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Abstract 
In-situ gold resource estimation using satellite remote sensing and machine learning in 
defunct tailing storage facilities (South Africa)  
Shenelle Agard 
 
The mining industry generates billions of tonnes of waste annually, which is often stored in tailings 
storage facilities (TSF). This waste is generated from the extraction of ore from surface or underground 
mines, as well as from metallurgical processing and low-grade stockpiles. TSF can have significant 
environmental impacts, as they can cause acid mine drainage resulting in the leaching and transport of 
heavy metals into ground and surface waters. With increasing demand for critical raw material, recent 
studies have shown that the valorisation of mine waste can be a potential secondary source of critical 
raw materials. The valorisation of mine waste is possible when the waste is accurately characterised.  
    A novel method that uses multispectral satellite remote sensing and machine learning to estimate the 
mineral resource in a defunct TSF in the Witwatersrand Basin, South Africa is proposed in this research. 
Four machine learning models: 1) random forest (RF); 2) adaptive boosting (AB); 3) extra trees (ET); 
and 4) k-nearest neighbours are developed using supervised machine learning. The models are trained 
using training data acquired from a TSF with known gold concentration located 3 kilometres from the 
TSF and deployed on the TSF to predict the gold grades. 
    The results of the machine learning model predictions indicates that machine learning models had 
high performances for predicting gold grades in the TSF. The AB, RF and ET, models performed best. 
Their performances were evaluated using the coefficient of determination (R2) value. The R2 values for 
the machine learning models were 0.95, 0.92, 0.87 and 0.70 for AB, ET, RF and kNN respectively. The 
mean gold grade predicted was 0.44 g/t by all machine learning models. This was compared to a 2D 
surficial geostatistical model which estimated 0.35g/t gold in the TSF using ordinary kriging and a 2D 
vertically averaged geostatistical model with an estimated 0.4 g/t mean gold grade. The short-wave 
infrared (SWIR) - band 11 at a 20 m spatial resolution had the highest correlation with the reflectance 
of gold in the TSF. This study demonstrated the value of leveraging multi-spectral remote sensing data 
and machine learning to perform mineral resource estimation in defunct TSF.  
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Popular science summary 
 
Using satellite images to determine gold grade in abandoned mine waste dump 
Shenelle Agard 
 
Like light entering and reflecting from our eyes, allowing us to see the beauty of our world in living 
colours, so are the works of satellites. We do not see them, but they are hundreds, orbiting the earth 
daily, taking millions of photographs with their special cameras. They are Earth’s best photographers. 
Satellites take photos of our land, oceans, atmosphere, coastal zones and forests, zooming in and out to 
capture details of the Earth. The photographs are cleaned to remove clouds and stored where it can be 
accessed and used by all of us. Google map app is one example of how we use the pictures taken by the 
satellites orbiting our Earth.  
    Abandoned mine waste dumps can cause harm to the environment when they are not constructed 
correctly. These waste dumps contain waste accumulated from many years of mining metals such as 
gold and other important metals that are used to manufacture our cellphones and important technologies 
such as wind turbines. When the waste is discarded in the waste dump, it may contain some of the 
important metals for wind turbines. As there is increasing need for these metals now and in the future, 
it is important that we know the quantity of important metals contained in the waste dumps. One way to 
do this is by using Earth’s best photographers, satellites.   
    Satellite images of the waste dump are used to determine the amount of gold in the surface of the 
waste dump. Holes drilled in the waste dump helps to determine the amount of gold in the depts of the 
waste dump. Four (4) different computer programs go through each image which contains millions of 
little images that represent the waves reflected from the surface of the waste dump and groups them. 
The computer programs know the waves reflected by gold. As such, they identify gold in the little 
images. All four computer programmes identified the average mean of gold grades as 0.44 grammes per 
tonne. This can be compared to actual gold mines where mine waste originates. Surface mines have 
estimated average gold grades of 1 to 4 grams per tonne while underground mines have estimated 
average gold grades of 2.6 to 9.8 grammes per tonne. This differs by country. This shows that satellite 
images and computer programming can help to determine the amount of gold in an abandoned waste 
dump that is comparable to actual gold deposits globally. 
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1. Introduction 
Raw materials from the mining and extractive industries are crucial for our daily lives. The global 

population is expected to increase to 8.5 billion by 2030, and the supply of raw materials for this 

increasing population is viewed as a global challenge. Specifically, the availability of raw materials is 

crucial for societal development. The demand for minerals is expected to double between 2010 and 2030 

due to the green energy transition intended to meet the sustainable development goal (SDGs), as well as 

additional demands in the raw materials sector (European Union, 2016). As the demand for raw 

materials continue to increase, more resources must be mined to meet the increasing demand.  

    Globally, mining has been estimated to produce billions of tonnes of waste annually. This is expected 

to grow exponentially due to the increasing raw material demand and the extraction of minerals from 

ore deposits with lower grades. Mine waste is produced at different steps in the mineral process chain, 

including during: (a) mining, (b) mineral processing and metallurgy (classified as solid mining), and (c) 

processing of metallurgical wastes and mine waters. Mine tailing is but one component of processing 

and metallurgical waste. Tailings are known to be mixtures of crushed rock and processing fluids from 

mills, washeries or concentrators that remain after the extraction of economic metals, minerals, mineral 

fuels or coal from the mine (Lottermoser, 2010). When mining a metalliferous mineral resource, only a 

few percent of copper, zinc, lead or parts per million of gold are extracted (Lottermoser, 2010). This 

results in a small amount of valuable component being extracted and the production of large volumes of 

mine tailings. These mine tailings may contain minerals below the economic cut-off grade and are 

unfortunately lost due to processing inefficiency. These minerals, though non-economical when 

disposed as tailings, may become economical if there is an increase in market demand due to new 

applications and/or new and more efficient technologies to aid their recovery. 

    Mine tailings are stored in retaining dams known as tailing dams and range from benign to hazardous. 

Mine tailings are based on the mineralogy of the ore deposit from which they were produced from and 

the chemicals used in processing the ore such as cyanide. Mine tailings may pose safety, health and 

environmental risks. The main safety risk associated with active tailing dams, is dam failure due to: (a) 

meteorological conditions such as rainfall and snow melt, (b) poor monitoring, (c) poor site conditions, 

and (d) poor design/construction. Tailing dam failure has become well-known, as illustrated with the 

catastrophic failure of Vale’s Corrego do Feijao mine in Brumadinho, Brazil in 2019. This particular 

event resulted in the release of 11.4 million m3 of mine waste into the environment, killing 259 people 

(Global Tailings Review, 2019). Furthermore, in their work, Rico et al. (2008) found that in Europe, out 

of the 26 cases of tailing dam failure compiled, 38% occurred in the UK and 56% were distributed 

between 9 other countries (Bulgaria, France, Ireland, Italy, Republic of Macedonia, Poland, Romania, 

Spain and Sweden). In addition to this, tailing dams pose environmental risks regardless of whether they 

are active or abandoned. These environmental risks include: (a) the generation of dust which can contain 
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a variety of hazardous substances such as radionuclides in the case of open tailing impoundment (Njinga 

et al., 2017 cited in Nwaila et al., 2021a); (b) heavy metal contamination; and (c) acid mine drainage 

(AMD). AMD results in the generation of acidic water, often characterized by a pH value <5, caused by 

the oxidation of sulphide minerals by aerial exposure and/or the presence of oxygenated water (Taberima 

et al., 2020). AMD has adverse effects on aquatic life and can mobilize heavy metals into surface and 

ground water systems (Taberima et al., 2020). 

    The successful exploitation of mine tailings as a secondary resource (also known as an unconventional 

resource), akin to primary ore deposits, can be achieved when the tailings are characterized (Mulenshi 

et al., 2021). In 2017, the European Commission reported in the Extractive Waste Directive 

(2006/21/EC) that the degree of valorisation is usually low, concluding there was a lack of strategic 

policies on mine waste valorisation (European Commission 2017a). Furthermore, it stated that of the 

reported 3,462 closed and abandoned mine waste facilities, 47 % were not specified in their resource 

characteristics. 

    Remote sensing has been used in the exploration of primary ore deposits over the past decades. 

Specifically, it has been applied in identifying spectral anomalies formed by ore deposit forming 

processes (Rajesh, 2004). Satellite remote sensing has been used for mineral mapping in mine tailings 

(Zabcic et al., 2014, Kasmaeeyazdi et al., 2021). Minerals and metals have special spectral 

characteristics that can be detected through remote sensing. The use of satellite remote sensing combined 

with machine learning (ML) can reduce time and cost for tailings storage facilities (TSF) mineral 

resource estimation and characterization. 

