Information and Software Technology 155 (2023) 107120

Information and Software Technology

Contents lists available at ScienceDirect INFORMATION
AND

SOFTWARE

TECHNOLOGY

journal homepage: www.elsevier.com/locate/infsof

Check for

Selection of human evaluators for design smell detection using dragonfly | e
optimization algorithm: An empirical study
Sultan M. Al Khatib?, Khalid Alkharabsheh ?, Sadi Alawadi >**

a Department of Software Engineering, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University

(BAU), Al-Salt, 19117, Jordan

b Department of Information Technology, Uppsala University, 75105, Uppsala, Sweden
¢ Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, 30118, Halmstad, Sweden

ARTICLE INFO

Keywords:

Software quality

Design smell detection

Dragonfly Algorithm

Search-based software engineering
Optimization

God class

Empirical study

ABSTRACT

Context: Design smell detection is considered an efficient activity that decreases maintainability expenses and
improves software quality. Human context plays an essential role in this domain.

Objective: In this paper, we propose a search-based approach to optimize the selection of human evaluators
for design smell detection.

Method: For this purpose, Dragonfly Algorithm (DA) is employed to identify the optimal or near-optimal
human evaluator’s profiles. An online survey is designed and asks the evaluators to evaluate a sample of
classes for the presence of god class design smell. The Kappa-Fleiss test has been used to validate the proposed
approach.

Results: The results show that the dragonfly optimization algorithm can be utilized effectively to decrease the
efforts (time, cost) of design smell detection concerning the identification of the number and the optimal or
near-optimal profile of human experts required for the evaluation process.

Conclusions: A Search-based approach can be effectively used for improving a god-class design smell

detection. Consequently, this leads to minimizing the maintenance cost.

1. Introduction

In recent decades, software systems have grown widely in size, func-
tionality, and complexity. Consequently, maintaining software quality
is one of the essential issues that has taken the attention of software en-
gineers and industries. Maintaining quality requires continuous actions
to identify and detect the weak parts in design and implementation.
In the literature, these parts are called Design Smell [1]. The design
smell does not lead to compilation or runtime errors [1] but negatively
affects the software quality [2,3].

Design smell detection is a fundamental activity that assists in
improving software quality [3-6]. Several approaches, methods, and
techniques have been suggested for design smells detection that ranged
from manual inspection [7-12] to fully-automated, such as metric-
based [13-18], rule-based [19-21], and machine learning [22-26].
Number of approaches have been developed into detection tools, such
as iPlasma [15], DECOR [17], and JDeodorant [27]. The existing
tools can analyze software projects developed in various languages and
detects a wide range of design smells in the source code or design.

Despite the accuracy of proposed approaches and detection tools,
there exists a low degree of agreement on their detection results [28—
32]. The different lists of detected design smells are considered a
massive challenge for software developers concerning maintainability
due to the variety and negative influence on the software systems [3,
33-35]. Therefore, it should be analyzed to determine the true positive
design smells that threaten the software quality. To improve the level
of agreement on design smell detection between automatic evaluators,
several studies addressed the role of human subjectivity and how it
can contribute in this context [7-12]. The result of studies has shown
an agreement on design smell detection between a group of human
evaluators, who have specific profiles concerning experience, working
background, and role in the software projects team. They conclude that
human subjectivity is a substantial factor.

The work presented in this paper considers human context, confirm-
ing what has been concluded by previous studies on this subject, as a
significant aspect for practitioners of software engineering to have in
the software industry, which leads to reducing future technical debts
and maintenance costs. Therefore, the opinions of human evaluators

* Corresponding author at: Department of Information Technology, Uppsala University, 75105, Uppsala, Sweden.
E-mail addresses: s.al-khatib@bau.edu.jo (S.M. Al Khatib), khalidkh@bau.edu.jo (K. Alkharabsheh), sadi.alawadi@it.uu.se, sadi.alawadi@hh.se (S. Alawadji).

https://doi.org/10.1016/j.infsof.2022.107120

Received 30 June 2022; Received in revised form 12 November 2022; Accepted 22 November 2022

Available online 24 November 2022

0950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:s.al-khatib@bau.edu.jo
mailto:khalidkh@bau.edu.jo
mailto:sadi.alawadi@it.uu.se
mailto:sadi.alawadi@hh.se
https://doi.org/10.1016/j.infsof.2022.107120
https://doi.org/10.1016/j.infsof.2022.107120
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107120&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S.M. Al Khatib et al.

should be considered during the development of design smell detection
techniques and the software development cycle in general. In this
context, authors of [36-40] have shown that they can use search-
based techniques effectively to improve the activity of design smells
detection in software systems. For this purpose, we focus on optimizing
the selection of human evaluators for design smell detection using
search-based approaches. The proposed approach utilizes the Dragonfly
(DA) heuristic optimization technique to determine the optimal or near-
optimal human evaluator’s profile. For this purpose, we have designed
an online questionnaire that asks human evaluators to validate the
presence of god class design smell in a set of classes of an open-source
project. The sample has been previously detected as a god class by
a group of detection tools [32,41]. The Kappa-Fleiss test is used to
evaluate the results.
The main contribution of this work is summarized as follows:

Exploiting of human evaluators profile-based identification using
Dragonfly algorithm.

Formalizing the selection of human evaluators for design-smell
detection as an optimization problem.

An empirical assessment for the degree of agreement between the
selected human evaluations by the proposed approach and the
survey outcomes.

Providing a replication package that involves all necessary infor-
mation for study replication [42].

As for the remainder of this paper, Section 2 presents related works
focused on search-based approaches and the human context concerning
design smell detection. Next, Section 3 discusses the problem statement
concerning design smell, target system, problem formulation, optimiza-
tion algorithm, and the designed survey. Then, Section 4 describes the
proposed methodology. Afterwards, Section 5 analyzes and discusses
the results. Finally, Section 7 presents our conclusions and future work.

2. Related work

In this section, we addressed related works focused on search-based
methods for design-smell detection and the role of human context in
smell detection activity.

The author of [36] used genetic programming to identify refactor-
ing opportunities related to design antipatterns through the example
approach. Their study analyzed a sample of design smell examples
extracted from well-known systems and utilized this information to
extract detection rules. Also, in [37], a heuristic approach using a
cooperative Parallel Evolutionary Algorithm (P-EA) is used to detect
eight web service antipatterns. The technique used genetic program-
ming to obtain the detection rules from a set of examples of web service
antipatterns using coupling and other types of metrics. The experi-
ment was executed using eight antipatterns (god object, Fine-grained,
Chatty, Data, Ambiguous, Redundant PortTypes, CRUDy Interface, and
Maybe It is Not RPC). The results showed that the proposed approach
effective in web service antipattern detection with high precision and
recall values. In [38], a novel approach to detect design smells using
evolutionary data mining has been proposed. Heuristics algorithms are
used with the change history of software to extract the association rules
to identify design smells. The study used five projects and three design
smells (Duplicated Code, Divergent Change, and Shotgun Surgery). The
approach was compared with DECOR, JDeodorant, and SonarQube. The
finding showed that the approach achieved high precision and recall.
Next, [39] employed a Euclidean distance-based Genetic Algorithm
and Particle Swarm Optimization (EGAPSO) for design smell detection.
The idea of their work is based on determining the proper threshold
value and defining the detection rule using EGAPSO. The proposed
approach was validated using two software systems and five design
smells (The Blob, Data class, Feature Envy, Functional Decomposi-
tion, and Spaghetti Code). After comparing the EGAPSO with other

Information and Software Technology 155 (2023) 107120

approaches, such as GA, DECOR, and MOGP, the outcome showed
it is effective. Finally, in [40], a novel search-based approach has
been proposed to detect design smell. The authors used the Whale
Optimization Algorithm (WOA) to find the optimal detection rules for
design smells in medium and large sizes software. The experiments
are carried out on five software systems to detect nine types of smells
(Feature Envy, Data class, Lazy class, Long Parameter List, The Blob,
Long Method, Spaghetti Code, Functional Decomposition, and Parallel
Inheritance). The results demonstrate high precision and recall values.

