Endonuclease II - a GIY-YIG enzyme of bacteriophage T4

PERNILLA LAGERBÄCK
Dissertation presented at Uppsala University to be publicly examined in B41, Biomedicinskt Centrum, Husargatan 3, Uppsala, Friday, December 19, 2008 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English.

Abstract

Endonuclease II (EndoII) of bacteriophage T4 is a GIY-YIG enzyme involved in host DNA breakdown during phage infection of *E. coli*. EndoII combines features of restriction endonucleases with those of homing endonucleases in that it breaks down DNA foreign to itself but recognizes a 16 bp long asymmetric and ambiguous sequence. This investigation addresses the biological function of EndoII, its mode of interaction with its substrate and roles of individual residues in catalysis, sequence recognition and binding.

It is shown here that EndoII increases the frequency of non-homologous recombination in phage-infected cells, showing that EndoII indeed can induce recombinational events. Although single-stranded nicks are frequent in *in vitro* reactions with purified protein, the enzyme is found to produce mostly double-stranded breaks *in vivo*, since nicks are repaired. Mutations of residues positioned on the putative catalytic surface result in severely reduced catalytic activity, while residues in the N-terminal region and a middle region (MR) appear to mainly contribute to substrate binding. Mutation of the putatively magnesium-binding residue E118 renders the enzyme catalytically inactive. Residues K76 (in the MR and positioned on the catalytic surface) and G49 and R57 (on the catalytic surface) also contribute to substrate recognition. All mutants bind as tetramers to two DNA molecules, indicating that the wildtype would also bind as a tetramer. EndoII E118A alone can bind also in monomeric and dimeric form to one DNA molecule, possibly because the glutamate charge normally repels the DNA. The solved crystal structure of tetrameric EndoII E118A shows a striking X-shape with two putative catalytic surfaces to each side positioned so that double-stranded cleavage would require severe DNA distortion. Combination of all data suggests that upon binding *in vivo* EndoII scans the DNA for a second binding site, binding to both sites but nicking or cleaving only one of them.

Keywords: GIY-YIG, EndoII, endonuclease, structure, tetramer, binding, nicking, recombination

Pernilla Lagerbäck, Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-75124 Uppsala, Sweden

© Pernilla Lagerbäck 2008

ISSN 1651-6214
urn:nbn:se:uu:diva-9410 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9410)
”Det är klokt att veta vad man letar efter innan man börjar leta.”

Nalle Puh

To my family
List of Publications

This thesis is based on the following papers, which will be referred to in the text by their Roman numerals:

I Bacteriophage T4 endonuclease II: concerted single-strand nicks yield double-strand cleavage.
Carlson, K, Lagerbäck, P and Nyström, AC

II Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis.
Lagerbäck, P and Carlson K

III Bacteriophage T4 endonuclease II, a promiscuous GIY-YIG endonuclease, binds as a tetramer to two DNA substrates.
Lagerbäck, P, Andersson, CE and Carlson, K
Manuscript 2008

IV Bacteriophage T4 endonuclease II enhances recombination between phage and plasmid DNA.
Carlson, K and Lagerbäck, P
Manuscript 2008

V Structure of bacteriophage T4 endonuclease II mutant E118A, a tetrameric GIY-YIG enzyme.
Andersson, CE, Lagerbäck, P and Carlson, K
Manuscript 2008

Reprints were made with the permissions from the publishers.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdoMet</td>
<td>S-adenosylmethionine</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CTP</td>
<td>cytosine triphosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EndoII</td>
<td>endonuclease II</td>
</tr>
<tr>
<td>gp</td>
<td>gene product</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>HE</td>
<td>homing endonuclease</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>MR</td>
<td>middle region</td>
</tr>
<tr>
<td>NTR</td>
<td>N-terminal region</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>RE</td>
<td>restriction endonuclease</td>
</tr>
</tbody>
</table>
Introduction

Protein-DNA interaction is a central phenomenon in any living cell. These interactions are involved in fundamental events like replication, transcription, gene regulation, defense against foreign DNA and more. By understanding how these proteins work we are one step closer to understanding a fundamental part of life. Much is already known about the numerous ways in which these interactions take place, but even more remains to be discovered. Endonucleases are enzymes that cleave DNA and can be part of DNA repair systems, systems for propagating the gene encoding the endonuclease, DNA replication, defense systems and more.

In this thesis Endonuclease II (EndoII) from bacteriophage T4 has been closely studied regarding its interactions with the DNA sequence that it recognizes, as well as its biological role.

Bacteriophage T4

Bacteriophages (from "bacteria" and the greek word "phagein", to eat) are viruses that infect bacteria. They were first identified by Frederick Twort in 1915, but were independently identified, properly characterized and named by Félix d’Herelle (1873-1949) in 1917 (180). d’Herelle isolated phages from stool samples of patients recovering from dysentery and showed that these unknown microbes could lyse cultures of Shiga bacilli and that they also grew in number in these cultures. Since their discovery phages have been widely used as research tools in molecular biology for studying for example replication, transcription and regulation. After a period of relative uninterest phages are again in the hot spot for research, among other things as a substitute for antibiotics.

Bacteriophage T4 (Fig. 1) belongs to the large tailed coliphages of the T-even group in the family Myoviridae. Studies of T4 have been performed since the 1930’s and it is one of the best characterized phages. The T4 genome has been completely sequenced (GenBank AF158101), as have the genomes of several T4-like phages (http://phage.bioc.tulane.edu/). Its capsid is composed of an icosahedral head that contains the large, linear double-stranded genome, and a tail with tail fibers that determine the host specificity. The tail consists of a tube surrounded by a contractile sheath, the genome
is released into the bacterium through this tube after it has penetrated the bacterial envelope (156).

![Image of bacteriophage T4](image)

Figure 1. (a) Cryo-EM micrograph of bacteriophage T4. (b) Schematic picture of the major structural components. The icosahedral head contains the large double-stranded genome which is delivered into the host through the internal tail tube that is inside the contractile sheath. The bacterial envelope is recognized by the extended tail fibers. The short tail fibers are shown as bent arrow-like objects around the periphery of the baseplate. The black triangle in the middle of the baseplate represents the cell-puncturing device. Reprinted from Rossman *et al.* (156) with permission from the publisher and Paul Chipman who provided the cryo-EM micrograph.

The T4 genome

The T4 genome consists of 168,903 bp (GenBank AF158101), predicted to contain approximately 300 genes of which 289 are probable protein encoding genes, 8 are tRNA genes and 2 encode small stable RNAs of unknown function (117). Of these 300 predicted genes approximately 156 had been characterized in 2003, while the rest - almost half of the T4 genes - had not been assigned a function. The T4 genome has a very high gene density and the arrangement is very complex, with proteins encoded from different start points in the same gene; genes containing introns; genes within genes but with different reading frames, on the same or on opposite strands; translational bypassing, where part of the mRNA in a coding region is not translated. The high gene density is also the result of the scarcity of regions in the T4 genome that are non-coding, only 9 kb or 5.3 % of the entire genome. It is not unusual that a termination codon overlaps with the start codon of the following gene. Also the regulatory regions are compact, sometimes overlapping with coding regions. T4 genes are also very small in general, 62 of the predicted proteins contain less than 100 amino acids.
By using hydroxymethylated cytosines instead of cytosines, phage DNA is protected from degradation by T4 nucleases and host encoded nucleases that attack the phage DNA during infection. The cytosine bases are hydroxymethylated by T4 enzymes prior to their incorporation into the genome (200, 201). This is quite unusual since in other organisms most modifications of DNA are performed after incorporation. These hydroxymethylated cytosines are further modified by glucosylation by α- or β-glucosylase (70% and 30% respectively) (92, 93). Due to the alc gene product hydroxymethylation is also essential for the transcription of middle mode genes, since the product of this gene inhibits transcription of cytosine DNA (85, 171, 172).

T4 infection

Bacteriophage T4 infects Escherichia coli and closely related Shigella species, but also some isolates of the plant pathogen Erwinia (146). There are three distinct phases of infection: at 37°C the immediate early phase begins within 30 seconds after infection, the middle phase after 3 to 4 minutes (before replication) and the late phase after DNA replication is initiated (123). The phage particle recognizes its target through the long tail fibers that attach to receptors (lipopolysaccharide (LPS) or OmpC) on the surface of the bacteria (66, 202). When at least three of these long fibers have bound (39), the short tail fibers are extended and bind irreversibly to LPS (150). The baseplate goes through a conformational change to drive the tail tube through the outer membrane. Lysozyme from the tip of the tail is activated and breaks down the peptidoglycan layer to create an opening to the cytoplasmic membrane (40, 83). The genome is then released and transferred into the cytoplasm of the bacterium.

