
Final thesis

Automated Network Node Discovery
and Topology Analysis

by

Johan Sigholm

LITH-IDA-EX--07/061--SE

2007-11-20

Avdelning, Institution
Division, Department

Datum
Date

Sprºak

Language

¤ Svenska/Swedish

¤ Engelska/English

¤

Rapporttyp
Report category

¤ Licentiatavhandling

¤ Examensarbete

¤ C-uppsats

¤ D-uppsats

¤ ÄOvrig rapport

¤

URL fÄor elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

LinkÄoping Studies in Science and Technology

Thesis No. 061

Titel
Title

FÄorfattare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

This Master's Thesis describes the design and development of an architecture
for automated network node discovery and topology analysis, implemented as
an extension to the network management and provisioning system NETadm in.
The architecture includes functionality for °exible network mod el assessment,
using a method for versatile comparison between o®-line database models and
real-world models. These models populated by current node data collected
by network sensors.

The presented architecture supports (1) e±cient creation and sync hro-
nization of network topology information (2) accurate recognition of new,
replaced and upgraded nodes, including rogue nodes that may exhibit mali-
cious behavior, and (3) provides an extension of an existing vendor-neutral
enterprise network management and provisioning system.

An evaluation of the implementation shows evidence of accurate discov-
ery and classi¯cation of unmatched hosts in a live customer production
network with over 400 nodes, and presents data on performance and scalabil-
ity levels.

The work was carried out at Netadmin System i Sverige AB, in LinkÄoping,
Sweden.

Real-Time Systems Laboratory,
Dept. of Computer and Information Science
581 83 LinkÄoping

2007-11-20

-

LITH-IDA-EX--07/061--SE

-

Automated Network Node Discovery and Topology Analysis

Johan Sigholm

££

Network, discovery, topology, SNMP, XML, regexp

Final thesis

Automated Network Node Discovery
and Topology Analysis

by

Johan Sigholm

LITH-IDA-EX--07/061--SE

2007-11-20

Supervisor: GÄoran Runfeldt

Examiner: Simin Nadjm-Tehrani

Abstract

This Master's Thesis describes the design and development of an architec-
ture for automated network node discovery and topology analysis, imple-
mented as an extension to the network management and provisioning sys-
tem NETadmin. The architecture includes functionality for °exible network
model assessment, using a method for versatile comparison between o®-line
database models and real-world models. These models are populated by
current node data collected by network sensors.

The presented architecture supports (1) e±cient creation and synchro-
nization of network topology information (2) accurate recognition of new,
replaced and upgraded nodes, including rogue nodes that may exhibit mali-
cious behavior, and (3) provides an extension of an existing vendor-neutral
enterprise network management and provisioning system.

An evaluation of the implementation shows evidence of accurate discov-
ery and classi¯cation of unmatched hosts in a live customer production net-
work with over 400 nodes, and presents data on performance and scalability
levels.

The work was carried out at Netadmin System i Sverige AB, in LinkÄoping,
Sweden.

iii

iv

Acknowledgements

During this Master's Thesis project I have continuously received valuable
feedback and guidance from my examiner Simin Nadjm-Tehrani, which is
gratefully acknowledged.

I would also like to thank my supervisor at Netadmin System i Sverige
AB, GÄoran Runfeldt, for giving me crucial support and advice during the
implementation and testing stages of this project.

Finally, I wish to express a word of gratitude to all other co-workers at
Netadmin, who have helped me in many ways during my time there.

v

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Netadmin company history 2
1.3 Problem description . 3
1.4 Objective . 4
1.5 Approach . 4
1.6 Limitations . 6
1.7 Related work . 6
1.8 Document information . 7

1.8.1 Document overview 7
1.8.2 Reading instructions 7
1.8.3 Withheld sections . 8

1.9 Publication . 8

2 The NETadmin system 9
2.1 Main features . 9

2.1.1 Automatic service provisioning 9
2.1.2 Tiered design . 10
2.1.3 Other features . 10

2.2 Technical design . 10
2.3 Discovery service extensions 11

3 Network discovery 13
3.1 Purpose . 13
3.2 Levels of discovery . 13
3.3 Topology changes . 14
3.4 Vendor dependency . 14
3.5 Protocols . 14

3.5.1 Simple Network Management Protocol 14
3.5.2 Link Layer Discovery Protocol 15
3.5.3 Vendor-dependent protocols 15

3.6 Automatic node discovery . 15
3.6.1 Data link layer discovery 16
3.6.2 Network layer discovery 16

vii

CONTENTS

3.7 Discovery approaches . 16

4 Discovery Agent 17
4.1 Design . 17

4.1.1 Programming language 17
4.1.2 Design tools . 18

4.2 Implementation . 19
4.3 Networks processor . 19
4.4 Network scanner . 19

4.4.1 Scanning approaches 19
4.4.2 Scanning tools . 21

4.5 Host scanner . 21
4.5.1 Communities . 22
4.5.2 Host signature . 22

4.6 Performance issues . 22
4.6.1 Parallelization . 23
4.6.2 Resource scheduling 23

5 Topology Analysis Engine 25
5.1 Design . 25
5.2 Languages . 25

5.2.1 The .NET framework 25
5.2.2 Visual Basic .NET . 26
5.2.3 Design tools . 26

5.3 Implementation . 26
5.3.1 Initialization . 26
5.3.2 Host processing . 27
5.3.3 Signature analysis . 28
5.3.4 Host identi¯cation . 28
5.3.5 Classifying unknowns 28
5.3.6 Cycle completion . 29

6 User Interface 31
6.1 Design . 31

6.1.1 Languages . 31
6.2 Implementation . 31

6.2.1 General settings . 31
6.2.2 Detailed con¯guration 32
6.2.3 Storing changes . 32
6.2.4 The discovery log . 32
6.2.5 Access control . 33

viii

CONTENTS

7 Testing and evaluation 35
7.1 Test environments . 35

7.1.1 Staging environment tests 35
7.1.2 Live tests . 36

7.2 Performance evaluation . 36
7.2.1 Top-down implementation 36
7.2.2 Parallelized implementation 36
7.2.3 Scheduling evaluation 37
7.2.4 Evaluation environment 38
7.2.5 Results . 38

8 Discussion 39
8.1 Results . 39
8.2 Future work . 39
8.3 Conclusions . 40

Glossary 41

A Screenshots 47
PHPEclipse developing environment 48
MySQL Control Center . 49
Visual Basic .NET environment . 50
Visual InterDev environment . 51
General network settings . 52
Detailed discovery settings . 53
Network discovery log . 54

Bibliography 55

Index 57

ix

CONTENTS

x

Chapter 1

Introduction

This chapter describes the background and problem formulation for the Mas-
ter's Thesis project, which is submitted as a partial ful¯llment for the degree
of Master of Science in Computer Science and Engineering at LinkÄoping Uni-
versity.

1.1 Background

The NETadmin system, developed by the Swedish company Netadmin Sys-
tem i Sverige AB, helps network owners and service providers deal with the
problems of e±cient network management and service provisioning. The
main goal of the system is to automate and facilitate repetitive activities,
which have traditionally required manual interaction. This includes admin-
istrative tasks such as adding and removing end-users, handling end-user
support issues, and sending out bills to the end-users depending on what
services they are subscribing to. It also includes technical tasks such as con-
¯guring network hardware, monitoring the network health and the gathering
of statistics.

After installation in a network, the system works as an intelligent and
integrated component, which can be remotely accessed and managed. It
can then control many parts of the network, such as con¯guring the active
network equipment (e.g. switches, routers or servers) to make sure each
end-user gets the service that he or she is subscribing to.

Figure 1.1 gives an idea of what the role of the NETadmin system is in a
network. It controls the network infrastructure in order to provision servi ces
o®ered by di®erent providers, but another important function is to act as
a seamless link between the service provider and the end-user, making the
intermediate infrastructure invisible. This allows for e®ective and healthy
competition between many providers in a shared network, while at the same
time allowing the network operator to focus on the management of the
network.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The NETadmin system provisions services o®ered by service
providers to the end-users. By automating con¯guration of the network
infrastructure, the work of the network operator is greatly facilitated.

It should be noted that when the term \customer" is used in this doc-
ument, it refers to customers of Netadmin System i Sverige AB, i.e. the
network operators or service providers running the NETadmin system. The
other plausible implication of a customer, as a client of a service provider in
a given network, is instead referred to as an \end-user".

The NETadmin system is deployed in a wide variety of networks in Eu-
rope and North America, but has its largest customer base in Scandinavia.
In Sweden, many large network operators, such as TeliaSonera, and a large
part of the metropolitan area networks, such as Gothnet in GÄoteborg and
Utsikt in LinkÄoping, currently use NETadmin in their production networks.

1.2 Netadmin company history

The development of the NETadmin system begun in 1998 as a project within
the Vadstena-based company Wasadata System AB. Wasadata's broadband
network was growing rapidly at the time, and there was a need for a tool
to facilitate the process of setting up and managing network equipment,

2

CHAPTER 1. INTRODUCTION

mainly switches, and handling end-user data. Hence, this was the goal of
the NETadmin system, which was launched for the ¯rst time in 1999.

