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Abstract 

New chemicals are constantly produced and large data gaps exist on hazards of currently used 
industrial chemicals, stressing the need for rapid, ethically sound and cost-efficient hazard 
assessment methods. Traditional methods for effect assessment based on animal testing, do 
not meet these requirements and thus the toxicology field has been moving towards the 
development of new approach methodologies which include in vitro approaches but also 
computational methods. The current work has mainly focused on computational tools but also 
employed in vitro and in vivo methodologies for the development and validation of the in silico 
approaches. 

We firstly explored chemical variation of emerging chemicals as a basis for selecting sub-
groups of per- and polyfluoroalkyl substances (PFASs) and bisphenols for Papers I and II. 
These compounds can be used for future testing and as case study compounds for in silico tools 
development. The PFASs selection showed compounds with large differences in structure and 
highlighted the lack of knowledge for large parts of the PFASs chemical domain. This likely is 
the main driver of the low predictive accuracy of some current fate models and the need for 
expanding their applicability domains.  

In Paper II we investigated the toxicokinetics of selected bisphenols in a commonly studied 
model organism, the zebrafish (Danio rerio), and developed a physiologically-based 
toxicokinetic model. Novel data for fish biotransformation was derived and showed lower rates 
than those measured in humans, providing valuable insight for both model parameterization 
and for chemical safety assessment using fish. The model also demonstrated the ability to 
predict and rank hazard of these bisphenols in terms of organ-specific bioaccumulation making 
it a useful tool for chemical screening and prioritization efforts. The results indicate that 
bisphenols AP, C and Z as well as tetrabromo bisphenol A may have larger potential for 
bioaccumulation than the widely used bisphenol A (BPA), indicating that these compounds do 
not constitute safer industrial substitutions.   

Lastly, we present in Paper III the development of a toxicokinetic model for the zebrafish 
embryo life-stage. Since the zebrafish embryo test is widely applied in toxicology research, the 
developed model provides a tool to better understand how varying testing conditions may 
affect dose at target thus providing a means to compare internal effect concentrations. 
Additionally, we applied the model in combination with data on estrogenic activity in order to 
rank the relative hazard of investigated bisphenols, which showed that bisphenols AF, C, B and 
Z may be more hazardous than BPA. 

Overall the developed computational tools showed good predictive performance and 
improvements in parameterization, thus providing tools for understanding dose at target and 
toxicokinetic variation of emerging substances. Furthermore, the thesis presents novel data 
and findings for per- and polyfluoroalkyl substances and bisphenols, which are environmental 
pollutants of emerging concern of relevance for future hazard assessments and substitution 
processes.



ii 
 

Enkel Sammanfattning på Svenska 

Industrikemikalier som hamnar i miljön är i fokus för modern toxikologi och miljöforskning. 
Framförallt egenskaper som bioackumulering och hormonstörande egenskaper är viktiga 
områden. Nya kemikalier utvecklas i snabb takt och det finns ett stort behov av att bedöma 
deras faror med snabba, etiskt sunda och kostnadseffektiva metoder. Traditionella metoder för 
effektbedömning baserade på djurförsök uppfyller inte dessa krav och därför har toxikologin 
gått mot utvecklingen av nya metoder som inkluderar cellbaserade metoder men också 
beräkningsmetoder. Arbetet i denna avhandling har huvudsakligen fokuserat på utveckling av 
beräkningsmodeller men även använt cellförsök och djurförsök för att förbättra och validera 
beräkningsmetoder. 

Vi använde först beräkningsmetoder för att utforska kemisk variation av nya kemikalier och 
som grund för att göra strategiska urval av per- och polyfluorerade alkylsubstanser (PFAS) och 
bisfenoler för Papper I och II. Dessa föreningar kan användas som framtida 
fallstudieföreningar för utveckling av nya beräkningsmodeller. Urvalet av PFAS omfattade 
föreningar med stora skillnader i kemisk struktur och visade att det finns stora brister i 
kunskaper om PFAS. Dessa dataluckor är till stor del orsaken till varför vissa 
beräkningsmodeller presterar dåligt för denna substansklass. Det är därför viktigt att förbättra 
modellerna baserat på ny data från ett strategiskt val av substanser. 

I Papper II undersökte vi toxikokinetik för utvalda bisfenoler i zebrafisk (Danio rerio). Vi 
utvecklade en fysiologiskt baserad toxikokinetisk modell som beskriver hur kemikalerna 
fördelar sig i zebrafisk. Vi bestämde metabol nedbrytning av valda ämnen i ett fiskbaserat 
system och data visade lägre nedbrytningshastighet än de som tidigare uppmätts hos 
människa. Dessa fynd är viktiga både för utveckling av modellen och för bedömning av 
kemikaliesäkerhet baserat på fisktester. Modellen visade också förmåga att förutsäga och 
rangordna faror för studerade bisfenoler genom att beräkna hur mycket som ackumulerar i 
olika organ. Resultaten indikerar att bisfenolerna AP, C och Z samt tetrabromobisfenol A har 
större potential för bioackumulering än bisfenol A (BPA), vilket indikerar att de ej är säkrare 
alternativ. 

Slutligen presenterar vi i Papper III utveckling av en toxikokinetisk modell för 
zebrafiskembryo. Eftersom embryotestet för zebrafisk används i stor utsträckning inom 
toxikologisk forskning kan den utvecklade modellen användas för att bättre förstå hur olika 
testförhållanden påverkar dos av kemikalier i embryo. Den kan därför utgöra ett viktigt verktyg 
för att jämföra koncentrationer i zebrafiskembryo som kan leda till negativa effekter. Vi 
använde också modellen tillsamans med mätningar av östrogen aktivitet för att rangordna den 
relativa risken för undersökta bisfenoler, vilket visade att bisfenolerna AF, C, B och Z kan vara 
mer farliga än BPA. 

Sammantaget visade de utvecklade beräkningsverktygen god prediktiv förmåga, vilket ger oss 
nya möjligheter att förstå dos vid målorgan och toxikokinetik för substanser som kan finnas i 
miljön. Dessutom presenterar avhandlingen nya fynd för miljöföroreningsgrupperna PFAS 
och bisfenoler av relevans för framtida riskbedömningar och substitutionsprocesser. 
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1 Introduction 

1.1 Environmental Pollutants 
Anthropogenic chemical pollution has been a long-time issue for environmental and human 
health, with the general public becoming more aware of it after the publication of Rachel 
Carson’s Silent Spring in 19621. Scientific research on the toxicity of pollutants has led to the 
ban of many hazardous substances and to the founding of numerous environmental protection 
agencies and international agreements aimed at safeguarding the environment including 
wildlife and humans from the harmful effects of chemical pollution2–5. There are many 
chemical properties that may be concerning from a risk assessment perspective. These 
properties include persistence, bioaccumulation2,6, toxicity such as endocrine disruption7 and 
even mobility8. Although there are numerous classes of chemicals with these concerning 
properties, recent research on persistent organic pollutants (POPs) has been heavily focused 
on poly- and perfluoroalkyl substances (PFASs) while in the case of endocrine disruption, 
bisphenol A (BPA) and its structural analogs have become a focal point.  

POPs have been recognized as an environmental threat for many years with the Stockholm 
Convention established as an international treaty aimed at protecting human health and the 
environment from their effects2. Persistent compounds are transformed or degraded slowly or 
not at all via biotic processes, such as enzymatic biotransformation or abiotic processes such 
as photolysis or hydrolysis9–11. The goals of the Stockholm Convention are to restrict or 
eliminate certain POPs based on their persistence, but also on their effects on both on human 
health and the environment. The list of POPs proposed by the Stockholm Convention covers 
polychlorinated biphenyls (PCBs), Aldrin, Chlordane, DDT, or Heptachlor to name a few. 
Recent additions to the list include perfluorooctane sulfonic acid (PFOS), perfluorooctanoic 
acid (PFOA) and perfluorohexane sulfonic acid (PFHxS), which belong to the group of PFASs2. 

Endocrine disrupting chemicals (EDCs) in the environment have been identified as a matter of 
toxicological concern for human health as well as other organisms7 and a guidance to evaluate 
these compounds has only recently been revised by the Organization for Economic Co-
operation and Development (OECD)12. In broad terms, endocrine disruptors are compounds 
that can alter and disrupt normal functions of the endocrine system and cause adverse 
outcomes as a consequence of specific endocrine mechanism of action as opposed to general 
toxicity. Endocrine mode of action can refer to activation or inhibition of receptors such as the 
estrogen or androgen receptor (ER or AR), binding to hormone distributors such as 
transthyretin (TTR) or any other disruption of the hypothalamic-pituitary-gonadal (HPG) and 
-thyroidal (HPT) axes7. Estrogen signaling is part of the HPG axis which is highly conserved in 
vertebrates and its disruption has been associated with various adverse effects on reproduction 
and embryonal development in many species13–16. Endocrine effects have been observed at very 
low levels with e.g., the developing embryos showing high sensitivity to long-term effects, 
which become apparent later in life. It is therefore important to assess the risk of 
environmental pollutants that can disturb the endocrine system and thus may exert adverse 
effects. Bisphenol A (BPA), has been the subject of much toxicological and environmental 
research, in part due to its ability to bind to the ER17,18 and disrupt estrogen dependent 
pathways. 

Due to the potential hazards and abundance in the environment of both PFASs and bisphenols, 
the current work has a particular focus on these chemicals and their environmental risk. 
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1.1.1 Per- and Polyfluoroalkyl Substances (PFASs) 
PFASs are a broad group of chemicals with numerous different properties and applications 
with over 4000 of them being registered in various chemical databases19,20. These compounds 
are being used for various industrial applications and can be found in consumer products such 
as non-stick coating in pans, water- or stain resistant fabrics, or fire-fighting foams21,22. The 
wide-spread application of certain PFASs can be attributed to their chemical stability making 
them resistant to most degradation processes. This in turn, however, make some PFASs highly 
persistent in the environment. Although a number of PFASs can be degraded via biotic and 
abiotic processes, some of the resulting transformation products have shown higher 
persistence than their parent compounds23–25. PFASs have been detected in various 
environmental matrixes such as soil, sediment, ground and surface waters, biota and human 
food26,27. Especially shorter chain PFASs have also been shown to be very mobile in some cases, 
making these compounds ubiquitous in the environment28. Additionally, previously studied 
PFASs have shown toxic properties in humans as well as various organisms. Observed adverse 
effects include immunotoxicity, hepatotoxicity, nephrotoxicity, metabolic and thyroid system 
disruption as well as developmental and reproductive toxicity29–31. Although toxicity data at 
environmentally relevant concentrations or in wildlife is limited, adverse effects have been 
observed in laboratory animals and epidemiological studies29,31,32. 

Due to their persistence, bioaccumulation, mobility and possible adverse effects in humans 
and wildlife, some PFASs display concerning properties both in terms of hazard and 
exposure20,29–31,33–35. Therefore, restricting PFASs as a group of chemicals has been recently 
proposed to ECHA by several member states36. There are however considerable knowledge 
gaps regarding the majority of PFASs with only a few PFAS being investigated in more detail, 
such as PFOS, PFOA and PFHxS. Ankley et al. 202129 lists current needs for advancing risk 
assessment of PFASs which included improvements in exposure and hazard assessment 
through better environmental monitoring, measuring bioaccumulation and toxicity testing of 
a wider group of PFASs. 

1.1.2 Bisphenols 
BPA is used in many industries for the production of polycarbonate plastics, epoxy resins, in 
thermal paper inks and food packaging37–39. Due to its endocrine disrupting properties, this 
compound has been replaced in many of these applications with other bisphenols such as 
bisphenol S (BPS) and F (BPF)37,40,41. Additionally, other structurally similar compounds such 
as bisphenol AF, AP, Z, C or B (BPAF, BPAP, BPZ, BPC, BPB) are used in various industrial 
applications, which can lead to human exposure through leakage from packaging, insulation, 
polymer coating and personal care products (PCPs)37,40–42. The endocrine properties of some 
of these structural analogs are still not thoroughly understood but many of them show similar 
capabilities to activate ER like BPA43. Several bisphenols have been detected in environmental 
matrixes such as soil and water, as well as in various organisms including humans and fish44–

51.  When comparing environmental occurrence of various bisphenols, BPA has been detected 
most frequently followed by BPS, BPF and BPAF51,52.  Additionally, BPAF, BPZ and BPAP 
showed higher bioaccumulation in fish than BPA indicating potential for higher internal 
exposure53. Several bisphenols have shown adverse effects in adult and embryo vertebrates 
including fish, rats and humans45,54–58. 
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Although BPA has been widely studied in literature, knowledge on the potential of other 
bisphenols to bioaccumulate and their toxicity in various organisms is still lacking. Thus, 
further research is needed to understand the potential risk of these compounds. 

 

1.2 Risk Assessment Approaches 
Assessing the risk of environmental pollutants requires knowledge on both their hazardous 
properties and their exposure potential to organisms. The risk assessment (RA) process usually 
starts with hazard identification, where potentially hazardous properties are investigated. Such 
an inherent property however, only poses a risk if exposure at a certain level also occurs. Thus, 
the next steps in a RA are exposure assessment followed by effect assessment that are evaluated 
in the the risk characterization step59,60. 

In order to assess exposure, information is needed about compound-specific fate properties so 
as to determine the distribution of the chemical in the environment, which can be further 
employed to determine exposure pathways. This analysis should consider mobility via 
transport through air or water or transformation through biotic and abiotic processes59. Such 
processes influence exposure by affecting how quickly a compound distributes in 
environmental matrixes and how long it remains in them. Environmental monitoring studies 
have been traditionally performed to investigate the concentrations of various pollutants in 
environmental matrixes such as soil or water, which give an indication of potential exposure 
to studied chemical61,62. However, identifying compounds in the environment and their fate 
properties is only an indirect measure of exposure as it does not consider uptake and 
elimination processes in various organisms. Absorption, distribution, metabolism and 
elimination (ADME) properties of compounds are all crucial for understanding the internal 
exposure and are therefore important considerations in the RA process. Assessing internal 
exposure can be done by analyzing the concentration in organisms through biomonitoring63. 
Such measurements have been done for humans in blood, serum or urine samples or for other 
species such as for example fish64,65. These studies require expensive analytical methods, which 
are generally targeted thus only detecting compounds that were looked for66–68. Although non-
target screening methods have shown great advancements in recent years, they are still 
technically difficult and costly approaches which show large uncertainties69.  

