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Chapter 1

Introduction

Murphy’s law states: If something can go wrong, it will also go wrong! But how
shall a system act if something goes wrong? The answer is quite simple: It shall
act as we say it to act! The behaviour can be verified by choosing some input and
compare the output with the expected output.

Degradation is a term that is correlated with the behaviour when something has
gone wrong. It is as important to verify a correct behaviour during failure, as it
is with no fault present. But the question is, how to perform these degradation
tests the best?

1.1 Background
Functionality in the automotive industry is becoming more complex, with control
systems replacing mechanics and hydraulics. Complex communication networks
between control systems are emerging, with information shared among many con-
trol systems. With increasing complexity the occurrence of faults usually increases
as well. It is becoming more important to validate functionality implemented in
the control systems. Testing is performed on different levels during the develop-
ment process to maintain high quality.

Not only validation of correct behaviour when the entire electrical system is fault
free must be performed, but also validation during failure. How shall the electrical
system behave with sensors broken or some other fault present? Fail-safe is a term
used to describe that something is safe during failure. To maintain a fail-safe vehi-
cle extensive testing has to be done to verify that functionality is never becoming
dangerous.

Degradations testing, which has the objective to test functionality with some fault
present in the vehicle, is not frequently performed. It must be verified that func-
tionality is behaving correctly even in a degraded state. A method is needed to
perform these tests on a regular basis.

1



2 Introduction

1.2 Communication network
The Controller Area Network (CAN) is standard in the automotive industry. Com-
munication is transmitted on a CAN bus, where electronic control units are con-
nected. The protocol allows control units to communicate through a network.

1.2.1 Electronic Control Unit (ECU)
An Electronic Control Unit (ECU) is a physical unit, with a number of sensors and
actuators attached to it. An ECU also receives external information from other
ECUs via CAN. An ECU is responsible of certain functionality that uses sensors
and external information as inputs. The outputs of the functionality are then used
through actuators to control the vehicle.

Example 1.1

Some ECUs that can be found in a Scania truck

• EMS: Engine Mangagement System, controls the engine.

• APS: Air Pressure System, controls the flow and the pressure of the air.

• AUS: Audio System, controls the radio and CD-player.

1.3 Scania’s electrical system
Scania’s electrical system consists of three CAN-buses (Section 2.3.1), which are
named Red, Yellow and Green. Each of these buses are connected to the Coordi-
nator (COO) and can pass information between the buses. The Red bus consists
of ECUs which can be paired with the driveline; engine, gearbox and braking sys-
tem. The Yellow bus has systems with security related functions, but that are not
critical for the vehicle to be driven. Other ECUs are to be found on the Green
bus. These ECUs are related to driver comfort and are not critical to the vehicle
or the security of the driver. See Figure 1.1 for the architecture of the electrical
system.

The number of different combinations of the electrical system is immense. Each
ECU has between 50 - 10000 parameters that can be changed to be compatible with
every possible specification of vehicle, depending on hardware and functionality
required. Despite all different configurations of ECUs the electrical system has to
work for every valid combination of ECUs. To be able to ensure that there is no
compatible issues extensive testing has to be performed on integrations level.
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Figure 1.1. An illustration of the electrical system in a Scania vehicle. The three CAN-
buses; Red, Yellow and Green; are connected to the COO. Only EMS, APS, ICL and
VIS/CUV are mandotory. The other ECUs are arbitrary. Each ECU have 50 - 10000
parameters depending for example of different hardware configurations. The number of
combinations is almost infinitive.
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1.4 Test process
A commonly used model for the development process is the V-model. The name
comes from that the process can be described as a V. The left ’leg’ in the V
symbolizes development and the right "‘leg"’ symbolizes the tests. See Figure 1.2.
There are in general four basic levels, but depending on the project the number of
levels can either be more or fewer. [16]. The test levels are:

• Unit testing: Verifies that separate units such as ECUs are programmed
according to specification.

• Integration testing: Verifies that units are working together as expected;
that the communication between the units are according to specification.
Functionality is not tested in this step, just communication. [16]

• System testing: Verifies that functionality and communication fulfills the
requirements set on the entire system. A common problem is that require-
ments may be incomplete or undocumented.

• Acceptance testing: Verifies that the complete system is ready for de-
ployment. This is the last step of testing according to the four levels, but
extending testing after acceptance testing are usually performed.

Figure 1.2. An illustration of the V-model. Different levels of specifications are to be
found in the left leg, with resolves with Software Development at the bottom. Each level
of specification has a corresponding level of test. Note that depending of the project, the
V-model have an increased or decreased number of levels.
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1.4.1 System and integrations test at Scania

At Scania both systems testing and integrations testing are performed by REST.
System and integrations test is the last step in testing the entire electrical system.
These kinds of tests shall verify that the electrical system is working properly.
ECUs shall be compatible with each other for a number of different configura-
tions. Communication on CAN and distributed functionality must be validated
to meet the quality demands. Two commonly instruments to perform system and
integrations test are field tests and Hardware-In-the-Loop.

Field tests are performed in an actual vehicle on the road and will not be considered
in this thesis. Hardware-In-the-Loop is based on that the vehicle can be simulated
using models, and that tests can automatically be performed using a computer.

1.4.2 Hardware-In-the-Loop (HIL)

Hardware-In-the-Loop (HIL) is used in the automotive industry when testing the
electrical system. In a HIL-lab the real ECUs are connected to each other using
the real communication network. As much as possible of the sensors and switches
that are connected to the ECUs are simulated using models. The actuator signals
from the ECUs are inputs to a model of the truck and the environment. The
model then calculates sensor values which are then received by the ECUs. The
ECUs are connected to a Fault Injector Unit (FIU) which simulates short circuits
or open circuits on sensors and actuators. See Figure 1.3.

Figure 1.3. The process of HIL. Starting with the ECU at top of the figure. The
outputs from the ECU are connected to a Fault Injector Unit (FIU) and then received
by a Dynamic Model. The model then calculates the inputs to the ECU, which also is
connected to a FIU.
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One advantage is that everything can be run from a computer, meaning that
the complete vehicle and functionality can be tested using a control panel in a
computer. Since everything can be controlled automated test can be run using
scripted tests in a programming language.

1.4.3 Testing in a HIL-lab today
The HIL-lab at Scania is called I-Lab2. The kind of tests today performed in
I-Lab2 verifies that distributed functionality is working correctly with no fault
present. The test case is written first and describes the test in words, with stimuli
and expected response, and is then translated to a test script written in Python
for automatically testing in I-Lab2. The tests verifiy Message Sequence Charts
(MSC) (Section 2.2.1) that is a description of a distributed function. The tests
consists of validating communication on CAN, that correct information is sent and
then received and used in the right way.

The difference between tests performed in I-Lab2 and tests performed on unit
level, so called ECU System Test Level, is that the entire chain is tested in I-Lab2.
When performing ECU test it is only verified that the ECU sends the correct in-
formation, or that it treats received information correctly. It is of no interest what
happens in the other end.

Degradations testing, which has the objective to test functionality with some fault
present in the vehicle; i.e. test the vehicle being fail-safe; is performed sparsely
at Scania. Some control systems test degradation regularly, but some are not.
However degradations tests are not performed frequently on integration or system
level. Are control systems communicating correct information during failure and is
the received information interpreted in the right way? Is it even possible to perform
degradations tests in a Hardware-In-the-Loop lab? This thesis shall investigate the
possibilities for such kind of degradations tests.

1.5 Thesis objective
The objective is to find an applicable method usable to test degradation of dis-
tributed functionality in a Hardware-In-the-Loop lab on a regular basis. The
objectives can be stated as four items:

1. Collect and compile information about distributed functionality

2. Investigate if there is any unspecified degradation effects in the electrical
system

3. Suggest a test method to efficiently verify that the degradation of function-
ality behaves correctly

4. Write test cases and implement these for I-Lab2 to verify the efficiency of
the suggested test method
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1.6 Method
The method is first to compile information about degradation and degradation
tests, by interviewing personnel at Scania and using internal documents. Using
gathered information a test method how to best perform degradations test has
to be suggested, that shall be usable with existing resources. The test method
suggested shall be implemented and evaluated if suited for regular use.

1.7 Related work
There are many papers, mostly from the automotive industry, describing the pro-
cess of HIL and the benefits for executing tests. However it is not well documented
how testing is best executed using HIL. Especially methods of negative testing,
using for example malfunctioning sensors, is sparsely found.

A paper written by Mauro Velardocchia and Aldo Sorniotti [11] uses HIL to test
ABS and ESP functionality in a brake system. The tests are concentrated to
faults on sensors used by the brake system. The correct behaviour, with fault free
sensors, is then compared to the result given with faulty sensors. This problem
is limited since they are only researching the brake system, and do not consider
what happens outside their scope.

Another paper by Nabi and Balike [15] is discussing degradations tests in a more
complete electrical system. They are discussing that one type of performed tests
is to insert a fault in the system and then see the effect on performance, but this
is not always sufficient. There is sometimes a need to test that the fault also has
been detected, which require the use of diagnostic software. A small section also
describes a process that can be run automatically.

A more general approach of fault modeling in complex distributed systems using
CAN can be found in [4]. They say that the commonly used fault models, with
faults on sensors and actuators, are insufficient. The effect on electromagnetic
disturbances on CAN also needs to be considered when testing.

A paper on the requirements on failsafe [3] describes different methods of analyze
the failsafe of a vehicle. Methods as Failure Mode Effect Analysis, Fault Tree
Analysis and Fault Coverage Matrix are discussed.

A paper about degradation [14] uses a mathematical model to calculate the degra-
dation of a suspension element in a vehicle, to measure change in performance.
The method described can be compared with model based diagnosis.

1.8 Contributions
There are three major contributions with this thesis
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• Compiling information about degradation of distributed functionality and
describing problems about the subject (Chapter 4)

• Determining what behavioural modes on signals to provoke and test, where
to presume effects of error propagation and finally suggesting an alternative
method to test without exact expected outputs (Chapter 5)

• Suggesting two test techniques that can be performed in I-Lab2 on a regular
basis using current hardware and software (Chapter 6 )



Chapter 2

Theory: General concepts

The following chapter will give some general concepts needed further ahead. First
the idea of fail-safe will be discussed in Section 2.1. Fail-safe is important in the
automotive industry because of the high demands set on the safety of the driver
and the surroundings. Definitions of fault and failure will be described in Sec-
tion 2.1.1, including a discussion about degradation in Section 2.1.3.

After the basic concepts of fail-safe, a brief description of the electrical system at
Scania will be followed in Section 2.3. Functional architecture in Section 2.2 and
the rules set on communication on CAN in Section 2.3.3 will be described. Terms
as function, Message Sequence Chart (MSC), Diagnostic Trouble Codes (DTC)
and gateway will also be defined.

2.1 Fail-safe
According to Peters [6] the concept of fail-safe is often overlooked when designing
a system. Fail-safe deals with fault management, to prevent that a failure or a
malfunction is not causing severe damage. Any unwanted behavior of the vehicle
must be avoided even with faulty sensors or broken cables. Especially safety critical
functionality has to be tested to ensure that unwanted behavior does not emerge.
The concept of fail-safe will lead to a discussion about degradation, but first fault
and failure has to be defined.

2.1.1 Fault and failure
The definitions of fault and failure are taken from Nyberg and Frisk [10].

Definition 2.1 A fault is an illicit deviation of at least one characteristic prop-
erty or variable of the system from acceptable/usual/standard/nominal behaviour.

9
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Definition 2.2 A failure is a fault that implies permanent interruption of a sys-
tems ability to perform a required function under specified operation conditions.

According to the definitions, a fault is the underlying cause of a failure to a system.
A failure occurs when there is hindrance of a system to perform according to
specification. A deeper discussion about the relation between fault and failure can
be found in [1]. A fault is said to be dormant until it is activated, which will
then produce an error, meaning that there is a deviation from correct behavior.
When the system no longer can perform according to specification the error will
propagate and produce a failure. There can therefore be a fault in a system that
has not yet created a failure since the fault is not active. See Figure 2.1.

Figure 2.1. The relation between fault, error and failure

Because of error propagation, failures can in turn produce active faults which in
the end produce more failures.

2.1.2 Failure Mode and Effect Analysis (FMEA)
There are several techniques to map the potential risks in a system, to provide
help to develop a fail-safe system. One such method is Failure Mode and Effect
Analysis (FMEA) which is an inductive or a bottom-up analysis [3]. All potential
faults that can affect a system are first considered. Then all related failures are
identified with possible measures to counteract the expected hazards.

There are different kinds of FMEA, depending of the area of application. The kind
of FMEA that is used during development is called Design-FMEA (D-FMEA),
which considers all faults relevant to the design of the product. For example all
faults and failure effects regarding sensors and communication is analyzed.

Each failure is graded in three parameters: Severity, Occurrence and Detectability.
The grades are multiplied to get an overall grade, a so called Risk Priority Num-
ber (RPN). The higher RPN, the higher risk and prioritize the fail-safe measures
needed according to the FMEA.

Since the FMEA specifies how the system should react in the present of a failure,
it is now time to discuss degradation.

2.1.3 Degradation
When a system is fault free it is said to be in normal operation mode. If there is a
failure to the system, meaning that some functionality cannot execute properly, the
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system can enter a degraded mode. Degradation will ensure that some parts of the
failing functions still will execute [1]. When a system is not in its normal operation
mode the system is said to be degraded, which gives the following definitions:

Definition 2.3 Degradation of a system is a controlled behavior when a failure
is present, with the consequence that the system is leaving normal operation mode,
often realized as decreased performance or loss of functionality.

Definition 2.4 A degradation mode is a specific degradation of a system dur-
ing failure, depending of the present fault.

The definitions above talks about degradation of a system, but degradation can
also be applied on signals and functions. An important note is that degradation
should not be misunderstood with intended reduced functionality, which is re-
ferred to as downgrading. Also note that according to Section 2.1.1 degradation
is entered due to failure in the system. A fault will not cause any degradation
until activated and a failure occurs. The underlying cause of a failure is always
an activated fault and the degradation will depend on the occurring fault. It will
from here on be assumed that all faults will be active faults, unless other stated.