After a few years it was decided that the system itself might be valuable
to other companies in need of a solution for network management. In 2002
the decision was made to turn NETadmin into an independent product.
Shortly after this the system was installed in the ¯rst customer networks,
ÄAlvsbyns kommun and Calypso Internetservice AB. During 2003 and 2004
more resources were allocated to NETadmin and in December 2004 the
independent company Netadmin System i Sverige AB was founded, as a
subsidiary of Wasadata System AB.

Today Netadmin's main customers are network owners, Internet service
providers, regional energy companies and metropolitan area network opera-
tors. Netadmin also has international customers, in both Europe and North
America, and is presently in a phase of rapid growth.

1.3 Problem description

In small computer networks, such as those found in small to medium-sized
businesses, management can usually be handled manually by a network ad-
ministrator. However, as networks grow larger, managing clients, servers,
and other network elements can become a time-consuming task. In these
networks it is necessary to employ an automatic tool to support handling of
changes to the network in an e±cient manner.

Furthermore, computer networks are rarely static; rather, dynamic chan-
ges are a constant feature of enterprise networks. New nodes are continu-
ously added, removed or updated with new con¯gurations. These changes
can be in the form of a completely new device being installed in the network
(such as a switch or a router), but also an existing device being upgraded
with a new interface module, line card, power supply etc. Keeping track of
these changes manually, and making appropriate updates, may take a lot of
time and e®ort.

Where a management system is deployed to support these activities,
the technician performing hardware installations is usually not the same
person as the one in charge of entering the new con¯guration information
into the management system. This is especially true when several di®erent
companies are involved in the operation of the network, such as in the case
of operator neutral Open Access Networks (OANs) [1].

OANs have become increasingly popular over the last few years. For
example, in Sweden this has virtually become a norm when building new
networks, partly because of a high level of government co-funding, but also
because of requirements imposed by the regulatory authorities [2]. In these
networks the end-users, usually connected by use of broadband techniques,
can choose between several competing service providers delivering general
Internet access, IP telephony, IPTV, video on demand or other media ser-
vices.

3

CHAPTER 1. INTRODUCTION

In order to come to terms with the problems of changes being made
to the network equipment without the proper corresponding updates in the
NETadmin system, a method for network node discovery and topology anal-
ysis was needed. The NETadmin system was also in need of functionality to
handle discovery of new network nodes, to recognize equipment by vendor
and identify changes in the network topology. This should be done in an
automated fashion which minimizes the need of manual human interaction.

1.4 Objective

This thesis should help answer the following questions:

² How can the desired functionality for network discovery and topology
analysis be added to the NETadmin system?

² How well does the proposed implementation work in simulated and
production environments?

² What is the performance/scalability of the implementation in shared
environments?

² How can the implementation be further developed in the future?

The objective of the project is thus to implement new functionality in the
NETadmin system for automated discovery of network nodes with detection
of con¯guration changes and generation of network topology.

1.5 Approach

After an initial evaluation of the presented problems a high-level architecture
was designed to serve as a base for the forthcoming implementation. The
ambition was to make the architecture as uncomplicated and straightforward
as possible, allowing for a transparent and °exible implementation. The
suggested approach is to create three main components; a Discovery Agent,
a Topology Analysis Engine, and a User Interface. Figure 1.2 gives a high-
level description of the proposed architecture.

1. The network administrator con¯gures the network which should be
scanned through the User Interface. The request is sent out to a
Discovery Agent.

2. The Discovery Agent scans the network and all active nodes, according
to the received con¯guration. A signature is created for each discov-
ered node, containing its characteristics.

3. The signatures are transferred to the Topology Analysis Engine.

4

CHAPTER 1. INTRODUCTION

Figure 1.2: High-level discovery and topology analysis architecture

4. The information is processed by comparing the live results with the
o®-line model database.

5. A digest list of conclusions is presented to the network administrator
via the User Interface, who can then act upon this information.

By using this basic architecture, a high level of °exibility is attained. The
network administrator may choose exactly which node information that is of
interest, for example IP or MAC addresses, system names, software versions,
hardware modules installed or active running services. Standard tools to
retrieve this information are implemented at the Discovery Agents. The
resulting data is stored in XML signature ¯les, which can be parsed by the
Topology Analysis Engine.

The main tasks which should be handled e®ectively by an implementa-
tion of this architecture are:

² Facilitating the ¯rst-time creation of the o®-line network model, by
automating the discovery process.

² Continuous monitoring of changes in the network, which are over-
looked due to either a failure of communication between responsible
people or by pure negligence.

5

CHAPTER 1. INTRODUCTION

² Detection of unknown, possibly malicious network elements, in order
to minimize the in°icted damage.

1.6 Limitations

E®ective automation of repetitive tasks while maintaining application con-
straints is a non-trivial task, also when it comes to discovery of network
information. The prospect of being able to let machines handle information
gathering and processing without any involvement of human beings is desir-
able since money can be saved. A higher grade of automation does, however,
require more care since it is hard to program computers to always make the
right decision. The solution presented in this thesis will require human inter-
action through a network administrator, to decide if a certain action should
be taken or not. It will also focus on identi¯cation using standard protocols,
with the possibility for future extension with vendor-dependent protocols.

Another limitation regarding the topology analysis implementation in
this thesis is that the focus has been put on discovery of the network nodes
(active network elements), and not the edges (links between the nodes). An
extension for link discovery is however supported by the general architecture
design, and is suggested by the author as a future improvement.

Finally, the discovery implementation has focused on active network
scanning rather than passive discovery. An explanation of the di®erences
between these methods and the reasoning behind the decision of favoring
active scanning can be found in Chapter 3.

1.7 Related work

Several research projects have identi¯ed the need for a topology agent where
information about the hosts, their software patch levels, and known vulner-
abilities are correlated to the alerts produced by the infosec devices in order
to eliminate or aggregate some alerts [3], or to facilitate software updates
[4]. Designing discovery services to aid decision-plane algorithms, main-
taining correct semantics during low-level network change and allowing zero
pre-con¯guration has also been identi¯ed as an important objective when
constructing future network architectures [5].

There have also been projects aimed at designing tools for both vendor-
dependent and independent topology discovery [6]. The NetMap project [7]
provides a solution for the use of a variety of composable network tools,
each used for a speci¯c purpose. There are also many available software so-
lutions for network management and security monitoring, both open source
projects like Netdisco [8] and Nessus [9], and proprietary solutions like HP
OpenView [10] and Microsoft SMS [11]. However, these tools do not sup-
ply functionality for discrepancy detection or the possibility to practically
compare two network models in an enterprise environment.

6

CHAPTER 1. INTRODUCTION

1.8 Document information

This section contains information about the thesis document, including an
overview of the document, reading instrucions, and information about cer-
tain withheld sections.

1.8.1 Document overview

This document comprises the following chapters:

1. Introduction This chapter includes a description of the
background of the project and Netadmin
company, and an introduction to the prob-
lem and selected method and approach.

2. The NETadmin system A description of the NETadmin system,
the di®erent parts and their functionalities.

3. Network discovery This chapter gives an introduction to net-
work discovery.

4. Discovery Agent The Discovery Agent implementation is
presented in this chapter.

5. Topology Analysis Engine A descripton of the implementation of the
Topology Analysis Engine and the process
of rule matching is presented in this chap-
ter.

6. User Interface This chapter gives information about how
the administration and con¯guration of
the discovery system is performed via the
NETadmin graphical user interface.

7. Testing and evaluation In this chapter results of both testing
and evaluation of the complete project are
given.

8. Discussion Some re°ections of the results of the Mas-
ter's Thesis project are presented along
with suggestions of future improvements.

1.8.2 Reading instructions

Chapter 2 is mainly valuable for readers not previously familiar with the
NETadmin system and its features and functionality. If the reader is familiar
with how network discovery works, Chapter 3 may be also safely skipped.
Many of the terms and abbreviations which appear throughout this thesis are
explained in detail in the Glossary, which can be used as a quick reference.
An index is also available at the end of the document.

7

CHAPTER 1. INTRODUCTION

1.8.3 Withheld sections

Since this Master's Thesis was carried out at a commercial company, some
parts of the project cannot be disclosed in this report due to con¯dentiality
and copyright issues. This includes details concerning database design (ER-
diagrams, relational schemas and table layout), and the project source code
(except for some selected samples shown in the Appendix).

1.9 Publication

A summary of the work performed in this Master's Thesis project, along
with the main results, was presented in a paper at the 2nd Benelux Work-
shop on Information and System Security (WISSec2007), Luxembourg City,
Luxembourg, September 20-21, 2007. The paper had the following title:
Sigholm J., Nadjm-Tehrani S., \Enterprise Network Node Discovery and
Topology Analysis: An Experience Report".

8

Chapter 2

The NETadmin system

NETadmin is a complex system built up of many parts. This chapter will
describe the main features of the system, the general design, and aspects of
the various system modules and how they interact with each other.

