

Encryption in Delocalized

Access Systems

Examensarbete utfört i Informationsteknologi

vid Linköpings tekniska högskola

av

Henrik Ahlström

Karl-Johan Skoglund

LITH-ISY-EX--07/4046--SE

Linköping 2007

Encryption in Delocalized

Access Systems

Examensarbete utfört i Informationsteknologi

vid Linköpings tekniska högskola

av

Henrik Ahlström

Karl-Johan Skoglund

LITH-ISY-EX--07/4046--SE

Linköping 2007

 Handledare: Kent Axelsson Viiveke Fåk

 ITN, Linköpings universitet ISY, Linköpings universitet

 Johan Andersson Joakim Pettersson

 Combitech AB Combitech AB

 Examinator: Viiveke Fåk

 ISY, Linköpings universitet

Linköping, 6 December, 2007

Presentationsdatum

2007-11-23

Publiceringsdatum (elektronisk version)
2007-12-06

 Institution och avdelning

Institutionen för systemteknik

Department of Electrical Engineering

URL för elektronisk version
http://www.ep.liu.se

Publikationens titel

Encryption in delocalized access systems

Författare
Karl-Johan Skoglund, Henrik Ahlström

Sammanfattning

The recent increase in performance of embedded processors has enabled the use of computationally heavy asymmetric

cryptography in small and power efficient embedded systems. The goal of this thesis is to analyze whether it is possible to

use this type of cryptography to enhance the security in access systems.

This report contains a literature study of the complications related to access systems and their functionality. Also a basic

introduction to cryptography is included.

Several cryptographic algorithms were implemented using the public library LibTomCrypt and benchmarked on an ARM7-

processor platform. The asymmetric coding schemes were ECC and RSA. The tested symmetric algorithms included AES,

3DES and Twofish among others. The benchmark considered both codesize and speed of the algorithms.

The two asymmetric algorithms, ECC and RSA, are possible to be used in an ARM7 based access system. Although, both

technologies can be configured to finish the calculations within a reasonable time-frame of 10 Sec, ECC archives a higher

security level for the same execution time. Therefore, an implementation of ECC would be preferable since it is faster and

requires less resources. Some further suggestions of improvements to the implementation is discussed in the final chapters.

Nyckelord

Access systems, Cryptography, Public Key, Embedded system, Large integer arithmetic.

Språk

 Svenska

X Annat (ange nedan)

Engelska

Antal sidor

103

Typ av publikation

 Licentiatavhandling

X Examensarbete

 C-uppsats

 D-uppsats

 Rapport

 Annat (ange nedan)

ISBN --

ISRN LITH-ISY-EX--07/4046--SE

Serietitel (licentiatavhandling)

Serienummer/ISSN (licentiatavhandling)

Abstract

The recent increase in performance of embedded processors has enabled the

use of computationally heavy asymmetric cryptography in small and power

efficient embedded systems. The goal of this thesis is to analyze whether it

is possible to use this type of cryptography to enhance the security in access

systems.

This report contains a literature study of the complications related to access

systems and their functionality. Also a basic introduction to cryptography is

included.

Several cryptographic algorithms were implemented using the public library

LibTomCrypt and benchmarked on an ARM7-processor platform. The asym-

metric coding schemes were ECC and RSA. The tested symmetric algorithms

included AES, 3DES and Twofish among others. The benchmark considered

both codesize and speed of the algorithms.

The two asymmetric algorithms, ECC and RSA, are possible to be used in an

ARM7 based access system. Although, both technologies can be configured to

finish the calculations within a reasonable time-frame of 10 Sec, ECC archives a

higher security level for the same execution time. Therefore, an implementation

of ECC would be preferable since it is faster and requires less resources. Some

further suggestions of improvements to the implementation is discussed in the

final chapters.

i

Acknowledgements

First of all we would like to thank Combitech AB for supporting our project

idea and providing the resources for our project.