Example 2.1

Opticruise which is Scania’s own gearbox, has four well defined modes, normal
operation mode and three degradation modes:

• Normal operation mode
Fault free mode where opticruise operates according to specifications

• Clutch mode
The driver has to use the clutch to change gear, which is not necessary in
normal operation mode

• Limp hold
The driver cannot change gear, and must drive with the current gear

• Limp home
There is only functionality required to drive the vehicle to a mechanic

When an (activated) fault has occurred, normal operation mode will be left. The
system is said to be degraded. Depending of the fault the system will enter one of
the three degraded modes.
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2.2 Functional architecture
The functionality at Scania is described by user functions which in turn is described
by use cases and scenarios. Each scenario has a related Message Sequence Chart
(Section 2.2.1) which is a diagram describing how the scenario is executed. But
before discussing the above the terms function and distributed function must be
defined.

Definition 2.5 A function is describing a subset of a system, with the purpose
to control a set of outputs in a specific way. Functionality is defined as the
purpose of one or many functions in general.

Definition 2.6 A distributed function is a function where subsets of the dis-
tributed function is localized in more than one ECU, requiring communication
between the ECUs to function properly.

Definition 2.7 A user function (UF) is an electrical-related service as perceived
by a user [9].

A user function can involve none, one or more ECUs, meaning that a user function
does not have to be distributed. But most user functions are in fact distributed
functions. User functionality does not cover all distributed functionality in a ve-
hicle, meaning that there is functionality not described with user functions.

Example 2.2
Example of user functions, which all are distributed:

• UF 18: Fuel Level Display
Function to display the fuel level in the Instrument Cluster Panel (ICL)
The fuel level sensor is attached to the Coordinator (COO) which sends
the measured fuel level to the Instrument Cluster Panel that displays the
information to the driver.

• UF 85: Seat Heating
Function to activate or deactivate the bottom heating of the driver seat.

• UF 121: ABS Control
Function to prevent the wheels from locking while braking
The logic of the ABS Control is placed in the Brake Management System
(BMS) that gathers information from up to five control systems and then
decides if ABS Control is needed. On top of that the ABS has to inform
other ECUs that ABS is active.
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To give structure to the complex functionality in a truck, there are user functions
describing smaller parts of the complete system. Each user function is associated
with one or more use cases, different ways to use the function. Activating and
deactivating some functionality are in general two different use cases. Each use
case consists of at least one scenario, specifying how the driver can interact within
the use case. Scenarios are common dependent of the architecture in the vehicle,
how the signal flow is within the electrical system. [9]

As seen in Example 2.3 every user function can have several different use-cases and
each use-case can have several different scenarios. The same example also displays
the relation between user functions, use-cases and scenarios.

Example 2.3
UF 456 Engine Oil Level Display
Function to display the oil level in the engine.
• Use-case: Display information

– Scenario: Display engine oil level indication in instrument cluster
– Scenario: Display last measured engine oil level in instrument cluster
– Scenario: Display high/low engine oil level in instrument cluster

• Use-case: Malfunction handling

– Scenario: Engine oil level malfunction

2.2.1 Message Sequence Chart (MSC)
Each scenario has a corresponding Message Sequence Chart or MSC, a diagram
describing how the scenario is executed. The diagram shows which components
(sensors and actuators), ECUs and communication are involved. The MSC also
states in which order everything is executed. As seen in the Figure 2.2, each
component and ECU is realized as a vertical line. Between these lines there are
connectors, arrows, that symbolize the signal routing. The leftmost vertical line,
called Environment, is the interface to the physical world, i.e. displaying informa-
tion to the driver or gathering information used within in the MSC.

Today, test cases at REST are based on MSCs.

2.3 Communication
2.3.1 Controller Area Network (CAN)
CAN stand for Controller Area Network and is frequently used in the automotive
industry. The protocol allows ECUs to communicate through a network. Com-
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Figure 2.2. UF456: Engine oil display: Display engine oil level indication in instrument
cluster. The oil level sensor (T110_sensor) sends the measured oil level to the Engine
management system (EMS), which in turn sends that information to the Instrument
cluster panel (ICL), via the Coordinator (COO). The ICL uses the information from
EMS to display the oil level to the driver.



2.3 Communication 15

munication is transmitted using frames, which can vary in size depending on the
data length. Excluding the real data that is sent in a frame, information such as
identifier and control bits are also sent. [2]

Definition 2.8 A message is defined as the frame sent on CAN. A message al-
ways has a transmitter and one or more receivers.

Since CAN is network based, messages that are distributed on CAN are available
to every node (ECU) connected to the network. A message identifier consists of a
unique Parameter Group Number (PGN), which is combined with the transmit-
ting ECUs source address. The same message can therefore be sent by more than
one ECU, but with different source address [7].

Definition 2.9 A signal is a subset of a message and always sent with a message.
A signal consists of one value that is generated in an ECU and describes only one
parameter.

Each message consists of several signals, which can be measured sensor values or
requests that are sent to other ECUs.

2.3.2 A signal’s behavioural modes
Before discussing the behavioural modes of signals, the definitions of behavioural
mode and fault mode has to be made. Again with the help of Nyberg and Frisk [10]:

Definition 2.10 A behavioural mode describes the state of a component or a
system, and is related to faults that will cause a failure in that component or system

Definition 2.11 A fault mode is all behavioural modes that describes a com-
ponent or system to be faulty.

A behavioural mode is a description if something is whole or faulty, but can also
specify what is faulty. Only one behavioural mode can be occupied in the same
time.

To clarify the definitions two examples are given:

Example 2.4
A circuit consisting of a bulb and a switch can have the behavioural modes:

{switch not broken and lamp not broken,
switch broken and lamp not broken,
switch not broken and lamp broken,
switch broken and lamp broken}
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The fault modes of system are the three later ones. The first mode describes a
fault free state.

Example 2.5
The bulb in the previous example can itself have different behavioural modes,
which can explain the behavioural modes above. The behavioural modes of the
bulb can be:

{not broken, the thread broken, other fault}

The two later behavioural modes are fault modes.

When talking about behavioural modes (plural) it will mean all behavioural modes,
all states a component or system can be in.

A signal on CAN has five well defined behavioural modes:

Behavioural mode Description
Defined (Def) The value is within valid limits
Undefined (Undef) The value is not within valid limits
Error An Error means that the ECU originally sending the signal

has detected an error. See definition of Error below.
Not Available (NA) Not Available is generally sent when the sensor generating

the signal is missing. See definition of Not Available below
Time-out (TO) Time-out means that the signal is not received by the re-

ceiver. This could happen if the transmitted ECU is short
circuited

A split of {Defined} can be made to introduce a fifth fault mode {Unrealistic},
which is a value within valid limits, but not realistic. An unrealistic value could
be if the vehicle speed has the value 2000 km/h, with the parking brake applied
and reverse gear. The behavioural mode {Unrealistic} will not be considered in
this thesis, which will be motivated later in Section 5.1. After this discussion the
behavioural modes for signals will be defined as:

Definition 2.12 A signal’s behavioural modes are {Defined, Undefined, Error,
NA, TO}.

When talking about specific signal, u, the behavioural modes for that signal will
be denoted

u ∈ {udef , uundef , uerror, una, uto}

.
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2.3.3 Fault convention
There are a number of rules that the communication on CAN has to follow, which
concerns the behavioural modes of {NA} and {Error}. There are two rules when
to send {NA}.

Error

The behavioural mode {Error} can only be sent when a fault in a sensor or switch
has been detected, which means that the system itself has to know that something
is wrong, and must also store a corresponding Diagnostic Trouble Code (DTC) [7].
See also Section 2.4

Not Available (NA)

If data from a sensor or a switch has not been received or validated, {NA} must
be sent. But if the system can conclude that the sensor is really missing or broken,
{Error} shall be sent [7].

If a vehicle is by specification missing a sensor, or if a signal in a message should
not be sent by an ECU, {NA} should also be sent.

Coordinator as gateway

Since the Coordinator (COO) is connected to all three CAN buses it acts as a
gateway, passing information between the buses. There are two ways to gateway
information; gatewaying of a complete message or gatewaying of just one signal
(also called data gatewaying).

Definition 2.13 Gateway: When an ECU acts as a gateway and receives a
message or signal, it will forward the same message or signal unprocessed on the
other CAN bus.

Definition 2.14 Data gateway is used when only one particular signal is gate-
wayed. That means that one signal is taken from one message and put in another
message.

The definition says that if a message or a signal is being gatewayed the content
of that message or signal is not allowed to change. If a complete message is being
gatewayed and is missing nothing is sent on the other CAN buses. The message
will be missing on the other CAN buses as well. When data gateway and the
message with the signal is missing, the signal enters the behavioural mode Not
Available on the other CAN buses.

A note about gateway and message identifier regarding Section 2.3. A message
that is completely being gatewayed should keep the original identifier. If a message
in some way is being manipulated, the source address should be changed to the
gatewaying ECU’s source address.
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2.4 Diagnostic Trouble Codes (DTC)
When a fault has been detected a DTC shall be set within the ECU, and can then
be gathered by a user [5]. It is recommended that for every possible fault there
should exist a corresponding DTC, with enough information so that a mechanic
at the workshop can find the fault. For every ECU there is DTC-specification, a
complete description of every DTC that can be stored within the ECU.

There are two kinds of DTCs; primary and secondary:

• Primary: Is related to a fault detected within the own ECU. A primary
DTC has to be set when communicating Error for any signal sent on CAN.

• Secondary: A secondary DTC has to be set for each signal the ECU receives
Error and with the consequence of degraded functionality.

A time stamp is connected to the DTC telling when the fault was confirmed the last
time. A counter keeps track of the number of times the fault has been confirmed.
Both the time stamp and the counter is only updated when the fault has been
unconfirmed and then confirmed again [5].

2.5 Summary
Constructing a system that is fail-safe is of great importance in the automotive in-
dustry. FMEA is a method of finding potential risks that have insufficient fail-safe
measures. Degradation of a system or function is a technique preventing unwanted
behavior (for example found during the construction of FMEA) to control an ac-
tive fault.

A complete system can be split into many functions, which require systems to
communicate with each other on CAN. Messages consist of signals and are sent
on CAN. Signals are the lowest entity of communication and can have different
behavioural modes. There are a set of rules that communication has to follow
regarding these behavioural modes.



Chapter 3

Theory: Testing

The following chapter will discuss testing in general, why testing is necessary and
some basic concepts. Two main test strategies, black box and white box, will be
discussed which will finally lead to resolute test methods. Also a method of deter-
mine the level of testing currently used by REST at Scania is also described.

3.1 Testing
The following definition of testing can be found in IEEE Standard Glossary of
Software Engineering Terminology, which is referenced to in Copland [8]:

Definition 3.1 Testing is the process of operating a system or component under
specified conditions, observing or recording the results, and making an evaluation
of some aspect of the system or component.

In other words, to verify that the system or component under test is behaving
as expected with a set of suitable inputs. The concept is not at all especially
difficult, but several challenges emerge when performing tests. One challenge is
the time aspect, meaning that there is not enough time to test everything. Large
systems often have many inputs, which can lead to an uncontrollable number of
input combinations. Bad specifications makes it difficult to determine expected
result from the test is also a concern.

3.2 Test strategies
There exists in general two different test strategies, black box and white box.
Using black box the tester does not in detail need to know how the system works.
The strategy is based on which outputs are given for a specific set of inputs. White
box is the direct opposite, which requires detailed knowledge about the system,
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its architecture and how it is programmed. There is also a combination of the two
above test strategies called gray box.

Figure 3.1. Difference between Black box and White box. Using Black box the logic
within the system is unknown. White box is the opposite, that the system’s logic is
known

3.3 Black box testing
Black box testing does in general follow a certain process. At first the tester needs
to analyze the specification of the system, how it works and which inputs are valid.
Then a set of inputs are chosen and what outputs are expected. After the tests
are run, a comparison between the actual and expected outputs is made.

The main advantage using black box is that testing in principle can be applicable
on systems on all level, from testing a small unit to an entire system. The strategy
is more efficient the larger the system, due to that no detailed knowledge is re-
quired of how the system is implemented. The behaviour of the system has to be
known, meaning that detailed specifications are required to be able to determine
expected response due to some choice of inputs.

It is difficult to achieve 100 percent detectability, since the tester does not know
how the systems is coded and can miss a certain input that would led to an error.
To maximize detectability both black box and white box can be used but on
different levels.

3.4 White box testing
Instead of analyzing specifications of a system, the tester is analyzing the imple-
mentation. All internal paths in the code are identified. Inputs are then chosen
so that a specific path is executed. The actual outputs are then compared to ex-
pected outputs.

The main advantages is that a tester can be sure to get 100% coverage of paths
executing, making sure that every piece of code and every possible path is tested
at least once. The White Box strategy can also be applied to larger systems to
test different pahts between systems.
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The number of paths can be very large, and it can be impossible or at least very
time consuming, to test every possible path. Testing all paths can be compared
with testing all possible inputs using Black box. White box can only test existing
paths that can be identified in the code. New paths cannot be discovered with
White box.

3.5 Test methods
There exist a number of test methods based on either Black box and White box.
The two testing methods that are going to be discussed here and are later used
are Equivalence Class Testing and Pairwise Testing. These are based on the Black
box approach, meaning that no internal structure of the system under test has
to be known. More test methods can be found in Copland [8], but requires good
knowledge about the system under test, which is not always the case when testing
degradation on the entire electrical system.

No methods based on the White box will be discussed, because the internal struc-
ture for every case of degradation requires extensive resources. The internal struc-
ture for a scenario in a user function can be found in the MSC, where signals can
be traced within the MSC. However the MSCs does not describe alternative signal
paths in case of degradation, required when performing White box testing.

3.5.1 Equivalence Class Testing
Instead of testing each possible input, one can instead try to classify inputs into
groups, equivalence classes, and then say that every value in a selected group
represents the entire group. Using these groups means that only one test case per
equivalence class is required.

Example 3.1

CAN communication specifications at Scania consists of every message and signal
transmitted and received by an ECU. In the specifications every signal has inter-
vals defined with respective behavioral modes. A signal consisting of two bytes of
data is in Scania’s electrical system usually defined according to Table 3.1.

Binary value Behavioural mode
0x0000 - 0xFBFF Defined
0xFC00 - 0xFDFF Undefined
0xFE00 - 0xFEFF Error
0xFF00 - 0xFFFF Not Available

No value Time-out



22 Theory: Testing

Each of these behavioural modes can be used as an equivalence class, meaning that
it is equivalent to test 0x0C5F and 0xF01A. Every value in the above behavioural
modes represents the entire mode.