On the other hand, several works addressed the role of human
context in smell detection activity. In [7], human evaluators were asked
in two different experiments about the existence of three design smells
(Feature Envy, Long Parameter List, Long Method) and if those smells
should be corrected. The number of participants in both experiments
was 46 and 36, respectively, in which most of the evaluators were mas-
ter’s degree students. The results have shown a high agreement between
evaluators in the case of Long Method and Long Parameter List detec-
tion. In contrast, a low agreement about Feature Envy and if the design
smell will be refactored. Also, [8] experimented with asking evaluators
about the existence of 23 design smells in various artifacts developed
in a small software development company. Three developers evaluated
each module on average. The number of developers who participated
in the experiment was 18. The results show that the leader developers
detected structural design smells while the regular developers detected
duplicate and dead code smells. The authors conclude that subjectivity
played a role in the evaluation process. Next, [9] conducted a study
involving six developers in maintaining two software systems, taking
into account the opinion of two external evaluators before and through
the maintainability process. The results have shown an agreement be-
tween developers and evaluators regarding substantial factors affecting
software maintainability. Furthermore, they found a partial correlation
between these factors and the detection of some types of design smell.
In [10], a survey was designed to explore the significance of design
smells from the point of view of software developers. If they do not
care, do the reasons concerned with the unawareness of developers,
the irrelevance of the design smell concepts, or the lack of appropriate
detection tools? To this end, 85 professional developers participated in
the survey. The results show that 32% of developers had never heard
of design smell or similar terms. 22% answered that they heard or read
about them, but they did not know what it meant. 21% see the concept
but do not apply it. Only 18% understand the topic and apply it in their
work. Moreover, only two developers have used the detection tools. The
authors concluded the need for training, and awareness, in addition
to the appropriate tools with desirable features. Another study carried
out by [11] involved a group of 34 participants, including master’s
students (15), open-source developers (10), and developers who work
in software industries (9). The study was performed to determine to
what extent developers look to the design smells as design problems
that should be solved and which are the most harmful. They concluded
that there is a misuse or misunderstanding of object-oriented design
principles. In [12,43], the authors performed a survey to identify the
agreement between human evaluators on the presence of two types of
design smells. A group of 92 persons of different profiles participated
in the survey. The results have shown an evaluator profile that leads
to better detection agreements. Furthermore, the profile indicates a
better matching between the experienced developers in the size and
complexity concepts while a better coincidence on the principles of
object-oriented design between little experience developers. Therefore,
they concluded more need for training on design smells. In addition, it
is necessary to consider the opinion of human evaluators in review-
ing the code written by others and confirm the results of detection
tools. Next, in [44], they addressed how the developers discuss and
perceive the design smells (code smells and antipatterns), the correction
procedures to deal with smells, and the technical limitation faced by
developers when working with smells. Finally, the authors conducted
a large-scale study in three stack exchange sites in which more than

S.M. Al Khatib et al.

4000 posts were analyzed quantitatively and qualitatively. The findings
show that most developers focused on hot groups of smells, such as god
class, data class, duplicated code, and spaghetti code detected in Java,
C#, and JavaScript. Moreover, there is a gap between the researchers
and developers concerning the design smell detection, which makes the
questions open in this context. Also, the effectiveness of design smell
detection collaboratively versus individual is studied in [45]. To this
end, a controlled experiment that included 34 developers and five team
leaders of software projects has been conducted based on a specific
scenario. The chosen developers with different experiences, beginners
and professionals. The results show that collaborative smell detection
has more precision compared with individuals, and this approach is
strongly recommended by software project leaders to detect design
smells. After that, in [46], analyzed the code smell co-occurrence
removal influence on internal quality factors from the human context
perspective. A study by 14 developers was conducted over three months
on five closed-source software systems to analyze the refactoring oper-
ations during the removal of 60 cases of code smell co-occurrences.
From the developer’s perspective, the findings show that correction
of the code smell pair (Dispersed Coupling-God Class) enhancement
some internal quality factors. Also, the refactoring operations on code
smell co-occurrences are considered a challenge because of the problem
of understanding the source code and the complexity of refactoring
operations. Moreover, the developer’s worried about identifying and
refactoring the true positive code smells. In parallel, the authors of [47]
employed the code reviews technique to detect code smell empirically.
A set of keywords have been identified to mine code smells from the dis-
cussions of the source code review of 2 OpenStack systems. The results
indicate code review method is not standard in code smell detection,
and the reviewers assist developers by providing some recommenda-
tions to apply the refactoring. They conclude that developers should
follow good practices in object-oriented programming to reduce the
occurrence of code smells. Also, the code review method is trustworthy
to developers.

Throughout the literature, a conclusion can be made on how sub-
jectivity factors of human context in design smell detection play a
vital role in detecting various types of code smells. The extensive
discussions made by (references number [7-12,43-47]) provide that
subjectivity factors have different implications on how the evaluators
perform and to what smell they can detect in the evaluation process.
For instance, [8,12,43] indicate to what extent can the experience,
especially on Object-Oriented (00), provides significant guidance on
programming practices. Those studies show that evaluators with high
experience were able to detect smell according to the size and com-
plexity of classes, whereas those with low experience have focused on
OO0 standards and good practices, i.e. code duplicate and long methods.
The need is, accordingly, for a selection mechanism of competent
evaluators to perform design smell detection. This is a hard problem,
given the large number of human subjectivity features to consider,
which requires incorporating human context to optimize the evaluator’s
selection. From what can be seen in the literature is the lack of
proposing the selection of design smell evaluators as an optimization
problem. Most of the previous works focused on using search-based
techniques to generate design smell detection rules without taking into
account the essential role of human context, as well as refactoring
systems. In this sense, we need to discover whether employing a search-
based optimization algorithm is beneficial for reducing the number of
evaluators involved in the evaluation process for the sake of reduc-
ing the evaluation time and cost. The proposed approach, therefore,
combines search-based techniques with human context for design smell
detection.

3. Problem statement
3.1. Design smell selection

According to the systematic mapping study of [3], more than 600
design smells have been detected either in the source code or the design

Information and Software Technology 155 (2023) 107120

of software systems. From the software engineering community’s point
of view, these smells vary in their negative influence and degree of
importance. The scope of this study focused on the god class design
smell, which is one of the most design smell types that have taken
the attention of the community [3,12,41,43,48-50] due to the negative
characteristics that affect different quality factors, particularly main-
tainability, stability, and complexity [2,3]. God class is a class that
has more functionality and responsibilities, involves many methods,
and has a large size (thousands of number lines of code). Therefore,
it tends to be more complex. In some cases, god class maintenance
activity can become difficult. The reasons return to the nature of the
god class definition, where various responsibilities are centralized in
one software module that can be intersected in their source code [49].
In addition, the maintenance process might be costly and needs more
effort that exceeds the assigned budget. Mainly when the maintenance
is time-consuming due to the size of the task and their implementation
includes error-prone [51,52]. Other concepts are used in the literature
to describe the god class, such as Large class and The Blob according to
Fowler [53], and Brown definition [2] respectively. Most of the existing
detection tools have focused on god class detection along with other
types of smells due to the nature of smell that has taken the attention of
developers more than other types. Different techniques and strategies
have been used for smell detection in these tools, such as clustering
algorithms, rule-based, and metric-based strategies. In this experiment,
we selected a set of five detection tools which are the most cited and
used in this context according to [3] and include DECOR, Together,
iPlasma, JDeodorant, and PMD. For example, iPlasma and PMD use the
exact mechanism defined by [53], but the threshold values differ. In
addition, the defined strategy uses three metrics combined in one rule
to detect god class. The defined metrics include Weighted Methods per
Class (WMCQ), Access to Foreign Data (ATFD), and Tight Class Cohesion
(TCC). The detection rule is as follows:

WMC<= WMC_VERY_HIGH && ATFD > FEW_ATFD && TCC < TCC_VERY_LOW

In PMD, the threshold values were (WMC <= 47, ATFD > 5, TCC
< 1/3) while in iPlasma were (WMC <= 20, ATFD > 4, TCC < 1/3).
Borland Together uses a group of metrics from [54], and [55] where the
threshold values are not published due to the tool being commercial.
DECOR is a collection of rules (metrics, semantic, structural and asso-
ciation). The metrics obtained from [56] were Number of Attributes
Declared (NAD), Number of Methods Declared (NMD), and Lack of
Cohesion of Methods (LCOMS5). At the same time, JDeodorant uses
the agglomerative clustering technique to obtain clusters of features
(properties and methods) for each class to detect the “extract class”
refactoring possibilities.