2.1 Main features

2.1.1 Automatic service provisioning

One of the main features of the NETadmin system is that it provides fully
automatic service provisioning. This means that much of the work that
traditionally was performed by the customer services department, such as
new signups, requests of service changes, and subscription cancellations, has
been transferred to the end-user.

This is done by adding a so-called \captive portal", through which the
end-users can select which services they want to subscribe to, or cancel,
without having to call customer services and talk to a human being. When
am end-user plugs in his or her computer to the network for the ¯rst time,
and starts up a web browser, this will bring up the captive portal home page,
where the end-user may select which services and which service providers
that are desired.

Captive portals are commonly used in shared access environments, such
as university campus networks, where authentication is required. They are
also useful in situations where speci¯c information is needed for billing pur-
poses, such as in commercial wireless networks at hotels or Internet caf¶es.
Any client using the HTTP protocol to access a web page is forced to go to
a certain predestined location containing the portal page.

The most common techniques used to achieve this is by either letting
the DNS server reply with the captive portals IP address for any query
received from an unauthorized client, or by using a ¯rewall to forward all
HTTP tra±c to a certain server containing the portal home page. In the

9

CHAPTER 2. THE NETADMIN SYSTEM

NETadmin system the DNS implementation is used.

2.1.2 Tiered design

Another major NETadmin feature is the tiered system design, which sepa-
rates the network owner/operator and the service providers. This works by
letting each party have its own separate NETadmin installation, with onl y
the information that is associated with their business, such as list of their
end-users, billing information, IP-addresses etc. Each end-user can also log
in to the captive portal and view or update their personal information or
information regarding their current selected services.

Each service provider's NETadmin system is connected to the network
operator's NETadmin system, and information is exchanged securely be-
tween them. An example of this is when an end-user signs up for a certain
service, either through the captive portal or by calling in, this information
is synchronized between the service provider's and the network operator's
NETadmin systems. The same method is used to exchange information re-
garding support, abuse or billing issues which needs to be handled by several
parties.

In this way many service providers can be present in the network, as is
often the case in Open Access Networks, while con¯dential business infor-
mation, such as end-user information, is not visible to competitors. Certain
information can however, at the same time, be shared between a service
provider and the network operator when this is needed. This allows for the
e®ective competition which is usually desired, while still maintaining °exible
information °ows.

2.1.3 Other features

The NETadmin system also contains a variety of other features, such as
a comprehensive case system (for handling e.g. support, billing or abuse
cases), an advanced network monitoring system with statistics and fault
alarm capabilities, and a user management system which can link end-users
to relevant cases. These features will however not be discussed in further
detail in this thesis.

2.2 Technical design

The NETadmin system is based on two main hardware platforms, Win-
dows 2003 Server and NETserver, a NETadmin-customized version of De-
bian GNU/Linux. The NETservers take care of tasks like network hardware
con¯guration, resource provisioning, gathering of statistics and monitoring.
The Windows servers act both as a front-end, with graphical user interfaces,
and as a logical processing unit which sends out \work orders" to the various
NETservers.

10

CHAPTER 2. THE NETADMIN SYSTEM

Figure 2.1: The NETadmin system with proposed extensions

Data storage is implemented by use of databases. Currently MySQL
databases are used on both Windows and Linux platforms. The main
NETadmin database is hosted on the Windows server and contains all main
information about the system, settings, end-user data etc. The NETservers
usually have their own databases, mainly used for temporary storage of col-
lected network data which is to be synchronized with the main database.
Communication between the servers is done by either secure HTTPS connec-
tions or by SSL-encrypted SQL queries directly to the common databases.

2.3 Discovery service extensions

Figure 2.1 shows an overview of the NETadmin system components with
the proposed new modules as dotted elements. For the network discovery
implementation, a new NETserver, including a local database, is added,
which acts as the Discovery Agent.

The Topology Analysis Engine is implemented as a \runner" in the
NETadmin domain. This is an extension of the functionality in the main
Windows server, with a logical module for the analysis process. Its task is
to compare the data collected by the discovery NETserver, and decide if any
changes have occurred and if so what exactly has happened.

For the con¯guration and management of the discovery system an exten-
sion of the existing NETadmin graphical user interface (GUI) is done. The
User Interface module also contains functionality for sending out updated
con¯guration setting to the Discovery Agents.

11

CHAPTER 2. THE NETADMIN SYSTEM

12

Chapter 3

Network discovery

This chapter will give an introduction to network discovery, its purpose,
relevance, and various aspects on implementation.

3.1 Purpose

The goal of network discovery is to facilitate the management of large or
complex computer networks, where it is di±cult to manually keep track
of the topology. By having access to an up to date view of the network,
decisions about hardware upgrades, software updates or capacity improve-
ments can more easily be made. Knowing what equipment that is attached
to the network is also important from an information security perspective.
This helps the network administrator verify that the discovered nodes are
indeed authorized, and that the equipment is updated with the most recent
software or patch levels.

3.2 Levels of discovery

Network discovery can be performed on many di®erent levels, and with
di®erent granularity. The preferred level of discovery can correspond to
a certain layer in the OSI reference model [12] (e.g. physical, data link or
network layer), it can refer to targeting on a certain part of a larger network,
or focusing on a certain type of network (e.g. ¯xed access network, wireless
network, etc.).

What level of discovery is appropriate may vary depending on the pur-
pose of the network discovery and which degree of detail is desired. A high
level of abstraction might be ideal when seeking a general overview of the
network, while a ¯ner granularity could be necessary in cases where a com-
plete map of the network topology is desired.

13

CHAPTER 3. NETWORK DISCOVERY

3.3 Topology changes

As previously mentioned most networks are in a constant state of change,
nodes will continuously join or leave the network, and new links may ap-
pear or vanish. Dealing with these variations in the network topology is a
challenging part of the discovery process, and any discovery implementation
must take this into consideration.

3.4 Vendor dependency

Computer networks with components from a single vendor, based on pro-
prietary hardware and software, is preferred in some networks where inter-
operability guarantees are needed. In these networks discovery is relatively
straight forward, due to the fact that the protocols and implementations are
known. In smaller enterprise networks vendor-dependent designs might be
more common, but in larger networks you often ¯nd equipment from several
vendors.

Designing Network discovery for heterogeneous networks requires a ven-
dor-neutral approach. This involves using standard protocols, or supporting
protocols from many di®erent vendors. This is very important, since the ef-
fectiveness of a discovery service is dependant on what data can be gathered
from the attached nodes in the network.

3.5 Protocols

Being able to discover the topology of a network demands that you can
successfully communicate with the network elements. Communication is
done via protocols common to both the elements and the discovering client.

3.5.1 Simple Network Management Protocol

The Simple Network Management Protocol or SNMP is a part of the TCP/IP
protocol suite de¯ned by the Internet Engineering Task Force (IETF). It is
an application layer protocol used for communication with network devices,
to collect information or transmit con¯guration. SNMP is a very commonly
used protocol and is implemented in most available network equipment (e.g.
switches, routers, and servers).

Authentication in SNMP is handled by assigning special communities
for read and write access, where a community string works like a password.
When an authenticated management client has connected to the SNMP
enabled device, it can retrieve management information stored as objects,
arranged in a tree-like hierarchy. Each object within a sub tree can be
identi¯ed by a unique number, called Object Identi¯er (OID). Translations
between OIDs and their common names are provided by Management In-
formation Bases (MIBs). There are standard MIBs containing the most

14

CHAPTER 3. NETWORK DISCOVERY

common management information, but there are also special purpose MIBs.
By creating and publishing their own MIBs, vendors can extend the stan-
dard MIBs with support for their own hardware.

Because the SNMP protocol is vendor-neutral and widely deployed, it
is very useful for network discovery. There are a few di®erent versions of
the protocol (versions 1 to 3), and while these are not mutually compatible,
most SNMP implementations support multiple versions. One limitation of
the SNMP protocol is that is it only works on the network layer, meaning
that the network address (IP-address) for a device must be known in order
to contact that unit.

3.5.2 Link Layer Discovery Protocol

The Link Layer Discovery Protocol or LLDP (IEEE 802.1AB) is a vendor-
neutral discovery protocol which, as suggested by its name, was designed
for e±cient data link layer discovery. This protocol gives network devices
the ability to identify themselves and their capabilities in the network, but
since it was rati¯ed relatively recently (May 2005), much of the equipment
in existing networks do not yet have support for this protocol.

3.5.3 Vendor-dependent protocols

There exists a variety of vendor-dependent protocols for networks discovery,
such as the Cisco Discovery Protocol (CDP), the Extreme Discovery Pro-
tocol (EDP) the Digital Maintenance Operation Protocol (DEC MOP) etc.
These protocols have the bene¯t of being able to communicate on the data
link layer, which allows communication without knowledge of network ad-
dresses, and between systems supporting di®erent network layer protocols.