Figure 3.2. A graphical representation of behavioral modes for a signal consisting of
two bytes

An assumption has to be made, that every ECU treats each value in each class
the same; i.e. the classes according to Table 3.1. The logic in the ECU should
be based on these classes, if Equivalence Class Testing can be used correctly. The
next example will illustrate this.

Example 3.2
Consider the following equation:{

y = x+ 1 if x < 0xFC00
y = 0 otherwise

(3.1)

Let say that a programmer has implemented the equation in code as:

if x == 0 then y = 1;
if x == 1 then y = 2;
.
.
if x == 655 then y = 656;
.
.
if x == 0xFFFF then y = 0;

Using code above could mean that somewhere in the code a mistake could have
been made, for example:

if x == 700 then y = 1054;

which is completely wrong according to equation (3.1). Typically Equivalence
Class Testing could not be applied here since there are no distinct groups or
classes. Every input is here considered as a stand alone input.



3.5 Test methods 23

Instead a more experienced programmer would have implemented the equation
more easily like this:

if x >= 0 && x < 0xFC00 then y = x + 1;
if x >= 0xFC00 && x < 0xFE00 then y = 0;
.
.
if x >= 0xFF00 && and x <= 0xFFFF then y = 0;

Now there are distinct groups, meaning that there is no difference between x = 12 and
x = 0xD201. From now on, if Equivalence Class Testing is applied it is assumed

that the code looks like this.

The advantage using Equivalence Class Testing is that instead of one test case per
valid input, one test case per valid equivalence class can now be scripted. That
means that the number of test cases will be decimated, with exactly the same
outcome. As mentioned in the example above, the method requires that the code
looks like the later of the two pieces of code in the previous Example 3.2, or at
least it is assumed.

A variant to Equivalence Class Testing is Boundary Value Testing described in
Copeland [8]. Boundary Value Testing means that the boundaries are chosen as
inputs instead of a random chosen input within the equivalence class. Consider
the following example:

Example 3.3

Consider Example 3.1 with the signal consisting of two bytes and is defined as:

Binary value Behavioural mode
0x0000 - 0xFBFF Defined
0xFC00 - 0xFDFF Undefined
0xFE00 - 0xFEFF Error
0xFF00 - 0xFFFF Not Available

Using Boundary Value Testing means that inputs at the boundary values of the
classes are chosen: 0x000, 0xFBFF, 0xFC00, ... , 0xFF00 and 0xFFFF.

Boundary Value Testing will not be applied because that there is a wish not to
manipulate inputs directly on CAN, but provoke the ECUs to send the correct
behavioral mode. It is therefore difficult to force an ECU to send a value on CAN
chosen by the user. The value sent on CAN is dependent on how the ECU is
programmed. See also Section 4.4.
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3.5.2 Pairwise Testing
Pairwise Testing method is based on that the tester only test all pairs of be-
havioural modes, instead of all possible combinations. Consider 13 different in-
puts, each one having three behavioural modes, which means that there are totally
313 = 1594323 combinations and equally many tests. Only 15 tests are required
to test all pairs [8].

Pairwise Testing has been proved (not theoretically, but by experience) to be
efficient, both in reducing the number of test cases and detecting errors [8].

Example 3.4
Consider three signals, u1, u2 and u3, with just two behavioral modes. Testing all
possible number of behavioral modes would require 23 = 8 test cases, which will
give 100 % coverage. Using Pairwise Testing only all pairs of behavioral modes
are tested, which will require only four test cases; T1 . . . T4. See Figure 3.3.

Figure 3.3. The gray box means that this particular behavioural mode for the signal
ui is under test. All pairs of behavioural modes are tested at least once in the four test
cases Tj

There is no direct proof that Pairwise Testing is more efficient, it just turns out
to be that way [8]. The Pairwise Testing includes all errors caused by one or two
fault modes, but misses if there are three or more. The probability of more than
two signals going wrong versus the cost of executing every combination has to be
evaluated.

3.6 Risk Based Testing (RBT)
To conclude the chapter a method called Risk Based Testing (RBT) will be de-
scribed, which is used to plan what to test and how. It is impossible to test
everything according to what was written in the introduction to this chapter.
With RBT the objects under test are classified depending on the risk the objects
being erroneous. Risk is correlated with coverage, meaning the higher the risk the
higher coverage and deeper level of testing.

To classify into risks two parameters can be used, consequence and probability.
Each parameter has two categories, High or Low, meaning that there are four
distinct classes. See Table 3.1:
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Table 3.1. A table with the four distinct classes

Class Probability Consequence
A High High
B Low High
C High Low
D Low Low

Probability is a measure of the rate of occurrence of fault and can be described
by for example chance of failure, usage frequency and complexity. Consequence is
a measure how severe the effect is during failure and can be described by Vehicle
Of Road, safety problems, sales volume, etc.

Using the classes in Table 3.1, Figure 3.4 can be drawn to illustrate the RTB.

Figure 3.4. The four classes as squares in a coordinate system with probability and
consequence as axles.

Depending on the class the test object is classed into, different test techniques are
used to get the appropriate depth of testing. Class A is the most important class
to test, consisting of objects with high severity and high probability of failure, and
must be tested extensively. Class D in the other end are not needed to be tested
as deep.

Suggestion of how to perform tests can be found in [12] and is summarized in
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Table 3.2.

Table 3.2. A table with the four distinct classes

Class Level of testing
D Positive testing based on specifications
C Level of testing for D + Testing edges of positive testing
B Level of testing for C + Negative testing with inputs outside valid

areas and not in specifications
A Level of testing for B + Provoking the system to fail

The level of testing according to Table 3.2 is now described:

A: Positive testing
Testing according specifications. Only valid inputs within the MSC are used.
Positive testing is currently performed in I-Lab2.

B: Edges of positive testing
Tests inputs according to Boundary Value Testing and is briefly described
in Example 3.3.

C: Negative testing
Meaning that for example {Unrealistic} values are tested, that are outside
valid areas.

D: Provoking the system to fail
Any means necessary to provoke the system to fail meaning multiple inputs
are outside valid areas.

Using RBT it is easy to determine the level of testing, and what to test.

3.7 Summary
Some basic concepts of testing and the methods required to perform testing has
now been described. Testing is performed to measure the quality of the product,
to ensure the product being fail-safe. There exists in general two different test
strategies, Black box (Section 3.3) and White box (Section 3.4), both with their
advantages and disadvantages, making them suitable for different systems and on
different levels in the development process.

Two of the test methods mentioned, Equivalence Class Testing (Section 3.5.1) and
Pairwise Testing (Section 3.5.2) is both based on Black box. Both methods reduce
the number of test cases, and one is especially suitable for multiple inputs. Risk
Based Testing (Section 3.6) is not a test method but at way to plan what to test.



Chapter 4

Testing degradation of
distributed functionality

The following chapter will describe some of the problems when testing degradation
of distributed functionality. The information acquired is based on internal docu-
ments, interviewing personnel at Scania and an own analysis. The arisen problems
will be discussed, which will form the base for the next chapter where suggested
solutions to these problems will be discussed.

But first some background to the problem.

4.1 Background
The entire electrical system consists of a large number of ECUs. Each ECU sends
and receives a large number of signals through three independent CAN-buses, to
be able to execute up to 400 user functions.

The number of ECUs, signals and user functions depends on an almost infinite
combination of vehicles, where each ECU has between 50 - 10000 parameters. The
configuration of vehicle has not been considered, and should not have any impact
on the problem in this thesis. A suggested test method should not depend on the
specification of the vehicle to test.

It is also impossible to test every fault mode and distributed function. Any kind
of classification system determining what function or fault mode to test will not
either be considered in this thesis. A short review about the possibilities about
automatically generating such classification system has been made without any
result worth mentioning. Some thoughts will be mentioned in Section 4.5 using
Risk Based Testing (Section 3.6).

Another question is if the 400 user functions could be classified into groups and
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if these groups could be tested in a certain way. That could lead to distinct test
methods and test scripts that would focus on risks within the function class. A
more concentrated and efficient method of testing user functions could be devel-
oped. Some thoughts about the subject can be found briefly in Section 4.5, but
will otherwise not be regarded.

Two examples will now follow, to display some of the problems testing distributed
degradation that will later be discussed.

Example 4.1

UF98: Fan Control Figure 4.1 displays the entire user function UF98. In reality
UF98 is divided into several MSCs, but is here illustrated as one function.

Several ECUs need cooling from the fan connected to the EMS. The COO receives
information from a number of ECUs and then calculates a rotation speed for the
fan for every ECU that needs cooling. The COO then chooses the highest calcu-
lated rotation speed and requests it to the EMS, which then tries to control the
fan to requested speed. The EMS also has an internal fan request.

The big question is: How to best test degradation of this particular function? Or
in other words: How to best verify that this function is behaving correctly when
there is an active fault mode?
There are many fault modes that could affect Fan Control, every sensor used by
the function could for example be short circuited, open circuited or measure a
completely wrong sensor value. These fault modes affect the corresponding CAN-
signals by entering any of the five behavioural modes {Defined, Undefined, Error,
NA, TO}. What relation is there between fault modes and behavioural modes?
See Section 4.4.

It is the electrical system that shall be tested, or in other words the communication
on CAN, meaning that every possible combination of behavioural mode should be
tested for 100% coverage. It is not certain that every behavioural mode even is
possible to generate in a HIL-lab or that there is enough time and resources to
test them all. Is there any realistic way of decreasing the number of test cases?
See Section 4.4.

When testing, an expected output should always be stated. With a fault mode ac-
tivated within the function the COO will receive some behavioural mode for some
signal on CAN. It has to be determined how the COO behaves, and what affect
that causes the EMS. The document describing the UF98 does not include infor-
mation how the COO treats {Undefined, Error, NA, TO} for any signal, which
requires reading other documents and finally requesting documents from the de-
velopers of the COO. It is difficult to determine what happens. Is there any easier
method determining if a test has passed or failed? See section 4.2.
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Figure 4.1. The entire UF98: Fan Control. The squares represent ECUs and the
arrows represent signal paths. The names on top of the arrows are signals sent between
the ECUs.

It cannot however be overruled that just fault modes outside the function cause
degradation within the function, that is not specified in any documentation. There
could be an ’invisible’ ECU, for example AUS mentioned in Example 1.1, not
drawn in Figure 4.1 sending some faulty signal to the APS, which in turn affects
the signal ’Air Compressor State’. The opposite could also be stated, if UF98 could
affect any other part of the system not drawn in Figure 4.1, for example that the
radio in AUS stops working. Is there any unspecified error propagation in the
electrical system and how could it be detected and tested? See Section 4.3. Error
propagation will only be considered in one of the later suggested test techniques
(Fault Mode Test) in Chapter 6.

Instead of choosing one User Function, just one sensor can be considered:

Example 4.2
Engine Speed Sensors
There are two sensors attached to EMS that measures the engine speed, which
then generates the CAN-signal EngineSpeed. The EngineSpeed is transmitted on
CAN and then received by over fifteen ECUs which is then used by some func-
tionality.
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Consider that some fault mode involving the engine speed sensors are present. It
has to be determined how CAN is affected, what behavioural mode EngineSpeed
signal is transmitted. Can every behavioural mode, {Defined, Undefined, Error,
NA, TO}, be generated and degradation tested for all of these modes? See Section
4.4

Since the EngineSpeed signal is received by over fifteen ECUs many documents
has to be read since there is no compiled document about the effect of a faulty
EngineSpeed signal. It is not certain that all of these documents contain satisfied
information how to test the behaviour of the receiving ECUs. See section 4.2.

Can any of fifteen earlier mention ECUs causes failures elsewhere in the electrical
system, by transmitting degraded signals? See Section 4.3.

The examples above discuss problems about testing distributed degradation in
general. A workable method is then needed to be developed to be able to test
distributed degradation on a regular basis. That problem will be discussed later
in Chapter 6.

The problems found that will be discussed will now be described in more detail.

4.2 Expected outputs
There are some existing documentation with a description about signals and what
they affect. The CAN communication specifications contains detailed information
about which ECUs transmits and receives which messages and signals. With each
signal the intervals for the behavioural modes {Defined, Undefined, Error, NA}
are defined. The document does not describe what affects a signal or what it is
used for.

The FMEAs (Section 2.1.2) grades the failure effect for different behavioural modes
for signals, describing the usage of the signal. What specific functionality a signal
affects is not described. There is not enough information in the FMEAs to deter-
mine expected outputs when performing degradations tests.

The MSCs contain all signals that are used within a scenario. These are probably
the best source to determine the usage of a signal. The MSCs are only valid in the
fault free case. No alternative signals paths can be found within the MSC during
failure, meaning that the MSCs cannot be used to determine expected outputs
when testing degradation. To determine expected response the tester has to tend
to the MSC related document; a specification of the user function. The problem is
that these specifications in general do not include information about the behaviour
when receiving signals being {Undefined, Error, NA, TO}. Also, MSCs and user
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functions only describe around 80 percent of the all distributed functionality [13].

None of the above mentioned documentations are especially useful when deter-
mining expected outputs for some function when testing degradation.

Exact behaviour of some function can be acquired, but requires substantial work
talking to personnel all around Scania and requesting internal documentation that
is only accessed by people developing the ECUs. That method proved inefficient
and another approach is needed. Instead of determining exact behaviour of a
function, acceptable and unacceptable behaviour can be stated. With acceptable
criteria general rules can be stated and tested against. More about acceptance
criteria in Section 5.3.

4.3 Error propagation
As mentioned in Section 2.1.1 failures in turn create other failures, meaning that
error propagation can exist. There is a need to investigate how error propagation
and unspecified degradation effects exists in the electrical system.

Only error propagation within the electrical system will be considered. Another
possibility is malfunctioning control loops, where the failure is propagation via the
environment into the electrical system. This will not be considered in this thesis
but could be covered with methods later presented (see Section 6.2).

Within the electrical systems it is CAN-signals that generate error propagation.
Signals could simply be classed into two signal types, sensor signals and computed
signals. Sensor signals are signals that are generated from sensor values, meaning
that it is a direct map from what a sensor measures. These sensor signals are
the sources so to speak and the origin can be determined. Computed signals are
signals that are generated from other signals, meaning that there are more than
one source of information. How computed signals are generated are not easily de-
termined (compare with Section 4.2), and could be a source of error propagation.
How does a computed signal behave if one of the input signals has the behavioural
modes {Undefined, Error, NA, TO}?