Early in infection only early T4 promoters are transcribed. DNA, RNA and protein synthesis of the host cell is shut off almost immediately, and already after 1 minute (at 37°C) there is almost no new synthesis of host proteins (37). The transition from host to phage protein synthesis is performed by a number of different T4 enzymes. For example, the Alc (aborts elongation on Cyt-DNA) protein terminates the elongation of transcription of cytosine-containing DNA (i.e. host DNA) (47, 97-99). The ADP-ribosyltransferase Alt, which is packaged in the phage particle and injected with the phage DNA, modifies the RNA polymerase of the host which leads to a stronger interaction with the T4 early promoters (88, 173). The ndd (nuclear disruption deficient) gene product is responsible for the disruption of the host nucleoid that delocalizes the host DNA from the middle of the cell to the bacterial envelope, it also inhibits host DNA replication by blocking the replication forks (19, 20). EndoII is also part of the host shutoff, degrading the host DNA together with EndoIV and the 46/47 exonuclease (see below) (157). There are several additional T4 proteins that contribute to
host shutoff or modification among the early expressed proteins that have not yet been characterized (117).

Phage DNA replication starts 4-6 minutes after infection, using a number of phage-encoded proteins like e.g. T4 DNA polymerase (product of gene 43, gp43), single-strand DNA binding protein (gp32), endonuclease VII (gp49), the 46/47 exonuclease and DNA ligase (gp30) (95, 131). Replication rounds can be initiated in two ways. The early stage of replication is origin-dependent, initiated at several specific origins; this also involves RNA polymerase. At later times recombination-dependent replication is dominating. Recombination-dependent replication enables replication of the 3’ ends of the linear genome by formation of concatemers through recombination between chromosome ends and homologous sequences in other phage DNA molecules. These concatemers can be up to 20 genomes long. This action involves the 46/47 exonuclease and can be initiated with or without EndoVII (13, 23, 72, 95). Hydroxymethylation of cytosines, before incorporation into the phage DNA, requires dCTPase (gp56), dCMP hydroxymethylase (gp42) and deoxynucleotide kinase (gp1) for de novo synthesis. In the absence of dCTPase hydroxymethylated cytosines can be produced from the nucleotides released from the host DNA using only dCMP hydroxymethylase and deoxynucleotide kinase. If hydroxymethylation is disturbed it will result in phage carrying cytosine DNA; however, this also requires inactive Alc to allow late transcription of cytosine DNA (122) and inactive endonuclease II to prevent DNA degradation (47).

The ADP-ribosyltransferase ModA, like Alt, ribosylates the host RNA polymerase. The action of ModA, however, leads to inhibited transcription of T4 early promoters and transcription is instead concentrated to middle mode promoters (60, 186, 187). The ribosylation reduces the affinity of the host RNA polymerase for the host σ70 factor, and AsiA also helps in reducing its affinity for -35 promoter elements by binding to it (134, 166). Middle mode transcription also requires MotA which acts like a bridge between middle promoter -30 elements (MotA box) and σ70, which activates transcription from middle mode promoters (17, 135).

Transcription of late promoters results in the production of phage capsid particles and proteins required for virion assembly. The phage encoded sigma factor (gp55) associates with the RNA polymerase and directs it to late promoters (86), while gp33 is necessary for enhancing replication by promoting the interaction of the RNA polymerase with the translocating DNA replication fork (68, 69). To assemble mature virions the DNA is packaged into the icosahedral heads, and when the head is full the DNA is cut off and the last components of the head are added. The length of the packaged DNA is approximately 102% of a genome-equivalent length, resulting in a genome with terminal redundancy and endpoints that vary between the phage particles. Then the assembled tails are attached and finally the six tail fibers. As the last stage of infection (15-30 minutes after infection
at 37°C) the bacterium is lysed. The T4 holin (gpt) (109) creates a hole in the inner membrane, allowing access for the T4 lysozyme (gpe) (127) to break down the peptidoglycan layer. However, if the cell culture is dense, lysis can be delayed for several hours (“lysis inhibition”) (2, 31). After lysis has occurred hundreds of new phage are released, ready to infect the next bacterium and produce another generation of phage.

Host DNA degradation in T4 infected cells
Fragmentation of T4 cytosine-DNA and bacterial DNA in vivo is visible within 4-10 minutes after infection (33, 100). This breakdown of host DNA is initiated by EndoII (67, 158, 159, 194). Crude extracts withdrawn at different timepoints after T4 infection exhibited maximal EndoII activity on λ DNA 10 minutes after infection. EndoII activity decreased again approximately 15 minutes after infection (157). The large (approximately 100-1000 bp) DNA fragments produced by EndoII are then degraded exonucleolytically by the 46/47 exonuclease (also active in recombination-dependent replication). Single-stranded DNA is attacked by endonuclease IV (EndoIV) which cleaves single-stranded DNA 5’ of cytosines at the preferred sequence TCA (71, 132, 158). EndoII, although dispensable for T4 infection, is important for efficient degradation of host DNA while the EndoIV protein is involved to a minor extent (32, 33). EndoIV has been suggested to have its major function as an inhibitor in the replication of host DNA (32, 71). The 46/47 exonuclease however, is essential for producing free nucleotides that can be incorporated into the phage genome (100, 198). The degradation of host DNA completely abolishes the possibility for the host to produce new enzymes that might strike back at the phage, and nucleotides from degraded host DNA can produce 20-30 new phage (67), however, in rich media the majority of nucleotides for phage replication come from de novo synthesis.

Sequence-specific endodeoxyribonucleases
Sequence-specific endonucleases, like e.g. EndoII and EndoIV, can have various roles despite their seemingly similar action - DNA cutting. The substrate recognition, the cutting pattern and the physiological consequences of endonuclease action can be and are widely diverse. To find their cognate DNA sequences proteins can either scan the DNA by linear diffusion (1D diffusion) until a sequence is reached to which the protein can bind specifically, or by dissociating and diffuse through space to reassociate through random collision (3D diffusion), most likely on the same DNA molecule (12). A third way, called intersegmental transfer, occurs when a protein capable of binding to two sites binds transiently to the second site before dissociating from the first. When a specific site is found, the protein binds to
the DNA either contacting the base edges of specific bases (direct recognition) or by contacting the DNA backbone (indirect recognition). The most common contacts are made through hydrogen bonds (50%), most often involving hydrophilic amino acids, especially the positively charged amino acids lysine and arginine. These residues most often contact phosphate groups of the DNA backbone (which in general is the most common interaction between protein and DNA), but also base edges (104). Other interactions in decreasing order of occurrence are van der Waals, hydrophobic, and electrostatic interactions (104). In addition, water mediated contacts are very important and can have varying roles (79).

Another important part for recognition is the ability of the DNA to be distorted upon specific binding, e.g. HincII distorts the DNA by bending, unwinding and shifting of base planes (6). This is influenced by the base sequence and is almost always the result of positive roll at pyrimidine-purine base steps (45). Also the protein is subjected to conformational changes, for example NotI changes conformation upon binding, inserting a large number of residues into the major groove to make several base-specific contacts (102), and HincII has a more closed structure when bound to DNA (106).

Homing endonucleases

Nucleases can be grouped together either based on shared amino acid sequence motifs, and thus structural motifs, or based on their biological function. Homing endonucleases (HEs) are enzymes that promote the mobility of the DNA sequence that encodes them and sequences close to these. They are often located within an intron or intein and can promote the homing event of the entire intron (e.g. like the td intron encoded I-TevI (36, 197)). They also have been found as freestanding ORFs promoting the mobility of the ORF and surrounding sequences, e.g. SegG (107) and SegF (11). HEs nick or cleave within or outside a recognition sequence (typically 14-40 bp long, allowing for some sequence variation) in alleles that do not contain a copy of the HE coding sequence. The cleavage sequence is usually located close to the intron insertion site as is the case for e.g. I-CeuI and I-CreI (3, 51, 113, 114, 185, 189), but can also be several base pairs away from this as for I-TevIII (52). The break introduced by the HE initiates DNA repair pathways that will seal the break by homologous recombination, thus introducing the HE gene also into the new allele (group I introns and inteins). A more complex pathway involving DNA cleavage, reverse splicing and reverse transcription of a DNA-RNA hybrid also exists (group II introns) (178).

Homing endonucleases (HEs) can be divided into five groups depending on their conserved sequence elements: LAGLIDADG, HNH, HisCys box, GIY-YIG or PD-(D/E)-XK (178).
LAGLIDADG

LAGLIDADG endonucleases are most often found within introns or inteins in mitochondrial or chloroplast genomes of single cell eukaryotes (178). They appear either as homodimers containing one LAGLIDADG motif in each subunit, or as monomers containing two LAGLIDADG motifs, to be able to cleave both strands of the DNA (for examples see I-CreI (193) and I-DmoI (1) respectively). Each LAGLIDADG motif constitutes one active site that cleaves one strand of the recognition sequence, two LAGLIDADG motifs are thus required for double-stranded cleavage. The recognition sequences of LAGLIDADG homodimeric enzymes, like I-CreI (51, 185, 193) and I-CeuI (114) are palindromic or near-palindromic, while those of monomeric LAGLIDADG enzymes, like I-DmoI (1) do not require symmetric DNA targets. Free-standing LAGLIDADG endonucleases typically recognize 18-22 bp (178). The intein-associated LAGLIDADG endonuclease PI-SceI, however, involves other parts of the intein in DNA binding (63) to recognize a bipartite 31 bp long sequence (59).