    Given the worldwide amount of existing mine waste, combined with the need to characterize them 

and their environmental footprint, in this research I propose the use of satellite remote sensing and 

machine learning for mineral resource estimation of defunct TSF owned by Sibanye-Stillwater in the 

Witwatersrand Basin in South Africa. In this research remote sensing data was combined with borehole 

drilling data to estimate the gold grade in the TSF. Gold grades were predicted using trained machine 

learning models and estimated for the borehole data using ordinary kriging (OK). Using tailings 

generated from the Witwatersrand goldfields as an example, this research proposes a novel methodology 

for mineral resource estimation in defunct TSF. The results of the research can be applied to tailing 

facilities in Europe given the similarities between the TSF construction and management in the 

Witwatersrand goldfields and Europe. 
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2.   Aim and objectives  
 
The aim of the research project is to explore the use of satellite remote sensing imagery with remote 

sensing for mineral resource estimation of the Lindum TSF (Witwatersrand Basin, South Africa). The 

expected outcome is the characterisation of the Lindum TSF and the generation of prediction maps using 

time series analysis. 

To fulfil the aim, the following objectives will be addressed:  

• Determine gold concentrations/grades in the TSF from satellite imagery. 

• Develop prediction maps and models of the TSF using time series analysis. 

 

2.1. Research questions 
 

• Can satellite images acquired through Copernicus Satellite-2 be used to identify gold 

concentrations in a gold TSF? 

• What are the most applicable image resolutions and band combinations for detecting gold 

concentrations in gold TSF? 

• What are barriers and challenges to using satellite images in waste characterization and 

valorisation? 

• What are the most suitable machine learning algorithm(s) for classifying satellite imagery for 

detecting gold concentrations? 

• Are low resolution multispectral satellite images effective in determining gold concentrations 

in TSF? 
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3.   Background 
 
3.1. Industry collaborator 
 
Sibanye-Stillwater Limited is an international mining and metals processing company whose portfolio 

includes metals processing and projects and investments. It has operations in the United States of 

America, South Africa, Canada and Finland. It was initially established in February 2013. The main 

commodities mined by the company are platinum, palladium, rhodium, and gold. It has become 

renowned internationally for its platinum group metals (PGM) catalytic platinum and palladium 

production being one of the world’s leading producers.  

 

3.2. Study area 
 
The proposed study area is a TSF, located in the Witwatersrand Basin (Gauteng Province, South Africa), 

approximately 40 km west of Johannesburg, as shown in Figure 1. The TSF forms part of Sibanye-

Stillwater’s Randfontein surface gold and uranium operations. The TSF is a result of over 100 years of 

mining using inefficient mineral processing techniques. This resulted in some amounts of gold being 

disposed in the TSF. The TSF is subdivided into three sections or ‘dumps’, the Lindum Reefs no.1A 

which forms the base of the TSF, Lindum Reefs no. 2 and Lindum Reefs no. 1, which forms the top of 

the TSF (Figure 2). In 2007 and 2013 drilling programs along regularly spaced grids were conducted on 

the TSF as shown in Figure 3. Assay results for a borehole survey showed gold and uranium 

mineralization in the TSF, with varying grades for each section of the TSF. It was found that the gold 

mineralization was concentrated at the base of the main zone and it was proposed that the gold had 

migrated to this zone due to gravitational settling attributed to rainwater infiltration (Deswick Mining 

Consultants, 2014).  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Location of the Lindum TSF in South Africa. The Lindum TSF is located at the red point. 
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Figure 2. Sections of Lindum TSF adapted from Deswick Mining Consultants (2014). 

 

 

Figure 3. Borehole positions in sections of the TSF on top of LiDAR 3D geostatistical model. 
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3.2.1. Geological setting 

The Mesoarchean Witwatersrand Supergroup is in the central north to north-eastern part of South Africa 

and is located in the centre of the Kaapvaal Craton. Its dimensions are at least 350 kilometres, in a north-

easterly direction, and 200 kilometres in a north-westerly direction (Frimmel, 2014; Gold One 

International, 2013). The basin was formed over a period of 360 Ma between 3074 and 2714 Ma (Robb 

and Meyer, 1995). The Basin was formed when deltas were deposited by rivers flowing into an inland 

sea, depositing layers of sediments with a thickness of 7500 metres (Durand 2012). The Witwatersrand 

Supergroup shown in Figure 4 is divided into West Rand and Central Rand Groups. At the base of the 

Witwatersrand Supergroup are rocks of the West Rand Group which are overlain by rocks from the 

Central Rand Group (Agangi et al., 2015). The West and Central Rand Groups are further subdivided. 

The West Rand Group consist of three units: (a) Hospital Subgroup, (b) the Government Subgroup, and 

(c) the Jeppestown Subgroup. The Central Rand Group is mineralised into the Subgroups, Johannesburg, 

which is said to contain the richest gold deposit mined and Turffontein (Durand, 2012). The Central 

Rand Super Group is the host to several gold-bearing ‘reefs’, most of which are concentrated in 

conglomerates (Robb and Meyer, 1995; Frimmel, 2005). The Ventersdorp Supergroup overlays the 

Witwatersrand Supergroup and consist of a base of gold bearing conglomerates that sits on the Central 

Rand Subgroup known as the Ventersdorp Contact Reef. The Ventersdorp Supergroup is covered by the 

Transvaal Supergroup and the younger Karoo Supergroup. The gold mined at the Randfontein operation 

occurs in quartz-pebble conglomeritic beds which are hosted in a thick succession of metamorphosed 

sediments (Gold One International Limited, 2013).  
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Figure 4. Regional geology map of Witwatersrand Basin and surrounding area (Modified after Frimmel, 2014). 
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3.3. Previous work 
 
3.3.1 Valorisation of mine tailings  
 
Valorisation refers to the economically viable utilization of a material stream which was once considered 

as non-valuable waste (Binnemans et al., 2015). Waste valorisation aligns with the circular economy 

approach which aims to reduce the production of waste in the mining industry. This differs from the 

current mining industry’s: take-make-waste approach. In works published by Kinnunen and Kaksonen 

(2019), and Parviainen et al., (2020), the reason for valorisation of mine waste is linked to the world’s 

need to meet sustainable development goals, as well as to reduce environmental and safety risks. Mine 

wastes stored in TSF are well known to pose environmental, health and safety risks. Additionally, 

maintenance costs for abandoned waste facilities are another key factor driving the need to valorise mine 

waste (Kinnunen and Kaksonen, 2019; Cavalho, 2016). 

    In the European Union (EU) there is an increasing interest in assessing the resource potential of 

anthropogenic resources to meet current mineral/metal demands (European Commission, 2011). 

Samples collected from bauxite and phosphogypsum (by-product of phosphate rocks) mine tailings both 

showed concentrations of rare earth elements (REEs). Examples include Mountain Pass (USA), having 

3 to 5% rare earth oxide (REO) content, and Byan Obo (China) with 10% REE content, making them 

vast untapped resources for REEs (Binnemans et al., 2015). As the demand of metals and minerals 

increases, waste valorisation could be a solution that solves two problems at the same time. 

Characterisation is a key step for the valorisation of mine waste. There are knowledge gaps in historical 

tailings characterisation, which must be filled (Mulenshi et al., 2021; European Commission, 2018), 

including constructing resource estimation models to determine the economic feasibility of a mine 

tailing deposit (Blanning et al., 2022; Kinnunen and Kaksonen, 2019). 

 

3.3.2 Satellite remote sensing in mine waste valorisation and characterisation 
 
Satellite remote sensing is the acquisition of data about an object on the earth surface without having 

physical contact with the object. Hyperspectral remote sensing has been used in the mining industry for 

ore deposit exploration by identifying and thematically mapping spectral anomalies of interest (Rajesh, 

2004). Remote sensing can be an alternative to expensive TSF valorisation methods implemented by 

mining companies such as borehole drilling. Though remote sensing is a surface method, its use in 

mineral prospecting (Celik and Genc, 2021) is becoming invaluable. Remote sensing has been used to 

identify metal oxides and oxyhydroxides such as hematite, goethite and jarosite, as well as to predict 

tailings leachate pH in pyrite mine tailings (Zabcic et al., 2014). Hunt (1977) demonstrated that 

numerous absorption bands exist for mineral structures due to elemental electronic transitions which are 

most often created by iron combined with water, hydroxyl ions or carbonates. Kasmaeeyazdi et al. 