3.2. Target system

To conduct the study, we selected the GanttProject version 2.0.10,
a well-known software system in the design smell detection context.
GanttProject is application software used for scheduling and managing
projects. It is an open-source system implemented in Java, belongs to
the medium-large category, has a long maintenance history, and is
licensed as free software. The source code of GanttProject is available
on the web in different repositories, such as GitHub and SourceForge,
and can be freely downloaded.! Table 1 shows the full details of the
project.

3.3. Problem formulation
Our problem can be represented as searching for the least number

of evaluators competent to perform the evaluation job in a short
time from a set of available ones. The set of available evaluators is

L http://ganttproject.biz.

http://ganttproject.biz

S.M. Al Khatib et al.

Table 1

Characteristics of GanttProject version 2.0.10.
Package # class # Method # Line of code
52 621 5047 66,540

represented as E = {e|,e,, ..., e,} of size n. In addition, the competency
characteristics we consider while searching for the best fit evaluator(s)
incorporate five characteristics from the evaluator’s profile. These char-
acteristics are the role (s)he plays during software development, to
which software domain his/her expertise is on, programming languages
(s)he is an evaluator with, Object-Oriented Programming experience,
and code smell detection experience.

There are different studies that each has shown the importance of
one or some of these characteristics to be considered as in [8,10-12,43].
We can think of it as in software testing and verification; a third party
is sometimes required to cover up aspects that developers could not do,
so evaluators have to have the knowledge and expertise on the job they
are about to do that is acquired by their working time. Here, we con-
sider characteristics of which they play a certain perspective according
to the working experience. For instance, an evaluator would give much
attention to some qualities that could affect the software according to
his/her development role perspective. Same as a designer who would
give much attention to details where aspects of user interfaces may be
affected. Therefore, each e in E provides a set of values associated with
these five competency characteristics.

However, these characteristics are divided into two subsets based
on how they will be used in the search process. In our problem, one
part of the search process requires matching between the competencies
needed for the software under investigation represented by .S and what
E has to offer. The second part incorporates measuring the evaluator’s
productivity and finding those capable of completing the evaluation job
in a short time.

The first subset, represented as set C', includes the characteristics
we need to match with the details of S. Here, both software domain
D and programming language(s) P are considered, where S is rep-
resented as S = {Sp,Sp} and C! as C! = {ep,ep}. Rather using a
constrained optimization, we relax the selection criterion and provide a
penalty pen that shows the fitness for an e to be selected. pen is designed
to cumulatively hold each mismatch for each selected e for each domain
and programming language characteristics between S and C!. There-
fore, the cumulative value of pen will contribute on the final estimate
of the evaluation time span. If e holds the competencies required for
S, then no penalty will be associated. Otherwise, a penalty will be
included for those whose characteristics do not match. Accordingly, the
matching process between e and .S is formed by the following steps.

First, we compare whether the evaluator would possess the com-
petency of domain expertise according to .S. This is depicted by the
following Eq. (1):

1y —
penpleyy =4 & 1L eAC= 5 &
I Ife(Ch#s,

In the above Eq. (1), we can see that a value of 0, representing no
penalty, will be associated with evaluator y if the domain characteristic
in ey(Cll) matches the one in S,. In case of no match for this character-
istic between S| and CI‘, a value of 1 will be added to this evaluator as
a penalty. Moreover, programming languages expertise of the evaluator
will be compared with what S is developed by. The following Eq. (2)
represents this part of the process.

1y —
penple,) = 0, If ey(Czl) =5, @
1, Ifel(C)#S,

By Eq. (2), a penalty will be associated to evaluator y if the program-
ming languages characteristic in ey(Czl) does not match the one in S,.

Information and Software Technology 155 (2023) 107120

Noteworthy that an evaluator may have more than one programming
language in his/her experiences. Consequently, CZ1 may fold a subset
representing these languages. Consequently, the overall penalties iden-
tified for evaluator e, for these two types can be represented as the
following Eq. (3).

pen(e,) = penp(e,) + penp(e,) 3

It can be seen by Eq. (3) that the pen of evaluator e, may be summed
up with a value of 0 as a highly fitted one, 1 for penalizing for one
characteristic mismatch, or 2 for no matching for both characteristics.

In addition to the matching criterion, we need to measure how well
the selected evaluators will perform their evaluation job in terms of
productivity. The second subset, represented by C2, incorporates the
characteristics from which we believe the level of improvement in the
evaluator productivity can be identified. These characteristics are the
role, OOP and code smell detection experiences. The representation
of OOP and code smell detection experiences can be either by the
value of 1 for a senior, 2 for a junior, or 3 for a fresh. The role,
on the other hand, can be represented by the value of 1 as (pro-
fessor/lecturer/instructor), 2 for developer, 3 for tester, 4 for system
architect, 5 for designer/software engineer, 6 for system administrator,
and 7 for related CS student. Therefore, the lower the value of these
representations of role, OOP, and code smell detection experiences, the
higher the experience is.

Two assumptions are forming the identification of productivity
improvement. First, the more experience that e has on each productivity
characteristic, the more progress his/her productivity will be. More-
over, we assume that when the representation of characteristics in C?
provides a high level of experience, then the productivity of e to that
characteristic is equal to 1, which means that this evaluator has a 100
percent productivity on that characteristic. By these two assumptions,
we need to reach the best subset of E, whose productivity is improved
by their experiences.

On the contrary, productivity can also be reduced or weakened
when the value associated with the characteristic is low. For instance,
when an e has the value of 3 for code smell detection, then his/her
productivity for this characteristic should be reduced by a percentage
to represent a fresh evaluator. For this reason, given the limited range
of values representing the evaluator’s characteristics, such as from 1 to
3or from 1 to 7, the improvement can be formed by a logarithmic func-
tion. This function will consider the amount of reduction that should be
made on productivity by the level of experience on each characteristic
using the log of base 10. The improvement of productivity imp for each
e can, accordingly, be measured by the following Eq. (4):

3
imp(e,) =Y (1—log e,(C2)) @
a=1

It can be seen by Eq. (4) above that imp of e, is the cumulative sum
of productivity values for the three characteristics. The productivity
improvement is the resulting value of subtracting the percentage of
reduction based on the values associated with each characteristic from
1. In this representation, a fully experienced e can be three times more
productive than others when his/her level of experience in the three
characteristics is high.

3.4. Dragonfly optimization algorithm

According to the social interaction behaviors of dragonflies in na-
ture, Mirjalili et al. developed the (DA) Algorithm in 2016 [57]. There-
fore, the algorithm is a nature-inspired technique with three main
processes to follow. One of these processes mimics the navigation
of dragonflies between different locations. The second process goes
further into the way of searching for food. Finally, the third process
imitates the dragonflies’ behavior when it needs to bypass enemies.
Moreover, they consider in their proposal the movement of dragonflies
in a swarm to be, for their similarity, the exploration and exploitation

S.M. Al Khatib et al.

Initialize the dragonflies population X; (i = 1, 2, ..., n)
Initialize step vectors AX; (i =1, 2, ..., n)
while the end condition is not satisfied
Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, ¢, f, and e
Calculate S, A, C, F, and E using Egs. (3.1) to (3.5)
Update neighbouring radius
if a dragonfly has at least one neighbouring dragonfly
Update velocity vector using Eq. (3.6)
Update position vector using Eq. (3.7)
else
Update position vector using Eq. (3.8)
end if
Check and correct the new positions based on the
boundaries of variables
end while

Fig. 1. Pseudo code of the DA algorithm [57].

of meta-heuristics as the main phases for optimization. Thus it is clas-
sified as a swarm intelligence (SI) based technique. These movements,
however, are recognized by [57] as static behavior (exploration) for
sub-swarms movement and dynamic behavior (exploitation) for larger
swarm movement. These two phases allow for expanding the search
in the solution space. Furthermore, this algorithm models three primi-
tive swarm principles: individual separation, alignment, and cohesion.
These behaviors are intended to be factors that aid in the updating of
individuals’ positions in swarms.

