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A B S T R A C T

We propose a method to analyze effects of material uncertainty in composite laminate structures optimized
using a simultaneous topology and material optimization approach. The method is based on computing worst-
case values for the material properties and provides an efficient way of handling variation in material properties
of composites for stiffness driven optimization problems. An analysis is performed to evaluate the impact of
material uncertainty on designs from two design problems: Maximization of stiffness and minimization of a
failure criteria index, respectively. The design problems are solved using different loads, boundary conditions
and manufacturing constraints. The analysis indicates that the influence of material uncertainty is dependent on
the type of optimization problem. For compliance problems the impact on the objective value is proportional to
the changes of the constitutive properties and the effect of material uncertainty is consistent and predictable for
the generated designs. The strength-based problem shows that material uncertainty has a significant impact
on the response, and the effects of material uncertainty is not consistent and changes for different design
requirements. In addition, the results show an increase of up to 25% of the maximum failure index when
considering the worst-case deviation of the constitutive properties from their nominal values.
1. Introduction

Structural design of high-performance composite structures needs
to consider many aspects to be successful. Even for moderate-sized
design problems this requires handling of a large number of material,
design and manufacturing parameters. Structural optimization (SO) is
often used to efficiently handle these parameters and obtain composite
structures with maximized performance. However, optimality often
comes at the cost of robustness of the design. That is, optimizing for
one loading scenario, or a fixed set of material properties and so on,
implies sacrificing performance for others. Therefore, it is important
to investigate the robustness of optimized structures due to variability,
i.e. uncertainty, in the input data of the optimization problem. It is
well-known that composite materials can exhibit significant variations
of the material properties due to e.g. material constituent production,
composite material production (e.g. pre-preg, fabrics, tow, etc.), com-
posite manufacturing techniques or material testing and evaluation
methodologies [1–3].

Methods to include uncertainty in SO are often classified as stochas-
tic/ probabilistic or deterministic/worst-case [4]. Stochastic methods
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have been the primary focus of research efforts [5], and are divided
into two groups, both relying on detailed knowledge of probability
distributions of the uncertainty data. The first group is referred to
as robust design optimization (RDO) [6,7], where statistical moments
(mean value and variances) are considered as objectives or constraints.
The second group is the so-called reliability-based design optimization
(RBDO) [8–13], where the functionals relate to the probabilities of
failure, approximately quantified using reliability indices. Deterministic
methods deal with worst-case design scenarios, where a structure is
optimized to withstand the worst possible input data regardless of its
probability. In contrast to stochastic methods, much less research work
exist on worst-case methods in regards of handling material uncer-
tainty in SO problems, and the primary focus has been on isotropic
materials [14–17].

Except in some special cases, such as stiffness variation for uncertain
Young’s and shear modulii (see Appendix B), computing the worst-case
is a challenging, non-convex optimization problem. Depending on the
model response studied and the parametrization of the uncertainty, it is
sometimes possible to solve it numerically to global optimality [18,19]
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with reasonable cost. In principle, global optimization methods such
as branch-and-bound can always be used to compute solutions whose
optimal value (the worst response) is within a user-specified distance
from the true worst-case, but in practice such methods are extremely
computationally demanding (even for the case of load-uncertainty [20]
which is much cheaper than material uncertainty because the stiffness
matrix is constant). Genetic algorithms and alike have been touted as a
way to compute globally optimal solutions (convergence to a globally
optimal solution is guaranteed in the limit of visiting every point in
the feasible set), but the large number of function evaluation typically
required makes such methods impractical for our application [21], and
unlike for branch-and-bound methods no estimate of the distance to the
true solution is given. A different approach to the worst-case problem
is to replace it with some convex problem which is guaranteed to over-
estimate the worst-case; the main difficulties being the construction of
such a convex problem and to quantify the overestimation.

In the present work, we perform an uncertainty quantification
(UQ) [22] of composite material properties to investigate their in-
fluence on the performance of optimized composite structures. A UQ
quantifies the sensitivity of model/system output parameters, such as
structural responses, to the variability of input parameters such as
material properties. UQ problems are often treated using a probabilis-
tic approach [23]. We apply a deterministic approach to handle UQ
problems, where the idea is to compute the worst possible values
for the uncertain material parameters as they vary in a conservative
envelope defined by simple lower and upper bounds. Towards this
end, we propose a pragmatic approach to the problem of finding
the worst-case values for material parameters based on treating the
worst-case problem using local optimization solvers. Although there is
no guarantee of global optimality using such solvers, our numerical
experiments indicate that this approach is fast and robust. The local
solver can also be combined with a multi-start strategy, or the tunneling
and deflation approaches of [24] and [25] respectively, for improved
robustness.

We remark that much work on SO under material uncertainty
have used compliance as the performance measure. However, recent
results [18,26] suggest that the designs of structures optimized for com-
pliance under material uncertainty differ little, if at all from structures
optimized under nominal conditions. This emphasizes the necessity
to evaluate other types of stiffness driven responses under material
uncertainty, such as composite failure criteria as studied herein, but
also for example modal responses, buckling, and aeroelastic responses.

2. Composite parametrization

The current work uses a versatile discrete parametrization tech-
nique that enables simultaneous material and topology optimization
of composite laminate structures, referred to as Hyperbolic Function
Parametrization (HFP) [27]. HFP relies on efficient filtering and pe-
nalization of intermediate values of the continuous numerical design
variables to generate sets of discrete physical design variables, that
are used to evaluate composite designs. In the current work, a new
functionality is added to HFP that include uncertainty parametrization
for material properties of composites.

2.1. Design parametrization

2.1.1. Stiffness properties
Considering a composite laminate consisting of 𝑛𝑙 plies, the design

domain 𝛺 is divided into 𝑛𝑒 finite elements (FEs), such that the domain
𝛺𝑒𝑙 represents the volume occupied by the l:th ply in the e:th element.
The parametrization of the stiffness properties are performed on a ply
level, for which the effective constitutive property matrix 𝑬𝑒𝑙 is given
2

by the interpolation function
𝑬𝑒𝑙 = 𝑬𝑒𝑙
(

�̃�, �̃�, 𝝃
)

= 𝑬0 + 𝜐𝑒𝑙
(

�̃�
)

𝑛𝑐
∑

𝑐=1
𝜔𝑒𝑙𝑐

(

�̃�
)(

𝑬𝑐
(

𝝃
)

− 𝑬0
)

, ∀
(

𝑒, 𝑙
)

. (1)

Here 𝜐𝑒𝑙 and 𝜔𝑒𝑙𝑐 are penalization functions that operate on the physical
ply density (�̃�) and candidate material (�̃�) variables, respectively. These
variables in turn are obtained from the optimization variables 𝝆 and
𝒙 through in-plane and out-of-plane filtering; see [27] for details.
Furthermore, 𝑛𝑐 is the total number of candidate materials, 𝑬𝑐

(

𝝃
)

is
the constitutive matrix of a candidate material 𝑐 expressed using a set
of uncertainty variables 𝝃. The positive definite matrix 𝑬0 ≺ 𝑬𝑐 is
introduced to ensure that 𝑬𝑒𝑙 is positive definite for every admissible
design.