Effect assessment aims to investigate whether a compound causes adverse effects in 
organisms59. Although more data on effects are available for high production volume 
compounds as required by various legislations5, very little is known about many low volume 
chemicals which can still end up in the environment and lead to effects in exposed organisms. 
Traditional effect assessment has been based mainly on in vivo experiments in order to identify 
possible adverse effects. Such experiments are then used to derive a quantitative measure of 
hazard in the form of a no observed adverse effect level (NOAEL) or a predicted no observed 
effect concentration (PNEC) using assessment factors60,61.  Various model organisms have been 
established in laboratories for this purpose based on practical aspects but also on biological 
relevance such as similarity in physiology, genetics or pathology with humans. One of these 
models is the zebrafish (Danio rerio), which is a widely used model for investigating 
developmental, reproductive and neurotoxicity in both adult and embryonic life stages14,70–72. 
The zebrafish embryo (ZFE) in particular has been studied extensively since the ZFE test 
represents a somewhat higher throughput and easier method to screen potential toxicants than 
the adult stages. This life-stage is considered a non-animal method in European legislation 
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until the start of free feeding at around five days post fertilization. Zebrafish share many 
genetic homologies with humans and various vertebrates73,74 and belong to one of the largest 
families of vertebrates75, the cyprinids, allowing for extrapolation of adverse outcomes to other 
fish species as well. This species can thus help elucidate bioaccumulation potential and also 
endocrine effects of EDCs, thus constituting a versatile model for studying effects and risks of 
environmental pollutants14,70.  

Once both effect and exposure are known, risk characterization can be performed to establish 
safety levels in the form of a quantitative acceptable daily intake (ADI) for human safety and 
the predicted effect concentration (PEC)/PNEC for environmental protection. This 
information can be used to inform risk management decisions such as restriction or 
replacement of unsafe chemicals or environmental remediation efforts61.  

The Green Deal initiative by the European Commission aims at achieving a toxic-free 
environment and proposes strategies towards this goal76. Considering the increasing number 
of chemicals on the market, it is however not possible to test all compounds and perform 
individual risk assessment for them with traditional toxicology methods due to financial, 
ethical and time considerations. Thus, there is a demand for cheaper, high-throughput 
methods that can aid in the effect and exposure assessment of environmental pollutants. 
Current efforts are being made to incorporate other data from new approach methodologies 
(NAMs) such as  in vitro and in silico data in a weight of evidence (WoE) approach for risk 
assessment42,77,78. 

1.2.1 New Approach Methodologies (NAMs) 
NAMs aim to move away from in vivo studies for risk assessment and towards more ethical, 
faster and less costly methods78–80. NAMs can include in vitro methods to assess toxicity based 
on cell assays such as the hERG assay for assessing cardiotoxicty79 or by measuring receptor 
activation and inhibition in a variety of cell-lines81. It can also include in vitro methods to 
assess toxicokinetics including metabolism using primary hepatocytes82, cell lines such as 
HepaRGTM or cell fractions such as S983 or absorption through intestine using Caco-2 cells84 or 
through skin using excised skin85. NAMs also include in silico approaches which are becoming 
of increasing interest for toxicology in regulatory, environmental and pharmacological risk 
evaluations78. Both in vitro and in silico data can be used within an integrated approach to 
testing and assessment (IATA) in order to evaluate risk. IATA can additionally include in vivo 
data or omics data and aims to integrate a variety of information sources for risk 
evaluation80,86,87. 

A tool for hazard and effect assessment that has been proposed for use within the IATA 
framework, is the adverse outcome pathway (AOP) concept79,87–89. AOPs are chemical-
unspecific pathways that link a molecular initiating event (MIE) to an adverse outcome via 
various key events (KE) and key event relationships (KER). These KEs represent quantifiable 
biological responses at different levels of biological organization that sequentially lead to an 
adverse effect90,91. The AOP framework then provides a way to structure the various data 
sources from IATA in order to evaluate whether a compound can lead to an adverse effect based 
on the measured or predicted MIE or KEs. AOPs also provide a way to identify knowledge gaps 
or the need for new NAMs to be developed in order to understand how specific MIEs can lead 
to an adverse outcome88,89. Data on the capacity of a compound to trigger MIEs or KEs can 
again be sourced from in vivo, in vitro or in silico experiments.  
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In silico tools are widely used NAMs, which can provide a fast and inexpensive way to screen 
chemicals and identify potential risk for organisms including humans. These types of 
approaches can be used to prioritize chemicals for further testing, predict various hazardous 
properties or biological activity, improve understanding of doses at target organ, aid in 
extrapolating from in vitro to in vivo, and integrate many data sources in order to provide a 
better picture of the potential risks associated with various compounds. In silico methods 
include tools such as multivariate regression methods, machine learning and toxicokinetic 
models which can be applied for grouping chemicals, read-across, and predicting effects or 
kinetics of untested chemicals. Multivariate analysis such as principal component analysis 
(PCA) and non-supervised machine-learning (ML) methods such as hierarchical clustering can 
be used for exploration of chemical space92 and selection of representative subsets of 
chemicals93. Read-across methods have been used to group chemicals as well as to extrapolate 
properties and potential risk from one chemical to another based on structural similarity86,94. 
ML has additionally been employed in supervised methods known as quantitative structure-
property/activity relationship models (QSPR/QSAR)95–97 in order to predict chemical 
properties or receptor activities based solely on chemical structure80,94,98. Such predictions can 
then be used for hazard identification, to identify compounds which trigger specific MIEs or 
KEs in order to be integrated in IATA, or they can be used as parameters in toxicokinetic 
models78,94. 

A downside with QSARs when it comes to predicting adverse effects is that they do not account 
for the dose at target organ in an organism i.e. the internal exposure. However, in silico tools 
describing biokinetics and toxicokinetics can be used to understand internal exposure within 
an organism or in cells78,86. Toxicokinetic knowledge is crucial since it provides information 
about the dose at biological targets whether it is within cells tested in vitro or inside an organ 
when performing in vivo studies. To address this, models can be developed to account for free 
compound in the case of in vitro studies or to account for ADME in a biological system as well 
as in a population. Addressing in vitro biokinetics can be done using simple instant-
equilibrium models or toxicokinetic models with only a few compartments99–101. ADME can be 
modelled by developing physiologically-based toxicokinetic (PBTK) models for various species 
or parts of organisms102–104. PBTK models can be used for quantitative in vitro to in vivo 
extrapolation (QIVIVE), extrapolation between individuals, between species as well as between 
environmental and internal concentrations or vice versa by forward or reverse 
dosimetry78,105,106. Additionally, toxicokinetic and toxicodynamic modelling can be 
incorporated together with AOPs to create quantitative AOPs (qAOPs)107. 
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1.3 Aims 
In this work we aimed at developing NAMs in order to increase our understanding of chemical 
prioritization and hazard identification in terms of toxicokinetic properties of environmental 
pollutants with focus on PFASs and bisphenols. Computational methods were the focal point 
of the studies although novel experimental in vivo and in vitro data were also derived for model 
development and validation. 

Firstly, we aimed to explore the chemical space and evaluate the variation within PFASs and 
bisphenols in terms of chemical structure and physico-chemical properties (Paper I and II). 
Additionally, we aimed at selecting small but structurally representative and environmentally 
relevant sub-groups of chemicals from each chemical space for future effect testing and NAMs 
development. This work is presented in Section 2 of the thesis. 

Secondly, we aimed at investigating the toxicokinetic behavior, organ-specific distribution and 
bioaccumulation potential of selected sub-group of bisphenols in the model organism Danio 
rerio by developing a PBTK model (Paper II). Although all ADME properties were considered, 
metabolism as well as distribution to liver, gonads and brain were a major focus. This study is 
presented in Section 3 and Paper II. 

Lastly, we aimed at developing a toxicokinetic model for the zebrafish embryo test including 
consideration of both physiology and experimental conditions (Paper III and Section 4). For 
this method we intended to incorporate literature data as well as own measurements of 
bisphenol kinetics, and to rank bisphenol hazard based on in vitro ER activity as well as 
predicted ZFE concentrations.   
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2 Exploring Chemical Variation, Grouping 
and Physico-Chemical Properties of PFASs 
and Bisphenols 

In this section we describe the investigation of PFAS and bisphenol chemical space and 
evaluate the variation within these two compound classes in terms of chemical structure and 
physico-chemical properties. Additionally, we detailed the selection of sub-groups for both 
chemical classes and the investigation of reliability of property prediction models. 

 

2.1 Introduction 
Investigating the chemical space for groups of compounds can yield a better understanding of 
their structural and property variation and can therefore aid in prioritization of compounds of 
concern. Identifying chemical candidates for toxicity testing and biomonitoring prioritization 
is becoming an important step in hazard identification20,63,93. Such prioritization can be done 
using expert-based approaches requiring data on exposure, effects or industrial application or 
using in silico predictions on environmental fate and effects20,63,108,109.  

Expert-based selection can for example consider knowledge on environmental occurrence such 
as levels in drinking water, soil, household dust or air and therefore aid in selecting compounds 
that are of high relevance for environmental exposure. Similarly, information about use of 
chemicals in various consumer products and production volumes can also be accounted for, 
thus identifying compounds with high exposure risk to humans or which are likely to be 
present in the environment. In addition to exposure consideration, one can prioritize 
compounds with measured hazardous properties. Expert-based selection approach may yield 
a less structurally diverse but highly relevant sub-group in the context of evaluating risk.  

Information for expert-based selection is often-times unavailable, thus prioritization efforts 
have also incorporated QSAR/QSPR predictions109,110 or structural categories20. Alternatively, 
methods based on chemical space such as multivariate analysis using PCA or unsupervised ML 
such as clustering have also been explored93,111. A downside is that many freely available QSAR 
and QSPR models such as EpiSuiteTM112 lack applicability domain (AD) assessment which can 
lead to unreliable predictions and erroneous hazard estimation based on such predictions113–

115. A means to tackle this uncertainty is to include larger, more heterogenous data sets in model 
training to cover a larger chemical space and thus result in a larger AD for the model or to build 
different models covering specific areas of the chemical space. PFASs for examples may be 
outside the AD of some currently available QSPR models and it is unclear whether the 
predictions are reliable113. 

2.2 Aims 
Our first goal was to identify structural information in order to investigate the chemical 
variation within PFASs and bisphenols. We aimed to curate the PFASs database in order to 
explore its chemical space and identify sub-groups based on identified structures. Additionally, 
in the case of PFASs, we intended to select diverse representatives spanning a large portion of 
the chemical space for future hazard testing and in silico tool development. Such a selection 
would allow to gain as much information from as little testing as possible. For bisphenols, 
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which is a smaller, better studied group of compounds, the goal was to select a small sub-group 
that is likely to be present in the human exposome and environmental matrixes based on their 
use in various products. Different selection approaches were therefore necessary to meet these 
goals.  

Lastly, in order to investigate properties of PFASs and bisphenols, we collected experimental 
data when available and complemented those with predictions for several physico-chemical 
properties of the selected compounds. Additionally, we investigated uncertainties related to 
applicability domain for PFAS in the case of these property predictions. 

 

2.3 Materials and Methods 

2.3.1 Chemical Inventories of Bisphenols and PFASs 
Bisphenols in this study were defined as molecules with two phenol rings connected by a bridge 
made up of one to nine carbons or a single other atom. Branching on the bridge or additional 
ring substitutions were also included in the definition. The majority of structural data was 
collected from the Swedish Chemicals Agency39,116 which included a total of 214 bisphenols that 
are used within the European Union. Further bisphenols that may be available outside the 
European market, were searched in scientific literature leading to a final list of 239 bisphenols. 
This is a wide definition of bisphenols as it includes compounds such as benzophenones in the 
case of benzophenone-2 (BP-2) or brominated flame retardants such as tetra-bromo bisphenol 
A (TBBPA).  

The Organization for Economic Co-operation and Development (OECD) released a 
comprehensive list of PFASs chemicals in 2018 which includes over 4700 entries out of which 
only 1200 had structural information provided19,116. In this database, PFASs were defined as 
chemicals that have three or more perfluorinated carbons alternatively, two or more 
perfluoroalkylether carbons. This definition has been recently revised to include all 
compounds with at least one perfluorinated methyl or methylene carbon thus including more 
compounds than previous definition117. However, the previous definition was applied in Paper 
I. In order to select a sub-group for testing prioritization, structures had to be first obtained 
based on information such as name or CAS number. 

2.3.2 Selection of Bisphenols 
A sub-group of bisphenols was selected based on criteria regarding their environmental 
occurrence, identification in human plasma and urine, their industrial use information and 
their potential interaction with ER. This selection was in large part based on information from 
the Swedish Chemical’s Agency39,116. Details on the selection process can be found in the 
supplement of Paper II. 

2.3.3 Selection of PFASs 
We identified structures and curated the database of over 4700 entries resulting in a list of 
3363 for which chemical descriptors were generated. We applied PCA on the PFASs data set 
with 59 chemical descriptors in order to reduce the dimensionality to a total of 5 significant 
principal components (PCs). We used hierarchical clustering to divide the PFASs dataset into 
a total of 12 clusters. In this case an agglomerative algorithm using Euclidean distances was 
applied and the variance ratio criterion (VRC) was used to inform the decision of cluster 
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number. The final subsets for testing were selected based on the most central compounds in 
each cluster thus ensuring representation of a wide span of the chemical domain. The workflow 
and selection process are described in Paper I. 