We would also like to thank Viiveke Fåk, our examiner and supervisor at ISY,

for always bringing brightness, simplicity and correctness into this thesis project.

We are also grateful for the support and patience when answering our novice

questions regarding cryptography at the beginning of this project.

Further, thanks to supervisor Kent Axelsson at ITN for showing great interest

in this thesis work.

We greatly appriciate the time and effort our supervisors at Combitech, Johan

Andersson and Joakim Petterson, has put into this project guiding us with the

organizational structure needed for a project of this kind and solving complex-

ities when we got stuck.

We would also like to thank our friends and family for support and patience

with our extra long workdays and occupied minds.

iii

Contents

Glossary ix

1 Introduction 1

1.1 Background . 1

1.2 Application area . 2

1.3 Objectives . 3

1.4 Problem description . 4

1.5 Limitations . 4

1.6 Method . 5

2 Access systems 7

2.1 The principle of an access system 7

2.1.1 Basic functionality . 7

2.1.2 Additional functions . 9

2.1.3 Security . 10

2.2 Available solutions . 11

2.2.1 Unintelligent off-line systems 11

2.2.2 Intelligent off-line systems 12

2.2.3 On-line systems . 12

2.3 Brief conclusion . 13

2.4 Concept requirements . 13

v

2.5 Concept solution . 14

3 Cryptography 15

3.1 Basic cryptography . 15

3.1.1 Encryption . 15

3.1.2 Data integrity . 16

3.1.3 Authentication . 17

3.1.4 Asymmetric encryption . 18

3.1.5 Digital signatures . 19

3.1.6 Public key infrastructure . 19

3.1.7 Attacks . 20

3.1.8 Bits of security . 22

3.2 Symmetric cryptography . 22

3.2.1 Stream ciphers . 23

3.2.2 One-time-pad ciphers . 23

3.2.3 Block ciphers . 24

3.2.4 Modes of operation . 26

3.3 Hash functions . 29

3.3.1 Secure Hash Algorithm, SHA 30

3.4 Asymmetric cryptography . 30

3.4.1 Mathematical description 31

3.4.2 Methods and algorithms . 32

3.5 Pseudorandom number generators 43

3.6 Summary . 43

4 Technology considerations 45

4.1 Approximating the requirements 45

4.1.1 Related work . 45

4.1.2 Code design approach . 46

4.2 Choosing processors . 47

4.3 Development tools . 48

4.3.1 Evaluation board . 48

4.3.2 Compiler and code environment 48

4.3.3 Cryptography libraries . 49

4.3.4 Large integer library . 51

4.4 Key device . 52

5 Implementation 53

5.1 Hardware . 53

5.1.1 Processor . 53

5.1.2 Implemented perhiperals 54

5.2 Software . 55

5.2.1 Cryptographic algorithms 55

5.2.2 Large integer arithmetic . 55

5.2.3 Filesystem library . 56

5.2.4 Memory overview . 56

5.3 Benchmarking goals . 56

5.4 Measurements . 58

6 Results 61

6.1 Symmetric algorithms . 61

6.1.1 Symmetric encryption and decryption 61

6.2 Asymmetric algorithms . 63

6.2.1 Memory requirements . 63

6.2.2 Asymmetric decryption . 63

6.2.3 Verification . 65

7 Discussion 69

7.1 Access systems . 69

7.2 Security . 69

7.3 Cryptography choices . 70

7.3.1 Symmetric algorithms . 71

7.3.2 Asymmetric algorithms . 72

7.4 Hardware performance . 74

7.4.1 Processor architecture . 74

7.4.2 Memory . 75

7.4.3 Extension modules . 76

7.4.4 Power consumption . 76

7.5 Software performance . 77

7.5.1 Language and compiler . 77

7.5.2 Cryptographic library . 77

7.5.3 Large integer libraries . 78

7.6 Implementation performance . 79

7.6.1 Symmmetric performance 79

7.6.2 Asymmetric performance 80

8 Conclusions 83

8.1 Implementation feasibility . 83

8.2 Further studies . 84

List of Figures 85

List of Tables 86

Bibliography 92

Glossary

1-wire A device communications bus system designed by Dallas Semiconduc-

tor.