A compilation of the CAN communication specifications could be made to gather
these eventual error propagation effects. A matrix, called ECU vs. ECU matrix,
usable when determining error propagation will be described in Section 5.2.1.

4.4 The number of behavioural modes
As stated in Section 2.3.2 there are totally five different behavioural modes that
can describe the state of a signal:

u ∈ {udef , uundef , uerror, una, uto}
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The number of behaviour modes leads to a drastically increase of test cases with
the number of inputs to achieve high coverage. Consider n inputs to some function.
Using Equivalence Class Testing (Section 3.5.1) the total number of combinations
of behavioural modes are 5n. Even for n = 3 the number of test cases is un-
controllable. Instead using Pairwise Testing (Section 3.5.2) will drastically reduce
the number of test cases, but will still produce more test cases than desirable. A
method of decreasing the number of combinations could be to decrease the num-
ber of behaviour modes. What is a reasonable loss of coverage with testing fewer
behaviour modes?

There also is a wish to provoke the ECUs to send different behavioural modes
on CAN by introducing fault modes on components. The reason is that during
system and integration test the complete chain is under test, from ECU sending
the correct signal to another ECU receiving it and process it in a correct way.
Direct manipulation of CAN is of no interest which would just test that the ECU
receiving the signal behaves correctly.

Fault modes on components will now be introduced to force different behavioural
modes on signals. Assume that the only fault modes (components) considered
are these that affect sensors, ECUs and CAN-buses. The behavioural modes on
components, f , can be described as:

f ∈ {NF, Sensors, ECUs, CAN} (4.1)

Example 4.3
Consider a sensor signal, u, that is a direct map from a sensor value, s(t). A sen-
sor value is the value a sensor measures. The relation between the sensor signal
and the sensor value can be stated as u = s(t). Introducing behaviour modes on
components, f , will according to Section 2.3.3 and Section 2.3.2 create different
behaviour modes on the sensor signal as u = u(s(t), f), meaning that the signal
depends on both the sensor value and the status of the sensor.

The following scenario could be possible:

u = udef = s(t), f ∈ {NF} (4.2)
u = uerror, f ∈ {Sensor faulty} (4.3)
u = uto, f ∈ {ECU disconnected, CAN disconnected} (4.4)

Note that equation (4.2) is just an example. It is part of the thesis to investigate the
relation. This will further be discussed during the implementation in Section 7.1.2
where it will be described that it is difficult to generate all possible behavioural
modes of signals in a HIL-lab.
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4.5 Complexity of user functions
There are over 400 active user functions, each with a number of use-cases consist-
ing of a number of MSCs making it difficult to test them all at once. There has
to be some way of determine which MSCs that are going to be tested. There is
already a solution for that; Risk Based Testing in Section 3.6; which is used today
to classify the MSCs.

A way to graphically represent which user functions are affected by some fault
mode can be found in Section 5.2.2.

The complexity of the user functions is a problem. Depending on the number of
inputs the number of test cases will increase to get good coverage. Compare with
behavioural modes of signals in Section 4.4. What shall be tested?

Another matter briefly investigated is if MSCs can be collected into different classes
and if different techniques of testing could be performed depending on the class.
How different classes of a MSC reflect the level of testing will just be mentioned
here but will not later be tackled. Time issues is the reason for the exclusion of
that particular problem. The two examples below displays some thoughts about
the problem, showing which fault modes must be activated to test the MSC.

A large number of MSCs can be described with just serialized communication,
with one input. The MSCs gives a limited number of test cases as the following
example will show:

Example 4.4

UF109/SCN52: Display engine oil pressure has only the engine oil pressure
as input.

UF109 means that it is user function 109, and SCN52 means that is it scenario 52.

The scenario has only one fault free state, which displays the engine oil pressure in
the ICL. A number of degraded states exist depending on the different fault modes.
The fault modes of interest are: {Engine oil pressure sensor broken, EMS broken,
COO broken}, meaning that there could be three different degraded states. A
broken ICL is of no interest since the outcome is obvious; no engine oil pressure
display in ICL. Fault mode on the actuator ECU is of no interest.

Multiple faults are of no interest either. Consider the fault mode {Engine oil
pressure sensor broken & EMS broken} is equivalent to just {EMS broken}. If the
EMS is broken, no CAN traffic is transmitted from the EMS, meaning that the
state of the engine oil pressure does not matter.



34 Testing degradation of distributed functionality

Another large group are MSCs that describes control loops.

Example 4.5
UF98/SCN1039: Request engine fan from APS is a AFC 3.

The Air Pressure System (APS) sends a request to the Engine Management Sys-
tem (EMS) to start the engine fan. The APS is dependent that the EMS does
respond correctly, since otherwise there is a risk of overheating the air pressure
system.

The problem is more complex since there is an invisible correlation between output
and input that is not seen in the MSC. Testing how the function behaves if the
EMS is disconnected, or the fan stops working must be performed. In other words
fault modes regarding actuators is now also of interest. Could there be instability
in the control loop due to some fault mode? As mentioned earlier, these questions
will not be tackled in this thesis.

4.6 Summary
There are five different difficulties when testing degradation: Difficulties determine
expected output, error propagation, number of behaviour modes, number of MSCs
and the complexity of an MSC. The first four will be tackled in the next chapter.
The fifth, complexity of an MSC has not been considered further in this thesis
because of time issues.



Chapter 5

Suggestions testing
degradation of distributed
functionality

Solutions for four of the five problems found according to the previous chapter are
suggested.

A brief motivation which behavioural modes needs to be considered is discussed
in Section 5.1. The communication matrices in Section 5.2 is a tool to make the
electrical system easier to overview. Finally the chapter ends with the acceptance
criteria in Section 5.3 describing what to test and how to verify the outcome of
the test.

Solutions presented will be used in the two test strategies in chapter 6.

5.1 Behavioural modes
As described in Section 4.4 the high number of defined behavioural modes gen-
erates large number of test cases. A way of decreasing the number of test cases
is to decrease the number of behavioural modes under test. A suggestion which
behavioural modes that shall be tested will now follow.

As said earlier there is a wish not to manipulate CAN directly, but instead force
the ECUs themselves to send different behavioural modes on signals. In this thesis
it is assumed that all sensors values are correct. Detecting errors in the sensor
values is a subject on diagnosis, which is not discussed here. With that moti-
vation, unrealistic values will not be considered, and will not be regarded as a
behavioural mode (Section 2.3.2). The ECUs could be faulty and send unrealistic
values on CAN, despite reading a correct sensor value. Such behaviour should
have been validated during ECU System Level Tests (unit tests); not system and
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integrations test. It is also illegal to send {Undefined} on CAN and is also a
subject of ECU System Level Test. With the motivation above neither {Unrealis-
tic} or {Undefined} will be provoked on CAN. Validation that these modes are not
present on CAN should be performed for any signal on CAN while executing a test.

According to Section 4.4, the fault modes on components that will be considered is
f ∈ {Sensors, ECUs, CAN}. Almost certainly {Error, NA, TO} will be provoked
on CAN. Studying FMEAs, many ECUs do not consider {Error} and {NA} as two
independent modes, and usually are programmed to behave in the same way. Still
there are many signals where the ECUs treat {Error} and {NA} in different ways.
There is a balance between cost and coverage. Combining {Error} and {NA} into
{Error/NA} will generate 4n − 3n less combinations with the consequence of less
coverage. With the difficulties of generating some behavioural modes in a HIL-lab
described in Section 7.1.2 the assumption that {Error/NA} can be treated together
will now be used. Collecting {Error} and {NA} into one behavioural mode means
that if {Error} is provoked for one signal , {NA} will not be provoked for the same
signal, or vice verse. A valid set of behavioural modes that will be tested will be:
{Def, Error/NA, TO}. See Table 5.1.

Table 5.1. Table with motivations for decreasing the number of behavioural modes

Behavioural mode Provoke Motivation
Unrealistic No Faulty sensor values are not considered. Should

be validated during ECU test that {Unrealistic}
signals never are sent.

Undefined No Should be validated during ECU test that {Un-
def} signals never are sent

Error/NA Yes According to FMEA, many ECUs treat Error and
NA the same and will be considered the same
equivalence class. Error and NA will not be tested
separately.

Time out Yes Is easy to provoke, and should be tested

Note that both {Error} and {NA} usually are defined as intervals (see exam-
ple 3.1). But applying theory from Equivalence Classes (Section 3.5.1) there is no
difference between different values of {Error/NA}.

Using the behavioural modes {Defined, Error/NA, TO} instead of {Defined, Un-
defined, Error, NA, TO} decreases the number of combinations for n signals with
5n − 3n. It will also later discussed in Section 7.1.2 that the behavioural modes
chosen will simplify which fault modes to test in a HIL-lab.
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5.2 Communication matrix
Two kinds of matrices have been developed to give an overview of the failure ef-
fect using a graphical representation. The two matrices described are ’ECU vs.
ECU’ and ’Component vs. UF’. Each matrix is described with fault modes as the
columns and the failure effect as the rows.

The ’ECU vs. ECU’ matrix could be used to trace error propagation described
in Section 4.3. The ’Component vs. UF’ matrix shows graphically which UFs
are affected by some fault mode and could simplify the choice of MSCs to test
according to Section 4.5 about the complexity of user functions.

None of these two matrices includes any new information but is just a simplification
of existing documents. The ’ECU vs. ECU’ matrix is based on CAN communi-
cation specifications and FMEAs (Section 4.2). The ’Component vs. UF’ matrix
collects information from the MSCs.

5.2.1 ECU vs. ECU matrix
The ’ECU vs. ECU’ matrix uses the fault mode {ECU disconnected} versus the
failure effect in other ECUs. The fault mode {ECU disconnected} also corresponds
to if all signals sent from the ECU has one of the following behavioural modes:
{Error, NA, TO}. The matrix can be automatically generated using the internal
CAN database containing which ECU communicating with which. The failure
effect of loosing one ECU has been graded with the scale according to Table 5.2.

The FMEA could be used to help grading the failure effect of {ECU disconnected}
according to Table 5.2. No new information is acquired by using the grade accord-
ing to Table 5.2, but is adapted to degradation and can be more easily be used for
general acceptance criteria. The grade does not consider the effects outside the
ECU, to what degree failure will cause harm to the driver or environment. But
broken communication with one ECU is not always considered a fault mode in
FMEA. Instead interviewing people responsible for the ECUs were performed, to
grade the failure effect.

The main advantage with the ’ECU vs. ECU’ matrix is that it can help which
ECU and what kind of functionality to test. If one ECU is lost it can easily be
seen in the row of the disconnected ECU, which other ECUs will be affected and
how severe. Because of the overview of the complete electrical system effects from
error propagation can be hinted (see also Section 4.3).

One example showing the application of the ’ECU vs. ECU’ matrix:

Example 5.1
Using Figure 5.1, consider that BMS is disconnected. Looking at the row with
BMS it can be seen that those ECUs that are affected the most are EMS and
CUV, that both are graded 5. Functionality contained in these ECUs should be
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Table 5.2. A sixth graded scale classifying the effects a particular component/signal
has to an ECU

Description Expected failure effect
1. Data from the disconnected ECU is

not used for anything
No effect

2. Data from the disconnected ECU is
only used when storing DTCs.

No degraded functionality

3. Data from the disconnected ECU is
redundant, or is used as a parameter
for a control loop.

Reduced efficiency

4. Data from the disconnected ECU is
used as a reference for a control loop,
or to request functionality

Loss of functionality, that is not
safety critical.

5. Data from the disconnected ECU is
used for safety critical functionality

Loss of safety critical functional-
ity or main functionality within
the ECU

6. The ECU is completely dependent on
the disconnected ECU

Total collapse of functionality
(including safety critical func-
tionality) within the ECU. Vehi-
cle Off Road (VOR) could also
be expected.

prioritized during testing since information received by the BMS is used for safety
critical functionality.

The next step is to see that EMS in turn affects several other systems graded with
a 5. Because of error propagation these systems could be prioritized during testing
as well.

5.2.2 Component vs. UF matrix
Another matrix is the ’Component vs. UF’ matrix describing failure effects on
user functions using fault modes on individual component. The matrix gives an
overview which user functions are affected by a particular component. See fig-
ure 5.2. The failure effects can be graded, using for example severity, but have not
been studied in this thesis.

The ’Component vs. UF’ graphically presents possible failure effects on user func-
tions and may choose the most important user functions to test regarding some
fault mode. Since MSCs contains information such as components used within
the corresponding scenario, the Component vs. UF matrix could be automatically
generated using MSCs.
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Figure 5.1. An example showing the concept of the ECU vs. ECU matrix

Example 5.2

Consider that the engine speed sensor is disconnected. Using Figure 5.2 it can be
seen that five User Functions are affected by the engine speed sensor. All these
user functions should be tested to verify that they do not behave incorrectly ac-
cording to Section 5.3. Consider that all User Functions are implemented as test
scripts, some program could automatically gather the relevant user functions and
test them based on the fault mode.

If there is not time to test them all, the Risk Based Testing in Section 3.6 can help
prioritize what to test.

5.3 Acceptance criteria
According to both the Black box test strategy in Section 3.3 and the White box
test strategy in Section 3.4 actual outputs are compared to expected outputs.
According to Section 4.2 it requires extensive time compiling information about
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Figure 5.2. An example showing what the Component vs. UF matrix could look like

correct output during degradation. Acceptance criteria have to be introduced to
specify what an acceptable behaviour, or what an unacceptable behaviour is. Af-
ter a test case is executed it is determined to what degree these criteria have been
fulfilled. The rules creating the acceptance critera must be so general that they
should hold as good as always. However it turns out that it is difficult to set up
these general rules, but must depend for example on the state of the vehicle, i.e.
if the engine is on or not. From now on because of simplicity it will be assumed
that the engine is on, and the vehicle is in a driveable state.

The acceptance criteria will be based upon some rules that have to be followed.
These rules will be denoted with R as in rule or requirement. A way to test these
rules will also be suggested and will be denoted T as in test, and will be used in
the two suggested test techniques in Chapter 6.