2.3.3.1 Chemical Space 
Chemical descriptors are quantitative features representing the chemical structure and can be 
seen as dimensions placing each molecule somewhere in a large multi-dimensional chemical 
space92,118. Although exploration of this space has been focused on discovering drug-like 
compounds92,118,119, it has also been investigated for industrial chemicals93,111. The chemical 
space has the dimensionality of the chosen number of descriptors which may vary from a single 
dimension to hundreds depending on the purpose. The chosen descriptors in current study 
have been previously proposed as suitable for investigating industrial chemicals93,111. However, 
using a large number of dimensions poses a challenge as it increases needed computing time 
and power, therefore requiring dimensionality reduction techniques for further investigation 
of the data92,120. Many suitable techniques exist such as PCA121, t-distributed stochastic 
neighbor embedding, locality preserving projections, self-organized maps, projection pursuit, 
generative topography mapping and more92,120. 

2.3.3.2 Principal Component Analysis 
PCA is an unsupervised, linear technique that has been widely used to explore chemical 
space93,111,118,119. Additionally, this method has been used to define AD of QSAR and QSPR 
models122,123. This technique aims to capture as much of the data variance as possible in the 
multi-dimensional space by fitting lines or hyperplanes, called principal components (PC), to 
data. The PCs are fitted by minimizing the least squares. Each PC is orthogonal and 
uncorrelated to the previous, thus the first PC describes most of the variance98,124. PCA can 
therefore be employed to summarize a large proportion of data variance in only a few principal 
components i.e., it reduces the dimension to the number of PCs that are significant. This 
method is often-times used for pre-processing data before the use of either unsupervised or 
supervised machine learning as many algorithms require lower dimensionality as well as 
uncorrelated descriptors98.  

2.3.3.3 Clustering 
Although PCA is a useful tool for capturing data variance, other techniques are required to 
make use of this information. Clustering approaches have been previously used in chemistry 
to understand chemical similarity or dissimilarity and select sub-groups of data based on 
structural information93,125,126. The purpose of the selection could be to select compounds with 
similar properties or structures which can be employed in drug development to select desired 
compounds, or in hazard identification to select compounds that may be similarly toxic to a 
well-studied compound127,128. Additionally, one can use clustering to select dissimilar 
compounds in order to cover a large chemical space93,125,126. 

Hierarchical clustering (HC) is a method for grouping based on distance in multivariate 
space129,130. In this study, where PCA was applied as pre-processing, this refers to the distance 
between PC values of the different PFASs. Either agglomerative or divisive algorithm can be 
used to create a dendrogram with HC126,129. The agglomerative algorithm starts with each 
compound in the data set as a separate cluster and merges the two most similar entries together 
until a single cluster with all the data is formed while the divisive algorithm performs the same 
process in reverse i.e. starts with all data in one cluster and separates the two most dissimilar 
groups. Additionally, various distance measures can be used for HC such as Euclidean, 
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Manhattan or Mahalanobis distance131. Regardless of algorithm and distance measure, the 
end-result is a dendrogram which needs to be “cut” at a specific level in order to obtain an 
interpretable number of clusters. Choosing the number of clusters may depend on the purpose 
of the grouping, thus it can be based on the modelers requirements or it can be informed by 
mathematical optimum criteria like the variance ratio criterion (VRC)129,132. 

2.3.4 Physico-Chemical Properties  
Physico-chemical properties were collected from literature when available experimentally and 
otherwise predicted using QSPR models for both bisphenols and PFASs. These included 
environmentally and toxicologically relevant properties such as the log octanol-water partition 
coefficient (log Kow), water solubility (Sw) and acid dissociation constant (pKa) for bisphenols 
and PFASs along with the organic carbon to water normalized sorption coefficient (Koc), vapor 
pressure (Vp) and bioconcentration factor (BCF) for only PFASs. We then assessed whether 
PFASs were within the applicability domain of the model based on molecular weight (MW), 
number of fluorine atoms, and whether used model adjusted for aliphatic fluorine fragments. 

 

2.4 Results and Discussion 

2.4.1 Bisphenol Selection and Properties 
Previous research on bisphenols have mainly focused on a narrow chemical group, not allowing 
substitutions on the rings, but a strict definition of  “bisphenol” is not clearly described in most 
publications133,134. Other work has focused on BPA replacements with same use in products 
rather than structural similarity135,136. Kitamura et al. 200543 tested 19 structural analogs of 
BPA which included compounds with a single phenolic ring thus using a broader definition 
than employed in this work. However, previous studies presented relatively small groups of 
compounds and were not aimed at compiling a comprehensive list of bisphenols as starting 
point for prioritization. Current work compiled an inventory of 239 bisphenols, out of which 
11 were selected with likely human exposure risk, environmental occurrence and measured or 
predicted ER activity as a criterion of hazard. The only exception being Bimox M, selected as a 
potentially high exposure compound due to its application, but with no predicted ER activity, 
in order to have a negative control with similar chemical structure for future in vitro testing. 
There is some bias in the selection process as it favors compounds for which more research is 
available or that have been detected in targeted screening approaches. This is oftentimes the 
case with expert-based approaches. However, the advantage is that there is more certainty in 
the environmental and human health relevance of the selected compounds. Keminer et al. 
2020136 applied similar criteria in terms of prioritizing compounds that bind to endocrine 
receptors and that are used in applications leading to potential environmental exposure. 
However, the focus of their selection was BPA substitutes thus included much more variation 
in selected chemical structures as it was not limited to bisphenols. Nonetheless, there was over-
lap with our selection and previous studies with most of them including BPC, BPAP, BPZ, BPS, 
and BPF. 

The selected bisphenols (Figure 1) were deemed to be of high or medium exposure risk due to 
their uses in consumer products37,39,45,137. Most of the selected compounds such as BPA, BPS, 
BPF, BPAF, BPAP, BPC, BPB, and BPZ are registered for use in polymeric synthesis and as 
coating resins. Notably, BPB, BPC, and BPS are present in food packaging while BP-2 is found 
in cosmetics as a UV-blocker. TBBPA is a well-studied brominated flame retardant employed 
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for fire-proofing of furniture, carpets and other products. Additionally, all these compounds 
with exception of Bimox M, have been detected in both human samples, such as urine and 
serum and in environmental matrixes including water where they can affect aquatic 
organisms37,39,45,137,138. 

 

Figure 1. The molecular structures of bisphenols selected for future investigations and deemed of high 
environmental relevance. 

2.4.1.1 Physico-Chemical Properties 
Physicochemical properties of selected bisphenols are presented in Table 1. Unlike PFASs, 
bisphenol properties have a higher likelihood to be accurately predicted as similar compounds 
are generally included in training data sets of predictive models. BPA for examples is part of 
the training data for various EpiSuiteTM models112. In this study measured data were considered 
of higher reliability than predicted ones, thus we collected measured data when available for 
log Kow of BPA139, BPAF, BPS140 and TBBPA141. The log Kow in these studies was measured at 
pH 7 and is referred to as log D as it represents the pH-dependent octanol-water distribution. 
Although log Kow and log D are the same for neutral compounds, they may differ for ionizable 
compounds, thus the measured log D at pH 7 is considered more environmentally relevant142. 
However, since many tissue partitioning models needed for PBTK model in Section 3, are 
developed based on log Kow as opposed to log D, the first was used when no measured data was 
available.  The log Kow/log D of the selected bisphenols vary from 2.1 for BPS to 4.75 for TBBPA 
with the exception of Bimox M which has a much higher value of 9.1. All of them are 
hydrophobic (with a log Kow above 1) and thus have the potential to partition into organisms143–

146.  
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Table 1. Selected sub-group of eleven bisphenols and their physico-chemical properties 

Abbreviation Name CAS MW (g/mol) log.Kowa  SW
b pKac 

BPA Bisphenol A 80-05-7 229 3.4d 1.7*102 9.8 
BPAF Bisphenol AF 1478-61-1 336 4.7e 4.3 9.1 
BPAP Bisphenol AP 1571-75-1 290 4.5 3.8 10 
BPB Bisphenol B 77-40-7 242 3.9 29 10 
BPC Bisphenol C 79-97-0 256 4.3 7.5 10 
BPF Bisphenol F 620-92-8 200 2.9 5.4*102 9.8 
BPS Bisphenol S 80-09-1 250 2.1f 3.5*103 7.4 
BPZ Bisphenol Z 843-55-0 268 4.3 3.78 9.8 
BP-2 Benzophenone-2 131-55-5 246 2.7 4*102 6.8 
BM Bimox M 118-82-1 425 9.1 1*10-3 11 

TBBPA 
Tetrabromo 
bisphenol A 

79-94-7 544 4.75g 1.7*10-4 9.4h 

aMedian prediction CompTox, bWater solubility predicted by EpiSuite Wskowwin v 1.42; cpKa predicted by Jchem for Excel v 
19.21.531 (ChemAxon) dlog D from Staples et al 1998139, ePredicted using Jchem for Excel v 19.21.531 from ChemAxon147, 
flog D from Choi and Lee 2017140, glog D from Kuramochi et al.2008141 Note in Paper II, this value was wrongly given for pH 
3 instead of 7, current value is given for pH 7. hMeasured value from ECHA148 

 
Considering Lipinski’s rules of 5 on bioavailability, most of the selected bisphenols have a MW 
below 500, a log Kow below 5, less than 5 H-bond donors and less than 10 H bond acceptors 
suggesting potential for internal exposure in organisms149. However, in order to assess hazard, 
it is important to understand effects as well as internal dose, i.e. the dose at target of toxicity. 
Since internal concentrations at target organs are related to physiology as well as to chemistry, 
this can be further investigated using PBTK modelling as discussed in Sections 3 and 4. 
Hazardous properties in terms of ER activity can be investigated in vitro for these compounds 
and is presented in Section 4. 

2.4.2 PFASs Selection and Properties 

2.4.2.1 Chemical Space Exploration 
The original OECD database of 4730 PFASs compounds constitutes of 19% chemical mixtures 
or polymers, which were filtered out. Such entries require different approaches for modelling 
and descriptor generation than single, non-polymeric molecules. Although there are some 
approaches for using ML on both polymers and mixtures, these methods are more complex 
and generally have narrower applicability150. Mixture approaches are similar to single 
compound methods, but using for example mixture descriptors based on individual 
compounds and the mixture together151,152. Nonetheless, these models either have the AD of a 
single mixture but at different compositions or only a 1:1 ratio of two compound mixtures150,153. 
Polymers have only been modelled using monomeric units and mainly applied to model 
biological responses rather than physico-chemical properties of the polymers154,155. Thus, 
robust and more varied approaches need to be developed in order to better address mixtures 
and polymers and these were therefore filtered out in Paper I. 

The PFAS entries of the OECD database were curated resulting in a list of 3363 PFAS which 
were highly diverse in size (150-3217 Da), molecular functional groups (e.g. linear, branched, 
containing aromatic rings, ketones, acids, esters etc.) and number of fluorines in each molecule 
(5-102). A principal component analysis was performed using 59 chemical descriptors which 
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resulted in five significant principal components (PCs) with the first one (PC1) explaining 45% 
of data variance. Although the PCs summarize the variance across many descriptors, 
comparing the weights of various descriptors for each PC can provide indications about which 
of these are more critical for describing data variance. PC1 was generally related to descriptors 
related to molecular surface and size including the Wiener path number (wienerPath)156, the 
area of van der Waals surface (vdw_area) and the first kappa shape index (Kier 1)157. The 
second PC describing 17% of the variance had high weights on density, number of fluorines and 
aromaticity.  

Cheng and Ng 2019 presented a curation of the same database using similar approaches as in 
Paper I for structure generation and obtained 3486 structures by using the chemical identifier 
resolver (CIR) tool to generate structural information in the form of Simplified Molecular 
Input Line Entry System (SMILES)158,159. This study additionally collected data from other 
databases and employed different curation of structures, hence the differing number of 
structures. Similarly, they found that a large proportion of the database were short chain 
PFASs. 

Clustering approach was used in Paper I as suggested by Rännar & Andersson 201093 to select 
a highly diverse sub-group of PFAS. Five principal components were used as the basis for 
performing clustering aimed at splitting the highly diverse data set into more homogenous 
clusters. Data was split in a total of 12 cluster based on the VRC as well as consideration on 
even distribution of compounds between clusters. Six of these clusters, contained at least one 
of the 34 well-studied PFASs and included mainly small to medium-sized, highly fluorinated 
and mostly linear structures (Paper I). In this context well-studied PFASs were defined as those 
with more than 10 citations according to Wang et al. 2017160. These PFAS have been detected 
in environmental matrixes such as water161,162, air163 and soil164. In other words, half of the 
clusters do not contain any well-studied PFAS, highlighting the large knowledge gaps covering 
mainly larger, branched, and highly polar or aromatic compounds. Additionally, the well-
studied PFASs may not necessarily be representative for their corresponding cluster, especially 
if they are mainly at the “edges” of these chemical spaces. 

These findings of knowledge gaps in PFASs chemical space are also in line with measurements 
of environmentally occurring PFASs. Several studies analyzing extractable organofluorine in 
environmental matrixes showed large proportions of unidentified fluorine containing 
molecules even after targeted analysis of well-studied PFASs66,165. Björklund et al. 202166 found 
that 88% of extractable fluorine was not accounted for even after targeted analysis of 34 known 
PFASs, while Koch et al. 2019165 found >92% of unknown extractable organic fluorine in some 
samples. Although some of these can be compounds that are not necessarily in the category of 
PFASs, it still highlights the knowledge gaps when it comes to environmental occurrence in 
fluorinated compounds. 