A drawback with vendor-dependent protocols is that they only work
with equipment from that speci¯c vendor. Additionally problems may arise
if equipment from di®erent vendors is mixed, which may lead to wrong
topology information being transmitted.

3.6 Automatic node discovery

Being able to automate network discovery and topology analysis is a highly
desired feature, since the process can be both time-consuming, and needs to
be constantly ongoing due to changes in the network. There is therefore a
need of a programmable unit which is responsible for discovering the network
and collecting topology information. This unit should be able to perform
an unbiased scan of the network and collect the necessary information, with
no or only limited prior knowledge of the topology.

15

CHAPTER 3. NETWORK DISCOVERY

3.6.1 Data link layer discovery

If there is no knowledge of what network addresses that are used in the
network which should be scanned, the discovery process must be carried out
on the data link layer. This can be done by implementing discovery methods
such as LLDP or proprietary discovery methods. In homogenous networks
this method can work well, but problems may arise in networks with mixed
vendors or with equipment that does not support the used data link layer
discovery protocol.

3.6.2 Network layer discovery

When the network address and mask are known, discovery of network topol-
ogy on the network layer is easier. It does however require a scanning pro-
cess, to decide if each address in the network corresponds to an active node.
This process can be implemented as either a passive or an active mapping
of the network.

3.7 Discovery approaches

Two major paradigms of network scanning are active and passive scanning.
While active scanning tries to detect hosts by actively sending out probes
and expecting a reply. Passive scanning, on the other hand, merely listens
to tra±c on the network to detect speci¯c hosts.

Which technique that is the best to use in a given situation may vary
depending on what the conditions are and what results you are hoping to
achieve. In a properly con¯gured network all hosts should reply to an active
request for a reply. In networks which include hosts that are miscon¯gured
or do not reply to echo requests due to ¯rewall or policy rules, a passive
scanning method might be the only option to detect hosts.

16

Chapter 4

Discovery Agent

4.1 Design

The design of the Discovery Agent was initially decided to be based on the
traditional procedural programming paradigm, with a top-down approach,
without any object orientation techniques. The reason for this was that
the source code was not expected to be especially complex or substantial.
Many of the functions previously implemented on NETservers also used this
approach.

The design of the discovery database was done after an evaluation of the
information that was desired, through an entity-relationship modeling pro-
cess. It was clear from the beginning that the design had to allow for future
extensions, which was why the XML data type was chosen for describing
capabilities of individual hosts. Other data types were chosen to match the
ones already in use in other NETadmin databases.

4.1.1 Programming language

An evaluation of suitable programming languages was performed in order
to decide which one to use for the Discovery Agent implementation. The
evaluated languages consisted of Java and C++, Perl, Ruby and PHP.

At ¯rst Java or C++ were favored since I personally had prior experience
of these languages from other university courses. Both these languages have
support for object oriented design. Compiled C++ programs are usually
very fast and e±cient, while Java programs may be used on many di®erent
platforms. These bene¯ts were however not very relevant in the current
situation, as a non-object oriented design method had been chosen, and the
NETserver platform would remain constant.

Since most of the resource demanding functionality was expected to be
performed by external tools, a scripting language was deemed to be more
suitable for the implementation. The Perl, Ruby and PHP languages were

17

CHAPTER 4. DISCOVERY AGENT

Figure 4.1: The discovery process

considered, where PHP was ¯nally selected due to both having built-in func-
tionality for easy database access, but also because this was the language
used by most of the previously existing NETserver modules. I did not have
any personal experience of this language prior to this project, but decided
that su±cient support should be available through my supervisor and other
employees at Netadmin. Some degree of modularity could also be attained
by the use of PHP include ¯les, where speci¯c functions may be reused by
other scripts.

4.1.2 Design tools

For the development of the source code the Eclipse environment was selected,
with the PHPEclipse plug-in [13]. This allowed for easy access to help
commands, syntax highlighting, and debugging support. For a screenshot
of PHPEclipse environment, see Figure A.1 in the Appendix.

For design and con¯guration of the MySQL database, the MySQL Con-
trol Center (MySQLCC) was used. It is a graphical front-end which allows

18

CHAPTER 4. DISCOVERY AGENT

for easy database and table creation, and evaluation of SQL queries. For a
screenshot of the MySQLCC environment, see Figure A.2.

4.2 Implementation

The Discovery Agent is implemented on a NETserver and is the active data
gathering component of the discovery system. The discovery process is il-
lustrated in Figure 4.1.

The discovery system consists of three major parts, the networks pro-
cessing script, the net scanner script and host scanner script. These scripts
are individual scripts, run in a sequential top-down fashion where the net-
works processing script spawns instances of the net scanner, which in turn
spawns instances of the host scanner. This is done in order to achieve the
degree of parallelization needed to complete the tasks in a limited timeframe.
The results both of single and multi-process scanning are discussed in the
testing Chapter 7. See also the UML activity diagram in Figure 4.2 for an
illustration of the work°ow behavior of the discovery script server.

4.3 Networks processor

This script connects to the discovery script database and retrieves the main
information about the networks which are to be scanned. The information
is updated by the NETadmin server when a user changes the settings in
the User Interface (see Chapter 6). Each network entry in the database is
processed to see if it is time to perform a new scan of the current network.
This is controlled by the netperiod and netlastscandatetime ¯elds, which
tell how often the net should be scanned (in seconds) and when the last scan
was performed.

With these variables, in combination with the current date and time, a
decision on whether the net needs to be rescanned can be made. If it is time
for a new scan of the current network, a net scanner process is spawned.

4.4 Network scanner

The net scanner script scans a network, designated by a network address
and a netmask, to detect which attached hosts that are active. Since there
are several possible methods of scanning that can be utilized, a decision had
to be made on which to use in this script.

4.4.1 Scanning approaches

As mentioned in section 3.7, two major ways of network scanning are active
and passive scanning, where active scanning tries to detect hosts by active
probing [14] and passive scanning listens to detect tra±c generated by the

19

CHAPTER 4. DISCOVERY AGENT

Figure 4.2: Discovery service UML activity diagram

hosts [15]. In the current instance of the architecture active scanning has
been favoured since the devices we primarily want to detect (i.e. switches,
routers etc.) very seldom generate any unprovoked tra±c.

Active scanning is performed by sending out data on the network tar-
geted at the address which you want to detect. What kind of data that you
send can vary, but a common and straightforward approach is to send an
ICMP (Internet Control Message Protocol) ECHO request. This process is
commonly called \pinging" a host, from the name of a tool used to send
these messages. One problem with using the ICMP protocol is that not all
hosts will reply to it, due to ¯rewalls blocking this type of tra±c or givi ng
it a low priority.

Other possible ways to actively scan for hosts are by using TCP or UDP

20

CHAPTER 4. DISCOVERY AGENT

datagrams, directed towards speci¯c addresses in a given network, in an
attempt to generate a response. However, since the aim of the script is to
detect hosts with standard con¯guration, and since the script must be able
to scan a large number of hosts in a limited time, it was decided that a
regular ICMP ECHO scan would su±ce.

4.4.2 Scanning tools

There are several available tools available for performing network scanson
the Linux platform. Two of these tools were evaluated to see which would
be most suitable, Fping and Nmap.

Fping

Fping [16] is a tool which uses the ICMP protocol to determine if a host is
active or not. Fping has a feature which allows the user to specify a range
of hosts to be scanned, and is especially designed to be used in scripts,
with easily parseable output. Instead of trying one host until it timeouts or
replies, Fping will send out a ping packet and move on to the next host in
a round-robin fashion. If a host replies, it is noted and removed from the
list of hosts to check. If a host does not respond within a certain time limit
and/or retry limit it will be considered unreachable.

Nmap

Nmap (Network Mapper) [17] is a free open source utility for network explo-
ration and security auditing. Apart from containing the same functionality
as Fping, it also has many advanced scanning features such as support for
detecting system services, operating system and MAC and DNS addresses.
The results can be presented in an array which is easy to parse.

A performance evaluation showed that using the Nmap program was the
most e±cient of the available scanning tools and was most suitable for our
purposes.

4.5 Host scanner

After a scan of a particular network has been completed, the list of detected
active hosts is processed to establish which hosts are new and which have
been seen before. This is determined by a combination of IP address, MAC
address and a status °ag in the database. Thus, a host which was previously
inactive (e.g. turned o® for a period of time), is considered new if it becomes
active again. All new hosts are then further examined individually by the
host scanner script.

This module performs the information gathering from the individual
active hosts discovered by the network scanner. The main protocol used is

21

CHAPTER 4. DISCOVERY AGENT

Table 4.1: XML signature for a discovered host

<?xml version="1.0" encoding="ISO-8859-1"?>
<signature>

<sysdescr>Summit1iTx - Version 7.4.2 (Build 6)</sysdescr>
<sysname>core-sw-01</sysname>
<syslocation>server room 3</syslocation>
<syscontact>support@extremenetworks.com</syscontact>
<sysobjectid>.1.3.6.1.4.1.1916.2.14</sysobjectid>

</signature>

the Simple Network Management Protocol (SNMP), which is implemented
in most manageable network equipment. More information about the hosts
(e.g. available services or running operating system) can also be retrieved
by using either Nmap, or more specialized tools such as Xprobe [18].