HNH and HisCys box

The HNH and HisCys box nucleases have very similar folds (called the ββα-Me motif). Based on these structural similarities it has been suggested that they should be considered as a singular group (96). HNH is the most diverse group of nucleases and can be divided into eight or more subgroups (115) depending on sequence variations in the core HNH motif and additional features. HNH homing endonucleases are usually found in phage introns, e.g. I-TevIII is located in the nrdB intron of phage RB3 (152). Typical members recognize asymmetric sequences that are 24 bp or longer, e.g. I-HmuI (61, 103). They are composed of a nuclease module that is quite non-specific and several modules that confer binding specificity. Many of them nick only one strand of the DNA (61, 103, 178).

Introns containing HisCys box endonucleases are hosted by genes in nuclear ribosomal DNA loci from several species of protists (e.g. I-PpoI (129) and I-DirI (80)). HisCys box endonucleases have a series of histidine and cysteine residues stretched over approximately 100 amino acids (81). The structure of I-PpoI shows that eight of the conserved residues coordinate a structurally important zink ion while others form the metal-coordinating active site (56, 57). HisCys box HEs recognize symmetric DNA sequences that are up to 20 bp long, with higher specificity than the HNH nucleases (178).

GIY-YIG

GIY-YIG homing endonucleases, like HNH homing endonucleases, are often found in phage introns, like the “paradigm” GIY-YIG nuclease I-TevI in the td intron of phage T4 (36, 197), but also in introns of fungal mitochon-
dria, algal mitochondria and algal chloroplasts and as freestanding ORFs like the T4 Seg endonucleases (167). Also like HNH homing endonucleases, GIY-YIG homing endonucleases are composed of modules, some of which they have in common, suggesting genetic exchanges between these two types of enzymes (178). Recognition sequences of the typical GIY-YIG HEs I-TevI and I-TevII are 37 and 31 bp long, respectively (10, 25, 36, 108).

PD-(D/E)-XK
This group of homing endonucleases, found in introns of cyanobacterial tRNA genes, was first believed to be an entirely new type of nuclease; only a few other ORFs were shown to be similar (15, 139). Many group I introns in bacteriophage contain protein encoding ORFs, but this was the “first example of a chromosomally encoded group I intron endonuclease in bacteria” (18). The group is represented by I-SspI, shown to cleave intron-less alleles of its host gene, recognizing 20 bp of partial symmetry (18). It has been shown now that this enzyme is a tetramer that conforms to the PD-(D/E)-XK fold commonly found in Type II restriction endonucleases (203).

Restriction endonucleases
Restriction modification systems (R-M) are thought to be an important defense for bacteria against invading DNA such as phage infections. By using a restriction endonuclease (RE) that is active only on modified DNA bacteria can specifically cleave modified DNA coming from the outside. Alternatively, by modifying their own DNA through methylation, bacteria are able to harbour an RE that only breaks down unmethylated DNA from the outside. There are four types of restriction endonucleases: Type I, Type II, Type III and Type IV (153), characterized by their different molecular structures, sequence recognition, cleavage position and cofactor requirements.

Type I
Type I REs are part of a restriction-modification system, usually with the composition R2M2S (restriction, methylation and specificity subunits, respectively), where M2S can perform the modification, methylating preferably at hemimethylated recognition sites, while R2M2S is required for the cleavage reaction at unmethylated recognition sites (128), as for example for the well known EcoKI R-M system (48, 181). Recognition sites are bipartite and asymmetric, typically with 3-4 bases and 4-5 bases separated by a 6-8 base unspecified linker region (21, 154). Cleavage takes place at variable positions far outside the recognition sites, this requires ATP, S-adenosylmethionine (AdoMet) and Mg2+ (128) and occurs after two bound REs have dimerized and translocated DNA to produce a contracted loop that stalls the translocation (54).
Type III
Type III R-M systems are composed of a recognition-modification (Mod) and a restriction (Res) subunit, both of which are required for cleavage, while the Mod subunit is sufficient for hemimethylation of the recognition site (49). The stoichiometry of the subunits is \((\text{Res})_2(\text{Mod})_2\) (49, 77). Double-stranded cleavage by Type III REs is ATP- and Mg\(^{2+}\)-dependent, and is stimulated by AdoMet (e.g. EcoP15I (49, 125). The newly characterized PstII however, can use also GTP and CTP (165). Recognition sites are 5-6 bp long and asymmetric (21, 154). Efficient cleavage requires two enzymes bound to one site each in an inverse orientation and can be separated by thousands of basepairs (38, 49, 165). Similar to Type I REs, cleavage of unmethylated DNA is triggered by the collision of two complexes (21, 38). Type III endonucleases however, cleave at a fixed position close (25-27 bp) to one copy of the non-palindromic recognition sequence, as do the EcoP1II and EcoP15I enzymes (77, 125).

Type IV
The Type IV group of REs includes enzymes that require modified (methylated, hydroxymethylated or glucosyl-hydroxymethylated) DNA for cleavage and show weak specificity (153). REs of this group do not have an accompanying modification enzyme (49). The best example is the well studied McrBC from \(E.\ coli\) that recognizes a purine followed by a methylated or hydroxymethylated cytosine, but also is affected by surrounding sequences (147, 148, 176). Two sites that can be separated by 40-3000 bp are needed for cleavage, which takes place preferably around 30 bp away from one of the sites but also at a distance of 10, 20, 40 and 50 bp (21, 142, 177, 182). The structure of McrBC is very complex, the stoichiometry of the active complex bound to DNA (in the presence of GTP) is still not known. Initially however, McrB forms heptameric rings and tetradecamers which are stabilized by McrC (136, 142). A shorter form of the B subunit, which is unable to bind to DNA, is also expressed from the same gene at a 1:1 ratio and sequesters the catalytic C subunit (46, 138, 143). As for Type I and Type III REs Mg\(^{2+}\) is required, DNA translocation is GTP-dependent and cleavage is induced upon stalling of a complex (137, 182). Other examples are McrA (4, 147, 148), Mrr (26, 65, 87, 147, 190) and GmrSD (7, 8, 151), though these enzymes have not been as extensively characterized.

Type II
Type II REs is the most ubiquitous group of enzymes with 3765 members listed in REBASE (155) as of October 29 2008 (http://rebase.neb.com). The majority of Type II restriction endonucleases contain the conserved PD-(D/E)-XK motif (144). A smaller fraction belong to the PLD, HNH or GIY-YIG families of endonucleases (e.g. BfiI, KpnI and Eco29kI, respectively)
Unlike Type I, Type III and Type IV REs, most Type II REs function as freestanding enzymes that can cleave without being in complex with other subunits (144). They often bind as homodimers to their usually 4-8 bp long palindromic recognition sequences. Cleavage takes place on both strands within or close to this sequence and requires Mg$^{2+}$. REs with this typical behaviour are called Type IIP (palindromic), typical examples are EcoRI (64) and EcoRV (164). Other subgroups of Type II REs are IIS, IIA, IIB, IIC, IIE, IIF, IIG, IIM and IIT (144, 153), but many REs can fit into more than one subgroup. Type IIS (shifted) REs are enzymes that cleave outside their recognition sequence in at least one of the two strands, although usually both strands are cleaved outside. FokI is the best studied Type IIS RE. It is a monomer in solution but is active as a dimer, interacting with two asymmetric recognition sites (16, 192) cleaving 9 and 13 bp away from one of the sites (179). Another TypeIIS RE that binds as a dimer to two DNA molecules is MboII (174), but there are also tetrameric Type IIS enzymes like BspMI (62).

Type IIA (asymmetric) REs recognize asymmetric sequences and cleave these either inside or outside the recognition sequence (144, 153). Those that cleave outside the recognition sequence thus also belong to the Type IIS group, like FokI (179). Type IIB REs are those that cleave on both sides of the recognition sequence, like BpiI, which cleaves 13 and 8 bp (top and bottom strand respectively) before and 8 and 13 bp after the 11 bp long bipartite recognition sequence (199). Type IIC REs are enzymes that are fused to their modification domain, like BcgI, which is composed of two equal subunits containing the endonuclease/methyltransferase and one subunit containing the recognition domain (90, 91). This enzyme also cleaves on both sides of the recognition site (89), thus it also belongs to Type IIB REs. Type IIE REs interact with two target sites, cleaving only one of them, while the other site functions as an allosteric effector as has been shown for the well known EcoRII (141, 149) and NaeI (74). Type IIF REs also interact with two recognition sites, but unlike Type IIE cleave at both sites. REs of this group are homotetrameric like NgoMIV, which was the first tetrameric RE to be crystallized together with its substrate bound to two sites simultaneously (43, 55, 124), and SgrAI which tetramerizes upon binding to the DNA (14, 41, 70).