The uncertainty variables 𝝃 are associated to the independent com-
onents of 𝑬𝑐

(

𝝃
)

. Here it is assumed that the uncertainty variables can
ary arbitrary within a conservative envelope defined by a upper and
ower bound. They are thus confined to the convex and compact set

=
{

𝝃 ∈ R𝑛𝜉 𝜉𝑛 ≤ 𝜉𝑛 ≤ 𝜉𝑛, ∀ 𝑛
}

, (2)

where 𝑛𝜉 is the number of uncertainty variables and the limits are given
by

𝜉𝑛 = 1 − 𝛿𝑛, 𝜉𝑛 = 1 + 𝛿𝑛, ∀ 𝑛.

Here 𝛿𝑛 is the fraction of variation of each independent property of the
constitutive matrix. The limits of 𝜉𝑛 in (2) are defined such that 𝜉𝑛 = 1
epresents the nominal value of the corresponding material property.

The constitutive matrix 𝑬𝑐
(

𝝃
)

is, assuming orthotropic material
roperties, given by [28]

𝑬𝑐
(

𝝃
)

= 𝑻 𝑐𝑪
(

𝝃
)

𝑻 𝖳
𝑐 , ∀ 𝑐 (3)

where 𝑬𝑐
(

𝝃
)

is given in the global problem frame of reference (P-
frame), while 𝑪

(

𝝃
)

is given in the local material frame of reference
(M-frame). The transformation matrix 𝑻 𝑐 transforms the constitutive
properties between the two frames and is defined as

𝑻 𝑐 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐2 𝑠2 0 0 -2𝑠𝑐
𝑠2 𝑐2 0 0 2𝑠𝑐
0 0 𝑐 𝑠 0
0 0 -𝑠 𝑐 0
𝑠𝑐 -𝑠𝑐 0 0 𝑐2-𝑠2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (4)

where 𝑐 = cos 𝜃𝑐 , 𝑠 = sin 𝜃𝑐 and 𝜃𝑐 is the fiber orientation of a candidate
material. 𝑻 𝑐 is defined based on First-Order Shear Deformation Theory
(FSDT) [28] that is assumed to govern the mechanical behavior of the
composite laminates in the current work. The matrix 𝑪

(

𝝃
)

in (3) is
given by

𝑪
(

𝝃
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐶11
(

𝝃
)

𝐶12
(

𝝃
)

0 0 0
𝐶12

(

𝝃
)

𝐶22
(

𝝃
)

0 0 0
0 0 𝐶44

(

𝝃
)

0 0
0 0 0 𝐶55

(

𝝃
)

0
0 0 0 0 𝐶66

(

𝝃
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (5)

where the non-zero components are defined as

𝐶11
(

𝝃
)

=
𝐸1

(

𝝃
)

1 − 𝜈12
(

𝝃
)

𝜈21
(

𝝃
) , 𝐶12

(

𝝃
)

=
𝜈12

(

𝝃
)

𝐸2
(

𝝃
)

1 − 𝜈12
(

𝝃
)

𝜈21
(

𝝃
) ,

𝐶22
(

𝝃
)

=
𝐸2

(

𝝃
)

1 − 𝜈12
(

𝝃
)

𝜈21
(

𝝃
) , 𝐶44

(

𝝃
)

= 𝐺23
(

𝝃
)

,

𝐶55
(

𝝃
)

= 𝐺13
(

𝝃
)

, 𝐶66
(

𝝃
)

= 𝐺12
(

𝝃
)

.

(6)

These components are governed by six (𝑛𝜉 = 6) independent material
properties: Young’s modulii 𝐸1, 𝐸2, shear modulii 𝐺12, 𝐺23, 𝐺13 and
major Poisson’s ratio 𝜈12. The interdependent minor Poisson’s ratio 𝜈21
in (6) is given as

𝜈21
(

𝝃
)

= 𝜈12
(

𝝃
)𝐸2

(

𝝃
)

𝐸1
(

𝝃
) .

The independent material properties are parametrized according to

𝐸1
(

𝝃
)

= 𝜉1𝐸N
1 , 𝐸2

(

𝝃
)

= 𝜉2𝐸N
2 , 𝜈12

(

𝝃
)

= 𝜉3𝜈N
12,

( ) N ( ) N ( ) N (7)

𝐺23 𝝃 = 𝜉4𝐺23, 𝐺13 𝝃 = 𝜉5𝐺13, 𝐺12 𝝃 = 𝜉6𝐺12,
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where a superscript 𝑁 indicates a nominal value.

2.1.2. Strength properties
The strength properties of a composite laminate are evaluated

using strain-and stress-based failure criteria which are further dis-
cussed in Section 3. In the context of composite design optimization, a
parametrization of the failure criteria based on the computation of an
effective failure index is proposed by Lund [29], of the form

eff
𝑒𝑙

(

�̃�, �̃�, 𝝃
)

=
𝑛𝑐
∑

𝑐=1
𝜓𝑒𝑙𝑐

(

�̃�, �̃�
)

𝑒𝑙𝑐
(

�̃�, �̃�, 𝝃
)

. (8)

Here 𝑒𝑙𝑐 is the failure index for candidate material 𝑐 of a ply 𝑙 in
element 𝑒, and the penalization function

𝜓𝑒𝑙𝑐
(

�̃�, �̃�
)

=
�̃�𝑒𝑙

1 + 𝑟
(

1 − �̃�𝑒𝑙
)

�̃�𝑒𝑙𝑐
1 + 𝑟

(

1 − �̃�𝑒𝑙𝑐
) , ∀

(

𝑒, 𝑙, 𝑐
)

(9)

here the penalization factor 𝑟 is set such that an above-linear pe-
alization of the intermediate values of the physical design variables
�̃�, �̃�

)

is achieved. This will, depending on the optimization problem
ormulation, make 𝑒𝑙𝑐 disproportionately expensive for intermediate
alues of

(

�̃�, �̃�
)

.

. Composite failure criteria

Composite failure criteria is a critical analysis tool used to evaluate
nd understand the mechanical behavior of a composite structure. It
nables the prediction of the structural behavior and durability of a
tructure subjected to arbitrary loads. The evaluation is performed on
composite ply level by computing a failure index 𝑙 using stresses

xerted on ply 𝑙 and checking that the failure index is below the failure
imit, i.e. 𝑙 ≤ 1. A failure index 𝑙 > 1 indicates that the stresses
xerted on the ply are above the strength limits of the material, which
an lead to activation of various composite failure modes.

Failure of a composite laminate (damage) can be divided into three
istinct phases [30]:

• Elastic phase - Stresses exerted on the composite plies are not
sufficient to result in damage.

• Failure initiation phase - Stresses are sufficient to initiate damage
by activation of one or more failure modes.

• Post failure phase - Characterization and estimation of damage
propagation of activated failure modes.

umerous composite failure criteria have been developed over the
ears. Some are more general and can be applied across multiple
hases, while others have a narrow focus for their application and are
etter suited to characterize specific damage phases. Therefore, not all
ailure criteria are suited to evaluate an arbitrary composite design,
nd the choice of failure criteria should reflect the requirements and
omplexity of the design intent.