(2021) used Sentinel-2 imagery to map aluminium in bauxite mining residues to address the lack of 
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sufficient in-situ samples for effective geostatistical modelling of material concentration variability. The 

method they employed confirmed the benefits of combining remote sensing and geostatistics for 

mapping metal variabilities. Further, Zhang et al. (2023a) highlighted the inadequacy of using traditional 

resource models and perspectivity maps which rely on static drill holes and sediment geochemical data 

for evaluating TSF. Their research suggested that transfer learning can be used to create dynamic 

resource models to evaluate large TSF without drilling additional boreholes and without additional 

geochemical data. Zhang et al. (2023b) demonstrated the use of machine learning and remote sensing 

to produce inferential models to generate accurate elemental maps by combining remote sensing data 

from Landsat-8 Operational Land Imager and Sentinel-2 satellites and geochemical data. As applications 

of remote sensing in mineral exploration are increasing, there are limitations to its use.  

 
3.3.3 Machine Learning in mineral resource estimation 
 
Mineral resource estimation is the determination of the grade and tonnage of a mineral deposit based on 

its geological and geochemical characteristics using various estimation methods (Dumakor-Dupey and 

Arya, 2021). Historically, geostatistics has been used for mineral resource estimations. Geostatistics is 

a branch of statistics, which entails the study of distribution in space applied to solve problems 

associated with ore deposit evaluation (Matheron, 1963). Geostatistics have been effective for 

estimating mineral resources of primary ore deposits. However, it performs poorly with extremely 

heterogeneous datasets, by over or under-estimating mineable resources, and requiring significant 

manual processing (Dumakor-Dupey and Arya, 2021). In addition to this, Nwaila et al., (2020) argued 

that the standard industry practice for the evaluation of point-wise metal grades relies on assays which 

are costly and is typically limited for large ore bodies, thus introducing high degrees of uncertainties in 

their estimation. Even though highly accurate, a limitation of the approach is that it is not automatable, 

and the period between the initiation of the assay and the results was not negligible. As such they 

advocated for the adoption of ML resource estimation (Nwaila et al., 2020).  

    ML is a sub-discipline of artificial intelligence based on a machine’s ability to mimic biological 

learning (Mitchell, 1997, cited by Zhang et al., 2023b; Zhang et al., 2021c). There are numerous 

applications of ML in geoscience, including: (a) metal accounting (Ghorbani, Nwaila and Chirisa, 2022), 

(b) characterising objects and events, (c) estimating variables from observations, (d) long-term 

forecasting of geoscience variables, (e) mining relationships in geoscience data, and (f) target 

exploration (Zhang et al., 2021a, 2021b). In addition to this, other useful applications of ML and data 

analytics are in processing legacy data for optimising metallurgical processes, as well as using legacy 

and operational data combined with automatable analytics to obtain data driven insights about mine 

process performance (Ghorbani et al., 2020, 2021). Nwaila et al. (2020) demonstrated that machine 

learning-based predictive modelling methods, such as GS-Pred, is highly automatable, extensible and 



 

10 

produces results near-instantaneously, relative to assays, indicating that ML can be a viable tool for 

mine production, planning and target exploration.  

    ML algorithms classifies and predicts outcomes by learning the behaviour and patterns in training 

data (Lary, 2016; Dumakor-Dupey and Arya, 2021). ML algorithms can be supervised, unsupervised or 

semi-supervised, which is a combination of the two (Nwaila et al., 2020; Zhang et al., 2021c). The main 

difference between the two categories of ML algorithms is the labels in the training data subset (Berry 

et al., 2019). In supervised machine learning, each sample consists of an input and a desired output and 

is used to analyse training data to generate a mathematical function used to map inputs to outputs (Zuo, 

2017). In unsupervised machine learning, the algorithm recognises patterns without the involvement of 

a target attribute. That is, all the variables used in the analysis are used as inputs (Berry et al., 2019). 

Supervised and unsupervised learning is further classified based on their capabilities, with supervised 

learning being classified as classification and regression algorithms (Berry et al., 2019). Regression 

algorithms are continuous output algorithms that attempt to establish relationships between a predicted 

quantity and its features (Nwaila et al., 2020). There are numerous ML algorithms used today for 

predictive modelling. The ML algorithms that belong to the supervised learning group are artificial 

neural networks (ANN), support vector machines (SVM), random forests (RF), logistic regression (LR) 

and the Bayesian network (Zuo, 2017). Autoencoder network, self-organizing map (SOM) and K-means 

clustering belong to the unsupervised learning group (Zou, 2017). 

    For this research, the details of all the unsupervised learning methods were not explored. Instead, 

more details on supervised learning methods that are used commonly in geoscience and more 

specifically in mineral resource exploration were explored. These algorithms are k-nearest neighbour 

(kNN), random forest (RF), adaptive boosting (AB) and extra trees (ET). The selection of the algorithms 

was based on factors highlighted by Zhang et al. (2021c) and includes, (a) computation time, (b) data 

density including feature space density, (c) bias-variance trade-off, (d) function complexity, (e) feature 

space dimensionality, (f) input and prediction and (g) feature interactions. These algorithms represent 

various potentially useful approaches that includes but is not limited to, a simple non-parametric 

approach (kNN), and ensemble and boosted approaches (RF and AB respectively) (Nwaila et al., 2022). 

The kNN algorithm is a nonparametric simple instance-based learning algorithm (Kotsiantis et al., 

2007). Unlike other classifiers, it is not trained to produce a model (Maxwell et al., 2018). The main 

principle of kNN during classification is that individual test samples are compared locally to k 

neighboring training samples in variable space, and their category is identified according to the 

classification of the nearest k neighbors (El Bouchefry and De Souza, 2020). The kNN locates the k-

nearest instances to the query instance and determines its class by identifying the single most frequent 

class label (Kotsiantis et al., 2007). 

    A RF classifier is an ensemble classifier that produces multiple decision trees, using a randomly 

selected subset of training samples and variables. This classifier has become popular within the remote 

sensing community due to the accuracy of its classifications (Belgiu and Drăguţ, 2016).  RF employs a 
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bagging operation and generates multiple decision trees based on randomly selected subset of the 

training data (Ge et al., 2020). The majority ‘vote’ of all the trees is used to assign a final class for each 

unknown. This directly overcomes the problem that any one tree may not be optimal, but by 

incorporating many trees, a global optimum should be obtained (Maxwell et al., 2018). One type of 

boosted decision tree which are also ensemble methods using decision tree is AB, or Adaboost. Decision 

trees are flowchart-like hierarchical structures that partition the trees recursively (Zhang et al., 2021c). 

AB has three components: weak learners (the individual trees, which are individually poor predictors), 

a loss function that applies a penalty for incorrect classifications, and an additive model that allows the 

individual weak learners to be combined so that the loss function is minimized (Maxwell et al., 2018). 

In ET, a group of unpruned decision tree is created in accordance with the traditional top-down method 

and involves randomizing both attribute and cut-point selection while splitting a node of a tee 

(Ampomah, Qin and Nyame, 2020). Like RF, ET is a tree-based ensemble method and is proposed as 

computationally efficient and highly randomized extension of RF (John et al., 2016). The two differs in 

that, unlike RF, ET does not use bagging to generate the training subset to develop trees and ET 

randomly selects the best feature to split the node in the node-splitting step (John et al., 2016). 
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4. Data and Methods 
4.1. Source of data 
 
The remote sensing data used for this research was acquired from the Copernicus programme’s Sentinel-

2 satellites. The objective of the Copernicus programme is to continuously gather high resolution optical 

images over land and coastal regions (Ge et al., 2018). The programme was developed by the European 

Commission. Sentinel-2A and 2B, are satellites in the family of Sentinels in the Copernicus programme. 

The satellites were specifically developed by the European Space Agency (ESA) to complement remote 

sensing services for vegetation, land cover and environmental monitoring (U.S. Geological Survey, 

2018). The Sentinels have multispectral cameras and are designed as twins of satellites to reduce their 

revisit times, hence reducing the image acquisition time (U.S. Geological Survey, 2018). Sentinel-2 was 

the second twins launched in the Copernicus program. Sentinel-2A was launched on 23 June 2015 at 

01:52 UTC from the ESA’s base in French Guiana and Sentinel-2B was launched on the 7 March 2017 

at 01:49 UTC.   

    Sentinel-2 collects data between north latitude 83 degrees and 56 latitudes south. Sentinel-2 carries a 

multispectral instrument (MSI) which can measure 13 bands (B1 to B12) in the visible and near-infrared 

(VNIR) to shortwave infrared (SWIR) wavelengths along a 290 kilometres orbital swath at different 

spatial resolutions (U.S. Geological Survey, 2018; European Space Agency, 2022). Each band has its 

own characteristics as shown in Table 1 and measure electromagnetic (EM) wave reflectance along 

various points of the EM spectrum. The spatial resolution of the 13 bands ranges from 10 to 60 metres 

with bands 1, 9 and 10 having a spatial resolution of 60 metres; bands 2, 3, 4 and 8 with spatial resolution 

10 metres and bands 5, 6, 7 and 8A having spatial resolution 20 metres Table 1. Bands 1 to 12 were used 

for this research. However, bands 1, 9 and 10, were not used in data processing due to Sentinel band 10 

being uncalibrated. This results in noise patterns on bright images caused by detector saturation (Ge et 

al., 2020). Bands 1 and 9 were used for atmospheric correction.  