4.5.1 Communities

To be able to read information from the nodes via SNMP, an SNMP com-
munity string is required, which serves as a password for access control.
The community strings to be tried are provided by the NETadmin server.
They are ultimately based on information entered by the system adminis-
trator when con¯guring the system. The communities can be stored either
in plain text or encrypted (if using SNMPv3). In order to optimize the scan
speed, a working SNMP community, if found, is stored in the host entry to
be tried ¯rst the next time.

4.5.2 Host signature

In the basic setting, some standard SNMP information is gathered from
the host: system description, system name, system location, system contact
and system object ID. Which information that is gathered can however be
dynamically con¯gured. Based on this information, a compound XML host
signature is generated (see Table 4.1) and stored in the database for use by
the later analysis process by the Topology Analysis Engine.

4.6 Performance issues

In the ¯rst implementation of the Discovery Agent, all scans of the networks
assigned to an individual agent were done in a serial fashion without any
concerns about scalability. Initially this did not cause any problems, but
when the implementation was tested in a simulated large network, perfor-
mance issues arose. A scan of a network with a thousand hosts could take an

22

CHAPTER 4. DISCOVERY AGENT

hour to complete. This might not seem too bad at ¯rst glance, but in even
larger networks the scanning times increased linearly. Due to the fact that
network topology changes may occur quite frequently, better performance
is needed to capture these changes more quickly.

4.6.1 Parallelization

The above mentioned performance requirements demanded a redesign of the
scanning implementation. Instead of using a traditional top-down scanning
method, a parallel approach was needed. This was implemented by dividing
the agent into separate modules which could be run simultaneously.

By scanning several large networks and their respective hosts in parallel,
it was shown that completion times could be signi¯cantly reduced. More
information about the performance tests can be found in section 7.2.

4.6.2 Resource scheduling

The parallelized approach did however require more system resources, in
form of primarily CPU and database loads. This led to the problem of
dividing system resources of the NETserver between the instances of the
scanning modules, and any other programs which may be running on the
same server.

Without any resource scheduling the NETserver which was used in the
testing environment froze up, or sometimes even crashed, due to the high
number of scanning processes being spawned. This was solved by imple-
menting a scheduling function which distributed the scanning evenly over
the allotted scan time. Some extra checks were also implemented to make
sure that there were enough database connections left free, and that a scan
of an individual discovered host would not be started if there was already
one running.

23

CHAPTER 4. DISCOVERY AGENT

24

Chapter 5

Topology Analysis Engine

5.1 Design

The responsibility of the Topology Analysis Engine is to retrieve the data
collected by the Discovery Agent, to process it and ¯nally store it as use-
ful information which can be presented to the user. The runner compares
the model of the network which exists in the NETadmin internal database
with the real world data gathered by the NETserver, and alerts the user of
inconsistencies which might be important to attend to.

The Topology Analysis Engine is designed as a runner in the NETadmin
domain { a program scheduled to run constantly in the background. Since
there was already an existing underlying framework for creating a runner,
through which the new functionality was to be implemented, many design
decisions were dependent on compatibility with the existing system.

5.2 Languages

The NETadmin applications running in the Windows 2003 Server environ-
ment are developed for .NET, a software framework provided by Microsoft.

5.2.1 The .NET framework

The goal of .NET is to facilitate the development of Windows applications
and to reduce the security vulnerability of these applications and the com-
puters they are running on. The .NET framework also contains a large body
of pre-coded software solutions to common program requirements, such as
data management, database connectivity and network communication.

The .NET framework allows execution of applications written in many
di®erent languages, by use of a Common Language Infrastructure (CLI). The
source code is ¯rst compiled into platform-neutral language called Common
Intermediate Language (CIL) by an intermediary compiler. The CIL ¯le is

25

CHAPTER 5. TOPOLOGY ANALYSIS ENGINE

then compiled by a platform-speci¯c Common Language Runtime (CLR)
into bytecode.

The CLR provides the appearance of a virtual machine, so that pro-
grammers do not need to take the capabilities of the speci¯c CPU type into
consideration. The CLR also provides other important services such as secu-
rity mechanisms, memory management, and exception handling. The class
library and the CLR together compose the .NET Framework.

5.2.2 Visual Basic .NET

As mentioned above, programs written in any language that has a .NET
compiler can utilize the .NET framework. The most common languages
used with .NET are Microsoft's Visual Basic .NET and Visual C#. Howev er,
since all .NET compatible languages use the .NET set of classes for their
functionality, the di®erence between them is merely syntactical.

The choice of language for the implementation fell on Visual Basic .NET
mainly because it was the language I personally had the most experience
of. Although I had only coded in Visual Basic version 6 (VB6) before, and
there are quite a lot of changes in the semantics from this version, I found
that getting into Visual Basic .NET was not that big of a struggle.

5.2.3 Design tools

The design and development tool selected for the implementation of the
Topology Analysis Engine was Microsoft Visual Basic 2005 Express Edi-
tion. This is a free development application o®ered by Microsoft for smaller
projects which do not need the functionality that the more advanced Visual
Studio .NET provides. For a screenshot of the development environment
see Figure A.3 in the Appendix.

5.3 Implementation

The Discovery runner is implemented as a solution in Microsoft Visual Basic
.NET with the main functions in a dynamic linked library (DLL), available
to the rest of the system as a COM+ component, and an executable ¯le
which calls these functions. In Figure 5.1 the process of the Topology Anal-
ysis Engine is shown in the form of a °owchart. This process is described in
more detail below.

5.3.1 Initialization

The Topology Analysis process is initiated by retrieving the information
from the NETadmin central database about which networks are con¯gured
for automatic discovery and which Discovery Agents are responsible for each
of these networks.

26

CHAPTER 5. TOPOLOGY ANALYSIS ENGINE

Figure 5.1: Flowchart of the Topology Analysis Engine

5.3.2 Host processing

Each Discovery Agent is contacted in turn, to collect the information about
new hosts which have been discovered, or hosts which have had con¯guration
changes. A change is marked by a certain status °ag in the Discovery Agent
database, so hosts which have been previously processed can be skipped.

When the information about a speci¯c host has been transferred, it is
¯rst analyzed to decide if it is a previously known host, i.e. if there exists a
mapping between the host and an entry in the NETadmin o®-line database.

27

CHAPTER 5. TOPOLOGY ANALYSIS ENGINE

Figure 5.2: An example of rules and conditions used for host classi¯cation

5.3.3 Signature analysis

If a host is previously known by NETadmin, a further analysis of the host is
done. The host XML signature is parsed and analyzed in order to determine
what change has occurred. Di®erent types of changes may be con¯gured
by the system administrator, depending on what information is included
in the XML signature. In the current implementation the available host
characteristics are limited to the ones displayed in Table 4.1. Any found
discrepancies are added to the change log which is presented via the User
Interface, see Figure A.7 in the Appendix.

5.3.4 Host identi¯cation

When a new host is discovered which is not previously known, the engine
tries to match it against the discovery primary key. This is done by searching
for entries matching the hosts IP address, MAC address, system name, or
any other characteristic which has been set as uniquely identifying by the
system administrator. If the host can be identi¯ed, it is mapped to a host ID
in the o®-line database, and is then further processed via the XML parsing
process described in the previous step.

5.3.5 Classifying unknowns

If a new, unknown host has been discovered, and it cannot be mapped to
any equipment in the o®-line NETadmin database by host identi¯cation, a
secondary analysis process is commenced with the purpose of classifying the
host as far as possible according to a de¯ned set of rules, see Figure 5.2.
Each rule points to an attribute, such as a unit type, a speci¯c vendor, a
geographic location etc., which might be valuable for the system administra-

28

CHAPTER 5. TOPOLOGY ANALYSIS ENGINE

tor in order to understand what kind of new host that has been discovered
and if it is legitimate. Each rule consists of a number of conditions, formu-
lated as a variable and a regular expression [19]. If each of the conditions
corresponding to a certain rule evaluate to \true", the rule is matched.

As an example, consider rule R1 in Figure 5.2. It consists of the condition
tuples C1:f sysname, /^Cisco.*/ g and C2:f sysdescr , /.*3550.*/ g. Rule
R1 will be matched if conditions C1 and C2 both evaluate to \true", which
will occur if the variable sysnameis a string which begins with \Cisco" and
the variable sysdescr is a string which contains the sequence \3550". The
rule can then point to an equipment type in the NETadmin database, and
the system administrator may be presented with the conclusion that, in this
case, a Cisco Catalyst 3550 series switch has been discovered. The more
rules that are matched, the more detailed information may be presented
regarding the discovered node.

5.3.6 Cycle completion

When all the new or changed hosts from all the Discovery Agents have been
analyzed the process is ended. A new analysis process is started when the
runner is re-activated by the Windows scheduler.