Fig. 1 depicts the algorithm’s search process. As seen in the figure,
the algorithm will generate initial random solutions representing the
dragonfly population. One of the algorithm’s parameters, named search
agents, manages the population size. The second step involves two
additional parameters of the algorithm to represent the dragonflies’
movement and direction: the lower and upper boundaries. The algo-
rithm will initialize random step vectors in the second step by these
two parameters. However, each step vector’s calculation depends on
five swarming factors to balance the exploration and exploitation.
These factors are separation, alignment, cohesion, food position, and
an enemy position.

In each iteration, the position updating process is repeated. It
involves updating the values of swarming factors and measuring
the fitness of all dragonflies according to the objective function. This
process is repeated until the end criterion is satisfied. The maximum
number of iteration parameters determines the end criterion. Moreover,
the dimensions parameter, which represents the number of features in
the data, specifies the number of dragonflies. The algorithm incorpo-
rates a flight mechanism for a random walk named levy to improve
stochastic positioning. This flight mechanism allows for more search
space exploration when there are no neighboring solutions. The reader
can find more information at [57].

Solution Representation:

The solution structure to this problem is represented by a vector
named E*, which has the same size as E. The representation for each
selected element e* in E* is binary, having the value of 1 for those
chosen and 0 otherwise. For n evaluators, the solution representation
is demonstrated by the Fig. 2.

Information and Software Technology 155 (2023) 107120

e; €3 €3 e
Ee= 12 | o | 2| .. | o |

Fig. 2. Solution representation.

In Fig. 2, it can be seen that only evaluator ¢} and ¢} are selected.
These evaluators are selected according to the search-based algorithm
stochastic processes described in Section 3.4. The size of the formed
team by E* is, therefore, dynamic. Accordingly, the resulting evaluator
team will stochastically be formed by this vector and then need to be
assessed by the fitness function. The fitness function will help, by its
outcome value, in deciding whether to accept the solution according to
the selected evaluators or not.

Fitness Function:

Our fitness function is a cost function, and it incorporates two steps.
Now, for each selected ¢* in E*, forming the evaluation team, the
first step is to measure their suitability to perform the evaluation job
according to the description of S. This can be done by matching the
competencies for every selected e* in E* with the description of S using
Egs. (1), (2), and (3). By these equations, we relax the constraints and
provide a penalty in case of a mismatch. Consequently, we will either
have the value of pen > 1 by Eq. (3) to penalize the outcome of the
fitness function for each mismatch or O for a fitted team.

Moreover, we need to estimate how productive the formed team
by E* is to finish the evaluation job as early as possible. Productivity
characteristics for each selected e* in E* are, therefore, used by the
second step, which incorporates Eq. (4). By Eq. (4), the improvement
of productivity for all selected e¢* in E* can be measured, and in
accordance with the size of .S, the estimate of the evaluation time span
eT can be provided. However, as those two aspects of productivity and
size will work well when we have a fully fitted team, we might have,
on the other hand, a resulted team by the optimizer that consists of
one or more mismatched e* to S. Consequently, the value of pen will
also be considered to penalize ¢T for any mismatch. This mismatch
is illustrated when pen > 1, which should add an extra time to eT

estimate. This T estimate is depicted by the following Eq. (5):

sizeg s (1+ X" pen(e,) * e*)
oT = s ,, Zo_l .0 o (5)
2oy imp(e,) * ek

It can be seen in Eq. (5) above that the evaluation time span eT is
calculated as the product of the size of .S, in terms of lines of code, by
the overall penalty pen of the selected evaluators in E*. The resulting
value is divided by the cumulative production of the selected evaluators
in E*. This type of time estimate is similar to the ones used for resource
allocation with consideration to the resource attributes, which are used
in many incarnations and discussed by [58-60]. When the team formed
by E* is fully fitted to .S, then the cumulative pen value will be equal
to 0 and eT can be as the size of .S over productivity. Otherwise, we
will end up, for example, by a twice or thrice value of eT. Across
the different stochastically created permutations by the optimizer, we
depend now on eT to find the minimal estimated eT that represents the
optimal or near-optimal solution.

3.5. Survey questionnaire

As mentioned above, DA is a population algorithm that searches
in a population until the optimal solution is found. For this purpose,
to construct the population (in our case, the human evaluators), we
designed a web-based survey that asks the evaluators to detect the
god class design smell in a sample of classes of the target project
GanttProject. The selected sample has been detected as god class using
the chosen group of detection tools. The designed survey consists of
two parts. The first part includes a group of questions that make up the

S.M. Al Khatib et al.

evaluator profile. The set of questions focused on different subjective
factors, such as background related to working activities (the role in the
development team), the degree of experience in reviewing and writing
object-oriented code, and their knowledge of design smell. The experi-
ence factor is classified into three categories: fresh (zero years), junior
(1 to 3 years), and senior (more than three years). On the other hand,
the second part involves a set of classes to be analyzed by the human
evaluators if it is considered a god class or includes other smell types.
For each class, we included a link that assists the evaluator in showing
the source code online. Also, we had a link that indicates the god class
definition if the evaluator requires more information. Finally, to reach
the most significant number of evaluators with different profiles, we
published the designed survey on software companies and software
repositories, such as GitHub and SourceForge, LinkedIn, ResearchGate,
and forums interested in object-oriented and software refactoring. The
survey is available on the replication package [42].

4. Methodology

This section focused on explaining the methodology we follow using
the DA algorithm to determine the optimal or near-optimal human
evaluators to detect the god class design smell. As can be seen in
Fig. 3, the methodology involves two main stages: data preparation and
searching for an optimal or near-optimal evaluator profile(s).

Stage 1: Dataset Preparation. Several tools have been proposed for
design smell detection. Some tools are designed to be open-source or
commercial and work as standalone or plugins. In this work, the source
code of the target system was analyzed using the set mentioned in
Section 3.1 All tools are available and standard in god class detection.
Therefore, it is normal in this context to detect different lists of god
classes based on each tool. For this purpose, we merged the whole
lists into one list and discarded the duplicated inputs (same god class
detected by more than one tool). Afterwards, we assign a weight that
ranges from 5 to 1 for each class in the merged list based on the
set of tools that detected the god class. For example, class X in rank
number one, if detected by the five tools, class Y in rank number two, if
detected by the four tools, and so on, until rank number five. However,
as manual validation is time-consuming, it is essential. Therefore, we
decided to select a random sample of five god classes from the set
that were detected by all tools as a god class (weight of class equal
to 5) to be evaluated by the human experts in the survey. We adopted
the random sample criterion in order to reduce the influence of any
potential factor on the results and confirm the high internal validity of
the study. Also, selecting the second criterion (weight of class equal to
5) to ensure that the candidate classes selected for manual validation
are the true-positive god classes according to the automatic detection.

As mentioned in Section 3.5, each evaluator was asked to fill in
some information about his profile and evaluate the set of classes if it
is considered a god class or not god class. To perform the optimization
process, the dataset requires a specific format. For this purpose, each
evaluator in the dataset is represented by a row that includes the
following information: reviewing OO code, writing OO code, dealing
with design smells, software domain, programming languages, the role
in the development team, and the result of god class detection.

Stage 2: Searching for an optimal or near-optimal evaluator pro-
file.

To select the fitted evaluators, the DA is employed, as shown in
Fig. 3. The number of initial evaluators will be created, and then used as
input values to the stochastic operations in the DA to find the required
profiles as follows: According to the number of lines of code of the
software system, the number of evaluators is identified by the DA; for
instance, the decision-maker will associate different numbers of evalu-
ators for different ranges of the number of lines of code, such as from
1000 to 4000 lines of code a group of 2 evaluators is required. Based on
this value, DA will look at each evaluators profile to match those most

Information and Software Technology 155 (2023) 107120

Source code

v

Tools Detection

!