    The estimated revisit time is 10 days for Sentinel-2 with 5 days for each Sentinel-2 satellite. The 

Sentinel-2 image acquired were from the 24 August 2015 to 4 October 2019 (Table 2). The metadata 

information for the first image of the series is: “coordinate reference system (CRS) from European 

Petroleum Survey Group (EPSG) 32735, Transform: Affine [20, 0, 499980, 0, -20, 7200040]; ID: 

COPERNICUS/S2/20150824T082656_20150824T082659_T35JNM; Version: 1618001523716097; 

Data taken identifier: GS2A_20150824T082656_000890_N02.04; ‘SPACECRAFT_NAME’: 

‘Sentinel-2A’”. Bands 1 to 12. Sentinel-2 MSI products are fixed size granules or tiles. These granules 

consist of 100 x 100 kilometer squared ortho-images in Universal Transform Mercator (UTM)/WGS84 

projection, with one tile per spectral band (European Space Agency 2015). The L1C-level Sentinel 

granules were used for this research. The images used the UTM coordinate projection and the World 

Geodetic System 1984 (WGS84) datum.   
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Geochemical data in the form of gold assays was acquired from the company, Sibanye-Stillwater. The 

data was acquired in 2013 during the company’s drilling program to determine the reclamation potential 

of the Lindum TSF. The gold assays were taken from boreholes along an equally spaced 10 x 10 metres 

grid. The coordinates of the boreholes were adjusted for confidentiality for the purpose of this research. 

All the coordinates were converted to UTM geographical coordinate system and WGS 84 datum to 

confirm with the coordinates system of the satellite images. The data contained in the gold assay dataset 

included, x and y coordinates, gold grade in grams per tonnes (g/t), borehole depth and borehole spacing.
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Table 1. Sentinel-2 satellite image band characteristics. (Available online: 
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath). 
 

VNIR Bands Descriptio
n 

Sentinel-2A Sentinel-2B Spatial 
resolutio
n (m) Central 

wavelength 
(nm) 

Bandwidt
h (nm) 

Central 
waveleng
th (nm) 

Bandwidth 
(nm) 

VNIR B1 Aerosol 442.7 21 442.2 21 60 

VNIR B2 Blue 492.4 66 492.1 66 10 

VNIR B3 Green 559.8 36 559.0 36 10 

VNIR B4 Red 664.6 31 664.9 31 10 

VNIR B5 Vegetation 
red edge 704.1 15 703.8 16 20 

VNIR B6 Vegetation 
red edge 740.5 15 739.1 15 20 

VNIR B7 Vegetation 
red edge 782.8 20 779.7 20 20 

VNIR B8 NIR 832.8 106 832.9 106 10 

VNIR B8A NIR 864.7 21 864.0 22 20 

VNIR B9 Water 
vapour 945.1 20 943.2 21 60 

SWIR B10 Cirrus 1373.5 31 1376.9 30 60 

SWIR B11 SWIR 1613.7 91 1610.4 94 20 

SWIR B12 SWIR 2202.4 175 2185.7 185 20 
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Table 2. Sentinel-2 images and the date of acquisition. Images acquired from 24 August 2015 to 04 October 2019. 
 

Remote Sensing file name 

0 COPERNICUS_S2_20150824T082656_20150824T082659_T35JNM.tif 

1 COPERNICUS_S2_20151003T075826_20151003T082014_T35JNM.tif 

2 COPERNICUS_S2_20160207T075102_20160207T081608_T35JNM.tif 

3 COPERNICUS_S2_20160430T080012_20160430T082712_T35JNM.tif 

4 COPERNICUS_S2_20160706T074942_20160706T081431_T35JNM.tif 

5 COPERNICUS_S2_20161007T080002_20161007T082247_T35JNM.tif 

6 COPERNICUS_S2_20170316T075651_20170316T081607_T35JNM.tif 

7 COPERNICUS_S2_20170402T074931_20170402T081156_T35JNM.tif 

8 COPERNICUS_S2_20170706T074609_20170706T080902_T35JNM.tif 

9 COPERNICUS_S2_20171004T074919_20171004T081651_T35JNM.tif 

10 COPERNICUS_S2_20180303T074819_20180303T081305_T35JNM.tif 

11 COPERNICUS_S2_20180407T074611_20180407T081314_T35JNM.tif 

12 COPERNICUS_S2_20181007T075811_20181007T081838_T35JNM.tif 

13 COPERNICUS_S2_20190122T075221_20190122T081410_T35JNM.tif 

14 COPERNICUS_S2_20190427T074619_20190427T081452_T35JNM.tif 

15 COPERNICUS_S2_20190701T074621_20190701T080914_T35JNM.tif 

16 COPERNICUS_S2_20191004T074749_20191004T080733_T35JNM.tif 
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Figure 5.  Block diagram of the research methodology. 
 
 
4.2. Geostatistical based predictive modelling 
 
The steps followed for geostatistical based predictive modelling are displayed in Figure 5. Predictive 

modeling is the process of developing a mathematical tool or model that generates an accurate prediction 

(Kuhn and Johnson, 2013). Predictive modelling is used in various disciplines such as geoscience, 

biomedical science, finance, and gaming.  Predictive modelling has been used in geoscience since the 

1960s in France by Matheron who developed Kriging after the name of Daniel G Krige. He was probably 

the first to make use of spatial correlation and best linear unbiased estimator in the field of mineral 

resource evaluation (David, 2012). Kriging can be defined as a progressive interpolation method for the 

estimation of a regionalized variable at selected points (Krige, 1951; Matheron, 1963; Nwaila et al., 

2020).  
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4.2.1. 3D Block model 
 
Geostatistical predictive modelling was used in this research to develop a three-dimensional 

geostatistical model using borehole data acquired from Sibanye-Stillwater. The borehole data was used 

to develop the three-dimensional (3D) geostatistical resource model using Ordinary Kriging (OK) 

estimation (Figure 6). To develop the 3D block model, an exploratory data analysis was done before 

processing the data. Descriptive statistics of the dataset and the probability distribution function for the 

data was plotted using a histogram as displayed in Chapter 5. In addition, this step was done to detect 

and remove outliers and ensure data accuracy for the geographic coordinates and gold assay values. OK 

estimator was used to estimate the gold grades at unsampled  locations within the TSF. Two key 

conditions for OK are, a Gaussian or normally distributed dataset and the spatial covariances. Data is 

normally distributed normally when it has a mean of zero or has the probability distribution of a bell-

shaped curve. A normal-score transformation was done on the data to ensure the data was normally 

distributed for the Kriging estimation.  

 

 
Figure 6. 3D geostatistical block model of the TSF. 
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4.2.2. Variogram analysis 
 

Variogram models and anisotropic ellipsoid are commonly used for spatial interpolation (Zerzour et al., 

2021) and is a preliminary step in the Kriging estimation (Lamamra et al., 2019). The underlying 

assumption of Kriging is that a random field yield results that are better correlated when the distance 

between the observations is smaller and the direction of the observation is favorable (Nwaila et al., 

2020). Kriging utilizes the variogram, which does not depend on the actual value of the variable (data), 

rather its spatial distribution and internal spatial structure (Akbar, 2012). As a result of this, to calculate 

the Kriging weights and estimation, a variogram analysis was done to determine the global variances in 

the TSF. The experimental variogram was calculated using equation 1. 

 

𝛾(ℎ) = !
"#(%)

∑ [#(%)
' (𝑍(𝑥') − 𝑍(𝑥' + ℎ)-

"]      Equation 1 

 

γ (h) is the experimental variogram obtained from data values. 

xi: location of the sample. 

Z (xi): the values of the sample.  

N (h): the number of the pairs (xi, xi + h) separated by a distance h. 

Z (xi: + h) is a value at location xi: + h. 

 

In Ordinary Kriging the sum of the weights is constrained to equal to 1. This allows for building a 

Kriging estimator that does not require prior knowledge of the stationary mean, yet remains unbiased in 

the sense (Akbar, 2012). The Kriging estimator is represented by equation 2 and the estimation error in 

equation 3.  