3DES Triple Data Encryption Standard, see DES.

AES Advanced Encryption Standard.

ANSI American Standard Institute.

ARM7 A series of the ARM processor architecture.

CA Certificate authority.

CBC Cipher-block chaining mode.

CTR Counter mode.

DES Data Encryption Standard.

DLP The discrete logarithm problem.

DSA Digital Signature Algorithm.

DSP Digital signal processor.

ECB Electronic codebook mode.

ECDLP The elliptic curve discrete logarithm problem.

ECDSA Elliptic curve digital signature algorithm.

EFSL Embedded Filesystems Library.

FIPS Federal Information Processing Standard.

ix

FLASH Non-volatile programmable memory.

FPGA Field-programmable gate array.

GCC GNU Compiler Collection.

IEEE Institute of Electrical and Electronics Engineers.

IV Initialization vector.

LTC LibTomCrypt library.

LTM LibTomMath library.

MAC Message authentication code.

MPI Multiple Precision Integer.

NIST National Institute of Standards and Technology.

Nonce Number used once.

PKI Public key infrastructure.

PRNG Pseudorandom number generator.

RAM Random access memory.

RISC Reduced instruction set computer.

RSA An asymmetric cryptography algorithm.

RTC Real Time Clock.

SD Secure Digital Memorycard.

SHA Secure Hash Algorithm.

SPI Serial Peripheral Interface Bus.

TFM TomsFastMath library.

TWI Two Wire Interface.

Twofish Twofish cipher.

VHDL Design-entry language for FPGA’s.

CHAPTER 1

Introduction

This chapter gives an introduction to this master’s thesis, “Encryption in de-

localized access systems”. A background is given and the application area,

objectives, and limitations are described.

1.1 Background

When designing and implementing a multi-user access system there are several

factors to consider, of which key management is one of the most important and

most difficult to solve. Key management is the problem of making sure that

each user has the correct key with the proper security level, at the right time.

The access system has to distribute and keep track of the keys, making sure that

no keys are lost or compromised.

The simplest and most common access system is the traditional mechanical lock

cylinder, which is a simple and very reliable system. However, key manage-

ment in a mechanical multi-user system is a momentous task and therefore

several electronic solutions exist solving this problem. Even though the me-

chanical lock is often kept as the fallback system in case of a power-failure.

These electronic solutions are mostly based on online networked lock-terminals

communicating with a centrally managed key server. The decision of who to

grant access is made by the server.

1

This is practical and secure when all lock units are gathered in the same geo-

graphical area, such as a building or within company grounds.

For systems distributed over a larger geographic area, the options are fewer.

Some solutions use wireless online links in the same way as a local system, oth-

ers use the telephone network. However, wireless modems are power-consuming

and expensive and phone lines are not available everywhere. So most systems

of this type are based on the mechanical key.

The mechanical lock system lacks several important features compared to its

electronic counterpart. The system is not suited for a multi-user environment

since all authorized users have a copy of the same key (from the lockunit’s

viewpoint). Lost keys cannot be blocked and have unlimited lifespan. The

keys can also easily be copied by corrupt users with physical access to the key.

Or even within visual range of the key, according to a recent thesis work in

Linköping University1, which showed that it is possible to reproduce a key

from a single photo.

1.2 Application area

As previously mentioned the mechanical system is still the type of access sys-

tem which is the most frequently used, where the lockunits are geographically

distributed.

Some companies deal with hundreds of keys daily, which results in a highly

complex key management solution requiring large resources, both in additional

work done by employees and in maintenance costs. This also often leads to

security flaws due to the complexity of the system, mostly related to the human

factor.