Human detection

Dataset Preparation

- e mm omm omm o o mm oEm Em o o=
S mm mm mm mm o mm omm o mm o mm omm oEm omm

\ ’
e e
A 4
p
Dataset
2 .
zg PR N
g P p ¥ A
SE 1 - '
€ Optimizer DA 1
= 5 |
= S 1 \.
i !
E< I :
-

ES !
s £ 1
&5 !
S is good profile !
g2 !
= |
Fd 1
-] 1
b \
n ~ ’

Optimal Evaluator profile

Fig. 3. Proposed approach.

fitted to the required aspects of the software system. The process of
approximating for the most fitted evaluators will look at each evaluator
in the development role, software development domain, programming
languages, experience, and time availability, which should match the
details of the software system under investigation. Therefore, the DA
will provide at the end a list of those who are suitable for evaluating
the software system.

5. Result and discussion
5.1. God class detection

A set of 167 god classes have been detected using detection tools in
the target system after discarding the repetitions (merged list). Table 2
shows the number of detected god classes using each tool. For example,
JDeodorant detected the highest number of god classes (117), while
the lowest was 17 using Together, and this result is expected due to is
the only commercial tool. The difference in detection results denotes
the low degree of agreement between them if they exist. On the other
hand, Table 3 shows the list of god classes detected by the five tools,
in which only 6% (10 out of 167) of the whole list. From this list, only

S.M. Al Khatib et al.

Information and Software Technology 155 (2023) 107120

W Professor, lecturer, instructor
B Programmer

W Software Engineer

B Software Architect

B system admin

® Quality Consultant

1 Student

Fig. 4. Distribution of respondents (#,%) over working activities.

Table 2 Table 4
God class detection results per tool. DA parameter settings.
Tool iPlasma JDeodorant Together Decor PMD DA Parameter Value
God class 28 117 17 70 36 Number of iterations 500
No of features 54
No of Agents (population size) 100
Table 3
List of god class detected using the whole number of tools.
Class name
1 ganttproject.chart .ChartModel allow the determination of preciseness and accuracy, the approach was
2 ganttproject.GanttGraphicArea executed 100 times. To this aim, both mean and standard deviation
3 ganttproject.GanttGraphicArea.Ta values are used, by which stability of the solution to the objective
; gan:?”-?“: .ganzzgptl_onts: function can be determined too. Moreover, the system used to test our
ganttproject.GanttProjec . ® - .
6 ganttproject .CanttResourcePa approach combln.es .Inte.l Corel i5-9400 CPU w1t.h 8 GB RAM me.mory.
7 ganttproject.GanttTree2 The adopted optimization settings for the experiments are motivated
8 ganttproject.GanttTreeTable by [57] and represented in the Table 4:
9 ganttproject.gui.options.CSVS It can be seen in Table 4 that the number of iterations by which
10 ganttproject.ResourceTreeTab

five classes were chosen randomly and included in the survey to be
evaluated by human experts.

5.2. Survey analysis

Descriptive Analysis: According to the designed survey, the total
number of respondents was 54 who knew java programming language.
In addition, the respondents classified the five classes as having god
classes or not. Figs. 4 and 5 show the number and percentage of
respondents over the working activities, types, and levels of experience,
respectively.

As can be seen in Fig. 4, we can classify the respondents into two
groups academic and industry, and we did not find any response that
indicates that the evaluator came from both categories. The academic
includes the categories of professor, teacher, instructor, and student
with a total number of 24 respondents in which the highest number was
from the category of professor, teacher, instructor. On the other hand,
the industry group involves the categories: of programmer, Software
Engineer, Software Architect, Quality Consultant, and system admin,
where the total number of respondents was 30. Fig. 5 presents the
distribution of numbers and percentage of respondents based on their
levels of experience regarding the ability to review object-oriented
code(top left), write object-oriented code (top right), and their knowl-
edge of design smells (bottom center). Most of the respondents were
from the junior level (1 to 3 years of experience) in all types of
experiences.

5.3. Optimization approach

Experiment Settings: The experiments on our approach are performed
using MATLAB R2018a based on the code presented by [57]. To

the optimizer stops searching for new solutions is 500. This value is
justified by [57] to perform similarly to the evolutionary algorithms.
The number of features is set to 54 according to the data used for
experimentations with 54 evaluators’ profiles. In addition, the number
of search agents or population size used on our problem is 100, as
advised by [57,60]. This value represents the initial solutions from
which the algorithm will stochastically search for the most fitted ones.

Experiment Results:

To capture the performance of our approach, three outcomes as-
sociated with the solution provided on each run are recorded. These
outcomes are the computation time consumed by the algorithm to
give each solution, the evaluators selected by the algorithm, and the
estimated evaluation time span according to the chosen evaluators’
productivity. A glimpse of how the algorithm performed in finding an
optimal or near-optimal solution for 100 runs in terms of computation
time is provided in Fig. 6.

It can be seen in Fig. 6 that the algorithm initially took 18 s to
find an optimal or near-optimal solution. Later, the computation time
started to stabilize between 15.5 to 16 s. This is due to the nature of
heuristic algorithms in which the approximation process moves further
on searching for a global optimum. For a problem that consists of 54
evaluators, the computation time on average took a reasonable 15.65 s
with a standard deviation of 0.26 to search for the most fitted ones.

However, it is worth investigating whether, at the expense of this
computation time, the algorithm will provide precise and accurate
solutions or not. Therefore, two criteria are used to capture the ac-
curacy and preciseness of solutions. First, it is essential to see how
many instances the algorithm has provided with the least estimated
evaluation time span across 100 runs. In addition, if the values of
these instances are precise, they are very close to each other. Secondly,
if those evaluators selected by the algorithm according to the fitness
function have the most productivity needed.

S.M. Al Khatib et al.

16,29%

B Fresh
B Junior

W Senior

28,54%

Information and Software Technology 155 (2023) 107120

2,17%

B fresh
= Junior

B Fresh
M Junior

M Senior

Fig. 5. Left panel: Distribution of respondents (#,%) over level of experience in reviewing Object-oriented code. Right panel: Distribution of respondents (#,%) over level of
experience in writing Object-oriented code. Bottom: Distribution of respondents (#,%) over level of experience in code smell.

185
18

175

Seconds

=
[T
oo

145

14

m
m

]
m =r

[T]
=

g M~ SpnmoboApo Mk
b T T T T i s T T T IO O 3
Runs

Fig. 6. Computation Time consumed by the algorithm to provide each solution.

These two criteria are correlated in that the least estimated time by
the objective function requires involving all evaluators with the highest
productivity. At the same time, the evaluators profiles should match
the domain and programming languages the evaluators needed for the
project. To see whether the algorithm has provided accurate and precise
solutions, results of the objective function for 100 runs in terms of
estimated evaluation time span are provided in Fig. 7:

Fig. 7 demonstrates how the algorithm is capable of providing,
in many instances, the least estimated evaluation time span with an
average of 146.45 min for 100 runs. Moreover, we can see from Fig. 7
that only two points representing two estimates have higher values than
the rest. Yet, the second-highest point in the figure above illustrates
two different solutions. These two solutions provided an estimated
evaluation time span of 150.15 min, and the highest provided an
estimate of 151.64 min. From this, we can say that only 3% of solutions
failed to provide an optimal or near-optimal solution. In contrast, a high

percentage of the preciseness of the approach is reached with 97% of
solutions that have the exact estimate of 146.32 min.

Now, we need to see how productive the selected evaluators by the
algorithm for these solutions are to reach the least estimated evaluation
time span. For 100 runs, we can argue that each solution consists of
a set of competent evaluators who can perform the evaluation job
in a short time span. Nonetheless, we should remember that across
the evaluators’ profiles, some have a domain, role, and programming
language competencies that can support their evaluation task according
to the project description and do not match the competencies required
for the project.

According to the outcomes of the sets that represent the selected
evaluators in the solutions, we found that these solutions mainly consist
of 31 evaluators out of 54, and only 3 of those that provide higher
estimate values, as Fig. 7 depicts, incorporate 30 evaluators. On the
one hand, this represents why these three solutions have a higher
estimate, with only 30 evaluators selected. Therefore, choosing one

S.M. Al Khatib et al.