𝑍/(𝑥() = 	∑ 𝜆'𝑍(𝑥'))
'*!      Equation 2 

Where 𝑍/(𝑥()	 is the Kriging estimate at location x0; Z (xi) the sampled value at location xi; and lI the 

weighting factor for Z (xi). The estimation error is: 

 

𝑍/(𝑥() − 𝑍	(𝑥() = 𝑅(𝑥() = 	∑ 𝜆'𝑍(𝑥'))
'*! − 	𝑍	(𝑥()     Equation 3 

 

where Z(x0) is the unknown true value at x0; and R(x0) the estimation error. For an unbiased estimator, 

the mean of the estimation error must equal zero. 

 

𝐸	{𝑅	(𝑥()} = 	0.					Equation 4 

and 

∑ 𝜆' = 1)
'*!      Equation 5 
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4.2.3. 2D surficial and 2D vertically averaged geostatistical models 
 
A tabular surficial two-dimensional (2D) geostatistical model was developed from the 3D geostatistical 

model following the methodology of Zhang et al. (2023b) using data points located close to the surface 

of the TSF at a maximum depth of 5 metres (Figure 7). Like the 3D geostatistical model, this surficial 

model is also a static model. As such it is unable to capture vertical changes in the TSF derived over 

time due to water infiltration and internal slumping (Deswick Mining Consultants, 2014). This was done 

to ensure the most accurate comparison of the geostatistical model and the prediction maps developed 

using ML models.   
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Figure 7. Visualization of 2D vertically averaged (a) surficial (b) geostatistical model of the of the TSF, using ML 
overlaid on top of the satellite-borne imagery of the TSF (Zhang et al., 2022a). 

 

4.3. Machine learning-based predictive modelling 
Machine learning (ML) is a sub-discipline of artificial intelligence used to model and predict patterns in 

large and/or complex datasets. The workflow in supervised machine learning algorithm deployment 

presented by Nwaila et al. (2020) was used for the supervised classification in this research. This 

includes: 1) data pre-processing; 2) classification/regressor training; 3) tuning of hyperparameters; and 

4) performance evaluation (Figure 8). 

 
Figure 8. ML methodology followed the steps outlined in the block diagram. Adapted from Nwaila et al., 2020. 

 

Data pre-
processing

Model 
Training

Model 
Testing Deployment
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4.3.1. Data pre-processing  

The satellite images were treated initially in a pre-processing step to ensure data quality and to reduce 

errors during processing. In the pre-processing step, actions taken were: 1) atmospheric correction 

models were applied to remove the effects of the atmosphere, 2) radiometric calibration, 3) geometric 

correction, and 4) noise removal (Nwaila et al., 2022). The satellite images used in this research 

consisted top of the atmosphere (TOA) reflectance, as such, they contained contributions from the 

atmosphere. The presence of small and large particles in the atmosphere can cause absorption, refraction 

and scattering of electromagnetic (EM) waves reflected from surfaces on the earth surface and 

transmitted to satellite sensors. This can affect quantitative analysis during image processing as they can 

introduce errors into the process.  

    Atmospheric correction involved the estimation of atmospheric parameters and the retrieval of surface 

reflectance (Liang and Wang, 2019). It was used to remove the presence of scattered or reflected waves 

due to gases and aerosols present in the atmosphere on the reflected waves measured by the MSI. The 

Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) method was used for 

atmospheric correction. This method is based on first-principles atmospheric correction and corrects 

wavelengths up to 3 metres in the VNIR, and SWIR ranges (Nwaila et al., 2022). Noise interfering with 

an image system can affect final display effect of the image. This is derived from the photoelectric 

detectors and can take the form of dark current noise, thermal noise and photon shot noise (Zheng and 

Xu, 2021). Removal of these noise effects can increase image value as it increases the image quality. 

    Geometric correction, also known as georeferencing was done in the pre-processing step. It was used 

to ensure that all datasets used in the processing step were in the same geometric coordinate system. In 

this case, the coordinate system of the images was transformed to UTM along with the gold assay 

borehole data. Satellite sensors collect data along a path and as the satellites move the angle of 

reflectance changes giving rise to variation of light on images which can affect image interpretation and 

classification (Government of Canada, 2015). Radiometric calibration removes these inferences and 

increases the quality of the image. 

 

4.3.2. Model training  

Model training followed the method used by Zhang et al. (2023b). Training data was acquired from 

Dump 20, a TSF located 3 kilometres north of the Lindum TSF for which geochemical data was 

available in the form of a high-resolution 3D model (Figure 9). The geochemical data and satellite 

images from Landsat-8 Operational Land Imager and Sentinel-2 were first fused together. Satellite 

images for the two satellites were used because the images acquired from the Sentinel-2 satellite had 

missing data due to anthropogenic disturbance in the TSF when the images were acquired.  The images 

from the Landsat-8 satellite were used to provide the missing data. As such when the images from 

Sentinel-2 were processed, this section of the TSF was removed and replaced with the data from 
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Landsat-8 to ensure an accurate representation of the TSF. It is common practice in ML to separate the 

dataset into three groups, one part for use as training data, another for testing and the last for model 

validation, in the method called train/test split (Boroh et al., 2022). The dataset was segregated using 

this method and the parameter grid defined. The parameters for the models can be found in Table 3 (see 

Appendix C) and is based on Nwaila et al. (2022). The Geostatistical Software Library (GSLIB) 

(Deutsch, 1992) was used for model training and data processing. This software ran on the Python 3.10.6 

language for the data processing step. 

 

 
Figure 9. Satellite image of Dump 20 TSF where training data was obtained from and Lindum TSF (Zhang et 
al., 2023a). 

Dimensionality reduction was performed on the 3D model to produce a 2D model which was later fused 

with the satellite images. This was to ensure accurate fusing of the images acquired using satellite remote 

sensing which is a 2D surface method. The surface data points of the 3D model located at 0 – 10 

centimetres below the surface were used to acquire geochemical data for the surface of the TSF. The 3D 

model was made up of 276, 622 gridded points at a resolution of 0.5 metres with variable volumetric 

coverage (Zhang et al., 2023b). The 2D surface model consisted of 63.65% of the total data points of 

the 3D model. The geometric coordinates of the 2D surficial model were then matched with the Landsat-

8 satellite images using a grid search using the Spearman rank correlation, averaged across all bands 

(Zhang et al., 2023b). This was to ensure accurate match of the coordinates and the data with the time 

when the geochemical data was acquired with the satellite images. 

 

 



 

23 

Table 3. Parameter grid for employed machine learning algorithms. 

Method Parameters Model Name 

kNN number of neighbours = 3 Au_kNN 

RF 
max depth = 25, max features = 8, min samples per leaf 
= 1, min samples per split = 6, number of estimators = 
1500 

Au_RF 

ET 
max depth = 27, max features = 9, min samples per leaf 
= 1, min samples per split = 2, number of estimators = 
1000 

Au_ET 

AB 

base estimator = decision tree, base estimator max depth 
= 26, base estimator max features = 6, base estimator min 
samples per leaf = 2, base estimator min samples per split 
= 3, number of estimators = 500 

Au_AB 

 

 

4.3.3. Model cross-validation 

To evaluate each model to determine the robustness of the models generated, validation tests are carried 

out to determine model performance by comparison of the actual data with the estimated data. Three 

methods are used for model validation for geostatistical and ML prediction models (A.W. Boroh et al. 

2022). The three methods are the coefficient of determination (CoD) or R2, the mean absolute error 

(MAE) and the root mean square error (RMSE) (A.W. Boroh et al., 2022). For this research, two of the 

validation methods were used to validate the ML models and measure the performance of the 

geostatistical estimations. The CoD ranges from 0 to l and is a measure that shows how the difference 

in one variable usually a dependent variable can be used to show the difference in another variable. The 

closer the CoD to 1, the better the model. The function that depicts this is shown in equation 6. 

 

𝑅" = 1 −	 ∑ (,!*	,.!)"#
!$%

∑ (,!*	,/!	)"#
!'%

	      Equation 6 

 

The MAE is depicted in equation 7. MAE is a measure of the actual values and the predicted values. It 

is also referred to the measure of residuals. 

 

𝑀𝐴𝐸 =.;!
)
	∑ (𝑦' −	𝑦='))

'0!      Equation 7 

 
 
4.3.4. Deployment 

The deployment area was the Lindum TSF in the Witwatersrand goldfields of South Africa. The remote 
sensing images cover an area of 1.12 squared kilometres. 
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5. Results 
This chapter presents the results of the research based on the methodologies described in Chapter 4. The 

results are discussed in the context of previous work in the literature reviewed.  