In the present work the design intent is to generate composite lam-
nate designs that retain mechanical behavior within the elastic phase.
or this purpose we have chosen to implement the Tensor Polynomial
riterion, commonly know as the Tsai–Wu failure criteria [31], for eval-
ation of mechanical behavior of the composite laminate. Following the
otation introduced in Section 2, based on FSDT, the Tsai–Wu failure
riteria for orthotropic materials is given by

𝑒𝑙𝑐
(

�̃�, �̃�, 𝝃
)

= 𝐹1𝜎1 + 𝐹2𝜎2 + 2𝐹12𝜎1𝜎2
+𝐹11𝜎21 + 𝐹22𝜎

2
2 + 𝐹44𝜎

2
4 + 𝐹55𝜎

2
5 + 𝐹66𝜎

2
6 ≤ 1 (10)

here 𝐹𝑖 and 𝐹𝑖𝑗 are strength components given by

𝐹1 =
1
Xt

− 1
Xc
, 𝐹2 =

1
Yt

− 1
Yc
, 𝐹12 = −1

2
1

√

XtXcYtYc
,

𝐹11 =
1

XtXc
, 𝐹22 =

1
YtYc

, 𝐹44 =
1

Q2
,

𝐹55 =
1 , 𝐹66 =

1 ,

(11)
3

R2 S2
in which Xt,Xc and Yt,Yc are the tensile and compressive strength prop-
erties along the 1- and 2-axis of the ply, respectively. The parameters 𝑄
and 𝑅 are the transversal shear strength properties along the 2–3 and 3–
1 planes, respectively, while 𝑆 is the corresponding in-plane (1–2) shear
strength property of the ply. All of the strength components are given
from experimental tests, with the exception of 𝐹12 which is estimated
using empirical methods that have proven satisfactory for composite
materials [28].

The stress components 𝜎𝑗 =
(

𝜎𝑗
)

𝑒𝑙𝑐 in (10) are the stresses of a
candidate material 𝑐 exerted on ply 𝑙 of element 𝑒. The FE-version of
the stresses are given in compact form as

𝝈𝑒𝑙𝑐 (�̃�, �̃�, 𝝃) = 𝑫𝑒𝑙𝑐 (𝝃)𝒖(�̃�, �̃�, 𝝃)
= 𝑻 -1

𝑐 𝑬𝑐 (𝝃)𝑩𝑒𝑙𝑳T
𝑒 𝒖(�̃�, �̃�, 𝝃)

, ∀ (𝑒, 𝑙, 𝑐) (12)

where 𝑩𝑒𝑙 is the strain–displacement matrix of ply 𝑙, 𝑳𝑒 selects the
displacement components of element 𝑒 from the global displacement
vector 𝒖. Note that in (10)–(12), the strength components 𝐹𝑗 , 𝐹𝑖𝑗 and
stresses 𝜎𝑗 are all expressed in the local M-frame of reference.

For an FE-discretized structure, the stresses 𝝈𝑒𝑙𝑐 and therefore the
failure index 𝑒𝑙𝑐 , can be evaluated for any given number of sampling
points for each ply 𝑙 and element 𝑒. For a large number of sampling
points, this can result in a high computational cost for the evaluation
of the failure index. Therefore we only consider one sampling point,
namely the centroid of each ply 𝑙 in an element 𝑒 when evaluating 𝑒𝑙𝑐 .

4. Optimization problems

The present work intends to investigate the effects of material uncer-
tainty on composite design for stiffness driven optimization problems.
The investigation is done in two steps: first a design problem (DO)
is solved using nominal values for constitutive properties,

(

�̃�, �̃�, 𝝃N),
where 𝝃N represents a fixed value of the uncertainty variables such
that the material properties correspond to their nominal values. In the
second step, the design obtained in step one is fixed,

(

�̃�∗, �̃�∗, 𝝃
)

and a
worst-case counterpart (WCC) problem is solved, for which a worst-case
distribution of the material properties are determined and the impact
on the objective function is evaluated. Fig. 1 shows the flowchart for
the proposed method. Here the sub-solver depends on the optimization
solver, for example in DO we apply GCMMA with IPOPT as a sub-solver,
further described in Section 5.

The investigation will be performed for two types optimization
metrics: compliance and strength using composite failure criteria, re-
spectively. It is shown in Appendix B that, keeping the Poisson’s ratio
fixed, the worst case for the compliance is always the lowest allowable
elastic modulii. Therefore the compliance problem should mainly be
considered as a way to validate the proposed method for handling mate-
rial uncertainty. Section 4.1 provides the design problem formulations
for both optimization problems, while Section 4.2 provides the problem
formulations for both worst-case counterparts of the design problems.

4.1. Design problem

In the design problem the objective is to minimize the compliance
or a composite failure index of a composite laminate plate, respectively,
under design and manufacturing constraints. The design problem for an
objective function 𝑓

(

�̃�, �̃�, 𝝃N) is given by

DO

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

min𝝆,𝒙 𝑓
(

�̃�, �̃�, 𝝃N)

s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

SE: 𝑲
(

�̃�, �̃�, 𝝃N)𝒖
(

�̃�, �̃�, 𝝃N) = 𝑭
DC1: ℎply𝑛𝑙

∑𝑛𝑒
𝑒=1 �̄�𝑒𝑎𝑒 ≤ 𝑉

MC1: −𝑆 ≤ �̄�𝑒𝑛𝑙 − �̄�𝑗𝑛𝑙 ≤ 𝑆 ,∀ 𝑖, 𝑗 ∈ M𝑒
MC2: ∑𝑡+𝑛CL

𝑙=𝑡 �̃�𝑝𝑙𝑐 ≤ 𝑛CL ,∀ (𝑙, 𝑐)
MC3: ∑𝑛𝑙

𝑙=1 �̃�𝑝𝑙𝑐 ≥ 𝑛CML ,∀ (𝑝, 𝑐)
𝜌𝑒 ∈ [0, 1] ,∀ 𝑒
𝑥𝑒𝑙 ∈ [0, 1] ,∀ (𝑒, 𝑙) .
⎩
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Fig. 1. Flowchart describing the optimization scheme for proposed method to evaluate
the effects of material uncertainty on composite designs.

(13)

Here the state equation (SE) is taken to be a static linear elastic
FE formulation in which 𝑲

(

�̃�, �̃�, 𝝃N) is the global stiffness matrix,
𝒖
(

�̃�, �̃�, 𝝃N) is the global displacement vector and 𝑭 is the global load
vector. Design constraint 1 (DC1), is a limit on the total amount of
material to be distributed within the design domain and is set as a
volume constraint where, 𝑎𝑒 is the area of finite element 𝑒, ℎply is the
ply thickness and 𝑉 is the upper limit of the volume. Furthermore, three
composite manufacturing constraints (MCs) are also included. MC1 is
an explicit constraint on the thickness variation of the composite design
which is set by limit 𝑆 [32]. MC2 sets an upper limit on the number
of consecutive plies

(

𝑛CL
)

that can have the same candidate material.
MC3 provides the lower limit on the total number of plies

(

𝑛CML
)

of a
given candidate material within the laminate.