Minubes

Information and Software Technology 155 (2023) 107120

Fig. 7. Results of estimated evaluation time span for 100 runs.

10 O@EDOoOCCOoOD dD g OO o©

199 4440, 0 ",
2 54

n AT AA

18 40 42 44 46 48 50

Fig. 8. Frequency of evaluators. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

more evaluator can reduce the time by almost 5 min. For a closer look
at the chosen evaluators, we provide in the Fig. 8 the frequency of how
many times each evaluator has been selected across 100 runs:

It can be seen in Fig. 8 that 23 evaluators, who are represented by
the lower set of yellow dots, have never been selected by any of the
solutions. The reason behind this is due to the mismatching of their
domain competency with what is required for the project. On the
other hand, the upper set of dots consists of 31 evaluators, which the
algorithm incorporates to provide the solutions. This set involves the
academic (16 evaluators) and the industry (15 evaluators) sectors. The
profile characteristics of those evaluators regarding experience levels in
reviewing and writing object-oriented code and experience with code
smell are shown in Fig. 9. Most of the evaluators have junior levels.
This distribution might reflect the real situation of the available expe-
riences of human working activities in this sector. However, evaluators
numbers 4 and 28, represented in Fig. 8 by red dots, have been selected
99 and 98 times over 100. Evaluator number 4, for example, has been
excluded in run number 54, whereas evaluator number 28 has been
excluded in runs 13 and 39. Here we will find that these three runs are
those in which the higher estimates are provided as in Fig. 7.

What can be observed is the percentage of agreement of those
selected 31 evaluators on detecting god class for the five classes sub-
jects of investigation. Given their level of experience shown in Fig. 9,
however, 58% of those evaluators were capable of detecting the first
class as a God class. Moreover, 55% among those evaluators have
answered the second class as a god class. Then gradually, 61%, 84%,
and 100% of those evaluators have stated that god class is detected
for the third, fourth, and fifth classes, respectively. These percentages
indicate an improvement in the degree of agreement among those
evaluators selected by the DA algorithm on detecting god classes. In
addition, similarities have been exposed between the profiles of the
selected evaluators that may contribute to reducing technical debt and
future maintenance costs. Moreover, there have been some responses

Table 5

Kappa-Fleiss interpretation.
Kappa-Fleiss value Interpretation
0.01 < Kappa < 0.20 Slight
0.21 < Kappa < 0.40 Fair
0.41 < Kappa < 0.60 Moderate
0.61 < Kappa < 0.80 Substantial
0.81 < Kappa < 1.00 Perfect

that incorporated details of god classes, as to some extent, they detected
in addition to god class, a partial feature envy, long methods, and code
duplication. Noteworthy is that with respect to the overall answers from
the 54 evaluators, there have been some responses that identified other
types or lacked the identification of a smell to those five classes. Many
of those are neglected in the optimized selection by the DA. This can
be counted as an improvement toward the minimization of the number
of evaluators in the evaluation process.

5.4. Analyzing of agreement between human evaluators

To validate the proposed approach, the Kappa-Fleiss test [61] in
R language has been used for computing the degree of agreement
between human experts. Kappa results range from 0 to 1, in which if
the value is 1, the degree of agreement is perfect. Table 5 shows the
interpretation of kappa values.

The degree of agreement among the whole human evaluators (54
respondents) who participated in the survey obtained a kappa value
of (0.11). According to Table 5, the kappa value interpretation shows a
slight agreement between evaluators. On the other hand, After optimiz-
ing the selection of human evaluators using the dragonfly algorithm,
only 31 evaluators were selected. As a result, the kappa value is (0.10),
which shows a slight agreement between human evaluators on god class
detection.

S.M. Al Khatib et al.

25

Information and Software Technology 155 (2023) 107120

20

15

B Senior

W lunior

10

Mumber of Evaluators

Reviewing 00

Writinz00

Fresh

Exp.CodeSmell

Fig. 9. Characteristics of the selected evaluators profile.

Even though the kappa value of (0.10) for the optimized number
of evaluators is less than the one before the optimization with (0.11),
both values are very close, with a difference only with (0.01). The
obtained findings correspond to the results of previous works regarding
the degree of agreement between human evaluators on design smell de-
tection, especially the god class. Consequently, our proposed approach
minimizes the maintainability efforts regarding the number of qualified
human evaluators involved in god class design smell detection. More-
over, it sheds light on the required time for chosen evaluators by the
optimized approach to detect the god class over the selected sample of
classes.

6. Threats to validity

Construct validity The main threat to construct validity is the
selection of only one design smell “god class” to conduct the study.
To overcome this threat, we focused on choosing the design smell
that took the attention of the research community. In the literature,
god class is the most design smell according to [3]. Also, god class is
one of the smells which are common among detection tools. Another
threat concerns the group of tools used to detect the god class. A
wide set of detection tools in the literature. We overcome this issue by
putting rigorous constraints to select the tools, such as analyzing Java
source code, common in god class detection, and having high detection
precision. External validity The significant threat to external validity
comes from the nature of the target software analyzed. The software
was open-source and implemented in Java. However, to manage this
threat, we selected the software system “GanttChart” which is one
of the most known systems in the design smell detection context.
Especially, the selected version (2.0.10) according to [3]. Therefore, we
can generalize the results to open-source software systems written in
Java. Also, this generalization is limited because of the selected nature
of the design smell and the set of tools used to detect it. Internal
validity The evaluators reliability is the main threat to internal validity
due to the survey is published online. Thus, we have not controlled
the survey. We designed the survey in such a way as to decrease the
amount of time required to evaluate all the selected classes without
boring them. Conclusion validity related to all points that influence
extracting the right conclusion, such as the dataset collection, detection
tools, and human evaluators. All these points have been explained in
the stages of the study.

7. Conclusion
Design smell detection is one activity contributing to improving soft-

ware quality. Several approaches have been proposed for this purpose.
Unfortunately, the human context has not been exploited efficiently

10

in domain development. The selection of suitable and qualified hu-
man evaluators to perform the design smell detection is a complex
problem, given the limitation of resources, variation of development
roles and skill availability. This paper introduced an empirical and
search-based approach to tackle this problem. A comparison is also
presented to provide evidence of whether the degree of agreement is
reached between the proposed approach and what the empirical study
has provided. By the obtained results, both the empirical study and
optimized method have provided relatively similar outcomes. Despite
these outcomes showing poor agreement on god class detection, the
proposed approach displays the capability of search-based algorithms
to minimize the time and effort of design smell detection by selecting
the most suitable human evaluators to perform the job. Considering the
proportional relationship between time span and cost of design smell
detection, the cost in return will be decreased. As per the proposition
in this work, the results are not fully generalizable. However, the
findings are encouraging for the capability of search-based algorithms
to minimize the time and effort of design smell detection by choosing
the required human evaluator profile, regardless of the type of design
smell we aim to find.

In the future, we plan to extend this study further to establish
a relevance mapping between different programming languages that
can be converted into weighting scores for the selection of evaluators.
This should empirically be performed, having evaluators from different
domains or their expertise are in different programming languages to
observe their effects on the selection process. This will be done by per-
forming many experiments according to the mappings to show how the
selection of evaluators can be impacted by these factors. To extend this
study further and to improve the results, we also will replicate the work
by including other subjective factors, such as region, and programming
language, involving more design smells, and increasing the sample of
classes for evaluation by human experts. Moreover, we plan to employ
different search-based algorithms to allow for suitability and capacity
comparison in solving the selection of human evaluator-based design
smell detection.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Sadi Alawadi reports financial support was provided by Uppsala
University.

Data availability

The data that has been used is confidential.

S.M. Al Khatib et al.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

F. Pérez, Refactoring Planning for Design Smell Correction in Object-Oriented
Software (Ph.D. thesis), School of Engineering, Valladolid University, 2011.
W.H. Brown, R.C. Malveau, HW. McCormick, T.J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, John Wiley & Sons,
Inc., 1998.