The system has to determine which employee to give which key, and often

multiple employees have to access the same location. It also has to detect lost

keys in the system and issue replacement cylinders whenever needed. If a key

is knowingly compromised this results in a time consuming and expensive task

changing the cylinder in the lock and distributing new keys to each user.

1The master’s thesis done by Linus Fredriksson and Martin Gyllensten [1].

2

When there is a security breach due to a compromised key in this mechanical

system there is no trace to which employee was responsible, since everyone has

the same key and the keys can easily be copied.

Therefore the focus of this thesis work will be on the problems associated with

access systems with geographically distributed objects and locations.

An example A company within the field of work of security. The company

provides security for several hundreds of companies, and employs a number

of guards. Each employee on guard detail will have to carry keys to all the

companies which are to be visited during the shift. This gives an enormous

administration of keys to ensure that each of the guards has the correct set of

keys to all locations for each shift. The guard does not bring all keys for all

companies every day since most of the companies are to be visited a couple of

times a week.

This is positive for the security because if the guard is attacked there are a lim-

ited number of keys which are lost. If an alarm is set off in a company, which

is excluded from the regular route of the guard. It is a time-consuming proce-

dure to first return to the office to acquire the specific key and proceed to the

corresponding company.

1.3 Objectives

It should be noted that even though a concept solution was found, it cannot

be presented in the public version of this report due to a pending patent appli-

cation. Therefore the objectives are separated into project objective and public

thesis report objective.

Project objective The main objective with this thesis work is to construct a

prototype system representing a concept which simplifies the task of key man-

agement and enables multi-user functionality in delocalized systems. It should

act as a replacement to the mechanical lock, and has to retain as many of the

desired properties found in the mechanical lock as possible.

3

The new solution has to comply to the demands which the mechanical system

fulfill in the market today, which is a standalone lock unit not depending on

additional network or power requirements. Also the new solution has to be

a true multi-user system and provide most of the authorization, logging and

key-integrity functionality which is common in its online counterpart.

Public thesis report objective The main objective of the report is to imple-

ment and benchmark a variety of asymmetric- and symmetric-cryptography

algorithms on an embedded platform. Also an overview of the complications

associated with access systems will be provided.

1.4 Problem description

By analyzing the objective, a list of questions are formulated into problems to

be solved. These are the major tasks to be solved:

Security Is it possible to construct an access system with higher security by

implementing more advanced cryptography? Could this system simplify the

problem of key distribution in an access system?

Implementation Is it possible to implement the computationally advanced

cryptography on an embedded system with small resources? Can this be done

power-efficiently and at a reasonable cost? Could the calculations required be

performed within a reasonable time?

1.5 Limitations

This report assumes the reader has a fundamental background in electronic

design and construction of embedded systems, however no prior knowledge

of cryptography is required. Further limitations of the project are divided into

resource- and project-limitations.

4

Limitations of resources There are two project members. The project ranges

over a period of 20 weeks with a contracted deadline on November 30 in 2007.

The budget is approximately 10.000 SEK which is invested by Combitech AB.

The project has four mentors, two provided by Combitech and two from the

University of Linköping. Combitech AB provides a workplace equipped with

computers, stationery and lab equipment.

Limitations of the project A prototype of a concept using modern cryptog-

raphy is to be developed within this project. The prototype is only for testing

purposes and therefore a fully functional prototype is not included in this thesis

work.

A secure implementation of the cryptography requires a cryptographically strong

random number generator, however implementing this is not within the realm

of this thesis.

The user interface is only to be developed for testing of the system, and will

only perform a limited number of tasks.

1.6 Method

The work was done in several steps, beginning with theoretical studies of cryp-

tographic algorithms. This was done in parallel with a market research of access

systems, current solutions and requirements.