The objective function 𝑓
(

�̃�, �̃�, 𝝃N) in the respective design problems
is defined in Sections 4.1.1 and 4.1.2.
4

4.1.1. Compliance problem
The objective function for the compliance version of (DO) is

𝑓
(

�̃�, �̃�, 𝝃N) = 𝑭 T𝒖
(

�̃�, �̃�, 𝝃N) = 𝒖
(

�̃�, �̃�, 𝝃N)𝖳𝑲
(

�̃�, �̃�, 𝝃N)𝒖
(

�̃�, �̃�, 𝝃N), (14)

where 𝒖
(

�̃�, �̃�, 𝝃N) solves the state equation SE in (13), and the global
stiffness matrix is given by

𝑲
(

�̃�, �̃�, 𝝃N) =
𝑛𝑝
∑

𝑝=1
𝐀

𝑒∈𝑝
𝑲𝑒

(

�̃�, �̃�, 𝝃N)

=
𝑛𝑝
∑

𝑝=1
𝐀

𝑒∈𝑝

𝑛𝑙
∑

𝑙=1∫
𝛺𝑒𝑙

𝑩T
𝑒𝑬𝑒𝑙

(

�̃�, �̃�, 𝝃N)𝑩𝑒𝑑𝑉 ,

(15)

in which 𝐀 represents the FE assembly operator, 𝑩𝑒 is the elemental
strain–displacement matrix, see [33], and 𝑬𝑒𝑙 is given by (1). Note that
in (15), index 𝑝 = 1,… , 𝑛𝑝 refers to the division of the design domain
into a number of sub-domains named patches. Each patch 𝑝 is made
up of a given number of finite element 𝑒, such that all elements in a
patch retain the same properties. Patches can be defined independently
to control any given property, such as density variables 𝝆 or candidate
material variables 𝒙. For a detailed discussion on the use of patches the
authors refer to [27,34].

4.1.2. Strength problem
The objective function for strength-based design to be used by (DO)

is defined using the 𝓁𝑝-norm. This enables all failure criteria indexes of
the design domain to be included into a single smooth function [29].
The objective function is given as

𝑓
(

�̃�, �̃�, 𝝃∗
)

= ‖

‖

‖


(

𝝈
(

�̃�, �̃�, 𝝃N))‖
‖

‖𝑃
(16)

where

‖

‖

‖


(

𝝈
(

�̃�, �̃�, 𝝃N))‖
‖

‖𝑃
=

( 𝑛𝑒
∑

𝑒=1

𝑛𝑙
∑

𝑙=1

|

|

|

 eff
𝑒𝑙

(

𝝈
(

�̃�, �̃�, 𝝃N))|
|

|

𝑃
)1∕𝑃

=

( 𝑛𝑒
∑

𝑒=1

𝑛𝑙
∑

𝑙=1

|

|

|

|

|

𝑛𝑐
∑

𝑐=1
𝜓𝑒𝑙𝑐

(

�̃�, �̃�
)

𝑒𝑙𝑐
(

𝝈𝑒𝑙𝑐
(

�̃�, �̃�, 𝝃N))
|

|

|

|

|

𝑃)1∕𝑃

,

(17)

Here 𝑃 > 1 is a parameter such that as 
(

𝝈
(

�̃�, �̃�, 𝝃N)) → max
𝑒𝑙𝑐

(

𝝈
(

�̃�, �̃�, 𝝃N)) as 𝑃 → ∞. In general when using the 𝓁𝑝-norm, large
values for 𝑃 are desirable as it gives a better approximation of the max-
function value, but this can lead to numerical difficulties when solving
the optimization problem. Herein we follow [29] and use a fixed value
of 𝑃 = 8.

4.2. Worst-case problem

In this section the worst-case counterparts of the design problems
in Section 4.1 are defined. For a fixed design (𝝆∗,𝒙∗) obtained from
(DO) and a given structural response as a function of the uncertainty
variables, i.e., 𝑓 (𝝃) = 𝑓 (𝝆∗,𝒙∗, 𝝃), we consider finding the worst
possible response over the uncertainty space , i.e. we solve

max
𝝃∈

𝑓 (𝝃) ,

where it is assumed that largest value of 𝑓 corresponds to the worst
performance. The worst-case counterpart of (DO) is stated as

WCC
⎧

⎪

⎨

⎪

⎩

max𝝃∈ 𝑓 (𝝃)

s.t.
{

SE: 𝑲 (𝝃) 𝒖 (𝝃) = 𝑭
(18)

Compared to (DO), (WCC) only consider the effect of material un-
certainty on the objective function 𝑓 (𝝃). As the design is fixed in
(WCC) the design and manufacturing constraints are not active and are
excluded from the problem formulation. The objective function 𝑓

(

𝝃
)

in
(WCC) is defined in Section 4.2.1 for the compliance problem and in
Section 4.2.2 for the strength problem, respectively, along with their

respective sensitivity data with respect to the uncertainty variables 𝝃.
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4.2.1. Compliance problem
The objective function for compliance in (WCC) is given as

𝑓
(

𝝃
)

= 𝒖
(

𝝃
)𝖳𝑲

(

𝝃
)

𝒖
(

𝝃
)

(19)

The sensitivity of the objective function in (19) is given by
𝜕𝑓 (𝝃)
𝜕𝜉𝑛

= −𝒖 (𝝃)𝑇
𝜕𝑲 (𝝃)
𝜕𝜉𝑛

𝒖 (𝝃) , ∀ 𝑛, (20)

here
𝜕𝑲 (𝝃)
𝜕𝜉𝑛

=
𝑛𝑒
∑

𝑒=1

𝜕𝑲𝑒 (𝝃)
𝜕𝜉𝑛

=
𝑛𝑒
∑

𝑒=1

𝑛𝑙
∑

𝑙=1∫
𝛺𝑒𝑙

𝑩T
𝑒
𝜕𝑬𝑒𝑙 (𝝃)
𝜕𝜉𝑛

𝑩𝑒𝑑𝑉 .
(21)

Here, using (1) and (3),

𝜕𝑬𝑒𝑙 (𝝃)
𝜕𝜉𝑛

= 𝜐𝑒𝑙
𝑛𝑐
∑

𝑐=1
𝜔𝑒𝑙𝑐

𝜕𝑬𝑐 (𝝃)
𝜕𝜉𝑛

, ∀
(

𝑒, 𝑙
)

(22a)

𝜕𝑬𝑐 (𝝃)
𝜕𝜉𝑛

= 𝑻 T
𝑐
𝜕𝑪 (𝝃)
𝜕𝜉𝑛

𝑻 𝑐 , ∀ 𝑐, (22b)

here the derivatives of the constitutive matrix 𝑪
(

𝝃
)

are given in
ppendix A.