2.4.2.2 PFASs Sub-Group Selection 
Experimental studies of a representative sub-group based on the 12 PFASs clusters would 
address existing knowledge gaps efficiently as it would cover a large area of the chemical space 
thus allowing for extrapolation between similar compounds. In order to identify such a sub-
group, 5% of the most central compounds in each cluster were selected. Centrality was based 
on Euclidean distances in the five dimensions of the PCs for each cluster. Picking PFASs based 
on the center of each cluster instead of the edges ensures that the sub-group is still 
representative for each cluster, spans the majority of the chemical domain but does not include 
any extreme outliers. This selection, denoted as theoretical training set, contained 165 
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chemicals presented in the SI of Paper I with the most central compound in each cluster 
presented in the Paper I. 

However, realistically, a large part of the database may not be commercially available as the 
OECD database contains registered compounds that are not necessarily being produced. For 
this purpose, we propose the selection of a procurable training set instead. Procureability was 
assessed based on test set suggested by Patlewicz et al. 201920, the Norman suspect screening 
list166 and an inventory provided by the Swedish Chemicals Agency116. This resulted in the 
selection of a procurable test set containing 23 PFASs spanning over all 12 clusters. This 
training set offers a more practical alternative to the theoretically selected one while still 
capturing the large variability within the PFASs database. 

Patlewicz et al. 201920 proposed a selection of 75 PFASs based on considerations of 
procureability as well as 53 expert-based category definitions suggested by Buck et al. 201121.  
This selection was done based on 271 PFASs which were available at the time while considering 
structural diversity but also more practical considerations such as volatility, solubility and in 
vivo data availability. This selection was recently expanded to a second set of 75 PFASs with 
further considerations of varying structural categories167. These studies also aimed to select 
diverse PFASs for the purpose of future hazard assessments of this emerging group of 
chemicals. 

2.4.2.3 Applicability of Predictive Models for PFASs Properties 
In order to assess applicability domain of current environmental fate models, we proposed 
three simple approaches based on the parameters molecular weight ranges, number of fluorine 
fragments and number of fluorine atoms. More advanced methods are typically used for 
assessing AD in predictive models, however these methods generally need to be applied during 
the process of model training and development95. AD assessment requires structural 
information of training data which is often provided, but it more importantly requires the 
descriptor set and values used for training each model which are not given for all the 
investigated models in current study. One of the simplest methods to assess AD is using the 
parameter ranges of the descriptors in the training data thus resulting in a multi-dimensional 
bounding box168. PCA is commonly used for AD assessment in combination with descriptor 
ranges thus resulting in a multidimensional bounding box based on the PCs123,169. Alternatively, 
distance from the centroid of the PCA-processed multi-dimensional training set can be 
accounted for115. Various distance measures can be used as presented for the clustering. A 
downside with these approaches is however that they do not consider empty spaces in the 
descriptor ranges168. Probability density distribution-based methods can account for empty 
spaces and these are thus considered more accurate and robust but are more restrictive and 
less commonly used170. Nonetheless, AD assessment has been proposed by the OECD as an 
important aspect of reliable QSAR modelling114. 

When looking at fluorine fragments or number of fluorines, below 1% of the database would be 
considered within domain for log Kow, Sw, log D and log Koc models. Interestingly, the Vp model 
included perfluorinated compounds in the training data, thus a large portion of the database 
was considered within domain. A previous study investigating the AD of EpiSuiteTM models 
based on descriptor ranges, and suggested that some fluorinated compounds are within the 
applicability of the model169. It is important to note that AD would be assessed differently in 
case of models that do not contain training and test sets. Models based on statistical 
thermodynamics, rather than empirical data, are likely to predict more accurately. This is the 



15 
 

case for example for COSMOtherm which has been shown to perform better than EpiSuiteTM 
in predicting Kow for perfluorinated compounds113,171.  

Collected experimental data from literature was used to assess predictive performance of 
current environmental fate models for PFASs. The R2 between predicted and observed data 
was calculated for each of the models and this assessment showed that log Kow, log D and log 
Koc are predicted fairly accurately (R2 >0.5). A previous study by Arp et al. 2006113 found that 
log Kow predictions using EpiSuite showed up to 5 orders of magnitude error of prediction for 
highly fluorinated compounds. The model has however been updated since113. A more recent 
study compared the predictive accuracy of COSMOtherm, EpiSuiteTM, OPERA models from 
CompTox Chemical Dashboard and Linear Solvation Energy Relationships (LSERs) for 
physico-chemical properties of 25 PFASs171. They investigated the majority of properties 
presented in current study and showed that EpiSuiteTM performed reasonably well for log Kow 
and Vp, and performed poorly for Sw and air-water partitioning. COSMOtherm and OPERA 
performed well for all investigated properties, with COSMOtherm showing the most accurate 
Sw predictions. These findings are in line with Paper I when it comes to EpiSuiteTM predictions. 
It is important to note however, that some of these models show good performance for only a 
limited set of small and highly fluorinated PFASs and does not reflect the predictivity of the 
whole database. 

The BCF predictions, in contrast, yielded a negative R2. This was the case for the EpiSuiteTM 
BCFBAF model as well as for 3 other BCF models in VegaHub172, highlighting that prediction 
of this property is challenging for PFASs. This lack of predictivity could be in part explained by 
the fact that current BCF models are based on log Kow and do not account for species-specific 
ADME properties. PFASs have been shown to bind strongly to plasma proteins and their long 
half-lives in humans are believed to be caused by selective active re-uptake in the kidneys173. 
More complex biological models such a PBTK models would likely be more suitable for 
predicting such properties of PFASs174. 

Presented work is the first to investigate AD of EpiSuiteTM for such a comprehensive list of 
PFASs and thus highlights the large uncertainties of using commonly utilized fate models for 
predictions of PFASs. It is apparent that most PFASs are outside these domains and thus the 
models cannot be used for accurate predictions or testing prioritization. One solution is to 
develop PFASs specific models, which consider the unique chemical properties of these 
compounds. This has been done by Wang et al. 2015 for predicting gas-particle partitioning 175, 
by Cheng and Ng 2019 for predicting bioactivity158 or by Le et al. 2021176 for predicting fate 
properties. Another option would be to expand the training set of current models and include 
data on PFASs in order to expand the AD. This could be achieved by incorporating compounds 
from the selection presented in Paper I into experimental screening efforts which in turn would 
provide additional training data. 
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3  Modelling Toxicokinetics of Bisphenols in 
Adult Zebrafish 

In this section we describe the development and performance of a zebrafish PBTK model aimed 
at investigating the toxicokinetics and organ-specific distribution of selected bisphenols. 
Additionally, we present measurements of fish-specific biotransformation and in vivo organ-
distribution of BPZ in Danio rerio. More details can be found in Paper II. 

 

3.1 Introduction 
ADME are the key components in understanding the dose that reaches biological targets of 
toxicity, thus activating MIE and possibly leading to adverse effects78,103,177. Additionally, 
ADME properties are the drivers of bioaccumulation in various species. Thus, compounds with 
same hazardous properties can have different risks depending on these processes. 
Investigating ADME and bioaccumulation in vivo can be done by measuring compound 
concentration in organs or whole body of various model species. Alternatively, PBTK modelling 
can be used to model these processes. Existing in vivo measurements as well as in vitro data, 
physico-chemical properties measurements and QSPR predictions can be integrated within 
these models102,104,178. PBTK models are a type of toxicokinetic (TK) models which simulate 
ADME with focus on physiology. In literature, PBTK, physiologically-based kinetic (PBK) and 
physiologically-based pharmacokinetic (PBPK) models all refer to the same approach. PBTK 
models are composed of different compartments, which can represent one or several organs or 
parts of organs as seen in Figure 2. A series of time-dependent ordinary differential equations 
(ODEs) are used to simulate kinetic processes by estimating the amount of a chemical in each 
compartment and predicting internal concentrations in target tissues60,177. PBTK models are 
species and compound specific, thus require both species and chemical specific information 
for development. 

Since bisphenols have been frequently detected in waters, developing fish PBTK models would 
be of relevance to assess environmental exposure and dose at target103,106. Fish species 
commonly used for studying ADME of environmental pollutants include rainbow trout 
(Oncorhynchus mykiss), fathead minnow (Pimephales promelas), three-spined stickleback 
(Gasterosteus aculeatus), common carp (Cyprinus carpio), Japanese medaka (Oryzias 
latipes) and zebrafish (Danio rerio)103,105,179. Out of these, zebrafish has been one of the most 
commonly studied species for endocrine research, thus understanding ADME properties better 
for zebrafish could aid in future extrapolation of effect data from this model organism to others. 
PBTK models for several fish species have been previously developed but focusing mostly on 
other compounds than bisphenols105,180–184. One zebrafish model and one generic fish model 
adapted for five fish species using validation data for BPA have been developed previously179,185. 
However, these models did not consider other bisphenols and do not include more recently 
published in vivo zebrafish data for validation. Additionally, these models were designed to be 
compound unspecific thus their accuracy is within a 10-fold error or higher as typically seen 
for generic models102,178,179,186.  

Understanding organ-specific distribution of various bisphenols in especially liver, gonads and 
brain would help in processes of chemical prioritization and hazard identification. These 
organs are likely targets of both endocrine disruption and other adverse effects caused by 
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bisphenols. Although the liver is not part of the HPG axis, it is relevant for estrogenic effects in 
fish due to being a site of ER expression. The activation of ER in fish hepatocytes has been 
shown to induce production of the egg-yolk protein vitellogenin (VTG)54. Furthermore, 
changes in VTG levels have been proposed to be a key event following ER activation as part of 
an AOP which is currently under development for fish187. Lastly, several bisphenols including 
BPA, BPAF, BPF, TBBPA and BPS have been shown to alter VTG response in zebrafish 
indicating that liver may be an important target organ for investigating risk and ADME of 
bisphenols188,189. The role of adult zebrafish gonads in the toxicity of bisphenols is not entirely 
clear. Both ovaries and testes are part of the HPG axis and alteration of function or morphology 
in these organs has been found upon bisphenol exposure190,191. However, in female fish, 
compounds reaching the ovaries can potentially transfer to developing eggs and thus end up 
in the embryo after fertilization. Studies on ZFE exposed to various bisphenols have shown 
adverse effects on development making exposure via maternal transfer a relevant 
consideration when assessing risk56,192. Lastly, adverse outcomes in zebrafish related to brain 
have been identified in previous studies upon exposure to bisphenols193–195. Such effects have 
been observed for both embryos and adults making the brain another possible target of toxicity 
for bisphenols.  

3.2 Aims 
We aimed to develop a PBTK model to better understand ADME properties and 
bioaccumulation in adult zebrafish of the previously selected bisphenols. The goal of such 
model was to predict dose of the various bisphenols at suspected target organs of toxicity, 
namely liver, brain and gonads. In order to parameterize and calibrate this model, we 
measured fish-specific biotransformation in vitro as well as in vivo organ distribution of BPZ. 
Details on the study can be found in Paper II. 

 

3.3 Materials and Methods 

3.3.1 In Vivo Zebrafish Experiments 
Toxicokinetics of BPZ were studied in vivo in female zebrafish so as to calibrate the model on 
an additional bisphenol and also to investigate time-course distribution to brain, which was 
not previously studied in zebrafish for bisphenols. Additionally, we measured distributions to 
the liver and gonads as potential target organs of toxicity.  

3.3.2 In Vitro Biotransformation  
Biotransformation rates for bisphenols other than BPA in fish were not available in literature 
and were therefore measured in vitro to parameterize the model. We measured intrinsic 
clearance of bisphenols in rainbow trout (RT) S9 by quantifying the disappearance of parent 
compound over time. Metabolic clearance can be investigated in vitro as a proxy for the in vivo 
system using either whole hepatocytes, S9 sub-cellular fractions, microsomal proteins or even 
isolated enzymes83,196–199. This can be done by either measuring disappearance of parent 
compound over time or the appearance of specific metabolites over time in order to calculate 
a total metabolic clearance rate or rate of specific metabolic processes, respectively. In the case 
of fish biotransformation, OECD guidance have been published describing protocols for 
measuring intrinsic clearance using either hepatocytes (RT-HEP) or S9 sub-cellular fraction 
(RT-S9) in rainbow trout (Oncorhynchus mykiss)82,83. The S9-sub-cellular fraction contains 
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both enzymes of phase I and phase II metabolism, making it possible to identify the combined 
rate of multiple metabolic pathways rather than specific ones83,196. Additionally, S9-fraction 
measurements have been identified as a suitable parameter of hepatic clearance in generic 
PBTK models178.  

3.3.3 Zebrafish PBTK Modelling 
In this study we expanded a previous zebrafish model by Grech et al. 2019179 in order to 
improve model predictions for the previously selected bisphenols and their main metabolites. 
We incorporated the process of egg laying and an egg compartment in order to model maternal 
transfer. Metabolism was modelled to occur in the liver compartment using measured in vitro 
clearance rates for parameterization. Additionally, metabolite kinetics were also modelled for 
BPA glucuronic (BPA-GA) acid and BPAF glucuronic acid (BPAF-GA). The model structure for 
female fish is presented in Figure 2 while the one for males is available in SI of Paper II. 

 

Figure 2. Female zebrafish PBTK model structure. Solid lines represent mass flow of compound and dotted lines 
represent elimination routes. Coloured compartments represent organs of toxicity for which measured data was 
available.  GIT = Gastro-intestinal tract; RPT = richly-perfused tissue; PPT = poorly-perfused tissue. 