Type IIG REs, like Type IIC, have the restriction domain fused to the modification domain, but are also affected by AdoMet either positively or negatively. For example, the Eco57I R-M system consists of one enzyme with cleaving and methylating properties and a separate enzyme with methylating properties; cleavage is stimulated by AdoMet (78). Recognition sequences of Type IIG REs can be either symmetric or asymmetric. Type IIH REs are similar to Type I regarding gene structure. One of the few characterized enzymes of this group is AhdI, which has an accompanying methyltransferase consisting of two M and two S subunits (112). BcgI is only func-
tional as an A₂B complex where A contains both the restriction and methylation functions, while B contains the motifs necessary for recognition (91). **Type IIM** REs recognize and cleave methylated DNA at a fixed site. The best known example is DpnI, which cleaves the sequence GA_TC where the A is methylated (101, 145). **Type IIT** REs are composed of heterodimers, like BsII which is believed to have the composition \(\alpha_2\beta_2\) (73) and Bpu10I (175). REs can also be **nicking enzymes**, either naturally, like Nt.BstNBI (121) which nicks the top strand of the sequence GAGTCN₄_ or due to mutations of e.g. one of the heterodimeric subunits of Type IIT REs like BsaI, BsmBI and BsmAI (204).

GIY-YIG endonucleases

Nucleases that share the GIY-YIG motif can be homing endonucleases, restriction endonucleases, excision repair nucleases, Penelope elements, MutS-like and Slx1 (50). The recognition of all the conserved motifs of GIY-YIG endonucleases is relatively recent, although Michel and Dujon noticed the sequence similarities between I-TevI and two other intron ORFs already in 1986 (116). In 1999 Kowalski *et al.* characterized the conserved sequence elements of the GIY-YIG module (Fig. 2) (94), which was later revised by Dunin-Horkawicz *et al.* in 2006 (50).

![Figure 2](image.png)

Figure 2. Sequence logo of conserved sequence motifs of the GIY-YIG module. The height of each amino acid is proportional to its conservation in that position. The sequence shown below is that of I-TevI. Reprinted from Kowalski *et al.* (94) with permission from the publisher.

Also in 1999, Aravind *et al.* recognized similarities between UvrC, intron-encoded endonucleases and several uncharacterized proteins and named the domain Uri (after *UvrC* and intron-encoded endonucleases) (5). Hence the GIY-YIG domain is also called Uri. Dunin-Horkawicz *et al.* identified 765 database entries as GIY-YIG nucleases, from all domains of life, many of which have not been characterized (50). This analysis showed that the architecture of GIY-YIG nucleases is highly modular, the nuclease domain is usually attached to additional domains that confer DNA binding, protein
interactions, reverse transcription, additional catalysis and more. In 2002 the first structure of a GIY-YIG nuclease, I-TevI, was solved by Van Roey et al. (191). Also the structures of UvrC from both Thermotoga maritima and Bacillus caldotenax have been solved (188).

Examples of GIY-YIG endonucleases

The best characterized examples of GIY-YIG nucleases, except EndoII, are I-TevI and UvrC. The HE I-TevI is built up by two domains that are connected by a flexible linker which includes a Zn finger (42). The N-terminal domain harbours the catalytic GIY-YIG motif and the C-terminal domain confers most of the binding energy (24, 44, 94). I-TevI cleaves at a distance of 23 and 25 nucleotides (top and bottom strand respectively) from the recognition site (10). Due to the flexible linker, and the tolerance for sequence variations by the relatively unspecific catalytic domain, I-TevI can also cleave at a slightly different distance and can tolerate partial deletions of the flexible linker or the recognition sequence (24, 42). Nicking of the bottom strand is not Mg$_{2+}$-dependent, while nicking of the top strand is. The C-terminal domain of I-TevI is very similar to the C-terminal DNA binding domain of I-HmuI (178), emphasizing the modular architecture of GIY-YIG nucleases. The catalytic N-terminal domain of I-TevI has been extensively studied, showing that mutation of conserved residues of the GIY-YIG motif severely affects catalysis (94). The solved crystal structure showed that the conserved glutamic acid coordinates the Mg$_{2+}$ ion that is essential for nicking of the top strand, and that also many of the other conserved residues are involved in forming the putative catalytic surface (191).

UvrC is an excision-repair nuclease which works in complex with UvrA and UvrB. The UvrA$_2$UvrB$_2$ complex is thought to scan the DNA until it finds a damage, UvrB binds to the damaged part while UvrA dissociates (111, 120, 196). Once UvrA has dissociated, UvrC is recruited to perform two incisions, first one incision 3 - 4 bp 3’ of the damage, then another 7 bp 5’ of the damage (105, 160, 195). After the incised oligonucleotide has been removed, DNA repair systems fill up and seal the gap (34, 75, 133).

Like I-TevI, UvrC is built up by more than one domain. The N-terminal half contains the GIY-YIG motif that catalyzes the 3’ incision reaction and a UvrB-interacting region, while the C-terminal half confers DNA binding and performs the 5’ incision (5, 84, 118, 119, 188). UvrC can also bind alone as a homotetramer to damaged and undamaged DNA with the same affinity, which is believed to be a way to concentrate the enzyme where it is needed in vivo (183). Also the structure of the GIY-YIG domain of UvrC showed that the conserved glutamic acid coordinates the essential Mg$_{2+}$ ion, furthermore several other conserved amino acids were shown to be important for catalysis of the 3’ incision (188).
In both I-TevI and UvrC the additional domains are necessary for stable binding to the recognition site, the N-terminal GIY-YIG nuclease domains are not sufficient for stable binding on their own (44, 188). However, over-expression of the cloned N-terminal domain of I-TevI appears to be toxic to *E. coli*, indicating that this domain binds well enough to cleave DNA *in vivo*.

The I-TevI isoschizomer I-BmoI is a two-domain HE very similar to I-TevI (53). Also for this enzyme only top strand nicking is Mg$^{2+}$ dependent and the two incision reactions are sequential (35). It was suggested that the top and bottom strand incisions by these HEs could be catalysed by two different catalytic surfaces or through a significant metal-dependent reorganization of the catalytic surface.

Homology modelling of the single-domain GIY-YIG RE Eco29kI suggested that this enzyme has a fold similar to that of the N-terminal domains of UvrC and I-TevI (76). Mutational analysis confirmed the roles of various conserved amino acids in catalysis and two of them (H108 and N154) were also implicated in binding. This enzyme has been shown to be monomeric in solution (140) but its stoichiometry upon DNA binding has not been determined. The RE Cfr42I is an isoschizomer to Eco29kI, recognizing the symmetric sequence CCGC_GG; the two enzymes also share 32% sequence identity (58). Cfr42I has been shown to be tetrameric in solution and has significantly higher catalytic activity when bound to two DNA substrates than when bound to only one (58). It can also function with a wide variety of divalent metal ions.

Structure of GIY-YIG endonucleases

The structure of the catalytic GIY-YIG domain of I-TevI (191) revealed a novel α/β fold with a three-stranded anti-parallel β-sheet in the center flanked by three α-helices (Fig. 3). Amino acids implied in catalysis (94) form a shallow concave surface that would be able to accommodate the DNA substrate. The structures of the N-terminal GIY-YIG domains of UvrC from *Bacillus caldotenax* and *Thermotoga maritima* (Fig. 3) show very similar folds compared to I-TevI (188), though with some variation. The two UvrC nucleases e.g. have an additional structurally important α-helix (α1), which is absent in I-TevI. There are also differences between the UvrC nucleases, e.g. the helix α5 in UvrC from *Bacillus caldotenax* is absent in UvrC from *Thermotoga maritima* (and I-TevI) and is replaced by a loop region. However, highly conserved residues in the UvrC enzymes were found to be organized in a small patch and mutational analysis proved several of them to be important in catalysis. This corresponded well with the putative catalytic surface of I-TevI and strongly suggests that this is the catalytic site of all GIY-YIG enzymes.
GIY-YIG endonucleases encoded by bacteriophage T4

In addition to I-TevI and EndoII, T4 encodes several other GIY-YIG endonucleases. One is an intron-encoded homing endonuclease located in the self-splicing group I intron in *nrdD* (also called *sunY*) (9, 108). The SegA-G (similar to endonucleases of group I introns) enzymes also belong to the GIY-YIG group of nucleases. Sharma *et al.* found that the *segA* gene was homologous to I-TevI, and that the N-terminal 100 amino acids also were similar to those of four other uncharacterized proteins that were named SegB-E (167). SegA was shown to be Mg$^{2+}$-dependent and cut at preferred sites. It has not been proven to be a HE, but shows many similar properties. Since it is not positioned in an intron it was instead suggested that it could induce homing of the endonuclease-encoding gene (167). SegA is able to cleave cytosine-containing DNA as well as DNA containing glucosylated and hydroxymethylated cytosines with some sequence preference, and is stimulated by ATP (168). SegB has been shown to promote homing of its own coding sequence into related phage lacking the *segB* gene (22). SegC is also a site-specific endonuclease that is inherited by almost all phage in mixed infections with T4 and T2 and has been used for studying recombination events during T4 infections (169). Also SegE has been shown to pro-
mote transfer of its coding sequence to related phage lacking this sequence, and unpublished data report that SegD can initiate similar events (82). In mixed phage infections, the SegF and SegG nucleases promote the inheritance of their coding sequences and nearby regions to phage lacking the seg genes (11, 107). SegF shows sequence similarities in its C-terminal part to the HNH nuclease MobD. Another Seg nuclease, SegH, was found in phage T6, RB3 och LZ2, but not in T4 (161). In the genomes of five other T4-like phages only one similar gene (most similar to segD) was identified, hence GIY-YIG HE genes seem to be more abundant in T4 compared to related phage (130). It has been suggested that T4 perhaps is less sensitive to the action of these nucleases due to efficient DNA repair and therefore can harbour them in its genome (11). In addition, the concerted action of all T4 HEs might fragment the genomes of other phage in mixed infections, giving T4 the advantage.