K. Alkharabsheh, Y. Crespo, E. Manso, J. Taboada, Software design smell
detection: a systematic mapping study, Softw. Qual. J. (2018).

P.F. Mihancea, R. Marinescu, Towards the optimization of automatic detection of
design flaws in object-oriented software systems, in: Ninth European Conference
on Software Maintenance and Reengineering, 2005, pp. 92-101, http://dx.doi.
org/10.1109/CSMR.2005.53.

U. Azadi, F.A. Fontana, M. Zanoni, Poster: Machine learning based code smell
detection through WekaNose, in: Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceeedings, ICSE ’18, ACM, 2018,
pp. 288-289, http://dx.doi.org/10.1145/3183440.3194974.

F.A. Fontana, P. Braione, M. Zanoni, Automatic detection of bad smells in code:
An experimental assessment, J. Object Technol. 11 (2) (2012) 5:1-38.

M. Mintyld, J. Vanhanen, C. Lassenius, Bad smells - humans as code critics,
in: 20th International Conference on Software Maintenance (ICSM 2004), 11-17
September 2004, Chicago, IL, USA, 2004, pp. 399-408.

M. Miéntyld, C. Lassenius, Subjective evaluation of software evolvability using
code smells: An empirical study, Empir. Softw. Eng. 11 (3) (2006) 395-431.
AF. Yamashita, L. Moonen, Do code smells reflect important maintainability
aspects? in: 28th IEEE International Conference on Software Maintenance, ICSM
2012, Trento, Italy, September 23-28, 2012, 2012, pp. 306-315.

AF. Yamashita, L. Moonen, Do developers care about code smells? An ex-
ploratory survey, in: 20th Working Conference on Reverse Engineering, WCRE
2013, Koblenz, Germany, October 14-17, 2013, 2013, pp. 242-251.

F. Palomba, G. Bavota, M.D. Penta, R. Oliveto, A.D. Lucia, Do they really smell
bad? A study on developers’ perception of bad code smells, in: 30th IEEE
International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, 2014, pp. 101-110.

K. Alkharabsheh, Y. Crespo, J.A. TAboada, M. Esperanza, Sobre el grado de
acuerdo entre evaluadores en la deteccion de design smells, in: XXI Jornadas de
Ingenierfa de Software Y Bases de Datos, 2016, pp. 1-15.

M. Choinzon, Y. Ueda, Detecting defects in object oriented designs using design
metrics, in: J. Conf. on Knowledge-Based Software Engineering, 2006, pp. 61-72.
R. Fourati, N. Bouassida, H. Abdallah, A metric-based approach for anti-pattern
detection in UML designs, Comput. Inf. Sci. (2011) 17-33.

C. Marinescu, R. Marinescu, P.F. Mihancea, R. Wettel, iPlasma: An integrated
platform for quality assessment of object-oriented design, in: Intl. Conf. Software
Maintenance - Industrial and Tool Volume, 2005, pp. 77-80.

N. Moha, Detection and correction of design defects in object-oriented designs,
in: Conf. on Object-Oriented Programming Systems and Applications Companion,
2007, pp. 949-950.

N. Moha, Y.-G. Guéhéneuc, DECOR: a tool for the detection of design defects,
in: Intl. Conf. on Automated Software Engineering, 2007, pp. 527-528.

K. Alkharabsheh, Y. Crespo, M. Ferndndez-Delgado, J.M. Cotos, J.A. Taboada,
Assessing the influence of size category of the project in god class detection,
an experimental approach based on machine learning (MLA), in: International
Conference on Software Engineering & Knowledge Engineering, 2019, pp.
361-366.

M.J. Munro, Product metrics for automatic identification of “bad smell” design
problems in java source-code, in: Intl. Conf. Software Metrics, 2005, pp. 15-15.
R. Shatnawi, Deriving metrics thresholds using log transformation, J. Softw.:
Evol. Process 27 (2) (2015) 95-113.

L. Tahvildar, K. Kontogiannis, Improving design quality using meta-pattern
transformations: a metric-based approach, J. Softw.: Evol. Process 16 (4-5)
(2004) 331-361.

S. Hassaine, F. Khomh, Y.-G. Guéhéneuc, S. Hamel, IDS: an immune-inspired
approach for the detection of software design smells, in: Intl. Conf. Quality of
Information and Communications Technology, 2010, pp. 343-348.

F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. Sahraoui, BDTEX: A GQM-based
Bayesian approach for the detection of antipatterns, J. Syst. Softw. 84 (4) (2011)
559-572.

J. Kreimer, Adaptive detection of design flaws, Electron. Notes Theor. Comput.
Sci. 141 (4) (2005) 117-136.

N. Maneerat, P. Muenchaisri, Bad-smell prediction from software design model
using machine learning techniques, in: Intl. J. Conf. on Computer Science and
Software Engineering, 2011, pp. 331-336.

K. Alkharabsheh, S. Alawadi, V.R. Kebande, Y. Crespo, M. Fernandez-Delgado,
J.A. Taboada, A comparison of machine learning algorithms on design smell
detection using balanced and imbalanced dataset: A study of god class, Inf. Softw.
Technol. 143 (2022) 106736.

N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Jdeodorant: Identification and
removal of type-checking bad smells, in: Intl. Conf. on Software Maintenance
and Reengineering, 2008, pp. 329-331.

11

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Information and Software Technology 155 (2023) 107120

F.A. Fontana, E. Mariani, A. Morniroli, R. Sormani, A. Tonello, An experience
report on using code smells detection tools, in: Fourth International IEEE
Conference on Software Testing, Verification and Validation, ICST 2012, Berlin,
Germany, 21-25 March, 2011, Workshop Proceedings, 2011, pp. 450-457.

F.A. Fontana, P. Braione, M. Zanoni, Automatic detection of bad smells in code:
An experimental assessment, J. Object Technol. 11 (2) (2012) 5: 1-38.

A. Hamid, M. Ilyas, M. Hummayun, A. Nawaz, A comparative study on code
smell detection tools, Int. J. Adv. Sci. Technol. 60 (2013) 25-32.

G. Rasool, Z. Arshad, A review of code smell mining techniques, J. Softw. Evol.
Process 27 (11) (2015) 867-895.

K. Alkharabsheh, Y. Crespo, E. Manso, J. Taboada, Comparacién de herramientas
de deteccion de design smells, in: Jornadas de Ingenierfa Del Software Y Bases
de Datos, 2016, pp. 159-172.

M.R. Chaudron, B. Katumba, X. Ran, Automated prioritization of metrics-based
design flaws in UML class diagrams, in: Software Engineering and Advanced
Applications (SEAA), 2014 40th EUROMICRO Conference on, IEEE, 2014, pp.
369-376.

S.A. Vidal, C. Marcos, J.A. Diaz-Pace, An approach to prioritize code smells for
refactoring, Autom. Softw. Eng. 23 (3) (2016) 501-532.

R. Arcoverde, E. Guimaraes, I. Macia, A. Garcia, Y. Cai, Prioritization of code
anomalies based on architecture sensitiveness, in: Software Engineering (SBES),
2013 27th Brazilian Symposium on, IEEE, 2013, pp. 69-78.

A. Ghannem, M. Kessentini, G. El Boussaidi, Detecting model refactoring op-
portunities using heuristic search, in: Proceedings of the 2011 Conference of the
Center for Advanced Studies on Collaborative Research, CASCON ’11, IBM Corp.,
USA, 2011, pp. 175-187.

A. Ouni, M. Kessentini, K. Inoue, M. Cinnéide, Search-based web service
antipatterns detection, IEEE Trans. Serv. Comput. 10 (4) (2017) 603-617, http:
//dx.doi.org/10.1109/TSC.2015.2502595.

S. Fu, B. Shen, Code bad smell detection through evolutionary data mining,
in: 2015 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2015, pp. 1-9, http://dx.doi.org/10.1109/ESEM.2015.
7321194.

G. Saranya, H. Khanna Nehemiah, A. Kannan, V. Nithya, Model level code smell
detection using EGAPSO based on similarity measures, Alexandria Eng. J. 57 (3)
(2018) 1631-1642.

