
gulation has property that it needs to have locations of both iso level points and
boundary (corner) points of each triangle.In case of drawing of triangles first we
have sorted points (vertices) based on their temperature values. For connection
of points we took first three consective points from the sorted vertices and we
have created sub triangles with connection of these vertices by usage of vertices
interpolation and delauny triangulation [20]. This interpolation technique will be
repeated with each base triangle until construction of whole tetrahedron mesh .

Contour colors pattern generation on the base of iso levels For vi-
sualization of results, we have used different continues colors spectrum for the
temperature contour surfaces in our 3D mesh. One dimensional colors pattern
was used and color combinations are specified on the base of iso levels temper-
atures(minimum to maximum temperature values). We have done interpolation
between 3 colours (blue, red, yellow), which were used to display different iso
levels of temperature. The continues colors interpolation is implemented, for ex-
ample if a temperature value of the body increases then color should be changed
gradually. In our colors spectrum, minimum temperature contours have blue color
then by gradually increasing of temperature red and yellow color contours were
displayed [20].

32 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

In java3D API colours values will be varies between 0.0.0 to 1.1.1. As for con-
tour generation we have sorted vertices (minimum to maximum values of tem-
perature). For colours interpolation we used same way as used in generated of iso
level points but we have divided vertices into two halves(min-mid and mid-max
colour values). In first half we have interpolated blue and red colors by using of
below formula.
ctt= difference of Temperature value for iso-surfaces.
cdiff1(lower bound of colours spectrum)= 0 and cdiff2(upper bound of colours
spectrum)= 100.
c11,c12,c13,c21,c22,23 are basic colour values used for interpolation.
ct1,ct2,ct3 are calculated colour values of vertices.

c11=0.0;c12=0.0;c13=1.0;c21=1.0;c22=0.0;c23=0.0;
ct1=c11+((c21-c11)*(ctt-cdif1)/(cdif2-cdif1));
ct2=c12+((c22-c12)*(ctt-cdif1)/(cdif2-cdif1));
ct3=c13+((c23-c13)*(ctt-cdif1)/(cdif2-cdif1));

In second half from Middle to Maximum color valued vertices we have done
interpolatation between red and yellow colors by using of below formula.

c11=1.0;c12=0.0;c13=0.0;c21=1.0;c22=1.0;c23=0.0;
ct1=c11+((c21-c11)*(ctt-cdif1)/(cdif2-cdif1));
ct2=c12+((c22-c12)*(ctt-cdif1)/(cdif2-cdif1));
ct3=c13+((c23-c13)*(ctt-cdif1)/(cdif2-cdif1));

Contour Generation Steps Case 1:
N=No of isolevels
Min=Minimum Temperature value of Mesh
Max=Maximum Temperature Value of Mesh
Diff=Differences of temperature between isolevels (Max-Min/N)
If N=1, Max = 100, Min= 0
Diff= 100-0/1=100

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 33

Fig. 11. Triangle Element without subdivision into iso-levels

Case 2:
If N=2,Max=100,Min=0
Diff=100-0/2=50

Fig. 12. Triangle Element with subdivision into two iso-levels

Case 3:
If N=3,Max=100,Min=0
Diff=100-0/3=33.3

34 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

Fig. 13. Triangle Element with subdivision into three iso-levels

Fig. 14. Triangulated Element of 2D space

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 35

Fig. 15. Tetrahedral element with 3D triangulated contours

Fig. 16. Temperature Contours on 3D Tetrahedral Mesh

36 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

6.6 Data Model

Fig. 17. 3D Iso-Surfaces Generator on the basis of Temperature values

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 37

7 Spatial Queries and their results

7.1 Sample queries

Query to display whole tetrahedron mesh:

JavaAMOS 1> display (select t from tetra t);

Queries based on temperature ranges:-

display body which has temperature Greater than 40:

JavaAMOS 2> display (select t from tetra t
where temperature(t) > 40.0);

display body which has temperature less than 40:

JavaAMOS 3>display (select t from tetra t
where temperature(t)< 40.0);

display body which has temperature Greater than 60:

JavaAMOS 4>display (select t from tetra t
where temperature(t) > 60.0);

Queries based on coordinate positions:-

display body whose all x coordinates are Greater than 0.3:

JavaAMOS 5> display (select distinct t from tetra t
where x(t) > 0.3);

display body whose all Y coordinates are Greater than 0.0:

JavaAMOS 6> display (select distinct t from tetra t
where y(t) > 0.0);

display body whose all Z coordinates are Greater than 0.1:

JavaAMOS 7> display (select distinct t from tetra t
where z(t) > 0.1);

display body whose all X&Y coordinates are Greater than 0.3:

JavaAMOS 5> display (select distinct t from tetra t
where x(t)+y(t) > 0.3);

38 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

7.2 Sample models

(a) (b) (c)

Fig. 18. Amos 2 Query result to display sample models for different size of Tetrahedral meshes

(a) (b) (c)

Fig. 19. Transparent Tetrahedron Meshes of different size.

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 39

7.3 Cutting on the base of geometrical queries

(a)

(b)

Fig. 20. Amos 2 Queries results on the basis of different geometrical coordinate and temperature
values

7.4 Cutting of the planes from 3D Mesh

(a)

(b)

Fig. 21. Amos 2 Queries results for planes cutting samples from mesh model (a) of section 7.2

40 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

8 Conclusion and Further work

Main focus of our work was to make an application for query based visualiza-
tion, especially for the display of different temperature contours on 3D bodies
(tetrahedron meshes). Rather than conventional databases we have also shown
importance and high performance of main memory databases in case of query
based visualization and spatial data modeling. Normally query based visualiza-
tion is not available so we have put our effort to establish an application which
can have support for query based visualization and have good visual response of
queries.

Our application had two main parts, spatial database modeling and visualization
of iso-surfaces. In database modeling we have used a technique of object rela-
tional database modeling for tetrahedron meshes. An extensible query language
(AmosQL) and query processor used to design our domain model. We have also
introduced different types of cutting for tetrahedron meshes, like on the base geo-
metrical queries/cutting of planes. We have designed a database, which can work
with other APIs as well and for the help of backup or recovery we have kept
original database separately.As it was discussed before that our application basic
geometrical model is stored in database (Amos 2), while their visual results were
created and implemented in visual interface.

For building of visual interface we have used high-level API (Java 3D API), it
works for visualization of 3D (tetrahedron) meshes because Java 3D API has rich
library of constructors, which are helpful for building and visualization of geo-
metrical models. In construction and visualization of iso-surfaces delauny trian-
gulation and interpolation of vertices play a major role for our application, which
was a good explosure for us in our whole project.

We have used sample (customized) queries dependent on our application but user
can also have support to customize and compose their own queries to do more
spatial operations and for large 3D bodies (tetrahedron meshes). These are the
main features of our applicaton, which also give some directions for future work.

8.1 Future work

Importance of this application in other fields This application has a
broad view in case of future work because usage of mesh is always important
in many areas like image analysis, bio informatics, mechanical engineering and
many other fields of sciences, which are discussed individualy later in this sec-
tion. Currently our application is just designed for query based visualization of
temperature contours and cutting of tetrahedrons mesh on the base of temperature
values but with little modification it is very easy to use our work in other fields as
well, for example in medical applications, structure analysis, aerospace research
and geographical information systems.In case of visulization we have introduced
transparency, which helps to view inside of the 3D body and rotation of 3D body
helps user to view body from different directions.

In case of mechanical engineering applications our work of transparency of the
body can supports to look inner parts of machines and by the usage of our cutting

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 41

work it can be helpful to check functionality of each machine part individually.

In medical field, by usage of transparency it is easy to see positions of inners
body parts like lungs, heart, etc. Cutting of the mesh can be helpful for selection
and operation of inner body parts.

Our application can be used for cutting of planes in 3D body (tetrahedron mesh)
with transparency. Cutting is very much important, which helps to take a piece
of the body with specific temperature or can take whole region which lies in the
range of specific temperature. For advance work in case of weather forecasting
and geographical information systems, this application can be helpful by updation
of its domain model. Continues colours interpolation helps to visualize tempera-
ture contours on globe of the world (ground mesh).

In Space science and astronomy this application can be useful to visualize as-
tronomical query results but this can be possible by little modification in our
application, for example by addition of scales and other astronomical parameters
in our geometrical objects (vertices, edges, surfaces).