Measured bisphenol-specific zebrafish tissue partition coefficients were not available in 
literature but QSPR models have been developed and validated on data from larger fish species 
previously200–202. Although these QSPR models were not developed for zebrafish, they were 
considered a more relevant option than the use of QSPR models developed on mammalian 
data. A model for predicting fish blood-water partitioning (Pbw) developed by Fitzsimmons et 
al. 2001202 was used to predict Pbw based on log Kow and was adjusted for unbound fraction as 
suggested in previous PBTK models179,185. Secondly, the tissue-blood partition coefficient (Ptb) 
was predicted based on water and lipid content in tissue using the model from Bertelsen et 
al.1998200. The Ptb QSPR model was developed using compounds with log Kow ranging from 0 
to 8, thus Bimox M was considered outside the AD and therefore unlikely to give a reliable 
prediction. Since in vivo data was more abundant for some compounds, some of the partition 
coefficients were fitted on experimental data using Nelder-Mead fitting algorithm if QSPR 
predictions did not agree with measured organ concentrations. These included the liver-
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partitioning for BPA and BPAF while brain-blood partitioning was fitted on BPZ data and used 
to parameterize all of the compounds due to lack of any other brain partitioning data.  

3.3.3.1 Model Performance and Sensitivity 
Predicted and observed data from literature as well as own in vivo data were compared by 
calculating area under the curve (AUC), maximal concentration (Cmax), half-life (t1/2) and 
bioconcentration factor (BCF). The normalized root mean squared error (NRSME) was 
additionally computed for performance assessment. For QSAR/QSPR models the root mean 
squared error (RMSE) is generally calculated for this purpose203. However, the RMSE is scale 
dependent, thus in the case of PBTK model predictions which can have varying dosing 
concentrations, the RMSE requires a normalization for concentration. In this study we 
normalized by the Cmax in order to obtain a scale-adjusted value, i.e., the NRMSE204. 

Lastly, global sobol sensitivity analysis205 was performed by varying the parameters within a 
uniform distribution by ± 20%. Sensitivity analysis is a method for assessing how changes in 
parameter value influence the outcome206. The general approach is to randomly sample 
parameter values of one or multiple parameters within a given distribution and use each 
sample to run the model. The obtained model output, is then used to calculate a sensitivity 
index describing the sensitivity of the chosen model output to changes in that parameter. 
Sensitivity analysis is commonly classified as either local or global where local sensitivity 
analysis varies a single parameter randomly while the other are kept fixed while global 
sensitivity analysis varies all parameter values at the same time207,208. Although local sensitivity 
analysis is simpler and computationally less intensive, it does not consider that parameters 
may covary207. In contrast, global sensitivity analysis can account for these correlations 
between parameters and is therefore considered a more reliable approach for sensitivity 
analysis of PBTK models208,209. There are a few available algorithms which can be employed 
for sensitivity analysis including sobol, extended fourier amplitude sensitivity test (eFAST) and 
Morris208,209.  

 

3.4 Results and Discussion 

3.4.1 In Vivo Zebrafish Experiments 
A mean BPZ water concentration of 17 µg/L was quantified over the exposure duration. 
Although this is a marginally higher concentration than employed in other bisphenol studies, 
it is still bellow some environmental water measurements of BPA which have been reported 
with values as high as 28 µg/L210. Unlike the other measured organs, liver showed large 
variations between replicates in this study. This trend has however been observed previously 
in vivo zebrafish studies211,212. This could be due to inter-individual differences in metabolic 
capacity which has been previously observed both for CYP1A213–215 as well as for phase I and 
phase II enzymes216 in zebrafish. Additionally, liver is a challenging organ to sample in such a 
small fish species, thus experimental error may also be a factor. When looking at the 
distribution of BPZ in different organs, liver and gonads showed higher BCFs than brain 
although the differences were not significant. Experimental whole body BCF was higher for 
BPZ than for BPA, which is consistent with measurements in carp53.  
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3.4.2 In Vitro Biotransformation  
Measured in vitro clearances in this study showed little variation between most bisphenols 
with the majority of values within one order of magnitude. The only exceptions were BP-2, 
TBBPA and Bimox M with the first two showing higher metabolic rates while no 
biotransformation was identified for the last. When it comes to Bimox M the low solubility and 
high lipophilicity may have caused the compound to precipitate and therefore no rate could be 
measured.  

Interestingly, the rates for RT-S9 measured in Paper II showed values one order of magnitude 
lower than those in reported for humans217 for BPA, BPAF, BPAP, BPB, BPC and BPF. In 
contrast, BPZ, BP-2 and TBBPA showed rates within the same magnitude as those reported for 
humans in CompTox Dashboard. This indicates that using human rates to parameterize other 
species such as fish may lead to over-estimation of clearance and therefore under-estimation 
of risk of some bisphenols. It is important to note that in this study we assumed that rainbow 
trout and zebrafish metabolic rates are similar. However, since rainbow trout and zebrafish are 
phylogenetically closer related to each other than to humans or rats, these values likely provide 
a more accurate estimate than using mammal data.  

For BPA, measured biotransformation rates are available in literature for a single isoform 
UDP-glucuronosyltransferases (UGTs) namely UGT1A1199 and a single isoform of 
sulfonyltransferases (SULTs)198. In vivo comparison of the sulfonic acid and the glucuronic 
acid (GA) conjugates of BPA show a two order of magnitude higher concentrations of the latter 
after exposure to BPA, making the sulfonic acid conjugate levels negligible in comparison218. 
This suggest that the rates measured for SULTs are likely not representative of the in vivo 
clearance of bisphenols. Additionally, although single isoform rates are highly relevant for 
better understanding metabolic pathways, they may not be suitable for parameterizing liver 
clearance in PBTK models. Measurements on isolated phase II enzymes, such as UGTs or 
SULTs can underestimate the metabolic rates as they do not account for the influence of phase 
I metabolism on phase II reactions. In contrast, the S9 sub-cellular fraction used in current 
study encompasses multiple isoforms from both phases83,196. Since disappearance of parent 
compound was measured, the measured rate is an estimate of the total liver clearance and 
therefore more suitable for parameterization. One downside, however is that we cannot 
distinguish whether phase I, II or both are the drivers of the observed biotransformation. 
Additionally, it is not possible to calculate Michaelis-Menten kinetics with this data, but only 
linear rates. 

3.4.3 PBTK Model Predictions 
When considering all available adult zebrafish data measured for bisphenols211,212,218,219, the 
majority of concentrations were predicted within a 2-fold error (Figure 3). Below, model 
performance per compartment is discussed further. 

3.4.3.1 Whole Body 
The AUC and Cmax for whole body BPZ and BPAF were predicted within 2-fold of the values 
calculated using experimental data while for BPA this was the case for the study by Chen et 
al.2017211 but not for the study by Lindholst et al. 2003218 However, the majority of whole body 
and carcass concentration data points were predicted within a 5-fold error for BPA, BPAF and 
BPZ and 50% of them were within a 2-fold error (Figure 3).  BPA studies varied more than one 
order of magnitude between highest and lowest doses, showing that the model is capable of 
making fairly accurate predictions within a large dosing range. Notably, the high dose exposure 
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of 97.5 µg/L was over-predicted which could be an indication for saturation of kinetic processes 
in the in vivo situation that is not accounted for in the model.  

 

Figure 3. Observed data from literature (B, C, D) as well as own in vivo studies (A) compared to predicted by 
developed PBTK model presented in Paper II for BPZ (A), BPA and BPA-GA (B), BPAF and BPAF-GA (C) and 
TBBPA (D). Solid line shows perfect fit while dotted lines show 2-fold (black) and 5-fold (grey) errors. Error 
bars represent measurement standard deviation. BPZ NRMSE = 0.7; BPA NRMSE = 0.3; BPAF NRMSE = 0.4; 
TBBPA NRMSE = 0.5; Data used for fitting was also included in the figure but not in the NRMSE calculation. 
Data for metabolites was not included for NRMSE calculation.  Figure was adapted from Paper II. 

When comparing difference in kinetics between genders, Fang et al. 2016220 reported similar 
degree of bioaccumulation in male and female zebrafish organs upon exposure to same dose of 
BPA. However, there is some uncertainty in this measured data since this study showed large 
variation in water concentrations and therefore unstable dosing conditions which were not 
compared between genders. Shi et al. 2016212 showed stable water concentrations for BPAF 
and reported higher measured concentrations in males, suggesting there may be differences in 
absorption or elimination processes between males and females. The PBTK model presented 
in Paper II for female includes elimination via egg-laying in addition to other routes, but still 
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over-predicts the concentrations of bisphenols in females (Figure 3A, 3C). Another possible 
explanation for the observed gender-differences could be dissimilarity in metabolic capacity. 
Levels of the metabolite BPAF-GA have been reported to be higher in females than males 
exposed to the same dose of BPAF, thus supporting this hypothesis212. On the contrary, 
expression of UGTs has been reported to be higher in male than in female zebrafish199. Our 
metabolic rates measurements used for parameterization cannot account for gender-
differences as the S9 fraction was extracted from a mixed homogenate of both male and female 
fish. 

TBBPA data were underpredicted by the model (Figure 3D). Unlike the studies on other 
bisphenols which were dosed through water exposure, TBBPA was dosed through feed219. Oral 
absorption could not be accurately parameterized as multiple data sets were not available for 
this exposure route leading to large uncertainties in model predictions. Additionally, feed 
exposure leads to higher uncertainty in the measured data since different individuals may 
ingest differing amount of feed. However, if such data was available it is possible to model 
zebrafish oral absorption as demonstrated previously221,222.  

3.4.3.2 Metabolites 
The model predicted the majority of measured BPA-GA and BPAF-GA concentrations within a 
5-fold error and the AUC as well as Cmax within a 2-fold difference. Data for BPA-GA was 
however used for fitting so performance cannot be assessed in a non-biased way. Although the 
glucuronic acid conjugates of bisphenols have not been reported to show hazardous properties 
or ER activity223,224, they are still relevant to model for better understanding of metabolite fate. 
Furthermore, studies on mammals have shown that BPA-GA can be de-conjugated in the 
intestine and re-absorbed leading to enterohepatic recirculation and prolonging the half-life of 
parent compound225,226. This process has not been investigated in fish, but is highly warranted 
as the measured concentrations of BPAF-GA and BPA-GA were much higher than their 
respective parent compounds in exposed zebrafish. 

3.4.3.3 Muscle 
Recent data published after the publication of Paper II by Han et al. 2022227 investigated the 
accumulation of BPZ, BPC, BPF and BPS in muscle tissue of adult male zebrafish. Since the 
majority of the poorly perfused tissue (PPT) in the developed PBTK model is represented by 
muscle, this compartment was compared to the observed data (Figure 4). As for the whole-
body data presented earlier, there was a tendency to over-predict high concentrations which 
were used in this study with medium and a high dose groups in this study ranging from 40 to 
3000 µg/L and 200 to 15,000 µg/L, respectively. These over-predictions could be due to 
saturation processes of the absorption and distribution not being considered in the model. 
Additionally, the study design by Han et al. 2022 did not include feeding of the fish for 13 days 
which could result in volume concentration in muscle as well as much lower adipose tissue 
fraction than the mean value used for modelling. Nonetheless, predictions were within a 5-fold 
error for 41% of data-point and 10-fold error for 83% of data showing reasonably good 
performance of the model (Figure 4).  
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Figure 4. Observed data from Han et al. 2022 compared to predicted by developed PBTK model presented in 
paper II for BPZ, BPC, BPF and BPS. Solid line shows 1:1 fit while dotted lines show 2-fold, 5-fold and 10-fold 
errors. The observed compartment was muscle while the predicted was poorly perfused tissue. 

3.4.3.4 Liver 
Liver AUC and Cmax were predicted within a 2-fold error of measured data for BPA, BPAF and 
BPZ.  Additionally, all BPAF and 92% of BPA liver concentration predictions were within a 5-
fold difference from measured ones while 53% of BPZ predictions were within a 2-fold error 
(Figure 3). Previous model179 under-predicted liver concentrations for BPA and in order to 
improve model performance we re-fitted the liver partitioning for BPA based on organ data by 
Chen et al. 2017211 This in vivo study was however performed in mixture, thus there is some 
uncertainty regarding influence of other compounds on ADME properties of BPA. Although 
current model over-estimated liver accumulation of BPA dosed alone as opposed to in mixture, 
it still constitutes an improvement compared to previous model179 with lower prediction error 
and considering that over-predictions may lead to more protective measures following the 
precautionary principles.  

3.4.3.5 Gonads and eggs 
Gonad concentrations were predicted within a 2-fold difference for the majority of BPA and 
BPAF data (Figure 3) with male gonad predictions showing greater accuracy. The measured 
BPZ data in female gonads were generally over-predicted but still mostly within a 5-fold error. 
Egg concentrations were only available for TBBPA219 and showed good performance with 
majority of predictions within a 2-fold error (Figure 3D). The lower accuracy for female data 
compared to males could be in part explained by the larger variation in female gonad volumes 
and composition at reproductive age depending on when in the spawning cycle they were 
sampled. Since female zebrafish can spawn as often as once a day, there are differences 
between individuals in the amount of eggs and therefore the size of this compartment which 
can lead to volume dilution due to the rapid growth70.  
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3.4.3.6 General Performance 
Previously published generic model by Grech et al.179 predicted whole body concentrations 
within 3 to 10-fold error while liver concentrations were within 10-fold error for one study but 
showed much higher error for data by Chen et al. 2017 (see Paper II SI for comparison)211. Both 
brain and gonad concentrations were predicted at higher than 10-fold error. A recently 
published multi-species fish model by Mit et al. 2022228 for BPA and BPA-GA shows an 
improved performance to the Grech model for zebrafish with exception of whole-body 
prediction which showed 10 fold or higher error. Thus, our model shows better predictive 
performance for zebrafish than previous literature. This improved performance can in part be 
explained by the novel data on metabolic clearance in fish, which will likely be used for 
parametrization in future fish models and which was previously lacking for bisphenols. 
Additionally, time-course distribution to brain of zebrafish had not been previously published, 
thus our BPZ measurement offered both unique calibration data for brain but also validation 
for a less studied bisphenol. Interestingly, the accuracy of all predictions in all organs increased 
when only considering exposure and not depuration phase and the half-life was consistently 
under-predicted for all bisphenols. This indicates that better understanding and 
parameterization of the depuration phase would improve model predictions. Modelled 
depuration showed a slower decrease than that of measured data (Paper II), indicating that 
extra-hepatic clearance or additional elimination routes may be present. When it comes to 
biotransformation, gills, gonads and muscle have been previously reported to be metabolically 
active in fish and the inclusion of extra-hepatic biotransformation could lead to more accurate 
estimates of concentrations229. Furthermore, biliary excretion could also play a role in 
elimination of bisphenols in fish. In a survey of fishes from rivers and markets of China, Wu et 
al. 2016230 showed that BPA is bioaccumulated in dissected bile separate from liver. Similarly, 
a study by Pettersson et al. 2006231 showed high concentrations of parent BPA in the bile of 
juvenile rainbow trout exposed to effluents containing BPA.  