Information about proper acceptance criteria and what an unacceptable behaviour
is has been gathered when talking to people knowing the systems in the vehicle.
Four categories of acceptance criteria will be used trying to categorize the rules
later set:

• Fault codes (DTCs)/Warnings in ICL (displayed to the driver)

• Functionality/Driveability

• Security

• Communication

Sixteen rules, R1-R16, have been suggested. These rules could hold as good
as always under the prerequisite that the engine is on and the vehicle is in a
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driveable state. The rules R1-R4 about DTCs/Warnings are based on material in
Section 2.4 and Requirements on diagnostic functionality [5]. The rules R12-R16
about Communication are based on Section 2.3.3 and the SESAMM-concept [9].
Rules R5-R11 about Functionality/Driveability and Security are suggested by
personnel at Scania and are just examples of acceptance criteria in these categories
(see Section 5.3.2 and Section 5.3.3 for further explanation).
A more detailed description of the four categories will now be discussed, with
reference to Chapter 2.

5.3.1 DTC/Warnings
According to Section 2.4, a primary DTC has to be set when sending {Error} on
CAN and a secondary DTC has to be set when receiving an {Error} on CAN that
degrades functionality within the own system. It has to be validated for every test
that these rules are followed and that DTCs not allowed to be set are never set.
Because of error propagation (Section 2.1.1) one fault mode can lead to many dif-
ferent failures, which in turn can lead to other failures in other systems. It cannot
be overruled that an unexpected DTC, to the tester unrelated to the present fault
mode, is not set correctly. Every DTC set during a failure should be investigated,
and be traced back to its source.

Depending on the severity of the failure an appropriate warning should be sent to
inform the driver. Notices in the Instrument Cluster Panel should be read during
test and evaluated.

Summarized as distinct rules:

R1. A primary DTC has to be stored within the ECU connected to the
faulty component

R2. A secondary DTC has to be stored for every ECU receiving informa-
tion about the faulty component, that will lead to degraded function-
ality

R3. No DTC is allowed to be stored in ECUs that are not using informa-
tion from the faulty component

R4. Appropriate warnings and notices has to be set in the Instrument
Cluster Panel to communicate failures to the driver

To be able to evaluate these four rules two actions should be executed during the
test:

T1. All active DTCs should be read continuously during the test case
T2. All warnings in the ICL should be read continuously during the test

case

5.3.2 Functionality/Driveability
Basic driveability functionality such as acceleration, braking and steering should
be as robust as possible. These functions should be tested accordingly.
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Components not directly connected to the MSC should not have an effect on that
particular MSC, or otherwise the MSC is wrong. Using the Component vs. UF
matrix (Section 5.2.2) gives an overview which fault modes should (or should not)
have any effect on particular user functions. It cannot be overruled that a de-
graded user function will not affect another user function that is not specified
anywhere. MSCs not affected by some fault mode according to the ’Component
vs. UF’ matrix could be tested as well to verify that no failure effect is present in
that MSC.

ECU specific functionality is also of interest, in what way an ECU is affected by a
fault mode. The category is directly correlated with the ECU vs. ECU matrix in
Section 5.2.1. Tests should confirm if main functionality within an ECU is working
properly or not. An example could be the Audio System; to verify that the radio
is still working and that the volume can be raised or decreased from the audio
buttons attached to the steering wheel. That particular functionality is not safety
critical, but are of great importance to the Audio System itself.

Error propagation is a reason why to test acceptance criteria stated on functions.
Is there any way the radio can stop working, especially if a fault mode occurs in
a system that does not communicate with the Audio System? With the use of
the ECU vs. ECU matrix these error propagation effects can be seen, by choosing
ECU1 and see that it communicates with ECU2 but not with ECU3. But ECU2
communicates with ECU3. The question is: Can a fault mode in ECU1 cause any
failure in ECU3? See also Example 5.1 for an illustration about error propagation
and why to test functionality in ECU3.

The following rules has been suggested and discussed when talking to personnel
at Scania:

R5. The vehicle should always be able to brake to stand still in a controlled
manner

R6. The vehicle should as far as possible be able to accelerate in a con-
trolled manner

R7. The vehicle should always be able to maneuver
R8. Functionality with no connection to the fault mode should be executed

as usual
R9. The vehicle should as far as possible not enter the fault mode Vehicle

Off Road (VOR)
T3. Error propagation should be investigated
T4. Test acceleration, braking and maneuvering
T5. Test appropriate functionality according to the Component vs. UF

matrix
T6. Test appropriate functionality according to the ECU vs. ECU matrix

The rules above are just suggestions of acceptance criteria set on functionality and
driveability, and could be expanded to cover more of the functionality within the
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vehicle. The reason for choosing as specific rules as R5-R7 are because they are
easy to test in a HIL-lab, and because that this basic main functionality should be
as robust as possible. R8 and R9 are of the more general kind and states what an
unacceptable behaviour is. R8 is based on that functionality shall behave as usual
if the activated fault mode is not in the specification. Vehicle Off Road (VOR)
means that the vehicle will not longer be in a driveable state and no longer fulfill
the prerequisite ’engine is on and the vehicle is in a driveable state’ and must be
prevented as far as possible.

5.3.3 Security
The vehicle must not be dangerous to the driver or its environment (see Section 2.1
about fail-safe). The acceptance criteria for security was more difficult to deter-
mine, especially when these criteria are performed in a lab. Some examples of
acceptance criteria related to security are:

R10. The vehicle should always be able to brake to stand still in a controlled
manner

R11. The engine shall not be able to rev unprovoked and uncontrollably
T7. The engine speed should be logged for every test case and evaluated
T8. The vehicle speed should be logged for every test case and evaluated

Exactly as the acceptance criteria set on Driveability/Functionality, the criteria set
on Security are just suggestions and could be expanded. The two rules suggested
are easy to verify in a HIL-lab.

5.3.4 Communication
There are distinct rules set on communication, when different behavioural modes
on signals are allowed to be set. According to Section 2.3.3 the following rules can
be set:

R12. The SESAMM-concept [9] always has to be followed
R13. Every ECU should transmit every signal on CAN, except when im-

possible (for example if a ECU is disconnected)
R14. No {Undef} are allowed to be sent
R15. Every gatewayed signal must be consistent on every CAN bus
R16. No signal may contain information that in any way does not reflect

the truth
T9. Log every signal on CAN during the test case
T10. Compare all relevant signals directly in the test script according to

the rules above

5.4 Summary
The numbers of behavioural modes have been discussed, and with motivation that
the three behavioural modes needed to be tested are: {Defined, Error/NA, TO}.
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Communication matrices are a more perspicuous way of describing the failure ef-
fect from ECU perspective, than an FMEA. There are two kinds of matrices ECU
vs. ECU, and Component vs. UF. The former matrix is used to grade the severity
of failure effect and can be used to track down possible error propagation paths.
The Component vs. UF matrix can be used to determine which UFs to test de-
pending on the fault mode.

Last but not least acceptance criteria have set up as general rules as possible
of what is allowed and not allowed. Tests are suggested to verify the outcome
of these criteria and will be discussed in the next chapter. There are four cate-
gories that will be investigated: DTC/Warnings, Driveability/Functionality, Se-
curity and Communication.

It is now time to discuss test strategies that can be used to test degradation.



Chapter 6

Two types of test techniques

One object in this thesis is: ’Suggest a test method to efficiently verify that the
degradation of functionality behaves correctly’. The problems discussed in Chap-
ter 4 and the suggested solutions in Chapter 5 does not fulfill the above objective,
but are just discussing generally about testing degradation. A new question arises:
How shall degradation test be performed in a HIL-lab?

The suggested solutions in Chapter 5 must now be applied and implemented to
form a structured test technique usable when testing degradation on a regular
basis. Two types of test techniques for testing degradation will now be suggested;
Degraded User Function Test (DFT) and Fault Mode Test (FMT). These test
techniques have different area of application. Methods and theory described in
previous chapters will be used to explain both techniques.

Concepts used in the chapter must first be explained:

Test technique is the process from first choosing what to test to the test
result.

Test case is the actual test written as text, how to force some behaviour
and what response to expect. The test case is always written before the test
is executed.

Test script is the test case transformed to code, being able to run the test
in a HIL-lab.

User Function Test (UFT) are tests that tests an MSC positively, veri-
fying correct behaviour in a fault free environment. Compare with class D
used in Section RBT 3.6.

6.1 Degraded User Function Test (DFT)
Degraded User Function Test (DFT) has much in common with today’s ordinary
User Function Test (UFT) with the exception that the vehicle will no longer be in
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normal operation mode.

The suggested approach for a Degraded User Function Test is:

1. Choose an MSC and study it carefully. The choice of MSC could be based
on Risk Based Testing (Section 3.6).

2. Identify all possible fault modes within the MSC according to equation (4.1).

3. Using Risk Based Testing decide the depth of testing. Use Pairwise Testing
(Section 3.5.2) if considering multiple faults

4. Write the test case according to Section 6.1.1.

5. Compare the responses with the acceptance criteria (Section 5.3) and ex-
pected behaviour according to the MSC.

The goal with the DFT is to test degradation of one MSC. Only fault modes within
the MSC should be identified and injected. Multiple faults can accord to Pairwise
Testing in Section 3.5.2 be executed with a controllable number of test cases. The
acceptance criteria that should be verified should be within the scope of the test;
DTC/Warnings and communication within the MSC and the behaviour of the
MSC under test.

Discussing item 3 in the list above; RBT can be used to decide the depth of
testing. As written in Section 3.6 different test levels can be used depending on
classification. A suggestion could be that for MSCs classed as ’A’ shall be tested
with Pairwise Testing for all behavioural modes. MSC classed as ’B’ shall be tested
with only single faults.

6.1.1 DFT: Test case
The same test cases will be iterated with different fault modes present. A reset of
the system is required between the test cases and fault modes, since failure effects
from previous fault modes are unwanted. Functions with many inputs with many
possible fault modes will create several resets and iterations. See Figure 6.1.

The process of the test case for DFT is:

1. Prerequisites

2. Inject fault mode

3. Run test of MSC

4. Postrequisites

5. Restart from beginning, choosing another fault mode
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6.1.2 DFT: Area of application
Degraded User Function Tests are suited to test new MSCs and should be written
in parallel with ordinary User Function Tests (UFT). The reason is that the tester
writing a UFT, has already acquired information about the MSC under test and
will therefore write the DFT more efficiently if done directly. If the test scripts
are written properly they can be used for both Degraded User Function Tests and
ordinary User Function Tests. The only difference is the fault mode and the ex-
pected response.

Depending on which class the MSC is classed into according to RBT in Section
3.6, the depth of the Degraded User Function Test can vary. The number of fault
modes that shall be tested is the choice of the tester writing the test case. Only
fault modes within the test should be considered, not loosing the scope of the test.
Already written test cases can be used, only needing to include fault modes and
determine expected responses.

6.2 Fault Mode Test (FMT)
The Fault Mode Test (FMT) is based on one fault mode which then determines
which functions to test. The process can be described as:

1. Use the Component vs. UF matrix in Section 5.2.2 to choose a fault mode
and then identify all possible MSCs that can be affected by the fault. Use
the ECU vs. ECU matrix in Section 5.2.1 to identify possible ECUs that are
affected by the fault.

2. Use RTB in Section 3.6 to decide which functions to test from the previous
item. Functions in class A and B should be prioritized.

3. Implement the test case and test script of the functions to test in a way that
they later can be reused

4. Write the test case and test script, with prerequisites and with the function
test modules, driveability test modules and security related test modules

5. Compare the responses to the acceptance criteria (5.3) stated on function
test modules

6. Use the acceptance criteria on DTC/Warnings, communication, driveability
and security related functionality.

The main difference between DFT and FMT is that FMT is based on one fault
mode instead of one MSC. Since functionality is tested in many parts of the elec-
trical system, FMT is suited to investigate the failure effect and error propagation
in the entire vehicle. More general acceptance criteria have to be used to inves-
tigate the entire electrical system, not just within one function. The criteria for
Driveability/Functionality, Security and ECU specific functionality must also be
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satisfied, aside from DTCs/Warnings and communication.

6.2.1 FMT: Test cases
Compared with the test cases in DFT, there is no iteration of the entire test case.
Each test case is implemented as its own. See Figure 6.1.

The process of the test case for FMT is:

1. Prerequisites

2. Inject fault mode

3. Run tests of functionality, driveability and safety

4. Postrequisites

Figure 6.1. Difference between the cases for Degraded User Function Test and Fault
Mode Test. The test case for Degraded User Function Test is iterated through every fault
mode, each iteration executing prerequisites and postrequisites. In Fault Mode Test only
all functions are iterated through, only requiring execution of pre- and postrequisites
once.

6.2.2 FMT: Area of application
The Fault Mode Test problably suits ordinary regression testing, verifying that
updates have not changed the software with any erroneous behaviour.

FMT also suits investigation of error propagation because of the broad nature of
the test, but the test is probably not deep enough testing and verifying new func-
tionality.
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One advantage with FMT is that the test scripts could be more easily automat-
ically generated than DFT. A program can choose a specific set of fault modes,
and depending on the fault modes decide which test modules to execute. Both
communications matrices described in Section 5.2 can help making that decision.
The test modules to be run can also depend on configuration of vehicle, fault mode
or some other parameter, using some algorithm.

The disadvantage is that the tests are not as deep as DFT regarding to one MSC.
The test modules also should be scripted so general that they can be used in any
test case. To get an efficient test case the test modules has to be implemented that
they easily can be run after another, without any unnecessary starts and stops.
They must also be independent of previous actions within the test cases. The
general approach of small test modules can cause a problem and can be difficult
to script.

6.3 Comparison

A short comparison between both methods is described in Table 6.1. Since none of
these methods has been analyzed from many test cases implemented and written,
much of what to follow is just an own analysis.

Table 6.1. Comparison between Degraded User Function Test and Fault Mode Test

DFT FMT
Fault modes Several fault modes relevant

to an MSC
One fault mode only

Functions un-
der test

One MSC Many, even functions not de-
scribed by an MSC

Coverage, lo-
cally

Medium Low

Coverage,
globally

None; nothing outside the
function is tested

Low-Medium

Test cases Much work compiling specifi-
cations and writing the test
case

Little work if everything is al-
ready written. More work if a
new function test module has
to be written

Test scripts Many or long test scripts One test script
Acceptance
criteria

Communication,
DTCs/Warning within
the function. Comparison
with expected output

All acceptance criteria stated
in Section 5.3. No research
for exact behavior needed
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6.4 Summary
Two test techniques are suggested: Degraded User Function Test and Fault Mode
Test. Both of them have there own area of application.