EndoII

Endonuclease II, encoded by the gene denA (DNA endonuclease; (67)), is a GIY-YIG nuclease but does not fit strictly into any of the functional groups of nucleases. It behaves like a restriction endonuclease in that it cuts DNA foreign to itself. The “self DNA”, however, is not protected by an accompanying methylase as is common for REs, but by hydroxymethylated cytosines that are incorporated into the T4 genome and subsequently glucosylated. The recognition sequence, however, is more like that of a homing endonuclease - ambiguous, long and asymmetric.

Microarray analysis of RNA transcripts during T4 infection has shown that denA is transcribed as immediate early (0-3 minutes) after infection (110). There is no obvious early promoter in the region before denA but it was suggested that there is an early promoter near the beginning of nrdB (110). Fragmentation of cytosine-containing phage DNA during infection with a T4 strain defective in hydroxymethylation and the 46/47 exonuclease was first studied by Kutter and Wiberg (100). Phage DNA thus was not protected from endonucleolytic cleavage by phage-encoded enzymes and cleavage products were not further degraded by exonucleases. A difference in fragmentation between phage DNA and host DNA was noted. Host DNA was cleaved to approximately 1.5 kDa fragments, while cytosine-containing phage DNA was cleaved to approximately 15 kDa fragments. It was suggested that this was dependent on a sequence-specific endonuclease with a preference for GC-rich sequences. EndoII was first named and purified from T4 infected E. coli and characterized in vitro in 1969, though the enzyme preparation was quite crude and most likely contaminated by EndoIV and possibly other enzymes (157). None-the-less it was determined to be a Mg^{2+}-dependent single-strand nicking enzyme, producing 3’-hydroxyl and 5’-phosphate termini of the DNA.
The first *in vivo* demonstration of discrete DNA fragments as the result of "restriction" was performed with EndoII (33). It was shown that the resulting fragments corresponded to genetically distinct regions of T4 DNA. A mutation located in *denA*, the gene encoding EndoII, was found to inhibit this degradation, showing that EndoII was required for this restriction. It was also the first actual evidence that EndoII was sequence specific.

Conclusive evidence that EndoII is the nuclease primarily responsible for the degradation of cytosine-containing DNA during T4 infection was presented by Carlson and Øvervatn (32). Degradation by EndoII was shown to be inhibited by as little as 3-9\% hydroxymethylated cytosines in the DNA, corresponding to one hydroxymethylated cytosine every 30-95 bp. Studying the cleavage of plasmid pBR322 *in vivo*, the ambiguous consensus sequence 5'-CGRCCGCGN\dagger TTGSYNGC-3' recognized by EndoII was determined (30). The most conserved parts of the sequence were in positions 4-7 (conserved sequence left, CSL) and positions 9-11 (conserved sequence right, CSR), though only the CG dinucleotide in positions 5 and 6 was completely conserved *in vivo*. Cleavage of the bottom strand, i.e. the strand not shown, takes place between position 8 and 9, while cleavage of the top strand varies, generating blunt ends or 1-2-base 5' overhangs; a small number of single-stranded nicks was also observed. While showing that the 16 bp sequence was enough for cleavage, it was also found that the efficiency of *in vivo* cleavage was negatively influenced by the presence of additional preferred cleavage sites nearby (29). This context effect ranged from 800 to 1500 basepairs and it was suggested that EndoII engages more DNA than just the cleavage site. The context within the consensus sequence also influenced cleavage efficiency, supporting the idea that a structural motif was required for efficient cleavage. *In vitro* experiments, where EndoII was expressed through coupled *in vitro* transcription-translation from cloned *denA*, showed that EndoII recognized essentially the same sites *in vitro* as *in vivo* (28). Additional sites were also recognized and nicking was more frequent than double-strand cleavage. The consensus sequence as determined from *in vitro* experiments differed from that *in vivo* in that the CSR was no longer required.
Present investigation

Aim of the present study
The aim of the present study was to obtain a detailed understanding of how EndoII interacts with its DNA substrate. The main focus was on the following questions: why does cleavage by EndoII in vivo differ from that in vitro (paper I); what parts of the DNA substrate are recognized by EndoII and what amino acids are important for interactions with these (paper II); how does EndoII bind to its DNA substrate (paper III); what are the positions of the important amino acids in the three-dimensional structure of EndoII (paper V); is there an additional biological role for EndoII, besides host DNA degradation (paper IV). The results of these studies are presented below.

Structure of EndoII
The only available crystal structures of GIY-YIG nucleases are those of I-TevI and UvrC (from Thermotoga maritima and from Fusobacterium nucleatum) (188, 191). The crystal structure of EndoII has the same central fold as these, a three-stranded antiparallel β-sheet surrounded by helices, though with some variations (paper V). The structure revealed a tetrameric organization with an unusual means of dimerization and tetramerization. Half-moon shaped dimers are formed mainly by hydrophobic interactions between protruding β-sheet domains formed by β5 and β6 (Figs. 1 and 3 in paper V); there are no similar β-sheets present in the structures of the other GIY-YIG nucleases. The same domains also form the tetramerization surface, where two primary dimers bind back to back, resulting in a striking cross-like structure with two catalytic surfaces to each side of the cross. Each monomer contains all the amino acids to build up one catalytic surface. Gel filtration of EndoII mutants together with a 30 basepair DNA substrate showed that EndoII binds as a tetramer (paper III), hence the structure presented in paper V most likely is the biologically relevant structure.

In silico docking of a 16 basepair oligoduplex (from a favoured nick site) suggested that a loop containing a NUMOD3 DNA binding motif (170) could dock in the major groove of the DNA. This would position the scissile bond of the recognition sequence at the catalytic surface of the same monomer. For the other DNA strand to be able to contact the other catalytic surface of the primary dimer, severe distortion of the DNA would be necessary.
since the second catalytic surface is placed relatively far away from the first. This might explain why single-stranded nicks is the most common outcome of EndoII activity. It is also possible that the C-terminal lysines are involved in DNA contacts to the right part of the recognition sequence.

EndoII binds as a tetramer to two DNA molecules

To elucidate the composition of enzyme-substrate complexes a combination of gel filtration and gel shift assays with enzymes and substrates of different lengths was performed (paper III). This allowed the identification of the number of DNA molecules and enzyme molecules in the different complexes formed. The complex formed first, at low enzyme concentrations, by all mutant enzymes except EndoII E118A (see below), was shown to consist of four EndoII molecules and two DNA molecules. The gel shift experiments also showed that a 30 bp substrate was not as efficiently bound as a 44 bp substrate by most mutants (E118A excepted also in this case), though they were nicked at the same positions. Thus, even though a 16 bp sequence is enough to direct nicking to a certain position, such a short substrate by itself is not enough for stable binding.

It is quite common that restriction enzymes form homodimers or tetramers to be able to execute double-stranded cleavage on a symmetric target site. For example the GIY-YIG RE Cfr42I has been shown to be a tetramer in solution and bind to two DNA molecules; binding of the second DNA molecule significantly increases cleavage activity (58). A tetrameric complex was quite unexpected for EndoII, however, since EndoII recognizes a long and asymmetric DNA sequence (paper II, (28-30)) with relatively low sequence specificity. Such sequence recognition is more similar to that of the double-strand-cutting homing endonucleases (I-TevI and I-BmoI) of the GIY-YIG family (25, 53) that bind as monomers.

Mutational analysis of EndoII

Other well characterized GIY-YIG endonucleases have additional domains that are responsible for the specific binding to their DNA substrates. The catalytic GIY-YIG domains of I-TevI, I-BmoI and UvrC can not bind strongly to DNA when separated from their DNA binding domain and mutants of these therefore can not be examined for altered binding properties (35, 44, 188). EndoII thus presents a unique opportunity to examine the roles of specific residues in the GIY-YIG module for binding and substrate specificity.