3.4.4 Bioconcentration of Bisphenols 
BCFs at steady-state were estimated using the developed PBTK model for 10 selected 
bisphenols in various organs and was compared with experimental studies if available (Figure 
5). The majority of whole body as well as organ-specific BCFs were predicted within a lower 
than 2-fold error for measured data on BPZ (Figure 5A), BPA (Figure 5B) and BPAF (Figure 
5C). The only exception were muscle BCFs which were predicted within a 6-fold error (Figure 
5D). 

When ranking the different bisphenols in terms of BCF, predictions (Figure 5E) were generally 
in agreement with previously observed data in various fish species49,53,227,232. A study by Han et 
al. 2022227 on BPZ, BPF, BPC and BPS in ZF showed muscle BCFs highest for BPZ followed by 
BPC, BPF and BPS thus showing the same trend as the predictions for PPT (Figure 5, D). Wang 
et al. 202053 observed highest accumulation of BPAF followed by BPAP, BPZ and BPC and 
lowest for BPS in carp exposed to a mixture of bisphenols. Similar accumulation was observed 
for BPC and BPZ, then lower for BPAF, BPF, BPA and lowest for BPS in lake water fish49. 
Although BPAF doesn’t follow this trend for our predictions, previous zebrafish studies suggest 
that BPAF has similar accumulation as BPA. This discrepancy for BPAF may be caused either 
by species differences or mixture effects since the carp study dosed using a mixture of 
bisphenols and wild lake fishes are exposed to mixtures of pollutants.  
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Figure 5. Predicted and observed log bioconcentration factors (BCFs) for BPZ (A), BPA (B), BPAF (C), BPZ, BPC, 
BPF and BPS (D) and comparison of predicted log BCFs between ten bisphenols in female zebrafish (D) organs. 

 

  

-1.3

-0.8

-0.3

0.2

0.7

1.2

1.7

2.2

BPA BPAF BPAP BPB BPC BPF BPS BPZ BP-2 TBBPA

lo
g 

BC
F

E.Predicted Bisphenols BCFs

Whole body Liver Ovaries Brain

-2.5

0

0.5

1

1.5

2

2.5

Predicted Paper II (17 µg/L)

lo
g 

BC
F

A.BPZ
Whole body Liver Ovaries Brain Carcass

0

0.5

1

1.5

2

2.5

Predicted Lindholst  et
al. 2003 (97.5

µg/L)

Chen et al.
2017 (5.72

µg/L)

Chen et al.
2017 (1.94

µg/L)

lo
g 

BC
F

B.BPA

Whole body Liver Ovaries

0

0.5

1

1.5

2

2.5

Predicted
Female

Predicted
Male

Shi et al.  2016
Female (20

µg/L)

Shi et al.  2016
Male (20

µg/L)

lo
g 

BC
F

C.BPAF
Whole body Liver Gonads

-0.5

0

0.5

1

1.5

2

Predicted Han et al. 2022 (mean of 3 doses)

lo
g 

BC
F

D. Bisphenols in muscle

BPZ BPC BPF BPS



26 
 

4 Modelling Toxicokinetics in Developing 
Zebrafish Embryos 

In this section we present the development of a TK model for the zebrafish embryo 
incorporating both literature and own experimental measurements of bisphenols in ZFE. 
Additionally, own in vitro ER activity measurements and predicted concentrations in ZFE 
using developed model are used in order to rank relative hazard of bisphenols. This work is 
presented in more detail in Paper III. 

 

4.1 Introduction 
As much toxicology research is moving away from animal methods and towards use of NAMs 
there are important aspects of in vivo research that are still difficult to capture with in vitro 
methods. The complexity of both compound specific toxicokinetics and toxicodynamics can 
lead to observations of adverse outcomes which are not detectable in vitro. However, in vivo 
tests are low throughput, ethically questionable and expensive. Therefore, the ZFE has become 
a widely studied test system which represents a compromise between the complexity of an 
organism and the practical aspects of in vitro testing233–235. Although it is not a true 
replacement of an animal test, the ZFE represents a refinement of adult fish testing236. 
According to the European Parliament237, ZFE are not considered an animal method before 
free feeding which starts around 120-140 hours post fertilization (hpf) depending on 
temperature (T)234. The ZFE has been investigated for the purpose of environmental RA233 as 
well as to study developmental effects caused by EDCs238,239, making it a suitable organism for 
a variety of toxicology research. Concordance between mammalian and ZFE data has been 
shown for effects of opioids, indicating potential for species extrapolation240. Additionally, high 
correlation has been observed between data from ZFE testing and in vivo fish toxicity, making 
it a valuable future test for reducing the use of adult fish235,236,241.  

Although OECD guidance has been published for acute toxicity testing in ZFE242, testing other 
endpoints of toxicity has been performed with varying protocols. This includes varying dosing 
regimes, water renewal, temperature, water volume to embryo ratio as well as observing 
endpoints at differing times of development. This variation in methodologies has made it 
difficult for researchers and regulators to compare ZFE studies and has led to heterogenous 
reporting of chemical hazard both in terms of differing EC50 or BCF values56,57,188,192,243–247. 
Some of these differences may be due to inter-individual variation but another more influential 
factor could be variation in toxicokinetics caused by differing experimental set-ups that results 
in differences in internal concentrations and therefore effects. 

As seen in the previous section, toxicokinetics play an important role in vivo and can be 
modelled using PBTK. ADME are critical to consider for in vitro systems as well and can be 
modelled similarly with partitioning or TK models, also referred to as biokinetic models78,101. 
Some of these models consider binding to well materials including plastics, evaporation of 
compound, binding to serum constituents or partitioning into cells99,101,248–252. The majority of 
these models describe the distribution assuming instant equilibrium and employ partitioning 
models for each phase99,248,250. This approach is suitable for compounds which reach 
equilibrium quickly in assays using a cell monolayer with low or no metabolic capacity but may 
not be suitable in other scenarios101. However, equilibrium may not be reached in the case of 
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quickly metabolized compounds or only slowly reached in the case of more complex systems 
such as sandwich cultures101. For these cases, TK models have been developed, which do not 
assume instant equilibrium and describe time-dependent kinetic or diffusion processes in 
vitro249,251,252. Since ZFE tests are performed in wells, like cell systems, and have been shown 
to be metabolically competent243,245,253, the approaches used for these in vitro TK models could 
therefore be applied to ZFE modelling. In this section we will refer to the ZFE model as a TK 
model since it doesn’t describe physiology to the same extent as a PBTK model, which usually 
includes various organs and blood flows to them. The model still incorporates physiological 
parameters however, and can thus be considered physiologically-informed. Additionally, some 
principles from in vitro TK models can be applied for describing the ZFE test system, such as 
plastic binding or diffusion and permeability driven flow of compound into the biological 
system. 

A ZFE TK model would help with comparison of internal concentration reached in ZFE in 
different studies and assess the influence of various study-conditions on this internal dose. 
Furthermore, such a model could provide a reliable way for future extrapolation from internal 
embryo concentrations to in vivo adult zebrafish. These potential applications have therefore 
led to the development of ZFE models in recent years254–261. Existing models are fitted to 
specific compound data and thus cannot be applied for extrapolation to new compounds unless 
novel calibration data for these compounds is obtained. Furthermore, only limited amount of 
physiological data has been applied in ZFE models. The model developed in Paper III aims to 
incorporate important TK processes, such as epiboly, blood circulation, metabolism and 
surface area changes which have not previously been accounted for. Lastly, the majority of 
previous models254,256,259 employed fitting algorithms which do not account for parameter 
covariances. This presents an issue for TK models which contain highly correlated parameters. 
An exception are the models by Siméon et al. 2019 and Billat et al. 2022 that employed 
Bayesian approaches for parameter calibration255,257. Thus, employing such an approach in the 
model development would yield more reliable parameter estimations. 

4.2 Aims 
In this study we aimed to develop a TK model for ZFE focusing on bisphenols as model 
compounds and to validate it on data not used for calibration. The goal with this novel ZFE 
model was to incorporate available physiological data on processes such as epiboly, 
metabolism and temperature-dependent development and employ Bayesian inference for 
unknown parameter calibration. Lastly, we aimed to apply the model to rank hazard of 
bisphenols based on predicted ZFE concentration and measured ER potency. Details on 
methodology can be found in Paper III. 
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4.3 Materials and Methods 

4.3.1 ZFE Internal Concentration Measurements 
Although there are measured literature data on concentrations of bisphenols in ZFE after 
dosing, most data constitute single time-points, thus do not provide information on the time-
dependent kinetics of the rapidly developing ZFE56,189,243–247,262–267. Such data is useful for 
validating a TK model but is not suitable for parameter calibration which would require more 
data points. We therefore measured concentration in ZFE dosed with either BPA, BPAF or BPZ, 
at five different time points during development as well as corresponding water concentrations 
with and without ZFE.  

4.3.2 ZFE Modelling 
The ZFE TK model describes kinetics between compartments of plastic, water, embryo and 
yolk as well as for chorion (encompassing the perivitelline space) before hatching and the 
schematic is shown in Figure 6. As for PBTK models in general, each compartment was 
assumed to be well-stirred and homogenous. Since this model represents a developing 
organism, volumes were modelled to change over time and rates were temperature dependent 
as observed for ZFE experimentally268. Mass flow of compound was described as driven by 
diffusion and limited by permeability thus including considerations of surface area and 
permeability rate. These equations were set up as done by Nichols et al.1996269 for fish skin 
and the flow is referred to as permeability limited in this study, but it also incorporates 
principles of Fick’s law of diffusion within the definition. 

 

Figure 6. ZFE TK model schematic: i. Structure before 100% epiboly, where flow occurs between chorion, yolk 
and embryo; ii. Structure after 100% epiboly (around 10 hpf) and start of blood flow (36 hpf) but before hatching 
(60 hpf), where embryo has fully engulfed the yolk, thus there is no flow between chorion and yolk; iii. Structure 
after hatching (60 hpf) and start of metabolism (72 hpf) where chorion has been removed and there is direct flow 
between water and embryo. 
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Partitioning between water and plastic was modelled assuming instant equilibrium using 
equation by Kramer 2010 for water-plastic partitioning100. At 0 hpf the permeability limited 
flow of compound was modelled to occur between chorion, embryo and yolk as well as between 
chorion and water. After 100% epiboly, when embryo body fully covers the surface of the 
yolk70,268,270,271, flow of compound between chorion and yolk was removed.  After 36 hpf, mass 
flow of compound between embryo and yolk was modelled to occur also via blood perfusion 
(Figure 6, ii) incorporating measured cardiac output in ZFE272–276 which was scaled for size as 
done for adult fish PBTK models previously (Paper II)179,185. In this case however the blood was 
assumed to be part of the embryo as opposed to a separate compartment. At 72hpf, saturable 
metabolism was introduced as part of the embryo compartment based on rates measured for 
adult fish in Paper II. 

4.3.2.1 Parameterization and Model Calibration 
Physiological parameters were obtained from literature if available and set as mean values 
between studies including parameters such as hatching time, start of blood circulation, embryo 
growth rate, yolk consumption rate, surface area growth rate, epiboly rate, Arrhenius T, 
volumes (V) of perivitelline space, of embryo and of yolk at 0 hpf and cardiac 
output188,192,255,257,260,268,270–281. Yolk-chorion partition coefficient was assumed to be equal to 
yolk-water and was calculated using a linear free energy relationship (LFER) model by Ulrich 
et al.2020 developed for ZFE yolk282. Parameters with unknown values or with large inter-
study differences were calibrated using Bayesian inference. This included parameters such as 
the permeability rates (Kp) (mm/h) across the membranes of yolk, embryo and chorion, the 
substrate concentration at half the maximal velocity (Vmax) of biotransformation (Km), the 
fraction of cardiac output going to yolk, the starting time of biotransformation and the partition 
coefficients between different compartments with exception of yolk-water and plastic-water. 
Only measured data for BPZ was used for parameter calibration with Bayesian inference while 
the rest was used for validation. In order to extrapolate between compounds, the calibrated 
partition coefficients were assumed to be correlated to log Kow and were adjusted for this 
property of each bisphenol. Lastly sobol sensitivity analysis was performed to identify sensitive 
parameters. 

Parameter fitting for TK models can be performed with algorithms for minimizing sum of 
squares of error, such as Nelder-Mead or Levenberg-Marquardt251,283 or with Bayesian 
inference approaches106,284,285. The issue with the former option is that, unlike Bayesian, they 
do not consider the joint distribution of all parameters resulting from each individual 
parameter variability and uncertainty, thus it has been proposed that Bayesian approaches are 
more suitable for TK parameter estimation284,285. Bayesian inference allows for estimation of 
parameter distributions rather than fixed values and for incorporating prior knowledge on 
both uncertainty and variability of each parameter284,285. A Markov-Chain Monte-Carlo 
(MCMC) approach is used for sampling from prior distribution in order to calculate posterior 
distributions using a user-defined likelihood function. The likelihood describes the probability 
of observing the measured data given the sampled parameter values for each chain. After 
reaching convergence, the obtained posterior distributions of model parameters can be used 
to simulate a 95% credible interval (CI) for TK model predictions thus incorporating variability 
and uncertainty of model parameters. Although this approach shows great promise in the field 
of TK modelling, it is computationally demanding. Additionally, if very little measured data is 
available for both priors and for likelihood calculations, the method will not reach convergence. 
Therefore, many published TK models using Bayesian inference including the one presented 
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in Paper III, fix some of the known or insensitive parameters and only use Bayesian inference 
for calibration of unknown or sensitive parameters183,255,257,286. 