Degraded User Function Test suits testing new functionality in parallel with ordi-
nary User Function Tests. The DFT tests one MSC or user function with regards to
fault modes specified within the MSC. The test gets substantial coverage within
the MSC, but none outside the MSC. The test cases also tends to be many or
lengthy.

Fault Mode Test suits to test the behaviour of the complete vehicle during failure
and is suited for regressions testing and investigation of error propagation. The
FMT tests functionality all over the vehicle, but the tests performed are not as
deep as a DFT or ordinary User Function Test. One test case is written per fault
mode.

Next chapter will shortly describe how both methods have been implemented in a
HIL-lab.



Chapter 7

Test scripts in HIL-lab

To verify what previously has been discussed a number of test scripts were written
and executed in a HIL-lab. Test scripts based on both test techniques, Degraded
User Function Test and Fault Mode Test, were implemented. Examples of some
of the test scripts written will be found in Appendix B.

There where not much time available in the I-Lab2, with the result that tests were
sparsely executed. Still test scripts using both techniques were implemented. But
first some problems performing degradation tests have to be discussed.

7.1 Problems
Writing and executing the test scripts led to a couple of problems described here.

7.1.1 Present DTCs and warnings
I-Lab2 consists of ECUs and models for different configurations of vehicles (Sec-
tion 1.4.2). As mentioned earlier each ECU has between 50-10 000 parameters
to reflect each possible configuration of vehicle. For each configuration the ECUs
must be programmed with a correct set of parameters which should be consistent
with the HIL-models. There are some difficulties setting every ECU parameter
correctly, meaning that the vehicle configuration often is somewhat inconsistent
with the models. When the ECUs, from its perspective, do not read a consistent
sensor value, the ECU will interpretate it as an active fault mode and produce a
DTC.

To execute a degradation test, the HIL-lab should preferable be DTC free, but
the opposite generally holds, with DTCs in ECUs and warnings in the ICL. If
any unwanted DTCs are present in the HIL-lab when performing tests, there is
an active fault mode somewhere. That fault mode can affect the tests performed
(see Example 7.1).
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Example 7.1
UF 415 Hill Hold
Hill Hold is a function maintaining the brake pressure when releasing the brake
pedal when standing still until the accelerator pedal is pressed and the vehicle is
accelerating. The function is usable for example when starting the vehicle in a
hill, preventing the vehicle from rolling downwards when switching the foot from
the brake pedal to the accelerator pedal.

The function uses the wheel speed sensors which measures the speed the wheels
have and the brake pedal sensor. If any of these to correspondent CAN-signal is
faulty Hill Hold will not activate. Because of some inconsistency between the ECU
parameters and the models, the ECU receiving the wheel speed sensors overrules
the sensor signal and sends {Error} on the corresponding signal on CAN, and
stores a DTC. Despite any other fault mode, Hill Hold will never activate.

7.1.2 Fault modes
The tool used to simulate different fault modes is called Fault Injector Unit (FIU)
which can be used for simulating short circuits and open circuits on inputs and
outputs on ECUs. The FIU is produced and bought in from dSpace that connects
it to the hardware. Most of the ECU ports representing actuators and some supply
voltages to sensors are connected to the FIU. But almost no ports representing
sensor values are attached to the FIU. To force different behavioural modes on
an arbitrary signal, direct manipulation of the sensor values in the software are
needed. The easiest way is to set the sensor values to unrealistic values. The effect
on CAN with an unrealistic value is unpredictable, meaning that the method of
manipulating sensor values is unwanted. Since {Error} and {NA} are together
considered one behavioral mode meaning that if one of these modes are provoked
the other should not.

Disconnecting entire ECUs is implemented and works fine, and generates the be-
havioural mode {TO}.

7.2 Degraded User Function Test: Test script
Already existing test scripts were mostly used for the DFT, with the modifica-
tion of injecting fault modes. A few test scripts were written from scratch. The
MSC under test were researched for the behaviour during different fault modes.
All relevant fault modes were implemented as its own class (in the programming
language Python), making it easy to call a fault mode (Section 7.2.1) using one
line of code.
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The test script is executed according to the following process:

Prerequisites

1. Start engine
2. Realize the prerequisites that the test of the MSC can be executed
3. Start CAN-logger and wait 10 seconds (optional)

Fault mode

1. Store DTCs and active warnings in ICL
2. Inject the fault mode
3. Wait 10 seconds
4. Store DTCs and active warnings in ICL

Test of MSC

1. Run the test script testing the MSC

Postrequisites

1. Stop CAN-logger (optional)
2. Restore everything back to normal without the fault mode
3. Read DTCs and active warnings in ICL
4. Stop vehicle
5. Shut down engine

Restart the process from the beginning choosing another fault
mode

Using the process above it is assumed that the fault mode is already active when
performing the actual test of the UF. Another possibility is to activate the fault
mode within in the test at an arbitrary moment. Also deactivation of a fault mode
within the test is possible. Neither of these two variants has been considered. It
can be discussed how probable an active fault mode is deactivated or that a fault
mode is activated a given instant. It is more likely that a fault mode is instead
activated somewhere in the past, which reflects the process suggested above.

7.2.1 Fault mode class
In order to simplify calling a fault mode a separate class was written. If a FIU
existed, it was used to activate the fault mode. Otherwise manipulation of sensor
values had to be used. Setting an unrealistic sensor value was tested online in
the HIL-lab, to determine the effect on the corresponding signal on CAN. After a
confirmation that the unrealistic value generated {NA/Error} on CAN, the fault
modes were implemented in the fault mode class. See Figure 7.1. Short circuiting
entire ECUs were easy to provoke.
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Figure 7.1. The test script calling for Fault Mode 2 and then Fault Mode N. As seen
both fault modes are callable from one separate class.

7.2.2 Evaluation of test scripts
Documentation was clearly a problem. Extensive time was consumed with detec-
tive work, compiling information from many different documents to map how the
function is supposed to act in case of some fault mode. When expected response
were determined, it was easy to modify existing test scripts, just adding the fault
mode class to the code and call for the fault mode in the beginning of the script.
The easiest way of iterating through the test script with different fault modes, was
to first run the test script as usual and then modifying the test script with another
fault mode and rerunning it.

Except the documentation test scripts written worked fine, but were time con-
suming to execute. The CAN-logger, which stores all communication on CAN,
radically decreased performance. One suggestion is that the test script is first
run without the CAN-logger, and then rerun with the logger active if strange be-
haviour has occurred, to be able to analyze all communication on CAN afterwards.

7.2.3 A test case according to DFT
Hill Hold (UF415) where mentioned in Example 7.1. The test case shall test
degradation when activating Hill Hold with an active fault mode. When Hill Hold
is active the CAN-signal HillHolderMode will be set active and the vehicle speed
should be constant 0 km/h corresponding to maintaining brake pressure. The
script can be found in Appendix B.1
The prerequisites will not be described, but consists of that all signals used by
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the function must be in within a certain limit, for example that the Vehicle Speed
must be 0 km/h. Also the slope of the road is set, meaning that the vehicle will
accelerate downwards if Hill Hold does not activate.

Prerequisites

1. Start engine

2. Check that all relevant signals are within valid limits

3. Press brake pedal

4. Set road slope to X %

5. Enable Hill Hold

6. Start CAN-logger and wait 10 seconds (optional)

Fault mode

1. Store DTCs and active warnings in ICL

2. Short circuit the wheel speed sensor

3. Wait 10 seconds

4. Store DTCs and active warnings in ICL

Test of MSC

1. Release brake pedal*

2. Check CAN-signal corresponding to the wheel speed sensor on all buses*

3. Check HillHolderMode on all buses*

4. Check Vehicle Speed on all buses*

Postrequisites

1. Stop CAN-logger (optional)

2. Connect the wheel speed sensor

3. Restore everything back to normal

4. Read DTCs and active warnings in ICL

5. Stop vehicle

6. Shut down engine

Restart the process from the beginning choosing another fault
mode

(Items marked with ’*’ has a test attached to it, verifying the statement.



56 Test scripts in HIL-lab

7.3 Fault Mode Test: Test script
Completely new material for test scripts was written for Fault Mode Test. First
a test script shell was written with two variables; active fault mode and function
test modules to test. Fault modes of components (Section 7.2.1) and function test
modules (Section 7.3.1) were implemented as two separate classes. Executing the
test, only these two variables had to be set to generate a complete test script. See
also Figure 7.2. Appendix B.2 contains the test script written in Python.

Figure 7.2. The test script calling for Fault Mode 2 and a number of function test
modules. As seen both fault modes and function test modules are callable from two
different classes.

The test script is executed according to the following process:

Prerequisites

1. Start engine
2. Increase vehicle speed to X km/h

Fault mode

1. Read DTCs and active warnings in ICL
2. Start CAN-logger and wait 10 seconds
3. Inject the fault mode defined by a programming variable
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4. Wait 10 seconds
5. Read DTCs and active warnings in ICL
6. Stop CAN-logger

Function test modules

1. Run all relevant function test modules (Section 7.3.1) defined by a pro-
gramming variable

Postrequisites

1. Restore everything back to normal
2. Read DTCs and active warnings in ICL
3. Stop vehicle
4. Shut down engine

7.3.1 Function test modules
Since tests of the same functionality often are executed in different test scripts
using Fault Mode Test, function test modules were introduced. Rather than writ-
ing a completely new test script for every function to test, function test modules
are callable from every test script using only one line of code. The function test
modules were collected together in an independent class. The test modules should
be implemented that they can be executed in an independent sequence, but should
be executed so that they can benefit from previous actions.

The function test modules shall be implemented as small tests of some function-
ality. Each test module in turn has a couple of sub tests verifying some particular
functionality within the function test module. The sub tests compare a number
of CAN-signals with expected outputs. All tests are written out to a test report
used for the entire test script. The tester can easily see the outcome of the test
script. See Figure 7.3.

Example of some of the test modules implemented:

Cruise Control (CC):

1. Start CAN-logger (optional)
2. Enable CC*
3. If vehicle speed < X km/h increase speed to Y km/h
4. Engage CC*
5. Store DTC/Warnings
6. Increase Set Speed with 5 km/h*
7. Disengage CC by pressing the brake pedal*
8. Stop CAN-logger (optional)
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Figure 7.3. A test report from a Fault Mode Test, with no fault mode present. The
vehicle is in normal operation mode during the test. Every row consists of one test and
the result of the test is found in the rightmost column. For this particular test case all
tests have passed.

ABS control

1. Start CAN-logger (optional)
2. If ABS is not fully operational or active abort test*
3. If vehicle speed < X km/h increase speed to Y km/h
4. Lower front left wheel speed*
5. Test ABS active*
6. Restore front left wheel speed*
7. Stop CAN-logger (optional)

Driveability

1. Start CAN-logger (optional)
2. Brake to stand still*
3. Accelerate to X km/h*
4. Steer vehicle to the left*
5. Steer vehicle to the right*

(Items marked with ’*’ has a test attached to it, verifying the statement. See also
Figure 7.3). The test script for the function test module Cruise Control can be
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found in Appendix B.3.

All function test modules have their own CAN-logger, only logging while the func-
tion test module is active. One suggestion is to first run the test script without
the CAN-logger, since logging decreases performance. When detecting a strange
behaviour in one of the test modules, the test case could be rerun with the CAN-
logger active, to be able to analyze the entire communication on CAN afterwards.

Another example of a function test module with the corresponding test script is
found in Appendix B.4.

7.3.2 Acceptance criteria

As already mentioned in Section 7.3.1, test script generates a test report with ev-
ery test within the test script. A more extended discussing of the tests performed
and the use of acceptance criteria are now followed. References are made to the
rules defined in Section 5.3.

Tests within the function test modules are as mentioned earlier a comparison of
a CAN-signal with an expected response, verifying some functionality within the
function test module. These tests also checks if the signal is in the behavioural
modes {Unrealistic, Undefined, TO}, which are forbidden according to R12-R14,
R16. For the signals under test, a consistency check is also made between the
three CAN-buses, testing gateway (R15).

DTCs and warnings in the ICL are stored within the function test modules. No
corresponding tests are attached to the DTCs or warnings, mostly because error
propagation making it difficult to overrule a stored DTC or warning. DTCs and
warnings must be analyzed afterwards and manually. Looking for changes in DTCs
or Warnings can be performed automatically, but have not been implemented and
must now be done manually (R1-R4). To summarize the function test modules
shall always verify DTCs/Warnings and Communication.

Depending on which function test modules are executed the acceptance criteria on
Functionality/Driveability and Security are verified (R5 - R9, R10-R11).

The CAN-logger before and after fault mode should always be active. An analysis
of the static behaviour of the electrical system can then be made, which in turn
could point out suggestions of error propagation (R10). A program has been
written analyzing every signal saved with a CAN-logger, detecting changes in
mean-value before and after the fault mode. The prerequisite for such an analysis
is during the logging of CAN everything has to be static.



60 Test scripts in HIL-lab

7.3.3 Evaluation of test script
Only one test shell was written, and eight function test modules. Since the func-
tion test modules were so few to the number, the function test modules executed
were only limited by the configuration of the vehicle. Different configurations have
different functionality. The same test script shell was executed on several different
configurations with different function test modules executed and worked fine. It
was also easy to troubleshoot the function test modules implemented, since they
were written as short tests.

Despite tests within the function test modules manual work was needed to verify
a correct behaviour (for DTCs and warnings). Tests within the function test
modules helped checking communication and gateway.

7.4 Difficulties and lessons
There were a number of difficulties writing test cases and test scripts. One problem
already mentioned was the difficulties determining expected responses, requiring
time compiling specifications.

Much time were required to debug the test scripts written. Especially test scripts
written for DFT which tended to be long with much code. Because the function
test modules consists of less code they were also easier to debug. The function
test modules could easily be reused but with a different fault mode, without any
debugging.

At last, there were some problems with the models when executing some tests
scripts, where the vehicle had difficulties to accelerate to a certain speed. Several
tries were sometimes required to fulfil the prerequisites.

7.5 Summary
Both methods were implemented in the I-Lab2, and required much work but in
different areas. The investigation of expected response when writing a Degraded
User Function Test took as much time as implementing the function test modules
in Fault Mode Test. The function test modules in FMT could be reused for many
test scripts later.