 

5.1. Integration of geostatistical and machine learning models   
Qualitative and quantitative comparisons were made between the 2D geostatistical models, and the 

prediction maps generated from the four ML models described in Chapter 3. The Sentinel-2 image, 24 

August 2015 was used for the comparison between the 2D surficial geostatistical model, and the 

prediction maps generated using the ML models (Figure 10). The satellite image acquired closest to the 

time when the borehole survey was carried out on the TSF in 2013 was used in the comparison. This 

ensured the best comparison between ML and geostatistical methods. A visualization of the prediction 

maps generated by the four ML models shows high-grade gold pixel clusters in Section 1A of the TSF 

located north of the R41 road (Figure 10). This high-grade gold pixel cluster is prominent in the 

prediction map generated by the kNN model but is not observable in the 2D geostatistical models. In 

contrast, the 2D geostatistical models shows clusters of high-grade gold pixels in Section 1A locates in 

the south-eastern section of the TSF. This is absent in all the prediction maps shown in Figure 10.  

    Medium to high-grade gold pixel cluster is evident in Section 1A in the southern section of the of the 

TSF in all the prediction maps while lower grade pixel cluster can be seen in the 2D geostatistical 

models. Medium-grade gold pixel cluster is evident in prediction maps generated by AB, RF and kNN 

models in the Section 1 of the TSF located south of the main road and trending west to east. This cluster 

is not observable in the 2D geostatistical models for which lower gold grades are depicted. This confirms 

to the work of Boroh et al. (2022). They compared geostatistical and machine learning models for 

predicting geochemical concentration of iron and found that ML techniques such as kNN and RF 

performed better than geostatistical methods such as OK.  

    The mean gold grade predicted by the ML models is 0.44 g/t (Table 4). In comparison with the ML 

models, the mean gold grade was the same when rounded to three decimal places for the 2D vertically 

averaged model, but lower for the 2D surficial geostatistical model. The predicted gold grade were 0.35 

g/t and 0.44 g/t for the 2D surficial geostatistical model and the 2D vertically averaged geostatistical 

model respectively. This difference in mean gold grades can be attributed to the fact that the surficial 

2D geostatistical model was developed using surficial data points, while the vertically averaged 2D 

model captured greater depths of tailing in the TSF. In addition to this, the number of samples used for 

the predictions was higher for the ML models, with each having a sample count of 4048. The 2D 

geostatistical models had fewer samples, with each having a sample count of 3819.  
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Figure 10. (a, b) 2D geostatistical models; ML models using the image taken on 2015-08-24. (c) Aba boosting, 

(d) extra trees (I, (e) random forest (RF), (f) K-nearest neighbor (kNN). Visual differences between prediction 

maps the from ML models and the geostatistical models. 
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Table 4. Descriptive statistics of the predicted gold grades. 

Resource model type Count of 
samples Gold grade STD (g/t) Gold grade mean (g/t) 

2D surficial geostatistical 
model 

3819 0.22 0.35 

2D vertically averaged 
geostatistical model 

3819 0.23 0.44 

kNN 4048 0.04 0.44 

RF 4048 0.03 0.44 

ET 4048 0.03 0.44 

AB 4048 0.04 0.44 

 

A histogram plot comparing the predicted gold grades using the four ML models and the geostatistical 

models was plotted (Figure 11). This plot illustrates the distribution of the predicted gold grades for the 

ML models and the 2D geostatistical models. The mean predicted gold grades was observed to be higher 

for the ML models and the standard deviations were lower compared to the 2D geostatistical models. 

The wide spread of gold grades in the histogram plots for the 2D geostatistical models corresponds to 

the high standard deviations observed.  

 
Figure 11. Histogram of predicted gold grades for the 2D geostatistical and ML models. The geostatistical model 
histograms show bimodal behavior. 
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5.2. Transfer of machine learning models for predictive block modelling 
The performance of the machine learning models for the training and testing datasets was evaluated 

using the CoD value. The CoD value indicates the total variation in the predictions made by the models, 

as given in the predicted gold grades and those estimated using OK (Celik and Genc, 2021). The results 

showed AB, RF and ET models were the best performers for predicting gold in the TSF, compared to 

the kNN model. The CoD values for the ML predictions were 0.95 for AB, 0.92 for ET, 0.87 for RF, 

and 0.70 for kNN. This indicates that all machine learning models performed well at predicting gold in 

the TSF. A scatter plot comparing the actual gold grades predicted using the ML models and the OK 

gold estimates showed that the RF and ET plots had closer clusters of data points around the regression 

line, while the AB and kNN plots were more scattered (Figure 12). The CoD values were 0.62 for AB, 

0.75 for ET, 0.66 for RF, and 0.59 for kNN (Table 5). This shows a decrease in the CoD values when 

OK is performed on the predicted gold values. It should be noted that as OK was performed on the 

predicted gold grade values, all model performance decreased, with AB showing the highest decrease 

at 33 %, and kNN showing the lowest at 11 %. 

    Further, a visual observation of the OK estimation maps (Figure 13) shows the differences in the 

spatial distribution of the gold grades on the surface of the TSF. This shows that OK estimations were 

visually similar to the actual gold grades predicted by the ML models. In the AB and RF estimation 

maps, similar patterns of high gold grade estimates can be seen (Figure 13). This is also observed for 

ET and kNN but are less prominent.   

 
Table 5.  Comparison of CoD for the ML model prediction and the Kriged prediction values. 

 AB ET RF kNN 

R2 ML Models 0.95 0.92 0.87 0.70 

R2 ML Kriged 0.62 0.75 0.66 0.59 

Reduction factor 

(%) 
33 17 21 11 
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Figure 12. CoD plot of ML methods for gold grade prediction in the TSF. (a) AB, (b) ET, (c) RF and (d) kNN. 
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Figure 13. Visualization of OK gold grade estimates showing spatial variation in gold grades. (a) AB, (b) ET, (c) 
RF and (d) kNN. 

 

To determine spatial continuity in the TSF, a semi-variogram analysis was performed for each ML 

model (Figure 14). The nugget effect is approximately 0.5 and shows continuity at the origin. The 

ellipses in the bottom right of each of the plots indicates anisotropy of the gold grades in the TSF in the 

major and minor directions (Appendix E).  
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Figure 14. Experimental variogram with fitted variogram models.  (a) AB, (b) kNN, (c) RF and (d) ET. 
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5.3. Sentinel-2 multi-spectral band decomposition for prediction of gold 
AB had the highest CoD value between the training and test dataset. As such, it was used to show the 

reflectance response for gold in the TSF in five selected spectral bands. A quantitative comparison was 

made between spectral bands from one of the 17 Sentinel-2 images acquired for this research (Appendix 

B). The blue: band 2, green: band 3, red: band 4, visible to near infrared (VNIR): band 8 and shortwave 

infrared (SWIR): band 11 spectral bands of the Sentinel-2 image acquired on 4 October 2019 were used. 

The bands were selected based on their spatial resolution, the band wavelength and reduced noise levels. 

The spatial resolutions of the spectral bands are 10 metres for bands 2,3,4 and 8 and 20 metres for band 

11. The OK gold grade estimates predicted using each of the spectral bands were compared with each 

other to determine the estimation correlation. A visual observation of the OK estimation maps for each 

spectral band (Figure 15) shows high gold grade estimations and high-grade gold zones in the TSF. 

Similar high grade gold clusters can be seen for bands 3,4,8 and 11 in Section 1A located left of the 

centre of the TSF with a north-south trend. This high-grade zone is absent in the band 2 OK estimation 

map. Similarly, in the Section 1A of the TSF north of the R41 road, medium gold grades dominate in 

the estimation maps for Bands 4,8 and 11, with more prominent higher grades in bands 8 and 11 

estimation maps. The OK estimation map for Band 2 is dissimilar to the estimation maps for Bands 3, 

4, 8 and 11. A cross-validation was done using the actual predicted gold grades using the band 

reflectance and the OK estimations. The CoD for each band is shown in Table 6 and Figure 16. The 

CoD values for each OK estimation using the five different bands shows that SWIR - band 11 had the 

highest value across all machine learning methods. The SWIR band showed higher correlation with gold 

in the TSF. A comparison of the actual gold grades with OK estimation shows that SWIR - band 11 had 

the least number of residuals with a symmetrical plot, indicating that the actual and the estimated gold 

grades correlated well with each other (Figure 17). Bands 2, 3, 4, and 8 all had similar residuals.  

 
Table 6. CoD value for the comparison of the actual gold grade predictions and the OK estimations. 

Bands 
CoD 

AB RF kNN ET 

2 0.9223 0.9102 0.9115 0.9117 

3 0.9344 0.9364 0.9221 0.9219 

4 0.9301 0.9407 0.929 0.9288 

8 0.9335 0.9441 0.9339 0.9432 

11 0.9591 0.9598 0.9591 0.9592 
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Figure 15. OK estimation maps for the five spectral bands selected. (a) Band 8, (b) Band 3, (c) Band 11 and (d) 
Band 4 and (e) Band 2. 
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Figure 16. A comparison of the CoD plots for the predicted gold grades and the OK gold grade estimation 
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Figure 17. Plot of the residuals when comparing the actual and the predicted gold grades in the TSF. 
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6. Discussions 
In this chapter, the results presented in Chapter 5 is discussed in the context of previous research in the 

field. This discussion cites the work of others to support and explain the observations presented in 

Chapter 5. Consideration for the implications of the results for the exploration of critical raw materials 

in TSFs with respect to securing CRM in Europe is also discussed. 