The next step was to design a concept solution, which was to be implemented

and also to find suitable cryptographic algorithms usable in the implementation

of the concept.

Thereafter a hardware implementation of the algorithms was done to measure

and compare their performance, followed by a complete implementation of the

concept on the platform.

The last step was to analyze the performance of the implementation and to

summarize the conclusions, including suggested improvements which could

be made to the system.

5

6

CHAPTER 2

Access systems

This chapter presents the description of general access systems and their func-

tions. Furthermore are current access system solutions presented and how to

improve their functionality. The suggestive improvements presented as concept

requirements are based on the market investigation and personal experiences.

The aim of this chapter is to present information of the requirements of a new

system.

2.1 The principle of an access system

When discussing access systems, it is important to clarify their intended func-

tion and purpose. An access system is a system meant to protect locations

within a domain against unauthorized access, while still granting access to au-

thorized users. Sometimes, more than one access system is used in the domain,

where one system is the primary with multiuser capability. The other system is

a reliable backup-system which can be used by administrators if the first system

fails.

2.1.1 Basic functionality

The primary function of an access system is, as mentioned, to keep unautho-

rized people out and to grant access to valid users. To make difference if the

user is valid or not, the system must use some form of authentication. The

authentication is done by analyzing information provided by the user. This in-

7

formation can be divided into three different categories, identity codes, which

are presented as circles in Figure 2.1. These are often used in different combi-

nations and the four most common are described below. Although the use of

passport and driving licenses are common, they are not considered within this

description of general access systems.

Something
 you carry

Something
 you know

Something
 you are

Key, card etc

Biometry

Passport, driving license
 etc with a photo

Code, password etc

Card + code

Figure 2.1: The figure is describing the three different identity methods used in ac-

cess systems. More information about these methods can be found in a

Securitas document [2]

Memory code In this case the user memorizes the code and only the code is

required to get access. This type of identity control is weak and is only used

in areas where there are many users who need to be able to delegate access to

others, such as an entrance to an apartment building. It is cheap to install and

maintain. However, the security is very low. The code can easily be copied, and

the system has no log of whom has passed.

Carried code In this system the user brings a physical token, often a key card,

although other solutions exists. The token contains information loaded by the

access system to grant access. These kind of systems are slightly more secure

than the previous alternative, although it is not difficult to copy the data from

a token. The method of using just a token is common where a simple flexible

multi-user system is required.

8

Usually the lock unit is connected to a central server which makes it possible to

block a specific compromised token. The connection is either cable or wireless.

This means the cost of setting up the infrastructure is high but the maintenance

costs are low.

Carried code with memory code This method is a combination of the two

previous methods. The token’s information includes the memory code which

the user has to provide each time an access is requested. This provides some

more security, the ability to clone a token still exists but the adversary has to ac-

quire the code. The code stored within the information is sometimes encrypted.

When the lock unit is online, the code can be stored on the server instead. The

advantage of this system compared to just using a card or code is that the code

is easy to change and the token easy to block.

Biometric code The most common form of biometric codes is the visual in-

spection of the photograph on an identification card, such as a driving license.

However the use of automated biometric readers is expanding as the technol-

ogy advances and becomes more available. The basic different biometrics used

within access systems are eyes, hands, voice and photo identifications. The

most common automated biometric code is the fingerprint identification.

The disadvantage is that this biometric data is linked to a person. If it is stolen

the persons biometric code is stolen for lifetime, it cannot be replaced or blocked.

The central area in the figure 2.1, where all three codes are combined, is consid-

ered to be the most secure combination of the different identity codes. How-

ever the implementation of such a system is unusual and often considered to

be time-inefficient and expensive.

2.1.2 Additional functions

Some additional functions which are desirable in an access system include:

Timelock Limiting the validity period of the key. A user can be restricted to

certain hours of the day, or the key lifespan could be limited.

9

Logging An important feature in access systems, which has authentication,

is to keep a log-file of all access events by all users. This provides tracking

functionality if a key and/or a user is compromised.