.2.2. Strength problem
The objective function of (WCC) for the strength problem is given

y (16)–(17), with only active uncertainty variables 𝝃:
(

𝝃
)

= ‖

‖

‖


(

𝝃
)

‖

‖

‖𝑃
(23a)
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‖
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𝝃
)

‖

‖
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=
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𝑙=1

|

|

|
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𝝈
(

𝝃
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|

|

|

𝑃
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𝑛𝑙
∑

𝑙=1

|

|

|

|

|

𝑛𝑐
∑

𝑐=1
𝜓𝑒𝑙𝑐𝑒𝑙𝑐

(

𝝈
(

𝝃
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|

|

|

|

|

𝑃
⎞

⎟

⎟

⎠

1∕𝑃

.

(23b)

The sensitivity of the objective function in (23a) is given by
𝜕𝑓 (𝝃)
𝜕𝜉𝑛

=
𝜕 ‖ (𝝃)‖𝑃

𝜕𝜉𝑛
, ∀ 𝑛. (24)

sing (23b) we get

𝜕 ‖ (𝝃)‖𝑃
𝜕𝜉𝑛

= ‖ (𝝃)‖ 1−𝑃
𝑃

𝑛𝑒
∑

𝑒=1

𝑛𝑙
∑

𝑙=1

|

|

𝑒𝑙 (𝝈)||
𝑃−1

𝑛𝑐
∑

𝑐=1
𝜓𝑒𝑙𝑐

𝜕𝖳
𝑒𝑙𝑐 (𝝈)
𝜕𝝈𝑒𝑙𝑐

𝜕𝑫𝑒𝑙𝑐 (𝝃)
𝜕𝜉𝑛

𝒖(𝝃) − 𝝀𝖳 (𝝃)
𝜕𝑲(𝝃)
𝜕𝜉𝑛

𝒖(𝝃),

(25)

here 𝜕𝑲(𝝃)
𝜕𝜉𝑛

is given by (21) and 𝜕𝑒𝑙𝑐 (𝝈)
𝜕𝝈𝑒𝑙𝑐

is expressed using (10) as

𝜕𝑒𝑙𝑐 (𝝈)
𝜕𝝈𝑒𝑙𝑐

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐹1 + 2𝐹11𝜎1 + 2𝐹12𝜎2
𝐹2 + 2𝐹22𝜎2 + 2𝐹12𝜎1
2𝐹44𝜎4
2𝐹55𝜎5
2𝐹66𝜎6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, ∀ (𝑒, 𝑙, 𝑐) . (26)

From (12), 𝜕𝑫𝑒𝑙𝑐 (𝝃)
𝜕𝜉𝑛

in (25) is given as

𝜕𝑫𝑒𝑙𝑐 (𝝃)
𝜕𝜉𝑛

= 𝑻 −1
𝑐
𝜕𝑬𝑐 (𝝃)
𝜕𝜉𝑛

𝑩𝑒𝑙𝑳𝖳
𝑒 , (27)

where 𝜕𝑬𝑐 (𝝃)
𝜕𝜉𝑛

is given by (22). The adjoint vector 𝝀 in (25) is obtained
y solving the adjoint equation

(𝝃)𝝀 (𝝃) = 𝜦𝖳 (𝝃)

n which

(𝝃) = ‖ (𝝃)‖ 1−𝑃

𝑛𝑒
∑

𝑛𝑙
∑

|

|

𝑒𝑙 (𝝈)||
𝑃−1

𝑛𝑐
∑

𝜓𝑒𝑙𝑐
𝜕𝖳

𝑒𝑙𝑐 (𝝈)𝑫𝑒𝑙𝑐 (𝝃) . (28)
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Table 1
Nominal values for material data of HTA7/6376 CFRP-UD.

Property Value Unit

Longitudinal modulus 𝐸1 141 GPa
Transverse modulus 𝐸2 10 GPa
In-plane shear modulus 𝐺12 5.2 GPa
Transverse shear modulus 𝐺23 3.9 GPa
Transverse shear modulus 𝐺13 5.2 GPa
In-plane Poisson’s ratio 𝜈12 0.3 –
Longitudinal tensile strength 𝑋t 2250 MPa
Longitudinal compressive strength 𝑋c 1400 MPa
Transverse tensile strength 𝑌t 65 MPa
Transverse compressive strength 𝑌c 300 MPa
In-plane shear strength 𝑆 120 MPa
Transverse shear strength 𝑅 80 MPa
Transverse shear strength 𝑄 80 MPa
Cured ply thickness ℎply 1.3 ⋅ 10-4 m

Table 2
Initial values for design and uncertainty variables.

Property Value

Density variables 𝜌init
𝑒 0.50 ∀ 𝑒

Candidate material variables 𝑥init
𝑒𝑙 0.50 ∀ (𝑒, 𝑙)

Material uncertainty variables 𝜉init
𝑛 1.00 ∀ 𝑛

Table 3
Filter and penalization parameter sets for HFP.

Property Set Numerical value

Candidate material filter N𝛼 20, 40, 60, 80, 160, 320
Candidate material penalization N𝑝 2
Ply density filter N𝛽 13, 40, 80, 180
Ply density penalization N𝑞 0, 2, 4
Strength penalization N𝑟 0, -0.4, -0.8

Table 4
Convergence tolerances for the optimization algorithm.

Property DO WCC

Non-discreteness tolerance 𝜖0∕1 0.1% –
Design variable tolerance 𝜖dv 10-3 10-6

Objective function tolerance 𝜖obj 10-6 10-6

Constraint functions tolerance 𝜖const 10-6 10-6

5. Numerical examples

This section describes the numerical examples used to evaluate
the effects of material uncertainty on stiffness driven design prob-
lem for composite laminate structures. Three designs are obtained
by solving (DO) and then analyzed by solving (WCC) to find the
worst-case deviation of the material properties from their nominal
values. The examples are based on two geometries that are subjected
to various boundary conditions and loads. The material data used
correspond to a unidirectional Carbon Fiber Reinforced (CFRP-UD)
material, HTA7/6376 [35] with nominal values listed in Table 1. A set
of 𝑛𝑐 = 4 candidate materials are used for all numerical examples. Each
candidate 𝑐 = 1,… , 𝑛𝑐 represents a fiber orientation of the UD-ply from
the set {0◦, 45◦, -45◦, 90◦}. The starting values of the design variables
used for the optimization runs is given in Table 2.

Table 3 shows the sets of filter and penalization parameters used
by the optimization algorithm to solve the numerical examples. The
convergence tolerances for the optimization algorithm are given in
Table 4.

The FE discretization is done using 9-noded iso-parametric, fully in-
tegrated second-order elements with five degrees-of-freedom per node,
based on the Mindlin–Reissner plate element formulation; see for ex-
ample [33,36].

For DO, all numerical examples are solved using a modified version
of the Globally Convergent Methods of Moving Asymptotes (GCMMA)
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Fig. 2. NE1 geometry and boundary conditions. Clamped square plate with edge length
f 1.0 m, subjected to a uniform pressure 𝑞 = 3.0 kPa.