The method of using classes instead of writing stand alone test scripts for FMT
proved to be beneficial. Also the fault mode class, used by both test techniques,
proved to be efficient once implemented.
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Conclusions

REST could perform degradations tests. The requirements mentioned in Section
5.3 has to be validated to verify that the electrical system behaves properly even
in a degraded state. There is only one way for the electrical system being in nor-
mal operation mode ({NF}), but infinite many combinations of fault modes and
failures. Therefore testing degradation requires more work than testing a correct
behaviour. The current documentation is not suited for writing distributed degra-
dations test. There are newer documents that are quite specific about degradation
(collected in one document), but is not always informative enough regarding DTCs,
warnings or degradations modes depending on different fault modes on components
or behavioural modes on signals. Other documents has to be tended to.

Two test strategies have been suggested and can be used today with existing ma-
terial. However problems arise because of inconsistency between models and the
set ECU parameter, and not enough tools generating appropriate fault modes. A
recommendation is to look into if the FIU needs to be extended, to cover all pins
on an ECU. The kind of test suited mostly for REST is Fault Mode Test, which is
a test strategy for testing integration and error propagation, because of the capa-
bilities in I-Lab2. The two major advantages with I-Lab2 are that a large number
of possible combinations of vehicles can be tested with the same hardware and
that the entire electrical system can be tested. No other tool has that capability
at Scania. However Fault Mode Test requires more work to implement from to-
day’s testing, and therefore Degraded User Function Test is recommended to start
with. Degraded User Function Tests can be implemented and executed today with-
out any changes, but is recommended only to be performed when writing new test
cases. Only the fault mode class mentioned in Section 7.2.1 has to be implemented.

Testing degradation will probably take some time before performed on a regular
basis. Degradations testing has to be delegated to smaller units, verifying DTCs,
Warnings and requirements set on communication in Section 5.3. The Degrada-
tion User Function Test could later be delegated to groups performing functions
tests, just validating a certain function.
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8.1 Future work
In general the tests strategies mentioned in this thesis has to be evaluated and
tested more in I-Lab2, to see what improvements have to be made before us-
ing the two strategies on a regular basis. Despite some suggestions mentioned, a
method or time plan how to best integrate degradations tests into today’s testing
must be developed. The introduction of degradations tests must be divided into
smaller steps to start making it routine. Also an investigation if any of the two
test suggested techniques are more suited in field test in an actual vehicle, or just
in I-Lab2. Scripted tests, as in I-Lab2, will never find unexpected behaviour, but
will just find behaviour we tell the script to look for. That may be unsatisfied and
inefficient.

Today the lowest entity in testing is the independent test script consisting of a
number of tests. With the introduction of possible two new kinds of tests, maybe
the lowest entity should be the actual test. A number of test modules could build
a test script, and can be compared with methods presented about function mod-
ules in Section 7.3.1. It turned out that function modules were an efficient and
variable way of constructing test scripts and easier to troubleshoot. However to
restructure the existing test scripts into smaller test modules must be evaluated
to compare the cost and future benefit.

Methods presented in this thesis have to be refined and evaluated more. Today
every MSC is classed according to Risk Based Testing and can be used to decide
the level of testing of MSCs. Fault modes are not classed according to Risk Based
Testing, but could be. The classifications could then decide the test level for a
Fault Mode Test. Some ideas during the thesis have been tried for a classification
system for signals, based on the parameters distributivity and severity, but has
been discarded because of time issues. A simple model were developed that could
be used to automatically generate a grade for every signal, but turned out to be
flawed.

If documentation should or could be improved is the last suggestion. To test degra-
dation well defined requirements has to be specified, with expected outputs that
can be validated during test. Today the specifications are not enough for degrada-
tion tests, but requires plenty of work to improve. Again it is cost against benefits.
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Appendix A

Abbreviations

A list of abbreviations used with a short explanation and reference.

APS: Air Pressure System. ECU controlling the air pressure

AUS: Audio System. ECU controlling the audio system

CAN: Controller Area Network. Network where communication between control
units are transmitted 2.3.1

COO: Coordinator. The ECU connected to all three CAN-buses

DTC: Diagnostic Trouble Code. 2.4

DFT: Degraded User Function Test. 6.1

EMS: Engine Management System. The ECU controlling the engine

ECU: Electrical Control Unit. 1.2.1

FMEA: Failure Mode and Effect Analysis. 2.1.2

FMT: Fault Mode Test. 6.2

HIL: Hardware-In-the-Loop. 1.4.2

ICL: Instrument Cluster Panel.

MSC: Message Sequence Chart. 2.2.1

NA: Not Available. Behavioural mode of a signal. 2.3.2

REST: Group at Scania with the responible of conducting systems and integrations
test.

TO: Time Out. Behavioural mode of a signal. 2.3.2

UF: User Function. 2.2

VOR: Vehicle Of Road. Means that the vehicle cannot be driven anymore.
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Test scripts

Some test scripts written will be found in this appendix. All test scripts have been
written in the programming language Python. The test scripts have been stripped
from code that has been considered of less importance with regards to this thesis.
Also to make the code more perspicuous long lines of code has somewhat been
replaced with three dots ...!

Some explanation of the classes and objects used:

self._vtExec is the main class in the test framework initiating all objects
needed to perform scripted testing in I-Lab2

self._vtExec.VtPrint.DebugPrint(string) prints string into a debug
file

SignalUtil.ReadCANSignal(...) reads a specified CAN-signal on one CAN-
bus

self._vtExec.VtXMLReport is a class responsible for writing text to the test
report shown in Figure 7.3.

self._testdrv is the class with all function test modules mentioned in Sec-
tion 7.3.1.

self._sensors is the class activating and deactivating fault modes men-
tioned in Section 7.2.1.

B.1 Hill Hold test script
The following is the test script for the test case Hill Hold based on DFT, only
testing degradation for one fault mode.

# Prerequisites ###################################################################
self._act_name = "Prerequisites"
self._vtExec.VtTracker.StartAction("Executing %s" %(self._act_name), self._act_name)
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# Voltage level 24 Volt ###########################################################
self._vtExec.VtPrint.DebugPrint(’Voltage level 24 Volt’)
self._ba.SetVoltage(self._PREREQ_BATTERY_VOLTAGE)

# Ignition On #####################################################################
self._vtExec.VtPrint.DebugPrint("Ignition On")
self._drv.IgnitionOn()
self._timer.Sleep(1)

# Start engine ####################################################################
self._vtExec.VtPrint.DebugPrint("Starting the engine")
self._drv.EngineOn()
self._timer.Sleep(1)

# Enable Hill Hold ################################################################
self._vtExec.VtPrint.DebugPrint("Activate Hill Hold")
self._ebs.EnableHillHold()
self._timer.Sleep(1)

# Press brake pedal and release clutch ############################################
self._vtExec.VtPrint.DebugPrint("Pressing brakepedal and releasing clutch pedal")
self._bp.PressBrakePedal(80)
self._timer.Sleep(1)

# Set road slope ##################################################################
self._vtExec.VtPrint.DebugPrint("Set road slope")
self._road._SetSlope(-3)
self._timer.Sleep(1)

# Check all prerequisties #########################################################

# Check that pedal is released ####################################################
brakePedal = SignalUtil.ReadCANSignal(’BrakePedalPosition’, ’RED_1’, ’EBC1’, ’A’)
self._vtExec.VtPrint.DebugPrint("Brake Pedal Position is = %s" %(brakePedal))

if(brakePedal < 75):
self._vtExec.VtXMLReport.AddText("Brake pedal position should be at least 75 %")
self._vtExec.VtError.TryTestCaseAgain("Brake pedal position should be at least 75 %")

# Check vehicle speed #############################################################
vehicleSpeed = SignalUtil.ReadCANSignal(’TCOVehSpeed’,’YELLOW_1’,’TCO1’,’TCO’)
self._vtExec.VtPrint.DebugPrint("Vehicle Speed is = %s" %(vehicleSpeed))

if(abs(vehicleSpeed) > 2):
self._vtExec.VtXMLReport.AddText("Vehicle speed should be zero", self._act_name)
self._vtExec.VtError.TryTestCaseAgain("Vehicle speed should be zero")

# Check ABS active ################################################################
absActive = SignalUtil.ReadCANSignal(’ABSActive’, ’RED_1’, ’EBC1’, ’A’)
self._vtExec.VtPrint.DebugPrint("ABSActive is = %s" %(absActive))

if(absActive != 0):
self._vtExec.VtXMLReport.AddText("ABS should not be active")
self._vtExec.VtError.TryTestCaseAgain("ABS should not be active")

#Store ICL-notices ################################################################
ICL = self._icl2.Notices.ReadAll(True)
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self._vtExec.VtXMLReport.AddText(str(ICL))
self._timer.Sleep(1)

#Store DTCs #######################################################################
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs(’ALL’,True)
self._vtExec.VtXMLReport.AddText(DTC)
self._timer.Sleep(1)

#Start CAN-Logger #################################################################
self._vtExec.VtPrint.DebugPrint("Starting CAN-Logger")
self._canLogger.Start()
self._canLogger.WriteToLog("Act 0: Standing still")

# End Prerequisites ###############################################################

Act 1 short circuits a wheel speed sensor (also called front axle speed sensor in the
test script) and then releases the brake pedal to test if hill hold activates.

self._act_name = "Act 1"
self._canLogger.WriteToLog("Act1: Speed sensor")
self._vtExec.VtTracker.StartTest(self._act_name)

# Stimuli #########################################################################

# Activate fault mode #############################################################
self._sensors.disconnectFrontAxleSpeedSensor()
self._timer.Sleep(3)

# Release brake pedal #############################################################
self._vtExec.VtPrint.DebugPrint("Release brake pedal")
self._bp.ReleaseBrakePedal()
self._timer.Sleep(1)

# Expected response ###############################################################

# Store DTCs ######################################################################
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs(’ALL’,True)
self._vtExec.VtPrint.DebugPrint("Storing DTC")
self._vtExec.VtXMLReport.AddText(DTC)

# Store ICL-notices ###############################################################
ICL = self._icl2.Notices.ReadAll(True)
self._vtExec.VtPrint.DebugPrint("Storing ICL notices")
self._vtExec.VtXMLReport.AddText(str(ICL))

# Check FrontAxleSpeed signal #####################################################

frontAxleSpeed_Red = SignalUtil.ReadCANSignal(’FrontAxleSpeed’,’RED_1’,...)
frontAxleSpeed_Yel = SignalUtil.ReadCANSignal(’FrontAxleSpeed’,’YELLOW_1’,...)
frontAxleSpeed_Gre = SignalUtil.ReadCANSignal(’FrontAxleSpeed’,’GREEN_1’,’,...)

self._vtExec.VtPrint.DebugPrint("Front Axle speed is: %s" %(frontAxleSpeed_Red))

# Check HillHolderMode signal #####################################################
hillHolderMode_Red = SignalUtil.ReadCANSignal(’HillHolderMode’,’RED_1’,’EBC5’,’A’)
hillHolderMode_Yel = SignalUtil.ReadCANSignal(’HillHolderMode’,’YELLOW_1’,’EBC5’,’A’)
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self._vtExec.VtPrint.DebugPrint("Hill hold is: %s" %(hillHolderMode_Red))
self._vtExec.VtXMLReport.AddSingleLimitComparison(hillHolderMode_Red, 0 ,’==’,...)

# Check VehicleSpeed signal #######################################################
vehicleSpeed_Red = abs(SignalUtil.ReadCANSignal(’TCOVehSpeed’,’RED_1’,’TCO1’,’TCO’))
self._vtExec.VtPrint.DebugPrint("VehicleSpeed is: %s" %(vehicleSpeed_Red))
self._vtExec.VtXMLReport.AddSingleLimitComparison(vehicleSpeed_Red, 0, ’>’, ...)

# End Act 1 #######################################################################

The Postrequisites restores everything back to normal

self._act_name = "Postrequisites"
self._vtExec.VtTracker.StartAction("Executing %s" %(self._act_name), self._act_name)

# Restore road slope ##############################################################
self._vtExec.VtPrint.DebugPrint("Restore road slope")
self._road.EndSlope()
self._timer.Sleep(1)

# Deactivate fault mode ###########################################################
self._sensors.connectAll()

# Save logger #####################################################################
self._vtExec.VtPrint.DebugPrint("Start saving to log")
self._canLogger.Stop()
self._canLogger.SaveLogTextFile(fileName)
self._vtExec.VtPrint.DebugPrint("Done saving to log.")

# Store DTCs ######################################################################
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs(’ALL’,True)
self._vtExec.VtXMLReport.AddText(DTC)
self._timer.Sleep(1)

# Store ICL-notices ###############################################################
ICL = self._icl2.Notices.ReadAll(True)
self._vtExec.VtXMLReport.AddText(str(ICL))
self._timer.Sleep(1)

# Stopping vehicle ################################################################
self._vtExec.VtPrint.DebugPrint("Stopping vehicle")
self._drv.Stop()
self._timer.Sleep(1)

# Engine off ######################################################################
self._vtExec.VtPrint.DebugPrint("Turning engine OFF")
self._drv.TurnOff()
self._timer.Sleep(1)
self._vtExec.VtTracker.EndAction(True)

# End Postrequisites ##############################################################
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B.2 Test script shell for FMT
The following presents the test script shell for the Fault Mode Test. Some lines
of code has been removed to clarify the test script shell. The test script shell
consists of Prerequisites, Act 1 (Fault Mode), Act 2 (Function test modules) and
Postrequisites.

# Start Prerequisites #############################################################

self._act_name = "Prerequisites"
self._vtExec.VtTracker.StartAction("Executing %s" %(self._act_name), self._act_name)

# Voltage level 24 Volt ###########################################################
self._vtExec.VtPrint.DebugPrint(’Voltage level 24 Volt’)
self._ba.SetVoltage(self._PREREQ_BATTERY_VOLTAGE)

# Ignition On #####################################################################
self._vtExec.VtPrint.DebugPrint("Ignition On")
self._driver.IgnitionOn()
self._timer.Sleep(1)

# Start engine ####################################################################
self._vtExec.VtPrint.DebugPrint("Starting the engine")
self._driver.EngineOn()
self._timer.Sleep(1)

# Accelerate to 50 km/h ###########################################################
self._vtExec.VtPrint.DebugPrint("Drive at 60km/h" )
self._driver.DriveAtSpeed(50)
self._vtExec.VtPrint.DebugPrint("Sleep for 5 seconds")
self._timer.Sleep(5)

# End Prerequisites ###############################################################

Act 1 activates the one fault mode. The fault mode is called from a separate class.
This particular FMT disconnects the front axle speed sensor.