Authorization level This enables the system to have a hierarchy among the

users. A certain security clearance can be required to access a certain location.

This can also be implemented as a system where users can be mapped to which

locations they have access to.

2.1.3 Security

The security is a measurement of how difficult it is to break into the object which

the system protects. Due to the complexity of all the possible factors affecting

the total security, it is only feasible to estimate the security of the specific access

system.

The goal for an attacker of an access system is to get access. This could be

done by going around the actual access system and through some other weaker

point of the total defense, e.g. breaking a window or subverting a valid user.

However, if only considering the access system’s security it is still difficult to

measure the security. Security systems are often broken in ways the system

designer never could imagine.

A way of modeling the threats is to use an attack tree1. These attack trees are

however very complex and difficult to apply on large systems such as access

systems. The method is to first detect all possible attack goals, of which each

goal forms an attack tree. All these trees might share several nodes or subtrees.

After constructing these trees all the possible attacks of getting the goal is added

to the tree. This is done in several steps and by several different persons to

cover as many of the possible ways as possible. Regarding the complexity this

is recommended to take months which is why it is not included in this thesis.

1The attack tree is mentioned by Bruce Schneier in his website [3].

10

2.2 Available solutions

Available solutions based on the four methods used for identification are pre-

sented in this chapter. The solutions can be categorized in three different groups

of access systems; unintelligent off-line systems, intelligent off-line systems and on-

line systems.

2.2.1 Unintelligent off-line systems

These systems are mostly based on the ordinary lock cylinder system widely

used within many different areas. Another access system within this category

is the key pad.

Mechanical lock cylinder The mechanical lock cylinder is as mentioned fre-

quently used in geographical distributed areas. The primary advantage of such

systems is the dependability. It is robust and well tested and it works in all

kinds of weather in contrast to other systems. Other systems often need a

backup system and they often require electricity. The mechanical lock cylinder

is also very easy to use, since it is the most common system, generally every-

body knows how to use it.

Disadvantages of this system is for example the maintenance of the system. For

example: a broken key can be replaced with a new, however, this is often a time

consuming procedure. A stolen or lost key creates greater problems, since each

corresponding lock cylinder must be replaced. If this happens in a multi-user

system, the expense and time loss can be very large. This makes the system

usually inappropriate for a multi-user environment, since all users carry a copy

of the same or a similar key.

A cylinder only relies on the key, it does not consider the user, which is another

disadvantage of the system. It cannot really identify the user and it does not

detect a copy. It is also impossible to block a certain key from the system with-

out replacing all the cylinders. The system is however, suitable for simple and

low security solutions such as an entrance door in a multi-apartment building.

11

Keypad The keypad is another unintelligent off-line system which is quite

common. It has the same verification problem though it only controls the dialed

code. This kind of system is common in staircase entrances. It is used where

the security issue is not that important. It is a simple system often based on

just one code although there are systems based on several codes. One code is

for the lessees and another for the mail services. It is easy to change the code

whenever wanted, though one must be in place for the operation.

2.2.2 Intelligent off-line systems

This kind of systems are based on the same functionality as an ordinary me-

chanical lock although it is common that this kind of systems have additional

functions. These kinds of systems are based on embedded systems, and all ver-

ification of the user is done locally, often with some external additional devices.

The system’s external device is often a key set or a finger print reader.

It is possible to place a system like this in a location not supplied by power or a

phone line. The power needed to make the operation could be based on battery

or a scenario where each user brings some kind of device supplying the lock

system with power during the operation.