Further Enhancements There are many dimensions for further enhancement
in our work and addition of many advanced features are possible. As our work
is divided two main areas spatial data modeling and visualization of iso-surfaces,
so we are giving ideas about enhancements regarding these parts of our appli-
cation. In case of database modeling, our main goal was to design tetrahedron
meshes, but as we used triangles as a basic unit of our finite element modeling,
so it can support to design any other types of meshes which are based on trian-
gle/tetrahedron elements. In our application we have not used so many algebric
queries so it is possible to introduce many other kinds of algebric queries (like
different kinds of matrix operations) in our application. We have used scalar (tem-
perature) values for visualization on vertices of 3D tetrahedron mesh, but for en-
hancemen it is possible to add vector values, which can also help for directional
and topological kinds of spatial operations. There are many kinds of attribues,
which are possible to add in enhacement of our data model, for example addition
of volume, pressure, density works. Usage of density function can helps for vol-
umetric queries of 3D body.

There are several kinds of visualization ideas which can be added in enhancee-
ment of this application. It is possible to add multiple views interface, which can
help for analysis and optimization of queries results, which can provide visual
interface for queries and user can interact with visual results, which should also
have support for parallel visualization of multiple queries results, etc. There is
a possiblity for users to make queries on available results and system should not
load whole data model against every query, just required objects should be loaded
from database, so that it can increase efficency of query response and help to save
unnecesary usage of memory. These are some general ideas for enhancement in
our data model and in visual interface of our application.

42 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

8.2 Reflections

We have put large effort to make a good application in case of spatial query based
visualization of temperature contours in tetrahedron meshes, which can generate
any numbers of contours with different threshold values. We hope our application
will be helpful for database users to design complex geometrical models in main
memory databases and will give good idea about query based visualization of
iso-surfaces in tetrahedron meshes, especially for the visualization of temperature
contours on tetrahedron meshes. We wish that our application will works like a
milestone of future, because it is well known that research never ends as there is
always room for improvements.

Acknowledgment

First of all we are thankful to GOD Almighty who made us enable to reach to
this stage and to complete this interesting project of information visualization.
Secondly we owe a lot to our dearest parents and families who supported us fi-
nancially, morally and whose prayers, sincere wishes and an abundance of love
have filled in us the confidence to finish this hectic and honorable work. We are
also very much thankful and extremely grateful to our nice Thesis Supervisor
Kjell Orsborn whose polite and potential guidance made our work ”done”.

Besides, we are also thankful to our fellows Mukunda, Rashid Masud and Khalid
Niazi whose technical and moral support was of great help to us in the comple-
tion of our work. Furthermore, we are also extremely thankful to our Swedish
friend Abdus Salam who helped us a lot to analyze our thesis report. Last but
not the least, we also take the opportunity to acknowledge and owe all the rel-
evant authors whose useful work remained beneficial for us in the path towards
the completion and operation of our work.

References

1. Lord Tim and Russold Martin, Mesh modeling and visualization using ex-
tensible database, Master Thesis Uppsala university,January 2007.

2. Junkins, Defining a neighbourhood of vertices in a 3D surface mesh, United
states Patent research, August 2003.
http://www.freepatentsonline.com/6606584.pdf

3. Ramanujam Gopalan, Scientific visualization system, Kingston New York,
United States Patent research, September 1995.
http://www.freepatentsonline.com/5454068.pdf

4. Bela et al, Method and apparatus for efficiently generating and visualization
of iso-surfaces,United States Patent Research, May 1996.
http://www.freepatentsonline.com/5522019.pdf

5. Fang Shiaofen and Gupta Pooja, Zero crossing iso-surfaces in volume
datasets, Department of computer and information Science, Indiana Univer-
sity Purdue University Indianapolis USA, September 2005.
http://ieeexplore.ieee.org.ezproxy.its.uu.se/iel5/
10755/33900/01615626.pdf?tp=\&arnumber=1615626\
&isnumber=33900

Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes 43

6. Michael J. Zyda, A decomposable algorithm for contour surface display
generation, Naval Postgraduate school, April 1988.
http://delivery.acm.org/10.1145/50000/42461/
p129-zyda.pdf?key1=42461\\&key2=0578456021\&coll=
portal\&dl=ACM\&CFID=61094691\&CFTOKEN=68347342