Fig. 3. NE2 geometry and boundary conditions. Corner hinged square plate with edge
length of 1.0 m, subjected to a concentrated force of 𝐹 = 500 N applied at the midpoint.

solver [37,38] described in [27]. The GCMMA sub-problem is solved
using IPOPT [39] as sub-solver which treats the constraints using an
interior-point methods [40]. The solution of (WCC) was tested using
a number of different optimization solvers: the genetic algorithm from
the MATLAB Global Optimization Toolbox (GA), GCMMA using both
IPOPT and the default sub-solver based on an interior point algorithm,
and FMINCON using the interior-point and active-set algorithms [41].
While all tested methods gave the same solution, it was found in all
cases that FMINCON using the active-set algorithm performed superior
in terms of number of function evaluations and CPU time, with a
solution time on the order of a few seconds.

5.1. Geometry and boundary conditions

This section gives a short description of the set-up for the numerical
examples (NE). In terms of geometry and boundary conditions NE1 and
NE3 are taken to be the same as presented in [27] while NE2 is given
in [29].

Fig. 2 illustrates the set-up for NE1, a square composite laminate
plate with clamped edges subjected to a uniform pressure load 𝑞 =
3.0 kPa across the top surface.

Fig. 3 illustrates the set-up for NE2. Here a corner hinged square
composite laminate plate is shown that is subjected to a concentrated
load 𝐹 = 500 N at the midpoint of the top surface.

The set-up of NE3 is illustrated in Fig. 4, which shows a cantilever
rectangular composite laminate plate with an out-of-plane torque load
applied at the free edge such that the plate is subjected to a torsion
load case. The magnitude of the torque load is set to 𝑀𝜏 = 30 Nm.

The numerical examples all consider a monolithic composite lami-
nate with a maximum of sixteen plies, 𝑛𝑙 = 16, which corresponds to a
maximum total laminate thickness of 2.08 mm. A single design patch,
𝑛 = 1, is used across the design domain for the candidate material
6

𝑝

Fig. 4. NE3 geometry and boundary conditions. A rectangular cantilever plate with
length 𝑙 = 1 m and width 𝑤 = 0.2 m, subjected to an out-of-plane torque load of
𝑀𝜏 = 30 Nm at the free edge.

Table 5
Optimization settings for the numerical examples.

Design problem Worst-case problem

ID NE1.01 NE2.01 NE3.01 NE1.02 NE2.02 NE3.02
𝑛𝑒 400 400 500 400 400 500
𝑛𝑙 16 16 16 16 16 16
𝑛𝑐 4 4 4 4 4 4
𝑛𝑝 1 1 1 1 1 1
𝑛S 1 1 1 - - -
𝑛CL 1 1 1 - - -
𝑛CML 2 2 0 - - -
𝑉 ∕𝑉0 0.5 0.5 0.5 - - -
𝜌𝑒 1∕16 1∕16 1∕16 - - -
𝜉𝑛∖𝜉𝑛 - - - 0.9∖1.1 0.9∖1.1 0.9∖1.1

design variables 𝒙 in (DO), thus providing a global lay-up sequence for
the entire domain. No patches were used on the density variables 𝝆 in
(DO), thus allowing for unrestricted distribution of composite material
within the design domain. All laminates are required to have one full
ply throughout the design domain. This is achieved by setting the lower
bound of the density variable 𝜌𝑒 in (13) to 𝜌𝑒 = 1∕𝑛𝑙. For the design and
manufacturing constraints used in (DO), the following limits have been
used. For DC1, an upper limit of the volume, 𝑉 ∕𝑉0 = 0.5 is set for the
whole design domain, thus only half the available material is used. The
limit of MC1 is set to 𝑛S = 1 for the maximum ply thickness variation
between adjacent elements. The same limit is set for MC2, 𝑛CL = 1,
which restricts the number of consecutive plies with a given candidate
material. For MC3, the limit is set to 𝑛CML = 2 for NE1 and NE2, that
require a minimum of 10% of each candidate material to be used in
the design. For NE3, the limit is set to 𝑛CML = 0 which does not put
any lower limit to the minimum amount of each candidate material.
The bounds of all uncertainty variables 𝜉𝑛 in (WCC) are assumed to be
equal and set to 𝜉𝑛 = 0.9 and 𝜉𝑛 = 1.1 for all NE. These bounds represent
a 10% deviation of the independent material properties from their
nominal values in Table 1, so that for example, 9GPa ≤ 𝐸2 ≤ 11GPa.
A summary of all optimization settings for the numerical examples is
given in Table 5.
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Fig. 5. NE1 — Results from (DO) and (WCC) for the compliance problem.
6. Results

In this section we present the results for the three numerical exam-
ples described in Section 5 and a short discussion is given regarding
the generated data. Section 6.1 presents the results for the compliance
problem as described in Sections 4.1.1 and 4.2.1. The results for
the strength-based problem described in Sections 4.1.2 and 4.2.2 are
presented in Section 6.2.

6.1. Compliance problem

For the compliance optimization problem all numerical runs retain
a high level of non-discreteness for the design variables. The results
obtained for NE1, 2, and 3 are visualized in Fig. 5, Fig. 6 and Fig. 7
respectively. The effects of material uncertainty on the compliance is
presented in Table 6.

Fig. 5(a) shows the composite design given by (DO) for NE1 using
nominal material properties. The composite laminate contains pre-
dominantly 0◦∕90◦ plies with minimum amount of off-axis ±45◦ plies
and the material distribution across the design domain is symmetric.
Fig. 5(b) shows the worst-case deviation of the independent material
properties obtained from (WCC) for the design in Fig. 5(a). In the spider
diagram in Fig. 5(b) the solid black line represents the nominal values
and each axis corresponds to a material parameter, where change in
values is along respective axis. The worst-case values for all material
properties coincides with the lower bound of the uncertainty variables
which represents a 10% decrease of the material properties. Although
a global optimum is not guaranteed by solving (WCC), for simplicity
these values are henceforth refereed to as worst-case values.

For NE2, Fig. 6(a) shows the composite design given by (DO) with
nominal material properties. The material distribution is symmetric
and the laminate contain predominantly off-axis ±45◦ plies while the
amount of 0◦∕90◦ is at the lower limit set by the MC1 constraint, 𝑛CML =
2, in (DO). Fig. 6(b) shows that the worst-case deviation of the material
properties for NE2 is at the lower limit for all uncertainty variables and
corresponds to a 10% decrease of the constitutive properties.

Fig. 7 shows the results for NE3. The composite laminate in Fig. 7(a)
contains only off-axis ±45◦ plies and is a valid solution as MC1 in
(DO) is set to 𝑛CML = 0 for this example. Fig. 7(b) shows that NE3
follows a similar pattern to NE1 and NE2 for (WCC) in that, with the
exception of 𝜈12, the independent material properties retain a value of
the uncertainty variables at the lower limit with an overall decrease
of 10% value of material properties. For 𝜈12, Fig. 7(b) indicate that
the worst-case value is at the upper limit of the associated uncertainty
variable.
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Table 6
Effect of material uncertainty on the compliance. 𝑓 is the objective function value, and
𝛥𝑓 is difference between objective function value from (DO) and (WCC).