 

6.1. Evaluation of prediction efficiency and accuracy 
Th prediction maps showed sections in the TSF with high gold grades. Section 1A of the TSF located 

north of the R41 road had high gold grade predictions for the Sentinel-2 satellite image acquired on 24 

August 2015. The high-grade zone was observed in all the ML prediction maps but was not observed in 

the 2D geostatistical models. This is attributed to the time lag between the date when the image was 

acquired and the date when the borehole data was collected in 2013. The high-gold grades predicted by 

the ML models in this section of the TSF correlates to the high density of bore holes drilled, indicating 

the company was expecting high gold grades at that location. This high-grade zone was not observed in 

the 2D geostatistical models. This can be attributed to the section of the TSF being located below the 

low-grade surface tailing shown in the 2D geostatistical models. Furthermore, this indicates that as the 

time lapse continued, the low-grade surface tailing was removed to access the high-grade zone below 

which was observed in the satellite images acquired in from 2015 to 2016. This can be seen using the 

time lapse prediction maps (Figure 18).  

    Section 1A located north of the R41 road is the first section of the TSF exploited by the company. 

The ML models were able to predict gold in TSF at locations with known high-grade gold 

mineralisation. This high-grade zone was not observed in the 2D surface geostatistical model indicating 

that the mineralized zone was located greater than 10cm below the surface of the TSF. The 2D vertically 

averaged model which was expected to capture the vertical dimension of the TSF was unable to do so 

since this high-grade zone was clearly sampled in the borehole survey and was evident at the base of 

this zone in the 3D geostatistical block model (Appendix D). This agrees with the work of Zhang et al., 

(2023b) that there is greater benefit in combining geochemical data and satellite imagery for the 

estimation of mineral resources in TSF. The combined use of geochemical data and remote sensing data 

to capture the vertical extent of the TSF is necessary given that remote sensing is a surface method. This 

can be an essential factor in the use of this methodology at locations such as the artic circle where there 

is snow cover on the surface of the during the year. 

    The high-grade zone in Section 1A located in the southeastern section of the TSF is observed in the 

2D geostatistical models but absent in the ML prediction maps. Based on the borehole positions in 

Figure 3, this zone was not sampled during the borehole survey. This high-grade zone can be attributed 

to extrapolation by the geostatistical model. Further observation shows a direct connection of this high-
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grade gold zone with a low-grade gold zone trending from west to southeastern in Section 1A of the 

TSF. The high-resolution satellite image in Figure 19 shows disturbances in the TSF which can be 

attributed to remining of Section 1A of the TSF. This remining could have caused exposure of the lower 

sections of the TSF to rain and oxygen resulting in subsequent secondary gold mineralization. As more 

tailing containing suphide minerals was exposed to oxygen and meteoric water it resulted in the 

production of acid mine drainage (AMD). In a TSF, factors such as weathering, rehabilitation and AMD 

redistributes various chemicals including target resources within the TSF Hansen (2015, 2018 cited in 

Nwaila et al., 2021). AMD can cause the leaching, mobilisation and transport of minerals in TSF from 

regions with higher to lower pH values. This is supported by the work of Parviainen et al. (2020) who 

found that acidic leachates resulting from sulphide oxidation in the vadose zone of the TSF they studied 

dissolved the secondary iron (Fe) precipitates in cemented layers, possibly remobilizing trace elements 

in the ground water.  The gold deposits in the Witwatersrand Basin are associated with uraninite pyrite 

(Frimmel, 2014). As the Fe is precipitated, the gold is liberated and becomes mobile. As such, AMD 

can be the contributing factor for the high-grade secondary mineralization in the Section 1A of the TSF.  

    The predictions from the training and test datasets had higher mean gold grade values when compared 

to the 2D geostatistical surficial model, with the latter also having lower mean gold grade when 

compared with the 2D vertically averaged geostatistical model. The 2D surficial geostatistical model 

was developed by dimensionality reduction and retained 63.65% of the original 3D model data (Zhang 

et al., 2022a). This indicates that fewer datapoints were used for the gold grade estimations for the 2D 

surficial geostatistical model. The 2D vertically averaged geostatistical models had a higher mean gold 

grade than the 2D surficial model but was similar to the mean gold grade of the ML models (Appendix 

A).  This is attributed to the vertically averaged 2D geostatistical model capturing greater depths of the 

TSF.  

    The Lindum TSF was constructed in the 1940s (Deswick Mining Consultants, 2014). TSFs are not 

homogeneous with multiple origins of spatial variability.  These origins of spatial variability observed 

in TSFs can be chronologically categorized as 1) variability of the originating ore body; 2) deposition 

ordering and shuffling; and 3) post-deposition chemical redistribution (Nwaila et al., 2021). As such, 

tailing stored in the TSF over time is subject to physical and chemical changes. This confirms to the 

work of (Deswick Mining Consultants, 2014) that reported that the high grades of gold in the TSF was 

found in Section 1A in the slimes. They further reported that the assay results from the borehole showed 

gold and uranium mineralization in the TSF, with varying grades for each section of the TSF. It was 

found that the gold mineralization was concentrated at the base of the main zone. They proposed that 

the gold had migrated to this zone due to gravitational settling which was attributed to rainwater 

infiltration. This confirms to the work of Parviainen et al. (2020) that found higher gold concentrations 

in deeper layers of the TSF they studied. They reported this was due to the gravitational deposition of 

heavier gold particles in the tailing slurry deposited in the tailing impoundment. As the gold 

mineralization undergoes physical and chemical changes in the TSF over time, the spatial distribution 



 

37 

of the gold is also changed. As such an assessment of spatial continuity using a semi-variogram analysis 

was done. The analysis indicates anisotropy of gold grades in all variogram plots indicating spatial 

continuity in the TSF.  

 
Figure 18. Prediction maps generated using AB ML model. Progressive mining of Section 1A shows the 

removal of the high-grade gold tailing. 
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Figure 19. Sentinel satellite image 6 January 2015. 

 
6.2. Assessment of the suitability of machine learning algorithm for spatial 

predictive modeling of gold in TSFs   
 
The use of ML methods has been shown useful in previous work for local and target exploration of 

conglomerate- hosted deposits (Nwaila et al., 2020; 2022; Celik and Genc, 2021) and mineral 

prospecting (Rodriguez-Galiano et al., 2015; Zhang et al., 2022). The performance of the ML models 

was the basis for the selection of the best algorithm for predicting gold in the TSF. The ML algorithms 

can learn patterns and approximate complex nonlinear mapping and exploit the information contained 

in a dataset without assumption of data distribution (Zou, 2017).  

    The performance of the models showed that AB, ET and RF performed best when compared with 

kNN for predicting gold in the TSF. This confirms with the work of Zhang et al. (2023b); Boroh et al. 

(2022) who showed that RF outperformed kNN due to its advantage of depending solely on the actual 

data to determine predictions and Nwaila et al. (2022). RF, ET and AB being tree based or ensemble 

classifier and outperforming kNN further confirms with the work of Maxwell et al. (2018) who found 

that ensemble methods were more effective than methods that use a single classifier. The performance 

of RF and AB is based on the notion that a set of classifiers do perform better than an individual classifier 

(Rodriguez-Galiano et al., 2012). However, the difference in the accuracies in predictions in RF and AB 

is attributed to how each method select the sample from which the decision is made. RF uses bagging 

while AB uses a random sampler. In bagging, each decision tree within the group which acts as a base 

estimator to establish the class label of an unlabelled instance is created by means of a sample with 

replacement from the training data (Ampomah, Qin and Nyame, 2020). 
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RF is a combination of tree predictors for which each tree depends on the values of a random vector 

sampled independently and with the same distribution for all trees in a forest of trees (Breiman, 2001). 

The decisions are made based on the weight of all the decisions each independent tree makes. In this 

method, since the decisions are made from the decisions of independent trees in the forest, each tree 

does not learn from the error made by other trees. AB does not use decision trees in the same sense as 

RF, in that, it uses stumps which are regarded as smaller trees in the decision-making process. As a 

decision is made, each stump learns from the error of the previous stump and adapts to making the new 

decision. Here, the decision-making process is not independent but the consideration of the decisions of 

other stumps are considered in the decision-making process. AB combines the output of weak regressors 

into weighted sum that represent the final output of the decision (Zhang et al., 2021c). This makes AB 

models more robust than RF, hence its higher prediction accuracy. In their work, Zhang et al., (2021c), 

found that when comparing algorithm selection and final testing AB and RF performed the predictions 

across all elements including REEs and chalcophiles.  