7. Bathe Klaus Jurgen, A reliable book for computer-aided design ”Finite Ele-
ment Procedures”, July 1995.

8. Online material: An Introduction of finite element analysis on wikipedia,
April 2008.
http://en.wikipedia.org/wiki/Finite_element\
_analysis

9. Orsborn Kjell, On extensible and object-relational database technology for
finite element analysis, PhD Thesis 1996.
http://user.it.uu.se/\%7Eudbl/Theses/
KjellOrsbornPhD.pdf

10. Guting Ralf Hartmut, Spatial database system tutorial notes, Fernuniversitat
Hagen, Praktische Informatik IV Hagen, Germany 1994.
http://delivery.acm.org/10.1145/620000/615206/
p357-guting.pdf?key1=615206\\&key2=5109456021\
&coll=GUIDE\&dl=GUIDE\&CFID=61095193\&CFTOKEN=
86233614

11. Risch Tore, Uppsala database laboratory research about Amos 2 as a
mediator, Uppsala University Sweden, June 1993.
http://user.it.uu.se/\symbol{126}torer/publ/
93amos.pdf

12. Risch Tore , Uppsala database laboratory research about Amos 2 Java inter-
face, Uppsala University Sweden, 25-08-2000 (latest revision :20-03-2005).
http://user.it.uu.se/\symbol{126}torer/publ/
Javaapi.pdf

13. Dimitris Papadias, Jun Zhang, Nikos Mamoulis and Yufei Tao. Query
processing in spatial network databases, Departments of Computer Science
and information systems of City University of Hong kong, Hong Kong
University of Science and Technology and University of Hong Kong, 2003.
http://infolab.usc.edu/csci599/Fall2007/papers/
d-1.pdf

14. Flodin Staffan, Hansson Martin, Josifovski Vanja, Katchaounov Timour,
Risch Tore and Sköld Martin, Amos 2 Release 8 User’s manual, March 29,
2005 (Latest revision September 8, 2006).
http://user.it.uu.se/\symbol{126}udbl/amos/doc/
amos_users_guide.html\#syntax

15. Angel Edward, A book ”Interactive computer graphics” Third Edition, A top
down approach using OpenGL. This book material emphasis on application
programming by using of computer graphics.

16. Segal Mark and Akeley Kurt, A Book ”‘OpenGLR Graphics System:A Spec-
ification”’(Version 2.1 - December 1, 2006).

17. Aaron E. Walsh and Doug Gehringer, A Book ”‘Java 3D API jump-start”’,
The Sun Microsystems Press Java Series, It technically leads for Java 3D
API applications programming, August 2001.

18. Online Material: A chapter from Sun Java 3D API online tutorial, Version
1.3, June 2002.

44 Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes

http://Java.sun.com/products/Java-media/
3D/forDevelopers/J3D_1_3_API/j3dguide/
SceneGraphOverview.html

19. Online Material: The Sun Java 3D API online tutorial guide pages,Version
1.3, June 2002.
http://Java.sun.com/products/Java-media/
3D/forDevelopers/J3D_1_3_API/j3dguide/
VirtualUniverse.html

20. G.P Nikishkov, Generating contours on finite elements mesh,University of
Aizu, Japan, 2003.
http://www.u-aizu.ac.jp/˜niki/papers/2003_
Generating_contours_on_FEM.pdf

21. Online Material: Sun Java online training tutorial chapter 2, 1999.
http://Java.sun.com/developer/onlineTraining/
Java3d/j3d_tutorial_ch2.pdf

22. Online Material: Introduction to finite elements analysis, March 2008.
http://www.sv.vt.edu/classes/MSE2094_NoteBook/
97ClassProj/num/widas/history.html

23. J. Ramsden and T.D Charters, Automated contour mapping using triangular
element data structures and an interpolant over each irregular triangular
domain, July 1977.
http://delivery.acm.org/10.1145/570000/563887/
p170-gold.pdf?key1=563887\\&key2=9429456021\&coll=
GUIDE\&dl=GUIDE\&CFID=61095867\&CFTOKEN=85758068