Run ID Problem 𝑓 𝛥𝑓

NE1.01 DO 401.44 11.4%NE1.02 WCC 447.29

NE2.01 DO 919.73 11.4%NE2.02 WCC 1024.34

NE3.01 DO 111.82 11.4%NE3.02 WCC 124.57

Table 6 summarizes the effects of material uncertainty on the com-
pliance for all NE:s. The results presented in Table 6 show that the
compliance increases with 11.4% for WCC compared to DO with nom-
inal material properties. This is observed for all numerical examples
and correlates well to the decrease of 10% of the material properties
that was observed for WCC results in Figs. 5–7. The result for NE3 in
Fig. 7 and Table 6 indicate that the Poisson’s ratio 𝜈12 does not have an
significant impact on material uncertainty as 𝛥𝑓 for NE3 is the same
as for NE1 and NE2, respectively. The results for the compliance case
verify the conclusions provided in Appendix B that worst-case results
correspond to the elastic moduli attaining their respective lower bound.

6.2. Strength-based problem

For the strength-based optimization problem the results generated
by (DO) and (WCC) for NE1 are visualized in Fig. 8 while Figs. 9 and 10
shows the results for NE2 and NE3, respectively. All designs obtained
by (DO) have a high level of non-discreteness of the design variable.
The effect of material uncertainty on the objective of the optimization
problem is given in Table 7.

Fig. 8(a) shows the composite design provided by (DO) using nom-
inal material properties. We observe a symmetric material distribution
and the composite laminate contains an even mixture of both 0◦∕90◦

and off-axis ±45◦ plies. The spider diagram in Fig. 8(b) shows the worst-
case deviation of the nominal properties from their nominal values
obtained by (WCC). Here the worst-case deviation correspond to 𝐸2 and
𝜈12 at the upper bound of the uncertainty variables while the remaining
material properties are at the lower bound. Figs. 8(c) and 8(d) show
the maximum value of the effective failure index (8) across the design
domain for (DO) and (WCC), respectively. The failure plots are scaled to
their respective maximum value and a comparison indicate no change
in the overall pattern of the failure index between (DO) and (WCC).
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Fig. 6. NE2 — Results from (DO) and (WCC) for the compliance problem.
Fig. 7. NE3 — Results from (DO) and (WCC) for the compliance problem.
For NE2, Fig. 9(a) shows a composite laminate containing primarily
off-axis ±45◦ plies with a minimum amount of 0◦∕90◦, and a symmetric
material distribution. Fig. 9(b) presents a worst-case deviation of the
material properties for NE2 in which 𝐸1 and 𝜈12 take on values at the
lower limit of the uncertainty variables while the remaining indepen-
dent material properties are set to the upper limit. The failure index
plots displayed in Figs. 9(c) and 9(d) follow the same pattern as the
failure plots for NE1 in Fig. 8 which show no significant change in
composite failure between (DO) and (WCC).

Fig. 10(a) shows the composite design given by (DO) for NE3. Much
like design obtained in Fig. 7(a) for compliance, the composite laminate
contains only off-axis ±45◦ plies. However, compared to the design in
Fig. 7(a) the material distribution in Fig. 10(a) is of uniform thickness
across the design domain for the strength based optimization problem.
Furthermore, Fig. 10(b) displays the worst-case deviation, which for
NE3 corresponds to values at the lower bound for 𝐸1, 𝐺23 and 𝜈12 while
𝐸2, 𝐺12 and 𝐺13 retain values at the upper bound. As was the case for
NE1 and NE2 in Fig. 8 and Fig. 9 respectively, Figs. 10(c) and 10(d)
indicate no significant difference in composite failure between (DO)
and (WCC) for NE3.

Table 7 shows the effect of material uncertainty on the objec-
tive of the strength-based optimization problem using Tsai–Wu failure
criteria. Here 𝑓 are the objective function values given by the 𝓁𝑝-
norm formulation in (17), while eff represent the maximum failure
8

𝑒𝑙
index (8) computed for the design. These results indicate that the 𝓁𝑝-
norm with 𝑃 = 8 will, depending on the NE, overestimate the true
maximum failure index of the designs with 27% − 34% compared to
eff
𝑒𝑙 . The overestimation of the 𝓁𝑝-norm is consistent for (DO) and

(WCC) for each NE, however further investigation is needed to improve
the accuracy. The data in Table 7 shows an increase in the objective
function value of 21.3% for NE1 when comparing (DO) and (WCC),
and slightly higher difference of 23.7% for eff

𝑒𝑙 indices is observed.
Similar effect is also present for NE2 where the objective function value
increases with 22.8% and eff

𝑒𝑙 with 24.5% for WCC compared to DO.
For NE3 we observe a lower impact of material uncertainty compared
to NE1 and NE2 as the objective function increases with 17.8% and eff

𝑒𝑙
with 18.4%, respectively. Overall, for all three NE:s the data in Table 7
shows a significant impact of material uncertainty on the objective
function and failure indexes for the designs, which for all numerical
examples exceeds the ±10% change of the constitutive properties.
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Fig. 8. NE1 — Results from (DO) and (WCC) for the strength-based problem.
Table 7
Strength-based problem, effects of material uncertainty. 𝑓 is the objective function
value and  eff

𝑒𝑙 is the maximum failure index. 𝛥𝑓 and 𝛥 eff
𝑒𝑙 is the difference in objective

function value and failure index, respectively, between DO and WCC.
Run ID Problem 𝑓 𝛥𝑓  eff

𝑒𝑙 𝛥 eff
𝑒𝑙

NE1.01 DO 0.89 21.3% 0.59 23.7%NE1.02 WCC 1.08 0.73

NE2.01 DO 1.36 22.8% 0.98 24.5%NE2.02 WCC 1.67 1.22

NE2.01 DO 0.90 17.8% 0.65 18.4%NE2.02 WCC 1.06 0.77

7. Conclusions

We have proposed a method to quantify the effects of material
uncertainty on the response of composite laminate structures optimized
using a simultaneous topology and material optimization approach for
stiffness and strength-based problems. The method is based on the
parametrization of independent constitutive properties of a composite
material using a set of uncertainty variables that enable a direct cou-
pling of the material properties to the composite design problem, and
provides an efficient way to handle variations of material properties
in stiffness driven design optimization problems. The method was
evaluated on compliance and strength based optimization problems
including different loads, boundary conditions and composite design-
and manufacturing constraints. For the compliance problem, the results
in Section 6 verifies the theoretical assumption in Appendix B when
considering material uncertainty. It shows that the objective value
increases in proportion to the decrease of the material properties for
9

all numerical examples and the worst-case deviation coincide with the
lower bound for the elastic moduli. For the strength-based problem,
the results in Section 6 indicate that material uncertainty has a high
impact on the failure of composite design. The results show an increase
of 18% − 25% in failure index for the numerical examples when worst-
case deviation of the material properties is considered. The deviation
of material properties from their nominal values is not consistent, as
each NE retains a unique combination of worst-case values for the
independent material properties.