2.2.3 On-line systems

These systems are connected to some central unit of intelligence. The most

common use of such a system is the use of the entry cards. This system is

more suited for multi-user environments than the other solutions. There are

several solutions which are based on the same concept, e.g. radio-frequency

identification (RFID) tags, although the entry cards is the most common and

thereby used for this description. The reader is by wire or wireless connection

connected to a central unit, often a computer, which controls the information of

the card. The computer keeps a register within a database of authorized users

of the system. A broken or lost card is easily blocked and removed from the

register. This is a quick and inexpensive operation and some systems do not

require the administrator to be in place for making the operation. Adding a

new entry card or replace a lost card, is as easy as blocking one.

12

2.3 Brief conclusion

This study of access systems has involved many different areas such as func-

tionality of existing access control systems, possible solutions and the require-

ments of a future product.

The study showed there are some flaws in the currently available access sys-

tems in the application area considered. Electronic solutions are power con-

suming and expensive, so the most commonly system used on the market to-

day is still the mechanical system. It should be noted that the average person

probably would consider the mechanical system to be more safe and reliable

than an electronic solution, since it has been used for a long time.

2.4 Concept requirements

Designing a concept for use in an offline geographically distributed system

places several challenges on the designer. Since this concept aims to be a re-

placement to the mechanical system, the concept should keep as many of the

advantageous characteristics of the mechanical lock system as possible. These

were found to be:

• Reliability This is a great advantage of the mechanical key. No electricity

is required.

• Robust Works in all kinds of weather. The keys and the lock are made of

steel and are tough. If the lock is frozen, apply heat and it works again.

• Trusted technology The general opinion is that it is secure. Keep track of

the keys and the system is supposedly safe. This is of course incorrect, but

it is the general belief.

• Offline No need for the lock to consult a user database.

• Geographically independent A lock can be placed anywhere.

• User friendly Easy to use, everyone knows how it works.

13

After some considerations it was determined which additional characteristics

would be desirable in the new concept. In this thesis focus is on the security,

therefore mostly security- and feasibility-related requirements will be consid-

ered2. The required improvements are found to be:

• Copy proofing There is no reliable integrity check of the key, a mechanical

key can therefore be copied. All that is required is a photo of the key or

an imprint of the pattern in a soft material.

• Tamperproofing An experienced lockpick, can pick almost any lock on

the market.

• Authentication The mechanical system has no authentication of the indi-

vidual holding the key.

• Logging There is no logging of who or when anyone has been allowed

access. No one knows whose key was used when a breach happened.

• Multi-user A mechanical lock system with many users has many keys.

Since there is no authentication, it is not possible to block a single key if it

gets lost.

• Limiting lifespan A key will be valid until the lock (cylinder) is changed.

Which makes lost keys an expensive problem.

• Managing lost keys As described above, there is no way to block a key.

Losing a key results in changing the cylinder and redistributing keys to

all the users.

2.5 Concept solution

Although a concept solution is developed within this thesis, it is classified due

to the pending patent. This is as mentioned a public report thus the section

covering the concept solution is omitted.

2Cost and implementation requirements are closely linked with feasibility requirements.

14

CHAPTER 3

Cryptography

Cryptography is a large subject which can be confusing at best sometimes. The

term cryptography (or cryptology derived from Greek kryptós “hidden” and

gráfo “write”) is the study of message secrecy. The opposite is cryptanalysis

which is the study of methods of how to reverse the encrypted message. This

chapter aims to give some background on the encryption techniques and appli-

cation areas considered during the design process of the system.

3.1 Basic cryptography

There is a tradition within the area of cryptography of using the names Alice,

Bob and Eve to represent the different roles played by the communicating de-

vices on a communication channel. By definition Alice sends messages to Bob

and Eve is assumed to be eavesdropping on all messages sent on the communi-

cation channel.

3.1.1 Encryption

Encryption is used to communicate securely over an insecure communication

channel. Consider Alice communicating with Bob. Any message from Alice to

Bob is also received by Eve. To prevent Eve from understanding the message

an encryption function E(Kenc, m) is used to transform the so called Plaintext,

m, into the unreadable Ciphertext, c, where Kenc represents the encryption key

which is to be known only by the authorized communicants and not by Eve. In

15

order for Bob to be able to read the message, a decryption function D(Kenc, c)

is used to make the reverse transformation from Ciphertext into Plaintext, see

figure 3.1.