 

6.3. Efficiency of multi-spectral remote sensing band in encoding spatial 
features and gold concentration 

 
A visualization of the OK estimation maps of the five spectral bands clearly shows the reflectance values 

in the TSF. This indicates that all band amplitudes selected for the analysis were justified. The 

comparison of the CoD for the OK estimations for the five spectral bands using the four ML models, 

shows the SWIR - band 11 had the highest CoD values across all the ML models (Figure 16). This 

indicates that gold in the TSF had a good correlation with the SWIR - band 11. This confirms to the 

work of Rajendran and Nasir (2019) who showed that the SWIR, VNIR spectral bands of ASTER were 

useful for mapping of minerals and lithology. Remote sensing data have a depth penetration of 

approximately a few micrometres in the very near infrared wavelengths and only a few centimetres in 

the thermal infrared and microwave wavelengths (in hyper arid regions) (Rajesh, 2004).  

    The SWIR - band 11 had a higher CoD value. The VNIR bands also had high CoD values, indicating 

that the choice of spectral bands was not a major factor for the reflectance variations. Previous work by 

Zhang et al., 2023b showed that gold grade increased with band amplitude in a non-linear relationship 

when the geochemical data and the remote sensing data were fused together. The plot of the histogram 

of prediction residuals showed symmetric histogram plots for all the spectral bands analysed indicating 

low variation in the predicted gold grades and the OK estimations in the spectral bands analysed. Further, 

this indicates that there is a low variation of what the ML model AB can explain. This correlates to the 

AB prediction model having a high CoD when its performance was measured. 
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7. Recommendations 
The method explored in this research using satellite remote sensing and machine learning for mineral 

resource estimation in a defunct TSF can be explored further based on the results and the performance 

of the machine learning models. As such, the following are recommendations for future work: 

 
1. The ML models used in this research can be deployed in iron ore TSFs located in Sweden, 

Europe where exploratory work is caried out to determine the valorisation potential of REEs. 
This can be done to determine the transferability of the models to TSF with different 
geochemical compositions. This recommended work must take into consideration the 
environmental conditions in Nordic countries such as fog, prolong periods of snow cover in the 
winter months and the high reflectance values from snow and ice. 

 
2. Extended research can be done to compare the use of Sentinel-2 satellite images with higher 

resolution multispectral images using the methodology applied in this research. 
 

3. Furter work can be done using unsupervised classification on the test TSF used in this research 
and the results compared to determine the performance of the two ML methods in predicting 
gold concentration in the TSF. 
 

4. The development of a resource estimation workflow to standardize in-situ gold resource 
estimation using satellite remote sensing can be done based on this work.   
 

5. Determination of mineral domains in the TSF through further vertical extension of the depth 
dimension. 
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8. Conclusion 
The aim of this research was to explore the use of remote sensing and machine learning to characterise 

gold in a defunct TSF. The current demand for critical raw materials in Europe is increasing. With the 

EU having little to no primary ore deposits of CRMs such as REEs and phosphorous, the use of defunct 

TSF can serve as a secondary source of these CRMs in Europe. With current iron ore mines owned by 

Swedish mining companies already exploring ways to recover CRM from TSF and the large number of 

defunct TSF in Europe, exploiting TSF can move Europe closer to meeting increasing demands for 

CRMs. 

    The results of the study were consistent with the aim and objectives, that remote sensing and machine 

learning can be used to predict gold in a defunct TSF. ML algorithms were used to build prediction 

models which were trained on data from one TSF and tested on a TSF derived from mining gold in the 

Witwatersrand Basin in South Africa. The deployment of the ML models on a different TSF showed 

there was replicability and generality of the models used in the research. In this sense, the models used 

on the TSF in South Africa can be deployed on a TSF in Europe to make predictions for gold and CRMs.  

    The ML models were effective at predicting gold in the TSF when compared to the use of traditional 

OK to develop the 2D and 3D geostatistical models. The accuracy of the ML models was excellent on 

the training and testing sets indicating that the models performed excellently in predicting gold in the 

TSF. The mean gold grade predicted by the ML models was 0.4 g/t, corresponding to similar gold grade 

in the 2D vertically averaged geostatistical model with 0.4 g/t. Gold in the TSF was predicted by training 

models based on AB, RF, kNN and ET. The results showed that AB, ET and RF prediction models 

performed the best in predicting gold. The SWIR – band 11 at spatial resolution 20 showed higher 

correlation with gold in the TSF. 

    The advantage of the method proposed in this research for mineral resource estimation is that 

Sentinel-2 satellite images are free and requires less time to develop a resource model in comparison to 

costly borehole surveys. This method however has limitations.  One limitation is that remote sensing is 

useless in areas with substantial overburden such as vegetation or water (Zhang et al., 2023b), snow 

cover and fog during the winter months as is the case of Nordic countries such as Sweden, Norway and 

Finland. As such, careful choice of the type of remote sensing data used must maximise desirable land 

coverage where necessary (Zhang et al., 2023b). In this case there is need for innovation to meet this 

challenge given the benefits of using satellite imagery and ML for mineral resource estimation in defunct 

TSF. In addition to this, remote sensing can be inadequate when used alone for mineral resource 

estimation in TSFs. As such, supplementing the use of remote sensing with geochemical data can add 

value to the dataset in the vertical dimension and the mineral resource estimation. Other limitation to 

the use of the methodology proposed in this research is the absence of circularity in mining operations. 

As a circular approach to doing business, there is more scope for the methods proposed in this research. 

With a focus on resource supply and considering the factors that affect circularity of CRM such as: 1) 
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production ceilings; 2) decreases in reserves; 3) changes in the production ratio of bigger to smaller 

deposit; 4) inefficient price systems and 5) increases in extraction cost (Overland, 2019, cited in Nwaila 

et al., 2021a), there can be a shift in the demand for CRM and hence the use of the proposed 

methodology. 
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Appendices 

Appendix A. Descriptive statistics plot for the resource 
models. (a) kNN, (b) ET, (c) RF and (d) AB. 
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Appendix B. Histogram and descriptive statistics plot for 
reflectance in spectral bands 2, 3, 4, 8 and 11. 

 
Descriptive statistics of the spectral bands analysed. 

 
Band 2 Band 3 Band 4 Band 5 Band 8 Band 11 

count 4048.0 4048 4048 4048 4048 4048 

mean 0.4 0.4 0.5 0.5 0.6 0.6 

std 0.2 0.17 0.21 0.19 0.18 0.18 

min 0.01 0.00 0.01 0.01 0.01 0.03 

25% 0.3 0.3 0.4 0.4 0.5 0.5 

50% 0.4 0.4 0.5 0.6 0.6 0.6 

75% 0.5 0.5 0.7 0.7 0.7 0.7 

max 1.0 1.0 1.0 1.0 1.0 1.0 
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Appendix C. Machine learning algorithms prediction 
parameters. 
 

  
Elem
ent 

Size 
Fracti
on 

Meth
od 

Call CoD Parameters Mode
l 
Name 

0 Au 1.0 kNN KNeighborsRegres
sor() 

0.70140181215
9353 

{'n_neighbors': 3, 'weights': 
'distance'} 

Au_k
NN 

1 Au 1.0 RF RandomForestReg
ressor() 

0.87450269898
51363 

{'max_depth': 25, 
'max_features': 8, 
'min_samples_leaf': 1, 
'min_samples_split': 6, 
'n_estimators': 1500} 

Au_R
F 

2 Au 1.0 ET ExtraTreesRegress
or() 

0.92081811609
17104 

{'max_depth': 27, 
'max_features': 9, 
'min_samples_leaf': 1, 
'min_samples_split': 2, 
'n_estimators': 1000} 

Au_E
T 

3 Au 1.0 AB AdaBoostRegresso
r() 

0.95019236395
80201 

{'base_estimator': 
DecisionTreeRegressor(max
_depth=26, max_features=6, 
min_samples_leaf=2, 
                      min_samples_s
plit=3), 
'base_estimator__max_depth
': 26, 
'base_estimator__max_featur
es': 6, 
'base_estimator__min_sampl
es_leaf': 2, 
'base_estimator__min_sampl
es_split': 3, 'n_estimators': 
500} 

Au_A
B 
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Appendix D. 3D Block model showing boreholes drilled in 
Lindum TSF. 
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Appendix E. Variogram maps for bands 2, 3, 4, 8 and 11 
using AB predictions. 
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