To this end conserved GIY-YIG residues in EndoII (G49, R57, E118 and N130) were selected for mutational analysis based on sequence similarities and available data on catalytic mutants of I-TevI and UvrC. Other suitable candidates for analysis were identified by aligning available sequences of 13
additional \textit{denA} genes from T4-like phage with the T4 \textit{denA} gene. Regions of homology not present in other GIY-YIG nucleases were identified in the middle region (MR) and the N-terminal region (NTR) of EndoII and selected for mutagenesis. The MR overlaps with the NUMOD3 DNA binding motif (170), which suggested that this region might be important for binding by EndoII. \textit{denA} mutations found in T4 phage \textit{in vivo} were also included in the analysis. All mutants were examined with regard to catalytic activity, binding efficiency and sequence recognition (paper II).

Conserved residues of the GIY-YIG motif

Mutation of completely conserved GIY-YIG residues G49, R57, E118 and N130 to alanine resulted in dramatically reduced catalytic activity (paper II, table 2). This is consistent with what has been found also for the paradigm GIY-YIG endonucleases I-TevI and UvrC.

\textbf{E118}

Mutation of E118 to alanine in EndoII rendered the enzyme inactive, although its binding affinity was among the highest for all mutants (paper II). In regard to binding however, the E118A mutant differed from all other mutants in that it formed complexes as a monomer with a single DNA molecule and a dimer with a single DNA molecule, as well as a tetramer with two DNA molecules as seen for all other mutants (paper III). The reason for this did not seem to lie in its multimerization capacities, since gel filtration in the absence of DNA clearly showed that the E118A mutant appeared as both a dimer and tetramer in solution, in the same proportions as for other mutants. Hence the answer most likely lies in a unique capacity to bind stably to the substrate as a monomer and dimer. Possibly, the replacement of the negative charge of the glutamic acid reduces the repulsion of the DNA phosphate backbone, alternatively, removal of the glutamic acid could result in reduction of some steric hindrance which would facilitate binding, or a combination of both.

E118 is positioned on the catalytic surface and the corresponding residues in I-TevI and UvrC have been shown to be Mg$^{2+}$-binding (188, 191). However, since the structure solved for EndoII is that of the E118A mutant a Mg$^{2+}$-coordinating function for this residue in EndoII can not be determined until a Mg$^{2+}$-binding mutant has been crystallized. On the other hand, the absence of activity for this mutant and the position of the substituting alanine on the active surface, overlapping that of I-TevI and UvrC, strongly indicate that E118 is the Mg$^{2+}$-binding residue also in EndoII.

\textbf{R57}

The R57A mutant was severely compromised in catalytic activity and in binding, though nicking was relatively more affected than binding compared
to other mutants (paper II). In situ activity assays also showed that a DNA substrate, which with all certainty was bound by EndoII R57A, was not efficiently nicked. Calculating the information content for the different positions of the sequences that R57A recognized (i.e. how conserved a certain base is in a certain position of the recognition site), showed a recognition pattern that differed from that of the wildtype enzyme and most other mutants (paper II). Recognition at the distal parts of the recognition sequence was lower, while a higher sequence conservation was observed close to the scissile bond with a novel preference for a G just to the left of this (Fig. 6 in paper II).

We suggested that for this mutant to be able to nick there is a novel requirement for intrinsic deformation of the DNA, implying that in the absence of the arginine the ability of the enzyme to induce DNA distortion is reduced. Thus R57 would be important for deformation of the substrate. The need for DNA distortion is supported by the structure of EndoII (paper V).

In the structure, R57 is positioned on the catalytic surface. It is possible that this residue has the same role in catalysis as that suggested for the corresponding residues in I-TevI and UvrC, stabilizing a pentacovalent reaction intermediate or stabilizing the negative charge of the leaving 5'-phosphate (188, 191); it might also be important for positioning the substrate correctly for nucleophilic attack.

G49

As for the R57A mutant the G49A mutant was severely compromised in nicking and binding activities and more affected in nicking than binding compared to other mutants (paper II). It also showed a somewhat similar variation in sequence recognition, suggesting that also this mutation introduces a need for intrinsic deformation of the DNA. It is not likely that the glycine would be directly involved in DNA binding or distortion; the structure of I-TevI shows that the conserved glycine residue lies just behind the Mg\(^{2+}\) ion and that there is little space to accommodate a larger residue in that position (188). G49 in EndoII occupies the same position (paper V); therefore the effect of the G49A mutation most likely depends on an introduced steric hindrance in accommodating the Mg\(^{2+}\) ion when the larger alanine is inserted. Supporting this, the G49A mutant nicked more efficiently with Mn\(^{2+}\) than with Mg\(^{2+}\), suggesting that a smaller ion fits more easily when the relatively small glycine has been replaced by the bulkier alanine (paper II).

N130 and P127

The N130A mutant and the *in vivo* isolated P127L mutant were both severely affected in their catalytic abilities; the P127L mutant was also negatively affected in binding. Both mutants exhibited similar substrate recognition as the wildtype enzyme, but deviated from this and the other mutants in being relatively more active with Ca\(^{2+}\), suggesting an increased space where the metal ion is bound. N130 is positioned in the catalytic surface very close to
E118, and P127 is very likely responsible for the fold in this region, affecting the position of N130. A proline corresponding to P127 is present also in UvrC and matches the structure of EndoII; it is not present in I-TevI however. The conserved asparagine in I-TevI has been proposed to have a structural role in the catalytic surface (191); for UvrC the asparagine has been suggested to position the catalytic domain of the enzyme correctly in relation to the other domains (188). From the structure of EndoII it seems likely that N130 has a structural function in stabilizing the C-terminus of EndoII, a small difference in the position of the C-terminus might block the active site from DNA binding.

Conserved residues in the NTR and MR

For MR and NTR mutants the binding abilities seemed to be more disturbed in relation to the catalytic abilities compared to what was seen for the other mutants (paper II, table 2). Both the MR and the NTR were thus suggested to contribute mainly to binding affinity (paper II), supported by the sequence similarity of parts of the MR to the NUMOD3 DNA binding motif (170). Mutants in the MR all behaved in a similar way with the exception of the K76A and L84P mutants which were as severely affected in catalysis as the GIY-YIG mutants.

K76

K76, which is part of the MR, is positioned in the catalytic surface. This residue is largely buried and hence not likely to take part in DNA binding; this is also supported by the relatively good binding ability of the K76A mutant. However, K76 most likely is involved in catalysis as reflected by the low catalytic activity of the K76A mutant enzyme. No corresponding residue is conserved in I-TevI or UvrC and there is no immediately corresponding residue occupying the same position in the otherwise so similar UvrC structure, suggesting that this is a unique catalytic feature of EndoII.

L84

L84P alone did not bind at all to the DNA substrate, hence it was also severely affected in catalysis (paper II). The total information content of the recognition sequence was also lower than that for any other mutant, reflecting a much lower precision in sequence recognition by the L84P mutant. L84P is positioned in the C-terminus of helix α3, which lies just before the NUMOD3 element. The severe defects in substrate binding by the L84P mutant is possibly caused by a disruption of the α3 helix, that is transmitted to the NUMOD3 motif.
Metal dependency of EndoII

Mg$^{2+}$ is required for all EndoII cuts (paper I). This is in contrast to the GIY-YIG homing endonuclease I-TevI which nicks the two strands almost simultaneously, though only nicking of the second strand is Mg$^{2+}$-dependent, and also dependent on the first incision (126), suggesting different catalytic mechanisms for EndoII and I-TevI.

Replacing Mg$^{2+}$ with Mn$^{2+}$, Ni$^{2+}$ or Ca$^{2+}$ in EndoII reduces its catalytic activity; the only exception is the G49A mutant that shows increased activity with Mn$^{2+}$. Galburt et. al proposed that a large effect of the metal species on catalysis may suggest that the metal ion is involved in positioning and activating a nucleophile for catalytic attack, rather than stabilizing the charge of the phosphoanion transition state (56). It is possible that this is the case for EndoII.

DNA repair masks nicking by EndoII in vivo

It was proposed that the differences between EndoII cleavage in vitro and in vivo are due to repair systems present in the in vivo situation (28). Therefore in vitro activity was assayed in the presence and absence of T4 DNA ligase to elucidate if DNA repair could be the reason for the different results (paper I). Cleavage of sites previously found to be favoured in vitro was significantly reduced when T4 DNA ligase was added. A site that was favoured in vivo however, was less affected by the addition of ligase. In order to test the kinetics with which the different sites were nicked or cleaved, upper and lower strands at three different in vitro favoured sites were assayed for nicking as well as for double-stranded cleavage by EndoII. Nicks appeared earlier and more abundantly than double-stranded cleavage, being at the very least three-fold higher than cleavage after five minutes. Even after twenty minutes cleavage never represented more than half of the least abundant nicks.