29

CHAPTER 5. TOPOLOGY ANALYSIS ENGINE

30

Chapter 6

User Interface

6.1 Design

All user con¯guration of the NETadmin system is done through the same
graphical user interface (GUI) as the one used to access the normal functions,
such as network monitoring, case handling and end-user management. This
interface has also been used for the con¯guration of the discovery system,
through an extension of the network management section.

6.1.1 Languages

Administration and con¯guration of the discovery system is done through
an extension of the existing NETadmin graphical user interface. This is a
web-based environment, with Microsoft Internet Information Services (IIS)
serving Active Server Pages (ASP) over secure HTTP (HTTPS). The de-
velopment of the ASP code was performed in Microsoft Visual InterDev,
shown in Figure A.4 in the Appendix.

6.2 Implementation

In Figure A.5 a screenshot of the NETadmin GUI is presented. It shows the
network browser, where networks can be added, removed or con¯gured. For
the discovery service implementation, two additions have been made to this
section.

6.2.1 General settings

First a radio button control has been added to the con¯guration template
for the general networks settings of an individual network. This is located
in the settings area, just below the broadcast setting. By default discovery
is disabled for all networks, but may be enabled by this control.

31

CHAPTER 6. USER INTERFACE

6.2.2 Detailed con¯guration

The second addition is the detailed discovery settings, which can be reached
by the button in the menu bar in the top of the settings area. This is
normally disabled (grayed out) when discovery is disabled for a network.
From the detailed discovery settings view, shown in Figure A.6, the user
can con¯gure the discovery service for the current network. The available
settings are:

² Net scan period , controls the length of the scan cycle of the network.

² Host scan period , the time between scans of individual hosts in the
network. If this is set to 0 the scan of the hosts in the network is
distributed evenly over the net scan period.

² Connections scan period , the time between the scans of links be-
tween hosts in the network. Note that this feature is not implemented
in the current version of the discovery system.

² Host key type , selects which characteristic is considered to be uniq-
uely identifying for a host in the network. See section 5.3.4 for more
information about how this property is used.

² Discovery server , decides which Discovery Agent server is used for
this network.

² SNMP community list , contains a list of SNMP communities to try
when connecting to discovered hosts in this network. The Auto Fill
feature automatically imports known communities from the o®-line
database.

6.2.3 Storing changes

When con¯guration of the discovery service has been completed for a certain
network, the new settings may be stored by clicking the \Save" button in
the menu bar. When this is done, the values are ¯rst sanity-checked, and
if they are acceptable the new con¯guration is transferred to the selected
Discovery Agent. If there are no problems during this transfer, the user is
informed that the new con¯guration was successfully stored, otherwise an
error message is shown.

6.2.4 The discovery log

Another addition to the NETadmin user interface is the network discovery
log, illustrated in Figure A.7. This shows the discovered discrepancies in all
networks for which the discovery service has been enabled, and is the place
where the main output from the discovery and topology analysis services

32

CHAPTER 6. USER INTERFACE

Figure 6.1: Flowchart of the User Interface

are shown. The options available to the user is shown in the °owchart in
Figure 6.1.

From this view the system administrator can see all detected new or
updated hosts, and choose whether to accept the change or addition of the
new host, to reject the change, or to ignore it. If a change is rejected there
should also be an option to revert the change, meaning that the changed
information (such as a name change of a network host) should be changed
back to the value stored in the NETadmin o®-line database. This function
is however not yet implemented.

6.2.5 Access control

The NETadmin GUI contains an access control subsystem, which handles
user authentication. It is based on a tiered system, where the network owner,
service providers and customer service have separate views. This feature is
also used in the discovery service con¯guration. If there are several di®erent
parties using the same NETadmin interface, only the users responsible for
certain networks have access to viewing the discovered changes and new
hosts in those networks, or making any con¯guration changes.

33

CHAPTER 6. USER INTERFACE

34

Chapter 7

Testing and evaluation

The complete implementation of the discovery and topology analysis system
has been tested in two ways, in an internal test bed system at Netadmin (the
staging environment), as well as in a live production system at a customer
site. An evaluation of the performance of the system has been carried out in
a controlled environment for measuring the overhead and average response
times.

7.1 Test environments

A live testing of the discovery system was performed in a real-world environ-
ment at a customer company. The company is a regional energy company
active in the southwest of Sweden, and operates a metropolitan area network
consisting of about 400 active core nodes.

7.1.1 Staging environment tests

Prior to this test, extensive preliminary tests were performed in the so-called
staging environment; a copy of the live system, on which new functionality
can be installed and tested to verify that it does not con°ict with existing
components. If any problems arise they can be dealt with, and the system
may be rebooted or even completely reinstalled, without any end-users being
a®ected.

These environments are hosted on servers at Netadmin Systems, and
are realized by VMware virtualization software. They do not have any
contact with the outside world, but are periodically synchronized with the
live systems to keep them up to date with settings and end-user data. The
tests were used to ensure that no database connections were accidentally
left open and that there was no evidence of memory leaks.

35

CHAPTER 7. TESTING AND EVALUATION

7.1.2 Live tests

For the production system tests, two networks at the same company were
selected, containing a total of 190 known hosts. The scanning of the net-
works was successful and the discovery system was able to identify all known
hosts in the two networks. A total of 226 discrepancies were found. 79 of
these were con°icting system names, where a slightly di®erent naming con-
vention had been used on the physical hosts compared to the one used in
the NETadmin system. 143 were con°icting MAC addresses, mainly due
to missing MAC address entries in NETadmin system for a majority of the
hosts.

On top of this, four new, previously undocumented hosts were discov-
ered. These could be identi¯ed by the Topology Analysis Engine, by rules
matching the object identi¯er string (sysObjectID) in the XML signature,
as four battery backup units (UPSs). They had apparently been installed by
technicians a few months earlier, but had never been properly documented
in the NETadmin system, which had led to them subsequently being forgot-
ten. They could however now easily be identi¯ed and synchronized into the
o®-line network model.

7.2 Performance evaluation

Preliminary experiments on the discovery service showed that the time re-
quired for one scan of a certain network varied greatly depending on the
chosen approach, as shown below. There was also a substantial di®erence
in utilization of system resources depending on the degree of parallelization.
Di®erent methods were evaluated to determine the key criteria for scala-
bility, which were identi¯ed as CPU resources and database connections.
Bandwidth usage by the discovery scans was found to be negligible in all of
the evaluated scanning methods.

7.2.1 Top-down implementation

To begin with, a simple top-down solution was tested as a baseline. This
method processed all discovered active nodes in the network one by one.
Obviously, this was painfully slow and would not scale well with the gradual
increase in size of the networks.

7.2.2 Parallelized implementation

Next, the Discovery Agent was divided into smaller parts which could be ex-
ecuted simultaneously. Three distinct activities were identi¯ed which could
be separated into parallelizable processes. The parallel scanning approach
showed a dramatic improvement in scan speed, but also an excessive con-
sumption of system resources; mainly concerning CPU usage and database

36

CHAPTER 7. TESTING AND EVALUATION

Figure 7.1: CPU load during discovery scans

connections. This became an issue when executing the scripts in a shared
environment.

7.2.3 Scheduling evaluation

Finally, a few di®erent scheduling methods were evaluated to control the
resource utilization. One way was to implement the scheduling as a function
in the scripts themselves. However, this proved to be quite crude for limiting
CPU usage. The best result was achieved by making use of the Linux kernel
process scheduling subsystem [20], giving the scan processes a slightly lower
priority than normal.

The database connection management was implemented directly in the
script, with a user con¯gurable minimum amount of connections, or fraction
of the available connections, to be reserved for other applications. In this
way the networks could be scanned rapidly while still leaving room for other
services to execute in the same environment.

37

CHAPTER 7. TESTING AND EVALUATION

7.2.4 Evaluation environment

In order to evaluate the performance of the di®erent approaches above, a
special testing environment was prepared. In this environment the scanning
scripts and the statistics gathering tool were the only resource-consuming
processes running. The NETserver hardware1, size of the network and num-
ber of active nodes (254) were constant between the three runs.

7.2.5 Results

Figure 7.1 illustrates the CPU load while performing the scans and how
long each scan took. In the ¯rst case a sequential scan was performed,
which took 19 minutes and 40 seconds and generated a fairly even load.
The time Ts required to scan a network with n active nodes, using this
sequential approach, can be expressed by

Ts =
nX

i =1

t i

where t i is the time to scan the individual node i . The second graph in
¯gure 7.1 shows the parallel scan without scheduling, which took a mere
26 seconds, but consumed all available CPU resources. Given unlimited
resources, the timeTp to scan a network using this parallel approach, can
be expressed by

Tp = tmax

where tmax is the time to scan the node which takes the longest, since all
nodes are scanned simultaneously. The bottom graph in ¯gure 7.1 illustrates
the e®ects of the resource scheduler with some speci¯c settings. Peaks of
heavy processor usage occur until the limit of maximum allowed database
connections is reached, and the process has to wait until new connections
are freed. A scan using this method took 2 minutes and 34 seconds with the
chosen settings.