4.3.3 Hazard Ranking 
In order to assess hazard of bisphenols in terms of estrogenicity, we measured ER activity of 
the eleven bisphenols presented in Section 2 with the ER-LUC assay using VM7Luc4E2 cells 
(previously called BG1luc4E2)287. The potency was presented in terms of 50% effect 
concentration (EC50) and also in terms of free EC50 which represents the concentration 
adjusted for the unbound compound in media. Free EC50 was calculated using the model by 
Honda et al. 2019288 which was based on the Armitage et al. 2014248 model. We then calculated 
a ration between the predicted Cmax in embryo body and both the nominal and free EC50. We 
compared the ranking to literature compiled lowest observed effect concentrations (LOEC) for 
vtg1 induction in ZFE. 

 

4.4 Results and Discussion 

4.4.1 ZFE Model 
The measured ZFE internal concentrations followed similar trends as in literature with an 
increase until around 72 hpf, followed by a steady decline, thus not showing steady-state levels 
during the studied time window (Figure 2 in Paper III). Predictions of the newly developed 
ZFE model follow a similar trend and incorporates previously not considered data on 
biotransformation and blood circulation. The decline in observed compound concentration 
could be both due to volume dilution and biotransformation. Several studies have found ZFE 
to metabolize BP-2, BPA, BPF, BPS and TBBPA early in development243,245,253. Additionally, 
metabolites of valproic acid and paracetamol have been measured in exposed ZFE and 
increased UGT expression has been observed after 72 hpf further supporting that ZFE are 
metabolically competent199,261. The Bayesian calibration estimated a median start of 
metabolism at 72 hpf for BPZ, which is in line with these studies. 

Blood circulation has also been observed in early ZFE with most studies suggesting blood flow 
and cardiac output are measurable between 24-48 hpf thus the mean of 36 hpf was used for 
parameterization273,275,276,278. Additionally, high yolk perfusion has been reported previously, 
which is consistent with the Bayesian estimated median value for fraction of cardiac output 
supplying the yolk of 0.85.  

4.4.1.1 Prediction Accuracy 
The ZFE model predictions showed good performance for BPA, BPAF, BPF and TBBPA with 
the majority of data for BPA and TBBPA as well as all data for BPAF and BPF being predicted 
with a 5-fold error (Figure 7). Additionally, 41% of data for these four compounds was predicted 
within a 2-fold error. These predictions encompass data from 14 different studies with varying 
experimental conditions thus showing the model is capable to adjust for varying experimental 
design. Prediction error was also comparable to measured data variation. For example, two 
studies using the same experimental design and doses for BPA exposure measured internal 
ZFE concentrations differing 2-fold56,264 while another study243 using same dose and similar 
experimental design as in Paper III showed differences in ZFE BPA concentrations of 2-4 fold.  

Predictions for BPS and BP-2 are however not as accurate as for the other bisphenols (Figure 
7). This is likely due to the fact that the currently developed model does not account for 
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ionization and both of these bisphenols have a pKa of 7.4 or below (Table 1) thus are ionized to 
a large extent in exposure water and cannot permeate the ZFE as easily. Future addition of 
ionization based on for example log D adjustment could help expand the AD of the ZFE model. 
Currently however, bisphenols which are to a high extent ionized in water are considered 
outside the AD of the ZFE model and were therefore not included in the hazard ranking 
presented bellow. 

Despite over-all good performance, the model under-predicts a large portion of the data. A 
likely explanation for that is that biotransformation was parameterized based on adult data 
due to lack of measurements in embryos. However, previous studies suggest that although 
metabolically competent, the ZFE has lower metabolic activity than adult zebrafish which 
increases throughout development199,253. 

 

Figure 7. Observed and predicted internal concentration for BPA, BPAF, BPF, TBBPA, BPZ, BPS, and BP-2. 
Solid black line represents 1:1 correlation while dotted lines represent 2-fold, 5-fold and 10-fold errors. BPZ data 
was used for model calibration. Adapted from Paper III. 

 

4.4.2 Hazard Ranking 
As an example of model application potential, we ranked bisphenols based on a relative hazard 
ratio calculated using the EC50 for ER potency and the predicted Cmax in ZFE. This was done so 
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as to consider both hazard, in terms of EC50, and internal exposure, in terms of embryo body 
(excluding yolk or chorion) Cmax. This notably only considers hazard in terms of estrogenicity 
thus other toxicities are not considered. Additionally, the Cmax represents a worst-case scenario 
and does not reflect the time-dependent exposure.  

There are some uncertainties with the use of VM7Luc4E2 cell assay for the EC50 since it 
expresses human ER. Comparison with a  zebrafish ER cell line such as the ones presented by 
Le Fol et al. 2017189 would be more suitable. Nonetheless, ERs are generally conserved in 
vertebrates289.  Both nominal and free EC50 were used for the relative hazard ratio calculation 
in order to investigate whether changes in the relative ranking would be observed. Since the 
ZFE model did not consider free concentration, using nominal concentration may be more 
comparable to developed assay. However, a recent study comparing toxicity in vitro and in 
ZFE found that free EC50 for toxicity is more suitable for this comparison290. The obtained 
relative hazard ratios were compared to literature data on vtg1 induction in ZFE by bisphenols 
as a biomarker for ER agonism in ZFE192,291–293.  

Table 2. Hazard ranking of bisphenols based on measured estrogenicity (µM), calculated relative hazard ratio 
and lowest observed effect concentration (LOEC) for vtg1 induction in ZFE 

 
aRanking based on EC50 measured in Paper III, bRanking based on ratio between maximal concentration predicted in 
embryo body and the free concentration in cell media at EC50 predicted using a model by Honda et al. 2019. cRanking based 
on mean of lowest observed effect concentration in ZFE from literature 192,291–293.  dNo LOEC data available. 

Ranking based on relative hazard ratio did not differ whether nominal or free concentration 
were used, but they differed from the ranking based on solely nominal concentration indicating 
that internal exposure plays a role in hazard (Table 3). Ranking based on vtg1 induction was 
similar to the one using the calculated ratios, although with some missing data. Although 
LOECs may not be entirely comparable to the EC50, they give an indication of effect and a 
confirmation that some bisphenols indeed reach their biological target inside the embryo.  

All of the ranking approaches indicate that BPAF and BPB may be of higher concern than BPA. 
The ranking was also the same when using either free EC50 or the relative hazard ratio (Paper 
III). Although in this example application adjusting for internal ZFE amounts did not change 
the ranking as compared to using free EC50, this may not be the case for other compound or 
toxicities. An example is PFASs where accumulation in ZFE explained differences in toxicity to 
a larger extent than intrinsic property254. Thus, a similar hazard ranking could be performed 
focusing on other toxicity endpoint than ER.  

Nominal EC50 (µM)a Relative hazard ratio 
(Cmax/nominal EC50)

Relative hazard ratio 

(Cmax/free EC50)b

LOEC for vtg1 

induction in ZFE (µM)c

BPAF BPAF BPAF BPAF
BPC BPC BPC BPB
BPB BPB BPB BPA
BPA BPZ BPZ BPF

BPZ BPA BPA BPAPd

BPF BPF BPF BPCd

BPAP BPAP BPAP BPZd

Most hazardous

Least hazardous
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5 Discussion and Concluding Remarks 

The current work presents development and use of various NAMs for prioritizing and assessing 
hazard of environmental pollutants. Core principles of NAM development are accuracy, 
transparency, and understanding of their limitations and applicability domain79.  Although 
these principles have been in part addressed in the papers and previous sections, these are 
discussed in more detail in this section.  

 

5.1 QSPR Models 
As shown in Paper I some PFASs properties are not predicted accurately by certain publicly 
available models, such as EpiSuiteTM, which may be due to many PFASs lying outside the AD 
since few or no PFASs were included in training of the models. Thus, incorporating transparent 
AD assessment within QSAR/QSPR modelling would allow users to better understand 
uncertainty in predictions. For these models a chemical AD could be calculated with any of the 
methods discussed in Section 2. This would evidently not improve model performance but 
rather transparency in presentation of model limitations, thus allowing for more informed 
decisions with presented results.  

Additionally, chemical AD of these in silico models can be expanded using data from well 
selected chemicals spanning a larger or complementary chemical domain. That would increase 
the chemical variation in the training set and thus increase the models AD and reliability for 
that chemistry. Addition of varied, representative training sets such as those presented in 
Paper I, would present an efficient way to move forward. Thus, the PFASs selection presented 
in Paper I, provides a basis for future testing and model development aimed at expanding ADs. 
The selection approach presented in Paper I could also be employed on a more heterogenous 
group of compounds such as registered industrial chemicals, which would provide a means to 
expand the AD of models in a way relevant for assessing environmental pollutants. 

 

5.2 PBTK and TK Models 
Applicability domain of PBTK models has only recently been discussed in the literature 102,104,186 
with the recent OECD guidance on PBTK modelling, highlighting the need for considering 
model applicability294. There are however no established methods to assess AD for PBTK 
models since the assessment is complex and needs to include considerations of physiology, 
chemistry and experimental conditions. Generally, PBTK models presented in literature are 
considered as either specific or generic with the latter having a broader chemical AD but 
generally lower predictive accuracy than more specific ones102. Generic PBTK models have 
been regarded as acceptable with predictions within a 10-fold error102,179 while chemical-
specific model predictions are considered adequate at up to 2-fold error294. Both models 
presented in Paper II and III are capable of predicting the majority of data points within a 2- 
to 5-fold error for adult zebrafish (Paper II) or embryo (Paper III), thus demonstrating better 
performance but narrower chemical applicability (bisphenols) than generic fish models179,185. 
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5.2.1 Physiological Considerations 
Physiology dependent applicability of PBTK models may consider for example gender, tissues, 
life-stage, and species. As seen in Paper II, models for male and female zebrafish differed in 
terms of structure, compartments and physiological parameters. This model showed good 
capability to predict data for both male and female zebrafish with similar performance. We 
also noted the importance of including muscle as a tissue since the predictive accuracy for PPT, 
as an estimate for muscle, was lower than for the other discussed tissues. Exposure studies in 
fish often report levels in muscle and thus such a model improvement would be feasible. 
Another important consideration is that data used for calibrating existing PBTK models are 
oftentimes obtained from juvenile or young adult animals which poses uncertainties when it 
comes to extrapolation to younger and older life-stages. Overall, most generic PBTK models 
are  developed for simulating adult life-stages186. As presented in Paper II and III, modelling 
approaches differed between adult and embryos in terms of structure but also in terms of 
kinetic processes despite modelling the same species and compounds. Adult zebrafish 
absorption were modelled via gill and food intake as these are believed to be major routes for 
compound intake while embryo intake was exclusively modelled via permeability and diffusion 
through the skin since gills are not fully developed at that life-stage. Furthermore, volume 
dilution is likely to play a more crucial role in a quickly growing embryo rather than in an adult, 
thus requiring incorporation of volume changes in the model, as done in Paper III. 
Performance of whole-body predictions from the ZFE model (Paper III) was comparable 
although on average lower than that for the adult zebrafish PBTK (Paper II). This may in part 
be due to the better physiological information available for parameterizing the adult model as 
opposed to the ZFE model. These considerations highlight that physiological applicability of 
PBTK models needs to be clearly defined in terms of life-stage, gender and species for an 
accurate use of these NAMs. There are additional important biological considerations such as 
tissue compositions, transporters or metabolic enzymes which are mainly important due to 
their interactions with chemicals and are therefore discussed under chemical considerations 
below.  

5.2.2 Chemical Considerations 
PBTK models need to consider chemical specific parameters covering those that are describing 
chemical interactions with the biological system. As such, chemical specific parameters in 
PBTK models are dependent on both the biological system and the chemistry and can include 
absorption, metabolism and elimination rates, tissue partitioning, active transport across 
membranes or permeability rates. Chemical space coverage of a large number of published 
PBTK models has recently been investigated and show many gaps295. Additionally, tissue 
partition coefficients, biotransformation and unbound fraction have been addressed in recent 
papers as the major needs of improvement for PBTK and biokinetic models78,102,104,178. Notably, 
the parameters identified as sensitive for both adult and ZFE models (Paper II and III), 
included partition coefficients, biotransformation parameters and plasma fraction unbound 
(only considered in Paper II).  