We concluded that double-stranded cleavage is the result of two separate nicking events, and that double-stranded cleavage in vivo will result only if these two events are close in time. Single-stranded nicks are thus masked in vivo by the activity of repair enzymes present during T4 infection of E. coli.

In vivo context effect

There are several examples of tetrameric enzymes binding to two DNA substrate molecules that loop the DNA between the two binding sites. One-dimensional diffusion along the DNA to find the second recognition site would explain the low amount of hydroxymethylation needed to inhibit EndoII activity on T4 phage DNA (one hydroxymethylated cytosine every 30-95 bp is enough to prevent cleavage in vivo) (32). Looping of the substrate bound to the two sites of the EndoII tetramer might explain the context ef-
fects seen in vivo (29), where cleavage of one site is reduced if a more preferred cleavage site is present within approximately 1000 bp to each side. If only one of the two sites bound by the EndoII tetramer is nicked or cleaved, this would explain the reduction of cleavage at the other, less preferred site. The absence of long range context effects in vitro can be explained by the fact that double-stranded cleavage in vitro often is the result of two separate nicking events; this is quite rare in vivo where both strands must be nicked almost simultaneously to persist.

EndoII can induce recombination events

As previously implicated (27) it seemed reasonable that EndoII could also have a second role during phage infection. This was based on the fact that EndoII in vivo produces fairly long (100-1000 bp) DNA fragments. This could be an incitement for the recombination of these gene sized fragments into the phage genome, thereby providing the phage with an opportunity to gain new functions.

To test this hypothesis isogenic recombinant T2 phage carrying the L84P mutation of T4 EndoII, or wildtype T4 EndoII, were grown in E. coli containing a plasmid with the T6 distal tail fiber gene 38. Gene 38 is the gene conferring host range specificity since the gene product binds to receptors on the bacterial cell wall. Progeny phages were subsequently tested on T2-resistant hosts for their ability to grow on these. The frequency of recombinant host-range variants, i.e. phage progeny able to infect a T2-resistant host (readily infected by T6), was significantly higher for phage encoding functional EndoII. Phages able to grow on all resistant strains resulted from recombination at a few GC-rich positions in gene 38, at locations with short sequence homology between the T2 and T6 genes (paper IV). These crossover regions were in the same multirecombination site that was described by Tétart et al. (184). It was also shown that EndoII cleaved the plasmid containing T6 gene 38 at and close to the sites of recombination in vivo; most likely nicking was more frequent than cleavage. EndoII thus increases the frequency of recombination events at sequences recognized by this enzyme and may be of evolutionary advantage to the phage.

Model for EndoII activity

Combining the results described above led to the following model for EndoII activity. Stable binding by EndoII is achieved when two substrate molecules are bound to the tetramer, one to each primary dimer. To find the second recognition site EndoII scans along the DNA by one-dimensional diffusion. Specific contacts to the DNA, close to the center of the consensus sequence, are made by the catalytic surface, while the distal parts of the DNA are contacted by the NUMOD3 loop. Possibly also the N-terminal lysines are in-
volved in DNA binding. In order for both NUMOD3 loops of a primary dimer to bind to the substrate, and for both catalytic surfaces to be able to make contact, the DNA must be considerably distorted, likely in part by residues of the catalytic surface.

The metal ion positions and activates a nucleophile for the catalytic attack and R57A stabilizes the pentacovalent reaction intermediate or, alternatively, stabilizes the 5’ phosphate group. It is also possible that it positions the scissile bond correctly for nucleophilic attack. Due to the severe distortion required for double-stranded cleavage, the most common outcome is nicking of only one strand of the recognition site (mode I). However, if the DNA sequence is permissive (i.e. CSR is present) the second catalytic surface may also contact the DNA to effect double-stranded cleavage (mode II). In vivo single-stranded nicks are quickly repaired, so that mainly double-stranded cuts persist.

Concluding remarks
In conclusion, the results presented in this thesis have provided new insights into the function of GIY-YIG endonucleases in general and of EndoII in particular. It has been shown that catalytic residues of the conserved GIY-YIG motif are important for DNA recognition and binding in addition to catalysis. It also points to the diversity of GIY-YIG endonucleases in regard to biological role, cleavage specificity and structural organization outside the conserved GIY-YIG fold.

Future prospects
Further work on this enzyme that would be of interest is crystallization of EndoII in complex with DNA. This would give the first structure of a GIY-YIG endonuclease bound to its substrate. Comparison of co-crystal structures of for example the N130A, R57A, G49A and K76A mutants would directly show what amino acids interact with specific parts of the substrate and most likely give further clues to the reaction mechanism. The latter three mutants exhibit deviant sequence recognition while the N130A mutant is more wildtype-like in regard to recognition.

Since recognition by EndoII is so promiscuous it might also be possible to engineer a functional enzyme by fusing EndoII to a DNA binding domain, for example the DNA binding domain of I-TevI or I-BmoI. It would also be interesting to see if EndoII can bind to hydroxymethylated and glucosylated phage DNA as well as to host DNA, if so, the two types of DNA could be brought in close proximity in the same binding event to further promote recombination between the two.
Acknowledgements

Thank you,

Karin Carlson, my supervisor and friend, for supporting me during all these years, for inspiring discussions about science and family, our shared interest in Star Trek Voyager and a lot more 😊. I really appreciate that you have always taken the time to talk to me and answer my questions, even when you have been extremely busy teaching. I truly admire your efficiency and devotion to your work.

Evalena Andersson for teaching company in the beginning of time, scientific discussions with a lot of laughter, teaching me the ÄKTA system, for modeling of EndoII and for solving the structure! You’re the best personal crystallographer I’ve ever had 😊.

Anna-Chey Nyström for introducing me to the labwork when I first came here and looong coffee-breaks 😊.

Patricia Lindgren you are the best of friends, always caring and ready to lend a helping hand, always honest and straight-forward which is something I wish more people could be. Thank you for kicking my butt once in a while 😊. Oliver for always calling me on my birthday and sending me that catalogue (you know which). Vincent and Leandra for all the nice birthday parties and playing in your garden, I hope you will love your new house and garden.

Fredrik Petterson, dear friend and my room-mate for a while, for great lab, children and party conversations. Soon it will be your turn - best of luck.

Janne Olsson, my jujutsu instructor, dear friend and busbästis. You have a heart of gold (and a fist of steel). I hope you will always stay the same.

Helene Borg for all the shared moments of family talks, coffee, cookies and candies and endless allegories - the number of crosses in the neuron network of your brain must be at least thousand-fold higher than in the average person. Per Nilsson for all the inspiring protein-related discussions, setting up the gel filtration SMART system, pleasant company, and for being a really nice guy. Niklas Henriksson also for protein-related discussions and nice company- you’re next! After Pontus Larsson of course – good luck! Shiy-ing Wu, I love your spirited way, and the amazing true stories from China
over sushi and beer. That smile of yours really lightens the mood on a gloomy day. Maria Aveskog for singing and smiling. Siv Strömberg for sequencing a long time ago. Akiko for always helping with computer stuff. Ulrika Lustig for your steady company through all these years. Solveigh Ravnum for “roliga” norskan, Lotta Thuresson, Karin Hjort- “the old gals”. Mathias Brännval for taking care for awhile back! Magnus Lindell (good to have you here again), Nisse Mikkelsen - “the old guys”. I really miss those good old times. Fredrik Söderbom, Nina Grantcharova, Klas Flärdh, Mirjana McVanin, Ema Kikowska. Andrzej Poplawski for salsa. Klas Udekwu for the company all those late nights in the lab. Santanu Dasgupta for volunteering to proofread my thesis and for nice traveling company on more than one occasion. Bhupi Singh, my latest room-mate and badminton coach. Sonchita Bagchi for that bright smile of yours. Kristin Peisker for nice badminton Sundays. Cia Unosson, Aurelie Fender, Marie Wrande, Karin Troell - the mommy-group and Disa Hammarlöf the soon-to-be-mommy. Johan Reimegård, Erik Holmqvist, Tobias Norström, Nurul Islam - the daddies. Amanda Raine, Hava Lofton, Linda Marcussen and Mattias Andersson, Emma Ringqvist, Jon Jerlström Hultqvist, Henrik Tomenius, Jonas Lannerård, Lei Liu Conze, Nadja Heidrich, Maaike Sterk, Johan Ankarklev. Good luck to you all! Nora Ausmees for shoe-shopping in Lund, the wonderful sushi dinner in Madison, the Art museum in Chicago and a lot more. Diarmuid Hughes for caring and always asking how things are going. All the other seniors, Gerhart Wagner, Leif Kirsebom, Staffan Svärd, Anders Virtanen, Lars Hellman, Suparna Sanyal and Kurt Nordström. Thank you Eva Ferngren for making a lot of the media and buffers I used, and for taking care of the coffee machine! Same to you Ewa Gustafsson. Solan Rosén for taking care of so many things. The administrators Christina Friberger, Ingrid Söderström, Sigrid Pettersson, Anders Eriksson, Åsa Klefborg, Cristina Malm, Sofia Sundbaum good luck with little Lisa. Thank you all for making ICM what it is, for nice company in the lunchroom, the lab and elsewhere!