1 Intel Core Solo T1350 CPU @ 1.86 GHz, 512 MB RAM

38

Chapter 8

Discussion

8.1 Results

This thesis has described the design and development of a network discovery
and topology analysis service, implemented as an extension to the network
management and provisioning system NETadmin. All in all, the project
resulted in roughly 2000 lines of source code.

Testing of the complete implementation has shown evidence of accurate
discovery and classi¯cation of unmatched hosts in both staging environ-
ments, and in a live customer production network.

The results of the performance evaluation show that the selected paral-
lel approach, with a resource scheduling mechanism, is signi¯cant in order
to achieve system scalability. The performed tests and evaluations are not
by themselves conclusive, but along with the presented analytical rationale
they serve as an indication that the implementation is adequate, that it
can handle scalability issues to some degree, and that it provides a working
mechanism for regulating system resource consumption in a shared environ-
ment.

8.2 Future work

The network discovery and topology analysis service implemented and pre-
sented in this thesis is not static, but can be further developed with functions
for additional reliability, usability and performance. There is currently on-
going work at Netadmin to extend the system, where the focus lies on work
which expands the topological model of the network and increases the degree
of rogue node detection.

39

CHAPTER 8. DISCUSSION

² By probing network elements for their connections to other nodes,
using their respective forwarding information base (FIB) and a variety
of di®erent discovery protocols, a more comprehensive model of the
network can be generated. This allows for discovery of both nodes
and edges in the network graph.

² Supplementing the Discovery Agent with a passive scanning engine
makes it possible to detect rogue nodes more e±ciently, especially
those who do not react to active scanning stimuli.

² Collection of DHCP tra±c, by use of techniques such as DHCP snoop-
ing and the DHCP Option 82, can give further information about hosts
entering the network.

² Increasing the support for vendor-speci¯c hardware drivers improves
the possibility to better identify certain network equipment and to
collect detailed data and statistics.

8.3 Conclusions

The presented architecture, and its incorporated methods, has shown to o®er
an e®ective service for °exible network node discovery and topology analy-
sis. Implemented as an add-on module to an existing network management
system, it has demonstrated the bene¯t of synchronization between o®-line
data and real-world network topology. Using XML and regular expressions
to de¯ne and evaluate parameters and conditions makes the system highly
adaptable and scalable for future improvements.

This work thus lays the ground for further extensions in a security-aware
enterprise network management and monitoring system. Adding further
data, e.g. about current system versions or patch levels, is a straightforward
process and prepares for automatic vulnerability assessment of the nodes
in an enterprise network. Future work includes the combination of such a
service with a risk analysis and threat assessment infrastructure for business-
critical systems.

40

Glossary

ASP
Active Server Pages. A Microsoft technology for server-side script
processing, commonly used for creating dynamic web content. ASP
scripts are usually developed in VBScript language.

C++
A general-purpose programming language with both high-level and
low-level capabilities. It is generally considered to be an e±cient lan-
guage, known to not incur any overhead for features which are not
used.

C#
An object-orientated language developed by Microsoft for the .NET
platform, syntactically close to C++ and Java. It can be used both
as a compiled language on a computer or as a .NET language.

CIL
Common Intermediate Language. The lowest-level human-readable
programming language in the CLI. Languages which target the .NET
Framework compile to CIL, which is assembled into bytecode that can
be executed by the CLR virtual machine.

CLI
Common Language Infrastructure. An open speci¯cation developed by
Microsoft that describes the executable code and runtime environment
that form the core of the Microsoft .NET Framework.

CLR
Common Language Runtime. The virtual machine component of Mi-
crosoft's .NET initiative. Allows programmers to ignore many detail s
of the speci¯c CPU that will execute the program, and provides ser-
vices like memory management and security features.

COM+
Component Object Model. A Microsoft interprocess communications
technology, used to let programs exposes their functionality to other
programs through one or more interfaces.

41

CHAPTER 8. DISCUSSION

CPU
Central Processing Unit. The component in a digital computer capable
of executing a program.

DHCP
Dynamic Host Con¯guration Protocol. A protocol used to dynami-
cally assign IP addresses and other network parameters to clients in a
network.

DLL
Dynamic-Link Library. The Microsoft implementation of dynamic li-
braries, which are pre-compiled subroutines which may be loaded into
an application program at runtime, rather than being linked in at
compile time, and remain as separate ¯les on disk ,

DNS
Domain Name System. A system used in IP networks to translate
between human-readable computer hostnames and their associated IP
addresses.

FIB
Forwarding Information Base. A table in a bridge or a router, contain-
ing information about which addresses can be found on which interface.

HTTP
Hypertext Transfer Protocol. A communications protocol used to
transfer or convey information on the World Wide Web.

HTTPS
Secure Hypertext Transfer Protocol. Scheme used for accessing re-
sources via HTTP in a secure fashion. It combines the use of the HTTP
protocol over an encrypted Secure Sockets Layer (SSL) or Transport
Layer Security (TLS) connection.

ICMP
Internet Control Message Protocol. A protocol used in IP networks to
transmit error messages and for diagnostic purposes.

IETF
The Internet Engineering Task Force. An organization which coordi-
nates and promotes Internet standards.

IIS
Internet Information Services. Internet-based services for servers using
Microsoft Windows. It is the world's second most popular web server
in terms of overall websites, behind the Apache HTTP Server.

42

CHAPTER 8. DISCUSSION

IP address
Internet Protocol address. The address used in the network layer to
uniquely identify a host communicating via the Internet Protocol.

IPTV
Internet Protocol Television. A system where digital television con-
tent is delivered by using the Internet Protocol, over a network infras-
tructure, instead of being distributed through traditional broadcast or
cable formats.

Java
An object-oriented programming language originally developed by Sun
Microsystems. Java applications are typically compiled to bytecode
which can run on any Java virtual machine (JVM) regardless of com-
puter architecture.

LLDP
Link Layer Discovery Protocol. A vendor-neutral data link layer pro-
tocol, which allows a network device to advertise its identity and ca-
pabilities on the local network. Formally rati¯ed as IEEE standard
802.1AB in May 2005.

MAC address
Media Access Control address. The address used in the data link layer
to uniquely identify a network adapter in the local area network.

MIB
Management Information Base. A type of virtual database, comprising
a collection of objects, used to manage the devices in a communications
network.

MySQL
A multithreaded, multi-user SQL database management system devel-
oped by the Swedish company MySQL AB as free software primarily
under the GNU General Public License.

OAN
Open Access Network. A network which implements a horizontal lay-
ered architecture and business model which separates physical access
to the network from service provisioning. The same OAN may be used
by a number of di®erent service providers, who either share investment
and maintenance costs, or who pay a fee to a network infrastructure
operator for end-user access.

OID
Object Identi¯er. An identi¯er used to address a node in a hierarchic-
ally-assigned namespace.

43

CHAPTER 8. DISCUSSION

Option 82
A feature used by multilayer switches, to append information to a
DHCP request, regarding which physical port the client is attached to
who issued the request.

OSI model
Open Systems Interconnection Basic Reference Model. A layered, ab-
stract description for communications and computer network protocol
design.

Perl
A classic UNIX scripting language often used to parse or manipulate
text, or similar tasks. It has been extended over the years with support
for multiple programming paradigms, and a large collection of third-
party modules.

PHP
A popular, free software scripting language mainly used for web ap-
plications and handling of dynamic content. PHP's principal focus is
server-side scripting, and it contains extensive built-in functionality
for database access, text processing, and ¯le handling.

Ruby
An interpreted, object-oriented programming language scripting lan-
guage with has Perl-inspired syntax. It has become popular for de-
veloping web applications, but have been struggling with some perfor-
mance issues.

SNMP
Simple Network Management Protocol. A protocol commonly used
in network management systems to monitor network-attached devices
for conditions that warrant administrative attention.

SQL
Structured Query Language. A standard interactive and program-
ming language for retrieving and manipulating information stored in
a database.

TCP
Transmission Control Protocol. A transport layer protocol which is
used in IP networks. It provides reliable, in-order delivery of a stream
of bytes, making it suitable for applications like ¯le transfer and e-mail.

UDP
User Datagram Protocol. A transport layer protocol which is used in
IP networks. A fast and e±cient protocol which, in comparison with
TCP, does not provide any services for reliability. It is commonly
used by streaming media applications such as IPTV, Internet radio or
online games.

44

CHAPTER 8. DISCUSSION

UPS
Uninterruptible Power Supply. A hardware device which maintains a
continuous supply of electric power to connected equipment, by sup-
plying power from a separate battery source when utility power is not
available. May be attached to a computer network for monitoring and
con¯guration purposes.

Virtual machine
A software implementation of a computer, which executes programs
like a real machine.

Visual Basic .NET
An object-oriented computer language which is an evolution of Mi-
crosofts's Visual Basic, with the purpose of being used with the .NET
framework.

Visual InterDev
An integrated development environment which is a part of Microsoft
Visual Studio. It is mainly used for creating ASP applications, and
provides access to code completion functionality, database server man-
agement tools, and an integrated debugger.