# Act 1 ###########################################################################

self._act_name = "Act 1"
self._vtExec.VtTracker.StartTest(self._act_name)

# Save DTCs and ICL notices #######################################################
self._vtExec.VtPrint.DebugPrint("Save DTCs anc ICL notices")
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs(’ALL’,True)
self._vtExec.VtXMLReport.AddText(DTC, "Before fault mode")

ICL = self._icl2.Notices.ReadAll(True)
self._vtExec.VtXMLReport.AddText(str(ICL), "Before fault mode")
self._timer.Sleep(1)

# Start logger ####################################################################
self._vtExec.VtPrint.DebugPrint("Start CAN-logger")
self._canLogger.Start()
self._vtExec.VtPrint.DebugPrint("Sleep for 10 seconds, while logging CAN")
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self._timer.Sleep(5)

# Activate a fault mode ###########################################################
self._canLogger.WriteToLog("#: Fault mode")
self._sensors.disconnectFrontAxleSpeedSensor()
self._vtExec.VtPrint.DebugPrint("Sleep for 10 seconds")
self._timer.Sleep(10)

# Save DTCs, ICL notices and CAN-logger ###########################################
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs()
self._vtExec.VtXMLReport.AddText(DTC, "After fault Mode")

ICL = self._icl2.Notices.ReadAll(True)
self._vtExec.VtXMLReport.AddText(str(ICL), "After fault Mode")

# Stop CAN-logger #################################################################
self._canLogger.Stop()
self._vtExec.VtPrint.DebugPrint("Start saving to log")
self._canLogger.SaveLogTextFile(testFolder)
self._vtExec.VtPrint.DebugPrint("Done saving to log.")
self._timer.Sleep(1)

# End Act 1 #######################################################################

Act 2 calls the function test modules that are going to be executed. The variable
testList determines which function test modules to call. The function test mod-
ules are then sorted and executed in a order that they could benefit from earlier
executed function test modules. Only the function test modules CC will be found
in later in the appendix. All of the modules found in Act2 is implemented.

# Act 2 ###########################################################################

self._act_name = "Act 2"
self._vtExec.VtTracker.StartTest(self._act_name)

# Function test modules to execute ################################################
testList = [’CC’, ’ABS’, ’LowEngineOilPressure’]

if "BrakeToStandStill" in testList:
self._testdrv.TestBrakeToStandStill()
self._timer.Sleep(1)

if "KickDown" in testList:
self._testdrv.TestKickDown(50)
self._timer.Sleep(1)

if "CC" in testList:
self._testdrv.TestCC()
self._timer.Sleep(1)

if "ABS" in testList:
self._testdrv.TestAbs()
self._timer.Sleep(1)

if "LowEngineOilPressure" in testList:
self._testdrv.TestLowEngineOilPressure()
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self._timer.Sleep(1)

if "HillHold" in testList:
self._testdrv.TestHillHold()
self._timer.Sleep(1)

# End Act 2 #######################################################################

The Postrequisites restores everything back to normal, deactivating the fault mode,
stopping the vehicle and turns of the engine.

# Start Postrequisites ############################################################

self._act_name = "Postrequisites"
self._vtExec.VtTracker.StartAction("Executing %s" %(self._act_name), self._act_name)

# Connecting the component the component disconnected in Act 1 ####################
self._sensors.disconnectFrontAxleSpeedSensor()

# Stopping vehicle ################################################################
self._vtExec.VtPrint.DebugPrint("Stopping vehicle")
self._driver.Stop()
self._timer.Sleep(1)

# Engine off ######################################################################
self._vtExec.VtPrint.DebugPrint("Turning engine OFF")
self._driver.TurnOff()
self._timer.Sleep(1)
self._vtExec.VtTracker.EndAction(True)

# End Postrequisites ##############################################################

B.3 Function test module Cruise Control
The test script for the function test module that tests Cruise Control. Again
some lines of code has been removed to clarify the function test module. The
function test module Cruise Control is a callable function within the class testdrv
according to act 2 in the Fault Mode Test shell above.

self._testName = "CC-test"
# Start CAN-Logger #################################################################
self._canLogger.Start()
self._canLogger.WriteToLog("#: Start CC")
self._timer.Sleep(1)

# Release brakepedal ##############################################################
acceleratorPos = self._accPedal.GetPos()
self._brakePedal.ReleaseBrakePedal()
self._vtExec.VtPrint.DebugPrint("Brake pedal is Released.")

# Enable CC #######################################################################
self._canLogger.WriteToLog("#: Enable CC")
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self._cc.EnableCc()
self._timer.Sleep(1)

# Check if CC is enable ###########################################################
cruiseCtrlEnableSwitch = SignalUtil.ReadCANSignal(’CruiseCtrlEnableSwitch’, ...)
self._vtExec.VtPrint.DebugPrint("CruiseCtrlEnableSwitch is: %s" %(cruiseCtrlEnableSwitch))
self._vtExec.VtXMLReport.AddSingleLimitComparison(cruiseCtrlEnableSwitch, 1, "==", ...)

# Drive at least in 50 km/h #######################################################
vehicleSpeed = SignalUtil.ReadCANSignal(’TCOVehSpeed’, ’YELLOW_1’, ’TCO1’, ’TCO’)
self._vtExec.VtPrint.DebugPrint("Vehicle Speed is: %s km/h" %(vehicleSpeed))
if vehicleSpeed < 40:

self._canLogger.WriteToLog("#: Increase speed")
self._vtExec.VtXMLReport.AddText("Vehicle speed is %s km/h and below 50km/h)
self._driver.DriveAtSpeed(50)

# Release accelerator position and engage CC ######################################
self._canLogger.WriteToLog("#: Activate CC")
self._accPedal.SetPos(0)
self._timer.Sleep(1)

self._cc.ClickAccButton()
self._timer.Sleep(1)

# Check that CC is active #########################################################
cruiseCtrlActive = SignalUtil.ReadCANSignal(’CruiseCtrlActive’, ’RED_1’, ...)
self._vtExec.VtPrint.DebugPrint("Cruise Control Active is: %s" %(cruiseCtrlActive))
self._vtExec.VtXMLReport.AddSingleLimitComparison(cruiseCtrlActive, 0, ">", "CC-test")

# Increase speed with 5 km/h. If not within time out return False #################
self._canLogger.WriteToLog("#: Increase set speed")
self._timer.Start()
cruiseCtrlSetSpeed = SignalUtil.ReadCANSignal(’CruiseCtrlSetSpeed’, ’RED_1’, ...)
self._vtExec.VtPrint.DebugPrint("Set speed is: %s" %(cruiseCtrlSetSpeed))

setSpe = cruiseCtrlSetSpeed + 5
self._vtExec.VtXMLReport.AddText("Set speed is: %s" %(cruiseCtrlSetSpeed), "CC-test")
while cruiseCtrlSetSpeed < setSpe:

if self._timer.ReadTime() > 5:
break

self._cc.ClickAccButton()
cruiseCtrlSetSpeed = SignalUtil.ReadCANSignal(’CruiseCtrlSetSpeed’, ’RED_1’, ...)
self._vtExec.VtPrint.DebugPrint("Set speed is: %s" %(cruiseCtrlSetSpeed))
self._timer.Sleep(0.5)

# Check that set speed has increased with 5 km/h ##################################
vehicleSpeed = SignalUtil.ReadCANSignal(’TCOVehSpeed’, ’RED_1’, ’TCO1’, ’TCO’)
self._vtExec.VtXMLReport.AddLimitPairComparison((setSpe - 2), vehicleSpeed, ...))

vehicleSpeed = SignalUtil.ReadCANSignal(’TCOVehSpeed’, ’YELLOW_1’, ’TCO1’, ’TCO’)
self._vtExec.VtXMLReport.AddLimitPairComparison((setSpe - 2), vehicleSpeed, ...))

cruiseCtrlSetSpeed = SignalUtil.ReadCANSignal(’CruiseCtrlSetSpeed’, ’RED_1’, ...))
self._vtExec.VtXMLReport.AddLimitPairComparison((setSpe - 2), cruiseCtrlSetSpeed, ...)
self._timer.Sleep(1)

# Disable CC by braking ############################################################
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self._canLogger.WriteToLog("#: Brake")
self._vtExec.VtPrint.DebugPrint("Pressing brake pedal")
self._brakePedal.PressBrakePedal(40)
self._timer.Sleep(1)

self._vtExec.VtPrint.DebugPrint("Releasing brake pedal")
self._brakePedal.ReleaseBrakePedal()
self._timer.Sleep(1)

# Check that CC is not active ######################################################
cruiseCtrlActive = SignalUtil.ReadCANSignal(’CruiseCtrlActive’, ’RED_1’, ...)
self._vtExec.VtPrint.DebugPrint("Cruise Control Active is: %s" %(cruiseCtrlActive))
self._vtExec.VtXMLReport.AddSingleLimitComparison(cruiseCtrlActive, 0, "==", "CC-test")

# Restore everything to normal #####################################################
self._cc.DisableCc()
self._accPedal.SetPos(acceleratorPos)

# Stop CAN-logger ##################################################################
self._canLogger.Stop()
self._vtExec.VtPrint.DebugPrint("Start saving to log")
self._canLogger.SaveLogTextFile(testFolder)
self._vtExec.VtPrint.DebugPrint("Done saving to log")

# END TEST ##########################################################################

B.4 Function test module Low Engine Oil Pres-
sure

The following section will give another example of an function test module written.
The test module will test the display of the engine oil pressure in the Instrument
Cluster Panel (ICL), as well as warning of low engine oil pressure.

1. Start CAN-logger (optional)

2. Lower engine oil pressure to X bar

3. Test that correct engine oil pressure is sent on CAN

4. Test that warning of low engine oil pressure is sent on CAN

5. Store DTC/Warnings

6. Increase the engine oil pressure to normal level

7. Test that warning of low engine oil pressure is not sent on CAN

8. Store DTC/Warnings

9. Stop CAN-logger (optional)
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DTCs and warnings has to be manually checked after the test in the test report
generated, to confirm that correct warnings in the ICL are displayed, and that
appropriate DTCs are set.

The function test module is implemented as followed:

self._testName = "Oilpressure-test"

# Start CAN-logger ##################################################################
self._canLogger.Start()

# Lower Engine Oil Pressure #########################################################
self._canLogger.WriteToLog("#: Decrease pressure")
self._oilsens.SetEngineOilPressure_Value(0.5)
self._timer.Sleep(15)

# Check that correct engine oil pressure is sent on CAN #############################
engineOilPressure = SignalUtil.ReadCANSignal(’EngineOilPressure’,’RED_1’,...)
self._vtExec.VtPrint.DebugPrint("Oil Pressure on RED CAN is: %s" %(engineOilPressure))
self._vtExec.VtXMLReport.AddSingleLimitComparison(engineOilPressure, 52, "==", ...)

engineOilPressure = SignalUtil.ReadCANSignal(’EngineOilPressure’,’YELLOW_1’,...)
self._vtExec.VtPrint.DebugPrint("Oil Pressure on YELLOW CAN is: %s" %(engineOilPressure))
self._vtExec.VtXMLReport.AddSingleLimitComparison(engineOilPressure, 52, "==",...)

# Check that low engine oil pressure is sent on CAN #################################
oilPressureLow = SignalUtil.ReadCANSignal(’LowEngineOilPressure’,’RED_1’,’DLN2’,’E’)
self._vtExec.VtPrint.DebugPrint("Low Oil Pressure on RED CAN is: %s" %(oilPressureLow))
self._vtExec.VtXMLReport.AddSingleLimitComparison(...)

oilPressureLow = SignalUtil.ReadCANSignal(’LowEngineOilPressure’,’YELLOW_1’,’DLN2’,’E’)
self._vtExec.VtPrint.DebugPrint("Low Oil Pressure on YELLOW CAN is: %s" %(oilPressureLow))
self._vtExec.VtXMLReport.AddSingleLimitComparison(...)

# Save ICL notices and DTCs #########################################################
self._vtExec.VtPrint.DebugPrint("Save DTCs anc ICL notices")
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs(’ALL’,True)
self._vtExec.VtXMLReport.AddText(DTC, self._testName)

ICL = self._icl2.Notices.ReadAll(True)
self._vtExec.VtXMLReport.AddText(str(ICL), self._testName)
self._timer.Sleep(1)

# Restore Oil Pressure and end test #################################################
self._canLogger.WriteToLog("Increase pressure")
self._oilsens.SetEngineOilPressure_Control_Model()
self._timer.Sleep(15)

# Check that no warning of low engine oil pressure is sent on CAN ###################
oilPressureLow = SignalUtil.ReadCANSignal(’LowEngineOilPressure’,’RED_1’,’DLN2’,’E’)
self._vtExec.VtPrint.DebugPrint("Low Oil Pressure on RED CAN is: %s" %(oilPressureLow))
self._vtExec.VtXMLReport.AddSingleLimitComparison(engineOilPressureLow, 0, "==", ...)

oilPressureLow = SignalUtil.ReadCANSignal(’LowEngineOilPressure’,’YELLOW_1’,’DLN2’,’E’)
self._vtExec.VtPrint.DebugPrint("Low Oil Pressure on YELLOW CAN is: %s" %(oilPressureLow))
self._vtExec.VtXMLReport.AddSingleLimitComparison(engineOilPressureLow, 0, "==", ...)
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# Save ICL notices and DTCs #########################################################
self._vtExec.VtPrint.DebugPrint("Save DTCs anc ICL notices")
DTC = self._vtExec.VtProgramEcu.ReadAllDtcs(’ALL’,True)
self._vtExec.VtXMLReport.AddText(DTC, self._testName)

ICL = self._icl2.Notices.ReadAll(True)
self._vtExec.VtXMLReport.AddText(str(ICL), self._testName)
self._timer.Sleep(1)

# Save logger ########################################################################
self._canLogger.Stop()
self._vtExec.VtPrint.DebugPrint("Start saving to log")
self._canLogger.SaveLogTextFile(testFolder)
self._vtExec.VtPrint.DebugPrint("Done saving to log")

# END TEST ###########################################################################
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