Uncertainty quantification with the proposed method provides an
efficient approach to quantify the influence of material uncertainty
on structural performance. The general formulation of WCC makes
it directly applicable to all composite parametrization techniques for
structural optimization. The limited size of the WCC optimization prob-
lem and the small number of function evaluations required, makes the
proposed method suitable for integration in robust and reliability base
structural optimization frameworks.

The proposed method was tested on designs optimized for either
compliance or strength, but is readily applied to problem formula-
tions were these responses are treated simultaneously, for example by
combining them in a weighted sum or using one as objective and the
other as constraint. As illustrated by the numerical examples, the UQ
then has to be performed separately for each response as the worst
material parameters for compliance may not be the same as those for
strength.



Composite Structures 305 (2023) 116409D. Hozić et al.
Fig. 9. NE2 — Results from (DO) and (WCC) for the compliance problem.
Fig. 10. NE3 — Results from (DO) and (WCC) for the compliance problem.
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Appendix A. Derivatives of the constitutive matrix 𝑪(𝝃)

The derivatives of the constitutive matrix 𝑪
(

𝝃
)

in (22b) are given
using (5)–(7) for all uncertainty variables 𝝃 as given in Box I.

Appendix B. Worst case for the compliance problem

The compliance can be written in terms of the potential energy as2

1
2
𝑭 𝖳𝒖(𝑪) = − min

𝒗∈R𝑛

{1
2
𝒗𝖳𝑲(𝑪)𝒗 − 𝑭 𝖳𝒗

}

, (B.1)

where 𝑛 is the number of degrees of freedom. Consider two constitutive
matrices 𝑪1 and 𝑪2 such that 𝑪2 ≻ 𝑪1 ≻ 𝟎 everywhere in the design
domain (the notation 𝑨 ≻ 𝑩 means that 𝑨−𝑩 is positive definite). We
now show that
1
2
𝑭 𝖳𝒖(𝑪2) <

1
2
𝑭 𝖳𝒖(𝑪1), (B.2)

i.e. the matrix 𝑪1 gives a less stiff material (recall that compliance is
inversely related to stiffness).

A stiffness matrix of the form

𝑲(𝑪) =
𝑚
∑

𝑒=1
∫𝛺𝑒

𝑩𝖳
𝑒𝑪𝑩𝑒 d𝑉

will be positive definite with appropriate support conditions and a
positive definite constitutive matrix 𝑪 . Letting 𝒗 be an arbitrary vector
we get, since 𝑪2 − 𝑪1 ≻ 𝟎,

𝒗𝖳𝑲(𝑪2)𝒗 − 𝒗𝖳𝑲(𝑪1)𝒗 = 𝒗𝖳𝑲(𝑪2 − 𝑪1)𝒗 > 0, (B.3)

1 SEC - https://emobilitycentre.se/.
2 This is easy to verify by noting that a solution to the minimization

problem must satisfy 𝑲(𝑪)𝒖 = 𝑭 and inserting this into the objective function.
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i.e. 𝒗𝖳𝑲(𝑪2)𝒗 − 𝒗𝖳𝑲(𝑪1)𝒗. Using (B.1) we then get
1
2
𝑭 𝖳𝒖(𝑪2) = − min

𝒗∈R𝑛

{1
2
𝒗𝖳𝑲(𝑪2)𝒗 − 𝑭 𝖳𝒗

}

<

− min
𝒗∈R𝑛

{1
2
𝒗𝖳𝑲(𝑪1)𝒗 − 𝑭 𝖳𝒗

}

= 1
2
𝑭 𝖳𝒖(𝑪1),

since (B.3) holds for arbitrary 𝒗 ≠ 𝟎. The compliance is thus mono-
tone decreasing (with respect to the ordering defined by ⪰) in the
constitutive matrix.

Now consider the worst-case problem

max
𝑪∶𝑪⪯𝑪⪯𝑪

1
2
𝒇𝖳𝒖(𝑪),

with limits 𝑪 and 𝑪 on the constitutive matrix. We now show that
the solution, i.e. the worst constitutive matrix is the lower limit 𝑪 . To
this end we use proof by contradiction. Assume that 𝑪∗ is an optimal
solution such that 𝑪∗ ≺ 𝑪. By definition of an optimal solution we have
1
2
𝒇𝖳𝒖(𝑪∗) ≥ 1

2
𝒇𝖳𝒖(𝑪), ∀𝑪 ∶ 𝑪 ⪯ 𝑪 ⪯ 𝑪 .

However, since 𝑪∗ ≺ 𝑪 we also have
1
2
𝒇𝖳𝒖(𝑪∗) < 1

2
𝒇𝖳𝒖(𝑪). (B.4)

Since 𝑪 is feasible, this contradicts the statement that 𝑪∗ is an optimal
solution such that 𝑪∗ ≺ 𝑪 . Therefore we must have 𝑪∗ = 𝑪 . In other
words, the ’’lowest’’ value of the constitutive matrix is the worst.

Keeping the Poisson’s ratios in the constitutive matrix (5) fixed,
this matrix is linear in 𝝃 = (𝜉1,… 𝜉5)𝖳. Then the element-wise strict
inequality 𝝃2 > 𝝃1 > 𝟎 implies 𝑪(𝝃2) = 𝑪(𝝃2 − 𝝃1 + 𝝃1) = 𝑪(𝝃1) +𝑪(𝝃2 −
𝝃1) ≻ 𝑪(𝝃1), whence it follows using a similar line of reasoning as in
the previous paragraph that the ’’lowest’’ vector 𝝃1 will be the worst.

Allowing for variations of the Poisson’s ratio complicates the situa-
tion as seen next.

Poisson’s ratio

While the problem of finding the worst constitutive matrix is triv-
ially solvable if only the elastic moduli varies, finding the worst Pois-
son’s ratio appears to be a more complex problem. To see this, consider
the even simpler case of an isotropic material with fixed Young’s
modulus. With compliance as the response of interest, the problem of
finding the worst Poisson’s ratio reads:

max
𝜈∶𝜈≤𝜈≤𝜈

1
2
𝑭 𝖳𝒖(𝜈).

Unlike for the Young’s modulus, the compliance is not monotone in
the Poisson’s ratio. Nor is the compliance strictly convex in 𝜈, in which
case the solution would always be either 𝜈 = 𝜈 or 𝜈 = 𝜈. In general, the
dependence on 𝜈 seems to be dependent on the boundary conditions.
This is illustrated in Fig. B.11 which shows the compliance as a function
of Poisson’s ratio for a structure modeled as a single constant strain
triangle (CST) membrane element for 2D elasticity (most materials have
a Poisson’s ratio in the interval (0, 0.5), hence we have chosen the values
as limits here).
Fig. B.11. Compliance as a function of Poisson’s ratio for a single CST element in plane stress with various DOFs locked. With 𝜈 = 0 and 𝜈 and a load of the form 𝒇 = 𝟏 we see
that only in the right-most case (with solution 𝜈 = 0) is the worst Poisson’s ratio found at the boundary of the feasible set.

https://emobilitycentre.se/
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