AD of tissue partition coefficient models needs to consider both chemical and biological 
applicability. In terms of chemical applicability, only a small number of mainly low molecular 
weight, neutral, and moderately hydrophobic compounds have been employed for model 
development suggesting a narrow applicability domain with ionizable compounds or extremely 
hydrophobic compounds usually not falling within domain178. When considering biological 
applicability such as tissue or species, few tissue partition coefficient models have been trained 
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on fish data200–202 as opposed to mammalian data296–298. Additionally, fish specific tissue 
partitioning models have been trained on fewer compounds than some mammalian ones, 
therefore having a narrower chemical AD. There are large uncertainties with applying 
mammalian models to predict fish parameters for the purpose of covering a larger chemical 
AD, since this application would be outside the biological AD. We therefore applied a fish 
specific partitioning models for Paper II, which showed good predictions for some tissues. 
However, partitioning to liver for BPA and BPAF as well as the brain partitioning did not 
perform well as well as other organs, and had to be calibrated based on in vivo zebrafish data. 
This may be due to active transport in the case of liver or the blood-brain barrier in the case of 
brain. However, it could also indicate that the tissue partitioning QSPR models for fish may 
require further improvements. Alternatively, a future study could investigate whether 
mammalian QSPR models could yield accurate predictions of tissue partitioning even when 
applied on other species such as fish. If these predictions show good performance, it would be 
possible to use tissue-partitioning models developed for data-rich species and apply it to those 
where little measured data is available. Schmitt 2008298 showed good predictions across a 
variety of mammalian species indicating that such predictions may be used across species. This 
indicates it could be possible in the future to develop a generic partition coefficient QSPR 
model with a wide AD when it comes to both chemicals but also species and tissues. Such 
general QSPR models could be developed by accounting for partitioning to specific types of 
lipids and proteins as recently presented by Endo et al. 2013299 and Schmitt 2008298. This 
approach however, requires information on content of specific lipids and proteins as well as 
fractions of interstitium and cells in tissues of each species of interest, which is not available 
for many species. Thus, obtaining such data for species of interest may be of great use for 
improving future PBTK modelling efforts. In addition, QSPR models tailored for tissue 
partition coefficients often only consider a small set of chemical descriptors such as log Kow, 
log D and pKa200,298. However, properties such as MW and polar surface area have shown to 
influence cell permeability300 and thus could influence partitioning into tissues. It would 
therefore be of interest to develop generic QSPR models that include more chemical 
descriptors in addition to accounting for lipids and proteins as described above. 

No QSPR model for water to embryo partition coefficient predictions has been developed 
previously. The method applied in Paper III for parametrization of partitioning based on 
Bayesian calibration and adjustment for log Kow showed reasonable performance in the narrow 
chemical domain of bisphenols but is likely not applicable to compounds that are very different 
structurally. A previous ZFE model by Billat et al. 2022257 used a cell-partitioning model99 for 
ZFE partitioning parameterization as an alternative. This application included an adjustment 
factor that varied across each compound and was fitted based on measured data257, thus not 
allowing for extrapolation to other compounds unlike the approach developed in Paper III.  In 
order to expand the applicability of the ZFE TK model to support chemical extrapolation, 
development of a partitioning model would be required. This has been in part addressed by the 
recent development of a yolk-water partitioning model282, which was applied in Paper III. 
However, partitioning to embryo body and perivitelline space components has not been 
investigated yet. A general partitioning model like presented for tissues, could potentially be 
applied to embryo. However, it would have to be adjusted to partition from water rather than 
plasma as commonly done for tissues. Additionally, the composition of the ZFE rapidly 
changes over time301 and therefore, new composition data and predictions of partitioning 
would be required at small time intervals for increased accuracy. 
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Another crucial partitioning process which has been discussed for PBTK models is plasma 
protein binding178. In Paper II we parameterized the unbound fraction in plasma using 
measured data in human plasma or in silico predicted data from CompTox Dashboard217,302. 
The chemical AD of the model used for this parameter has not been provided while the 
biological domain only considers human plasma. In general, models predicting unbound 
fraction in plasma are developed on human-specific data or in vitro measurements using 
human albumin123,303,304 and it is therefore uncertain whether such data can be applied for fish 
since serum proteins differ. Zebrafish serum for example contains a large amount of 
apolipoproteins and no albumin unlike humans, where it constitutes almost half the plasma 
protein content305. Additionally, a third of female zebrafish total serum protein mass is made 
up of various VTG types which are present at much lower concentrations in male plasma 
suggesting that different approaches for plasma protein binding may be necessary for different 
genders220,305. VTGs could affect distribution of compounds and may contribute to the gender-
specific differences in kinetics discussed in Paper II. An investigation into plasma protein 
binding of other species and development of non-human or non-albumin binding models 
would be useful for investigating TK of chemicals for environmental applications.  

When it comes to in vitro TK models, partitioning into cells as well as binding to serum 
constituents or well walls has been modelled using the concept of free fraction 
calculations101,248,288.  The free fraction of compound in in vitro systems has been considered 
to be more relevant for in vitro to in vivo effect extrapolations than using nominal 
concentration306, and was therefore applied in Paper III. Incorporating free fraction in ZFE 
would likely make the ZFE predictions more comparable to the calculated free fraction in vitro. 
However, free fraction in ZFE blood was not parametrized due to lack of validation data. 
Addition of this parameter in the ZFE model would improve the understanding of effect 
concentration at target since only free compound is able to bind to target receptors, such as 
ER.  

Biotransformation is considered one of the most sensitive parameters both for PBTK and TK 
modelling but also in the context of assessing exposure and hazard of environmental pollutants 
104,186,197. Although metabolic clearance is measured for a few compounds in human and rat 
models, it is generally not available for other species including fish. Biotransformation is 
especially relevant in the case of bisphenols which have been shown to be quickly 
metabolized212,218,226. Paper II presents novel in vitro data of biotransformation rates of 
bisphenols using the RT S9 fraction bioassay. These data show lower metabolic clearance rates 
for fish than for humans, highlighting the need for species-relevant data when it comes to 
PBTK model parameterization. The applicability of these rainbow trout measurements as a 
parameter for zebrafish adult present uncertainties due to species differences, which could be 
addressed by future studies comparing metabolic rates between S9 fractions of commonly used 
model organisms as well as their metabolic enzyme expression profiles. Such studies could 
elucidate whether the rainbow trout measurements could be employed directly in models for 
other species or as basis for developing predictive models. Additionally, it would clarify the 
applicability domain of the RT S9 in vitro assay, potentially making this OECD guidance83 
more applicable for investigating TK properties in a variety of species. The clearance rates 
presented in Paper II were also employed in Paper III, adding additional uncertainty due to 
life-stage dependent processes as discussed in the paper. Thus, further quantitative 
investigation of differences between adult and embryos is required for more accurate 
parameterization. A simple way to incorporate such future measurements into the ZFE model 
is by using a scaling factor where embryo metabolic rates represent only a specific fraction of 
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the adults. However, this would not address potential differences in expression of various 
enzymes which could be addressed by incorporating specific enzyme rates rather than total 
clearance. 

Accounting for ionization has been previously discussed as an important consideration for both 
PBTK and in vitro partitioning models since ionization influences the partitioning of 
compounds and therefore the free fraction and absorption through phospholipid 
membranes99,102,298. The developed models in Paper II and III do not adjust for ionizable 
compounds such as BPS and BP-2. In the case of BPS, the adult model shows predictions within 
a 5-fold error while the ZFE model predicts 10-fold or higher indicating that considering 
ionization may be more crucial for the ZFE model. A potential approach to address this, would 
be to incorporate ionic fraction and only consider the non-ionized fraction available for 
partitioning into organisms as seen in recent literature99,255. Additionally, a tissue partitioning 
model which accounts for ionization as done by Schmitt 2008298 could be employed. Such 
additions would expand the applicability domain of developed models to also include ionic 
compounds. 

An important consideration for PBTK and TK model applicability domain, is the dose range 
for which predictions are accurate. This is especially an issue at high doses where saturation of 
various processes may occur. In general, few PBTK models describe saturation of elimination 
or absorption processes while saturation of metabolic processes has been incorporated in some 
models102,186. Models presented in Paper II and III do not incorporate saturation with the 
exception of metabolism in the ZFE model. Both models also show better performance in the 
dose ranges of the calibration data, meaning in the case of the adult model that high doses 
showed a trend of overprediction while in the case of the ZFE model, low doses resulted in 
underpredictions. For the adult model, overpredictions at high doses may indicate that 
elimination and metabolism processes may have reached saturation. In the case of ZFE data, 
many studies employ doses above environmental concentrations including the work presented 
in Paper III, which could mean that some processes have already been saturated. Using such 
studies to calibrate TK models to extrapolate to low environmental exposure concentrations 
can therefore lead to underpredictions as observed in Paper III. Thus, incorporating saturation 
of kinetic processes in the modelling would allow for extrapolation between studies with 
different dosing scenarios that would expand the applicability domain of ZFE models. This 
could be done by obtaining data on both maximal reaction velocity (Vmax) and the 
concentration of compound at which half the Vmax is reached (Km) for each individual process. 
However, this would require in vitro testing at multiple doses and for each individual chemical. 
Although data on saturable kinetics would be necessary for modelling high exposure scenarios, 
they may not be as relevant for parameterizing fish PBTK models developed for hazard 
identification of environmental pollutants as these are usually present at low doses. However, 
it is important to consider whether saturation may have been reached. 

An additional consideration which many PBTK and TK models lack including the ones 
presented in this thesis, is accounting for active transport. The mass flow of compound in 
compartments is generally modelled via passive processes such as diffusion or partitioning. 
Including active transport in kinetic models requires knowledge on rates and affinity but such 
data are not available for many compounds and transporters with exception of some 
pharmaceuticals. Incorporating active transport may be more relevant for some compounds. 
For example, active transport of PFASs via organic anion transporters has been demonstrated 
to affect half-life and shown to be necessary for human PBTK modelling of this class of 
chemicals.307 In the case of bisphenols, efflux pumps such as ATP-Binding Cassette 
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transporters308,309, may influence the degree of accumulation in different organs and could 
explain some of the compound-specific differences in liver accumulation observed in Paper II.  

5.2.3 Experimental Considerations 
Experimental or environmental conditions such as exposure routes, temperature or well-plate 
materials, should also be considered in the AD of PBTK and TK models. As observed in Paper 
II there was a large difference in model accuracy between aqueous and feed exposure while 
skin absorption was not considered at all, thus the PBTK model cannot be applied accurately 
for oral or skin absorption and requires further development to cover these processes. Another 
important consideration when modelling kinetic processes in fish, is the effect of temperature. 
Both adult and ZFE models developed in the papers, adjust for the effects of temperature on 
various processes such as cardiac output and various growth rates. However, more processes 
such as metabolism may also be affected by temperature that could potentially be accounted 
for in the future. Considering temperature in models aimed for investigating hazard of 
environmental pollutants is highly relevant in the context of climate change as well since 
changes in the environment may influence the ADME and thus the risk of these compounds to 
organisms310. When it comes to in vitro systems another important aspect is the well material. 
Binding to  polystyrene well plate plastic has been modelled previously and was included in 
Paper III100,250. The ZFE model however does not consider other types of plastics or glass. 
Additionally, the plastic binding model was previously developed for polycyclic aromatic 
hydrocarbons presenting some uncertainty when it comes to application for bisphenols.  

 

5.3 Conclusions and Future Perspectives 
The papers discussed in this thesis present novel developments in the field of NAMs but also 
highlight needs for improvement in order to increase their accuracy and reliability. We 
explored the chemical space showing large variation among PFASs compounds and selected a 
representative subset for future research in Paper I. The presented methodology can be applied 
to other compound classes in order to select sub-groups of compounds that can be tested for 
expanding applicability domains of QSAR and QSPR models. Additionally, we selected an 
environmentally relevant sub-set of bisphenols which were then used for further NAM 
development in Papers II and III. In Paper II, the organ-specific distribution and 
bioaccumulation potential of selected bisphenols was investigated through development of an 
adult zebrafish PBTK model which showed improved accuracy compared to previous models. 
We also measured in vitro metabolic clearance rates for these compounds, thus providing a 
valuable dataset for future modelling efforts in fish and showed that these values differ from 
human-specific rates for most bisphenols. Model development was additionally aided by the 
novel data on BPZ distribution, which had previously not been studied and showed higher 
bioaccumulation potential than BPA. Additionally, measured BPZ data in brain suggests lower 
accumulation in this organ than previously predicted. The PBTK model suggested that in terms 
of whole-body bioaccumulation; TBBPA, BPZ, BPC, BPAP and BPB may possess more 
concerning properties than BPA. Lastly, we present a novel approach for modelling TK in ZFE 
incorporating more measured physiological parameters than previously done and showing 
good predictive performance. We demonstrated that the model presented in Paper III is 
capable of predicting a large variation of experimental conditions making it possible to 
compare internal concentrations rather than nominal. In terms of combined data on 
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accumulation potential and ER activity, BPAF, BPZ, BPC and BPB show more concerning 
properties than BPA which is similar to the conclusions in adults. 

Most PBTK models are developed based on in vivo data for calibration and validation104. This 
approach has been referred to as top-down model development. This approach has been 
partially employed in Paper II for BPZ since data was integrated from multiple sources, but in 
vivo testing was also performed for model validation and calibration. NAMs however aim to 
move away from in vivo methods and use exclusively in silico or in vitro data79. Although Paper 
III used data from a non-animal method from a legal stand point, the ZFE test is often not 
viewed as a true replacement. Recent developments in the field however aim to develop PBTK 
models which follow the bottom-up principle where models are developed based on exclusively 
in vitro or in silico data104. The main uncertainties identified in this thesis were related to AD, 
biotransformation and partitioning, which could to some extent be addressed with in vitro 
approaches to inform either the parameters directly or the development of in silico models 
aimed at predicting these properties. Thus, future developments in PBTK modelling for these 
parameters may not require further in vivo studies but rather well targeted development of in 
vitro and in silico methods. Although suggestion for additional in vivo studies have been 
described in this thesis, they should be aimed for the improvement and development of QSPR 
models for parameterization of PBTK models rather than additional in vivo TK investigations 
of specific compounds. 

Lastly, development efforts on NAMs have been mainly focused on human risk79 and thus 
many of these methods are mainly applicable to human hazard identification with few papers 
being focused on environmental hazard311. Additionally, the chemical applicability domains of 
many NAMs are narrow and often mainly cover drug-like compounds. Although the TK models 
presented in this thesis focus on a single fish species (Danio rerio), many of the presented 
principles can be used for extrapolation to other fish species given the availability of 
physiological parameters, making the current work of relevance for environmental toxicology 
research. Thus, the work presented in this thesis provides developments of new approach 
methodologies which bring the field a step closer to the goal of animal-free chemical safety 
assessments.   
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