To my wonderful family, I love you. Mamma and Pappa for always being there for me and encouraging me. My brothers Rickard for growing up with me and Findus for always fixing stuff for me (coffee, cars, dishwashers-you name it). Aunts, uncles and cousins and their children for all wonderful Christmases, summers in Finland etc, it is always nice to have you around. Anita and Håkan for being such nice in-laws. Robert and Mia and Alva for being you.

To the most important people in my life, Fredrik, Miranda and Mirabel, my beloved darlings forever.
Swedish summary

Endonukleas II - ett GIY-YIG enzym från bakteriofag T4

I det här arbetet har jag undersökt ett DNA-nedbrytande protein som tillverkas av bakteriofagen (fagen) T4. T4 infekterar *Escherichia coli* och andra enterobakterier genom att binda till deras cellvägg och föra in sitt eget DNA in i bakterien. Värdbakteriens proteiner kommer då att användas för att börja tillverka fagproteiner från fagens DNA. Efter 15-20 minuter vid 37°C har alla komponenter som behövs för att tillverka ca 200 nya fagpartiklar tillverkats inuti bakterien, samtidigt som bakterien bryts ned inför anfall. Proteinet som jag undersökt, endonukleas II (EndoII), har en del i detta i och med att det initierar nedbrytningen av bakteriens DNA. Fagens DNA är däremot skyddat från denna nedbrytning genom att den använder sig av modifierat DNA som är hydroxymetylerat i cytosinbaserna. EndoII bildas kort efter det att fagen fört in sitt DNA in i värd bakterien och börjar klippa upp dess DNA i ca 1000 baspar stora bitar. Därefter börjar även andra fagenzymer bryta ned bakterie-DNAt. På detta sätt medverkar EndoII till att fagen kan använda bakteriens nedbrutna DNA till att bygga nytt fagDNA för att tillverka nya fagpartiklar. Det skyddar även fagen mot vidare motattack från bakterien - när inget DNA finns kvar kan bakterien inte tillverka nya enzymer som eventuellt skulle kunna slå ut fagens attack.

Det jag undersökt närmare är de exakta verkningsmekanismerna hos det här enzymet. Som en del av detta har följande frågor ställts: varför skiljer sig nedbrytningen av DNAat åt beroende på om den görs *in vivo* (i bakterien) eller *in vitro* (i provröret) (artikel I); vilka DNA-sekvenser känner EndoII igen och hur påverkar olika mutationer i enzymet denna igankänning (artikel II); hur binder EndoII till DNAat (artikel III); hur ser EndoII ut på molekylär nivå (artikel V); kan EndoII ha en annan, hittills okänd biologisk roll förutom att bryta ned bakterieDNA (artikel IV).

I den första artikeln visar vi att EndoII faktiskt är ett enzym som oftast bara klipper den ena träden av DNAat och att anledningen till att det ser ut att vara mestadels dubbeltrådsbrott *in vivo* beror på att bakteriens enzymer snabbt kan laga de flesta enkeltrådsbrotten. Genom att tillsätta DNA ligas till *in vitro*-reaktionen kan *in vivo*-situationen efterhärmas. Det är alltså bara de enkeltrådsbrott som ligger väldigt nära varandra och som klyvs nästan samtidigt som kan resultera i dubbeltråd klyvning i bakterien, medan det *in*

EndoII tillhör en grupp av enzymer som kallas GIY-YIG enzymer efter det konserverade motiv av aminosyror som återfinns i alla enzymer i denna grupp. I den andra artikeln har ett stort antal mutaner konstruerats där vissa av dessa aminosyror, som genom jämförelser med liknande enzymer förutsätts vara viktiga för enzymets funktion, bytts ut mot en relativt harmlösa aminosyran alanin. Även andra aminosyror, som är lika bara mellan de EndoII-homologer som kodas av T4-lika fager, har bytts ut. Dessa mutanta enzymer har sedan uttryckts i *E. coli*, renats och analyserats för att se om någon av dem skiljer sig från vildtypen (d.v.s. original-enzymet). Tyvärr är det inte möjligt att rena vildtypsensyzemet på samma sätt eftersom det är alltför giftigt för *E. coli* och hinner bryta ned allt DNA innan det uttryckts i tillräckligt stora mängder. Därför uttrycks vildtypsensyzemet inte från DNA i *E. coli* utan i vetegroddsextrakt direkt från mRNA som producerats separat. De egenskaper som jämförts är hur bra de olika mutanta enzymerna binder till DNA, hur bra de klyver och om de klyver på samma ställe i DNA. De flesta av mutanterna var mer eller mindre negativt påverkade i sin aktivitet på DNA. De mutaner som var mest negativt påverkade gällande klyvningen var de som utgör den förmodade katalytiska ytan: glutaminsyran i position 118 (E118A), glycinen i position 49 (G49A) och argininen i position 57 (R57A). Förutom dessa var en mutant med lysinen i position 76 utbytt mot alanin (K76A) nästan inaktiv. I liknande enzymer (t.ex. I-TevI och UvrC) förmodas en glutaminsyra motsvarande EndoIIs E118 vara den aminosyra som koordinerar den essentiella magnesiumjonen. E118A-mutanten var helt inaktiv, vilket överensstämmer med data från dessa andra enzymer. Vi kunde dessutom visa att denna mutant fortfarande binder bra till DNA, men med ett annorlunda bindningsmönster jämfört med alla andra mutanter. Mutanterna G49A, R57A och K76A uppvisade även en något annorlunda preferens för olika klyvningssäten. Den låga aktiviteten av K76A, och den tredimensionella strukturen av EndoII som visar att den utgör en del av den aktiva ytan, visar att denna lysin är viktig för katalysen. Rollen till G49 tros vara att ge plats åt den essentiella magnesiumjon som koordineras av E118. R57 tros stabilisera en reaktionsintermediär. Dessutom verkar det som att G49 och R57, som även är negativt påverkade i bindning, har en roll i att böja DNA, för att detta ska kunna klyvas effektivt. Den aminoterminala delen av enzymet och en mittregion som bara visar sekvenslikheter mellan EndoII-lika enzymer, förmodas framförallt bidra till bindningsstyrka till DNA.

I den tredje artikeln analyserades enzymets bindning till DNA mer i detalj. Alla mutaner visade sig binda som tetramerer till två stycken DNA-molekyler, vilket tyder på att även vildtypsensyzemet binder på detta sätt. En av mutanterna, E118A, uppvisade dock ett annorlunda bindningsmönster. Detta visade sig bero på att denna mutant kan binda stabilt även som mono-
mer och dimer till en DNA molekyl, vilket ingen annan av mutanterna kan göra.

I den fjärde artikeln framkommer en hittills outforskad biologisk roll för EndoII. Förutom att enzymet bryter ned bakteriens DNA under infektion så bidrar nedbrytningen också till en ökad rekombination i faggenomet. Detta sker förmodligen på grund av de genstora fragment som EndoII producerar när den bryter ned bakterieDNA. Det vi tittat på är frekvensen av uppkomsten av fager som visar en ny vårdspecificitet genom rekombination med en främmande svansfibergen placerad i en plasmid i värdcellen. För en fag med funktionellt EndoII ökar denna frekvens upp till 10 gånger jämfört med en fag med inaktivt EndoII.

I artikel V presenteras den tredimensionella strukturen för EndoII-mutanten E118A. Strukturen visar en tetramer med en slående X-form, där två förmodade katalytiska ytor sitter på var sida om X-et vända mot varandra, men något förskjutna i sidled. Det är den hittills fjärde strukturen i världen som blivit löst för den här sorts enzym och den första för ett prote-in där den katalytiska domänen självständigt binder stabilt till DNA. Tack vare den kan vi betydligt lättare förstå hur enzymet fungerar och relatera resultatet av mutationsanalysen till var de muterade aminosyrorna sitter i enzymet.

Kombinationen av den tredimensionella strukturen och de data vi fått fram dels genom mutationsanalyserna, dels genom analysen av hur enzymet binder, och insikten att EndoII kan öka rekombinationsfrekvensen in vivo har nu hjälpt oss att få en riktigt bra bild av hur just det här enzymet fungerar. Det är också ett stort steg framåt för att förstå hur andra enzymer i GIY-YIG-familjen fungerar.
References

provide an optimal cleavage mechanism for the type III restriction enzymes. Embo J 26:3815-25.

78. **Janulaitis, A., M. Petrusyte, Z. Maneliene, S. Klimasauskas, and V. Butkus.** 1992. Purification and properties of the Eco57I restric-

44

terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3'-incision. J Biol Chem 270:30508-15.

ensures damage detection in both DNA strands. Embo J 21:4196-205.

Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 582

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and Technology, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. (Prior to January, 2005, the series was published under the title “Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology”.)