VMware
A brand of proprietary virtualization software for x86-compatible com-
puters.

XML
eXtensible Markup Language. A general-purpose, free, open standard
markup language, used to facilitate the sharing of structured data
across di®erent information systems.

45

CHAPTER 8. DISCUSSION

46

Appendix A

Screenshots

This appendix contains illistrating screenshots from the developing environ-
ments and the NETadmin system user interface.

Figure Description

A.1 PHPEclipse developing environment. This screenshot shows
the source code of a module in the Discovery Agent being de-
veoped in PHPEclipse.

A.2 MySQL Control Center. This application is used to monitor
the contents of the discovery database to verify that the correct
values have been recieved for each host.

A.3 Visual Basic .NET environment. Microsoft Visual Basic 2005
was used to develop the .NET application for the Topology
Analysis Engine.

A.4 Visual InterDev. ASP script code was used to create the graph-
ical system user administration interface.

A.5 General network settings. In this view the con¯guration set-
tings for a speci¯c network is shown. The Discovery service
can be enabled by toggling a radio button.

A.6 Detailed discovery settings. Each network can be con¯gured
with separate speci¯c settings for the discovery service, such
as which Discovery Agent to use, and how often to scan.

A.7 Network discovery log. Information about changes in the net-
work is presented in the discovery log. In this view the system
administrator can choose what action to take for each change.

Table A.1: Description of the ¯gures in this appendix

47

APPENDIX A. SCREENSHOTS

Figure A.1: PHPEclipse developing environment

48

APPENDIX A. SCREENSHOTS

Figure A.2: MySQL Control Center

49

APPENDIX A. SCREENSHOTS

Figure A.3: Visual Basic .NET environment

50

APPENDIX A. SCREENSHOTS

Figure A.4: Visual InterDev environment

51

APPENDIX A. SCREENSHOTS

Figure A.5: General network settings

52

APPENDIX A. SCREENSHOTS

Figure A.6: Detailed discovery settings

53

APPENDIX A. SCREENSHOTS

Figure A.7: Network discovery log

54

Bibliography

[1] Battiti R., Lo Cigno R. A., Orava F., Pehrson B., \Global growth of
open access networks: from warchalking and connection sharing to sus-
tainable business." In Proc. 1st ACM WMASH Workshop. September
2003.

[2] The National Post and Telecom Agency (PTS), \IT infrastructure for
town and country." SOU 2000:111. ISBN 91-38-21347-8. November
2000.

[3] Gamez D., Nadjm-Tehrani S., Bigham J., Balducelli C., Chyssler
T., Burbeck K., \Safeguarding Critical Infrastructures." Chapter in
H. B. Diab, A.Y. Zomaya (Eds.), Dependable Computing Systems:
Paradigms, Performance Issues and Applications.John Wiley & Sons,
Inc. ISBN 0-471-69461-4. November 2005.

[4] Han C.C., Kumar R., Shea R., Srivastava M., \Sensor network software
update management: a survey." InProc. ACM International Journal
on Network Management.Vol. 15. July 2005.

[5] Greenberg, A., Hjalmtysson, G., Maltz, D. A., et al., \A clean slat e
4D approach to network control and management."ACM SIGCOMM
Computer Communications Review. October 2005.

[6] Barthel A., \Analysis, Implementation and Enhancement of Vendor
dependent and independent Layer-2 Network Topology Discovery."
Diploma Thesis, Chemnitz University of Technology, Chemnitz, Ger-
many, April 2005.

[7] Vigna G., Valeur F., Zhou J., Kemmerer R.A., \Composable Tools For
Network Discovery and Security Analysis." In Proc. Annual Computer
Security Applications Conference (ACSAC). December 2002.

[8] Netdisco. http://netdisco.org/.

[9] Tenable Network Security, Nessus Open Source Vulnerability Scanner
Project. http://www.nessus.org/.

[10] HP OpenView. http://www.openview.hp.com/.

55

BIBLIOGRAPHY

[11] Microsoft Systems Management Server.
http://www.microsoft.com/smserver/.

[12] The Open Systems Interconnection. \Open System Interconnection Ba-
sic Reference Model." ISO/IEC 7498-1. 1994.

[13] PHPEclipse. http://www.phpeclipse.net/.

[14] Shankar U., Paxon V., \Active Mapping: Resisting NIDS Evasion
Without Altering Tra±c." In Proc. 2003 IEEE Symposium on Secu-
rity and Privacy . May 2003.

[15] Thomas, Y., Debar, H., Morin, B., \Improving security management
through passive network observation." InProc. First International Con-
ference on Availability, Reliability and Security, ARES 2006. April,
2006.

[16] Fping. http://fping.sourceforge.net/.

[17] Nmap. http://insecure.org/nmap/.

[18] Xprobe2. \Active OS ¯ngerprinting tool."
http://xprobe.sourceforge.net/.

[19] Friedl, J., \Mastering Regular Expressions, 3rd Edition". O'Reilly M e-
dia Inc. ISBN 0-596-00289-0. August 2006.

[20] Bovet D. P., Cesati M., \Understanding the Linux Kernel, 3rd Edition."
O'Reilly Media Inc. ISBN 0-596-00565-2. November 2005.

56

Index

.NET framework, 25

Active Server Pages, 31
ASP, 31

C++, 17
Cisco Discovery Protocol, 15

Digital Maintenance Operation Pro-
tocol, 15

Discovery Agent, 4, 11, 17, 19, 22,
27, 32, 36

Extreme Discovery Protocol, 15

HTTP, 31
HTTPS, 31

IPTV, 3

Java, 17

Link Layer Discovery Protocol, 15
LLDP, 15

Management Information Base, 14

NETadmin, 1, 4, 9
Netadmin System i Sverige AB, 1

Object Identi¯er, 14
OID, 14
Open Access Networks, 3

Perl, 17
PHP, 17
primary key, 28

Ruby, 17

Runner, 11, 26

Simple Network Management Pro-
tocol, 14

SNMP, 14

Topology Analysis Engine, 4, 11,
22, 25, 26

User Interface, 4, 19, 28, 31

video on demand, 3
Visual Basic .NET, 26
Visual C#, 26
Visual InterDev, 31

Wasadata System AB, 2

XML, 5, 17, 22, 28, 36

57

INDEX

58

	1 Introduction
	1.1 Background
	1.2 Netadmin company history
	1.3 Problem description
	1.4 Objective
	1.5 Approach
	1.6 Limitations
	1.7 Related work
	1.8 Document information
	1.8.1 Document overview
	1.8.2 Reading instructions
	1.8.3 Withheld sections

	1.9 Publication

	2 The NETadmin system
	2.1 Main features
	2.1.1 Automatic service provisioning
	2.1.2 Tiered design
	2.1.3 Other features

	2.2 Technical design
	2.3 Discovery service extensions

	3 Network discovery
	3.1 Purpose
	3.2 Levels of discovery
	3.3 Topology changes
	3.4 Vendor dependency
	3.5 Protocols
	3.5.1 Simple Network Management Protocol
	3.5.2 Link Layer Discovery Protocol
	3.5.3 Vendor-dependent protocols

	3.6 Automatic node discovery
	3.6.1 Data link layer discovery
	3.6.2 Network layer discovery

	3.7 Discovery approaches

	4 Discovery Agent
	4.1 Design
	4.1.1 Programming language
	4.1.2 Design tools

	4.2 Implementation
	4.3 Networks processor
	4.4 Network scanner
	4.4.1 Scanning approaches
	4.4.2 Scanning tools

	4.5 Host scanner
	4.5.1 Communities
	4.5.2 Host signature

	4.6 Performance issues
	4.6.1 Parallelization
	4.6.2 Resource scheduling

	5 Topology Analysis Engine
	5.1 Design
	5.2 Languages
	5.2.1 The .NET framework
	5.2.2 Visual Basic .NET
	5.2.3 Design tools

	5.3 Implementation
	5.3.1 Initialization
	5.3.2 Host processing
	5.3.3 Signature analysis
	5.3.4 Host identification
	5.3.5 Classifying unknowns
	5.3.6 Cycle completion

	6 User Interface
	6.1 Design
	6.1.1 Languages

	6.2 Implementation
	6.2.1 General settings
	6.2.2 Detailed configuration
	6.2.3 Storing changes
	6.2.4 The discovery log
	6.2.5 Access control

	7 Testing and evaluation
	7.1 Test environments
	7.1.1 Staging environment tests
	7.1.2 Live tests

	7.2 Performance evaluation
	7.2.1 Top-down implementation
	7.2.2 Parallelized implementation
	7.2.3 Scheduling evaluation
	7.2.4 Evaluation environment
	7.2.5 Results

	8 Discussion
	8.1 Results
	8.2 Future work
	8.3 Conclusions

	Glossary
	A Screenshots
	PHPEclipse developing environment
	MySQL Control Center
	Visual Basic .NET environment
	Visual InterDev environment
	General network settings
	Detailed discovery settings
	Network discovery log

	Bibliography