M. Draz, M. Farhan, S. Abdulkader, M. Gafar, Code smell detection using whale
optimization algorithm, Comput. Mater. Continua 68 (2) (2021) 1919-1935.

K. Alkharabsheh, Y. Crespo, M. Fernandez-Delgado, J. Viqueira, J. Taboada,
Exploratory study of the impact of project domain and size category on the
detection of the god class design smell, Softw. Qual. J. (2021).

k. Alkharabsheh, S. Al khatib, Replication package of raw data, scripts and all
necessary material for replication, 2022, URL: https://drive.google.com/drive/
folders/1tpFZatINQkjHNrvDAPNgcFTulntQeYPk.

K. Alkharabsheh, S. Alawadi, Y. Crespo, M.E. Manso, J.A.T. Gonzalez, Analysing
agreement among different evaluators in god class and feature envy detection,
IEEE Access 9 (2021) 145191-145211.

A. Tahir, J. Dietrich, S. Counsell, S. Licorish, A. Yamashita, A large scale study
on how developers discuss code smells and anti-pattern in stack exchange sites,
Inf. Softw. Technol. 125 (2020) 106333.

R. Oliveira, R. de Mello, E. Fernandes, A. Garcia, C. Lucena, Collaborative or
individual identification of code smells? On the effectiveness of novice and
professional developers, Inf. Softw. Technol. 120 (2020) 106242.

J. Martins, C. Bezerra, A. Uchda, A. Garcia, How do code smell co-occurrences re-
moval impact internal quality attributes? A developers’ perspective, in: Brazilian
Symposium on Software Engineering, 2021, pp. 54-63.

X. Han, A. Tahir, P. Liang, S. Counsell, Y. Luo, Understanding code smell
detection via code review: A study of the openstack community, in: 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC),
IEEE, 2021, pp. 323-334.

J.A. Santos, M.G. de Mendonca, C.V. Silva, An exploratory study to investigate
the impact of conceptualization in god class detection, in: Intl. Conf. on
Evaluation and Assessment in Software Engineering, 2013, pp. 48-59.

N. Anquetil, A. Etien, G. Andreo, S. Ducasse, Decomposing god classes at siemens,
in: 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2019, pp. 169-180.

K. Alkharabsheh, An empirical study on the co-occurrence of design smells in the
same software module:God class case study, in: 2021 IEEE Jordan International
Joint Conference on Electrical Engineering and Information Technology (JEEIT),
2021, pp. 1-6, http://dx.doi.org/10.1109/JEEIT53412.2021.9634144.

D.I Sjoberg, A. Yamashita, B.C. Anda, A. Mockus, T. Dyb&, Quantifying the effect
of code smells on maintenance effort, IEEE Trans. Softw. Eng. 39 (8) (2012)
1144-1156.

Z. Soh, A. Yamashita, F. Khomh, Y.-G. Guéhéneuc, Do code smells impact the
effort of different maintenance programming activities? in: 2016 IEEE 23Rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1, IEEE, 2016, pp. 393-402.

M. Fowler, K. Beck, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 1999.

http://refhub.elsevier.com/S0950-5849(22)00229-4/sb1
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb1
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb1
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb2
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb2
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb2
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb2
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb2
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb3
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb3
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb3
http://dx.doi.org/10.1109/CSMR.2005.53
http://dx.doi.org/10.1109/CSMR.2005.53
http://dx.doi.org/10.1109/CSMR.2005.53
http://dx.doi.org/10.1145/3183440.3194974
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb6
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb6
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb6
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb7
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb7
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb7
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb7
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb7
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb8
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb8
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb8
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb9
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb9
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb9
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb9
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb9
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb10
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb10
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb10
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb10
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb10
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb11
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb12
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb12
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb12
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb12
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb12
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb13
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb13
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb13
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb14
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb14
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb14
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb15
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb15
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb15
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb15
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb15
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb16
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb16
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb16
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb16
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb16
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb17
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb17
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb17
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb18
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb19
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb19
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb19
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb20
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb20
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb20
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb21
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb21
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb21
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb21
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb21
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb22
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb22
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb22
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb22
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb22
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb23
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb23
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb23
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb23
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb23
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb24
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb24
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb24
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb25
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb25
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb25
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb25
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb25
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb26
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb27
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb27
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb27
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb27
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb27
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb28
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb29
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb29
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb29
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb30
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb30
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb30
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb31
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb31
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb31
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb32
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb32
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb32
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb32
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb32
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb33
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb34
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb34
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb34
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb35
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb35
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb35
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb35
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb35
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb36
http://dx.doi.org/10.1109/TSC.2015.2502595
http://dx.doi.org/10.1109/TSC.2015.2502595
http://dx.doi.org/10.1109/TSC.2015.2502595
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb39
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb39
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb39
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb39
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb39
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb40
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb40
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb40
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb41
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb41
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb41
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb41
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb41
https://drive.google.com/drive/folders/1tpFZatlNQkjHNrvDAPNgcFTulntQeYPk
https://drive.google.com/drive/folders/1tpFZatlNQkjHNrvDAPNgcFTulntQeYPk
https://drive.google.com/drive/folders/1tpFZatlNQkjHNrvDAPNgcFTulntQeYPk
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb43
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb43
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb43
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb43
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb43
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb44
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb44
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb44
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb44
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb44
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb45
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb45
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb45
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb45
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb45
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb46
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb46
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb46
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb46
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb46
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb47
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb48
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb48
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb48
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb48
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb48
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb49
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb49
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb49
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb49
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb49
http://dx.doi.org/10.1109/JEEIT53412.2021.9634144
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb51
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb51
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb51
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb51
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb51
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb52
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb53
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb53
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb53

S.M. Al Khatib et al.

[54]

[55]

[56]

[57]

M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice: Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems, Springer Science & Business Media, 2007.

M. Hitz, B. Montazeri, Chidamber and kemerersmetrics suite: A measurement
theory perspective, IEEE Trans. Softw. Eng. 22 (04) (1996) 267-271.

B. Henderson-Sellers, The mathematical validity of software metrics, ACM
SIGSOFT Softw. Eng. Not. 21 (5) (1996) 89-94.

S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for
solving single-objective, discrete, and multi-objective problems, Neural Comput.
Appl. 27 (4) (2016) 1053-1073.

12

[58]

[59]

[60]

[61]

Information and Software Technology 155 (2023) 107120

S. Al Khatib, A Comparative Study of the Relative Performance and Real-World
Suitability of Optimization Approaches for Human Resource Allocation (Ph.D.
thesis), University of East Anglia, 2018.

S.M. Al Khatib, J. Noppen, Benchmarking and comparison of software project
human resource allocation optimization approaches, ACM SIGSOFT Softw. Eng.
Not. 41 (6) (2017) 1-6.

S.M. Al Khatib, Optimization of path selection and code-coverage in regres-
sion testing using dragonfly algorithm, in: 2021 International Conference on
Information Technology (ICIT), IEEE, 2021, pp. 919-923.

K. Gwet, Handbook of Inter-Rater Reliability: the Definitive Guide to Measuring
the Extent of Agreement Among Raters, fourth ed., 2012, pp. 73-100.

http://refhub.elsevier.com/S0950-5849(22)00229-4/sb54
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb54
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb54
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb54
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb54
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb55
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb55
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb55
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb56
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb56
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb56
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb57
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb57
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb57
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb57
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb57
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb58
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb58
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb58
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb58
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb58
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb59
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb59
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb59
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb59
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb59
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb60
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb60
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb60
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb60
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb60
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb61
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb61
http://refhub.elsevier.com/S0950-5849(22)00229-4/sb61

	Selection of human evaluators for design smell detection using dragonfly optimization algorithm: An empirical study
	Introduction
	Related Work
	Problem Statement
	Design Smell Selection
	Target System
	Problem Formulation
	Dragonfly Optimization Algorithm
	Survey Questionnaire

	Methodology
	Result and Discussion
	God Class Detection
	Survey Analysis
	Optimization Approach
	Analyzing of Agreement Between Human Evaluators

	Threats to Validity
	Conclusion
	Declaration of Competing Interest
	Data availability
	References