Both these transformations require a cipher which is an algorithm used for per-

forming encryption and decryption, see section 3.2. As shown in the formula,

Bob needs to know two things to decrypt the Ciphertext; the algorithm D and

key Kenc. The key is as mentioned to be kept secret although the algorithm can

and should be public.

m, c= E(ke , m)

Alice

Eve

Bob

c

c

c, m= D(ke , c)

Figure 3.1: The figure describes the relationship between Alice, Bob and Eve and

the generic settings for encryption. These roles, representing the different

parts affecting the communication, are common within the area of cryp-

tography. More figures and description about the different roles can be

found in “Practical Cryptography” by Bruce Schneier and Niels Fergu-

son [4].

Algorithms are to be published for public testing. If the algorithm is kept secret,

the chance to discover and provide a solution to a possible bug, which makes

the algorithm weak, is smaller. The first person to find the exploit will likely be

the attacker who was meant to be kept out.

3.1.2 Data integrity

Special care has to be taken to ensure that the message Bob receives is the same

message which Alice sent. Since Eve is listening on the communication channel,

she is also assumed to be able to change the messages sent on the channel.

Encryption only prevents Eve from reading messages, not from changing them.

Eve can still remove/append data to the message.

To combat this problem an algorithm which calculates a fingerprint of a mes-

sage is used. This algorithm is called a Hash algorithm and computes a fixed

sized so called hash-value or hash-digest from a message of arbitrary length. The

16

hash function is ideally a seemingly random mapping function from an input

of any length to a fixed output of n bits, which can be explained as a fingerprint

generator for the message. It is a one-way function which maps the message to

the digest in such a way that it is impossible to find the message given only the

hash-digest. Also a hash function should make it infeasible to find a message

collision, which is finding more than one message which corresponds to the

same hash-digest.

Applying this to the previous example; Alice computes the hash-digest of her

message, and sends it along with the encrypted message. Bob decrypts the mes-

sage, calculates the resulting hash-digest and compares it to the hash-digest

which Alice sent along with the message.

3.1.3 Authentication

Using hash functions in communication enables the recipient to verify the in-

tegrity of the message against the hash-digest sent along with the message.

However, how can Bob be sure the message really is from Alice? Eve could

have changed the message and recalculated a new hash-digest.

A solution is to use message authentication codes, MAC, which are basically a

hash function with an authentication key, Kauth. The fixed length MAC-digest

is calculated using the MAC function h(Kauth, m) and is sent together with the

message.

When Alice wants to send a message she computes the MAC, a = h(Kauth, m)

and sends the complete message as (m‖a). When Bob receives the message

(mrcv‖arcv) he calculates his own MAC abob = h(Kauth, mrcv) and verifies abob =

arcv. If the codes are different he discards the message. When Bob does this he

verifies the integrity and the authenticity of the message.

Since Kauth is a shared secret, Bob can verify the authenticity of the message.

This means he can verify the sender really is Alice, since only she has the other

key.

17

3.1.4 Asymmetric encryption

Previous sections have described symmetric encryption, where Alice and Bob

share the same secret key, Kenc. However, they can not send the key over the

communication channel. Since Eve is listening in, they have to meet in person

to synchronize keys. Keys have a limited lifespan and Alice may have many

people to communicate with, so exchanging keys is a tedious task.

A solution to the problem of key distribution is asymmetric cryptography, com-

monly known as Public-Key cryptography1. In asymmetric encryption both Al-

ice and Bob have two paired keys, a public key, P, with a corresponding secret

or private key, S. Both publish their public keys somewhere for everyone to

see, while they keep the private key secret. The encryption technique is basi-

cally a one-way function, so a message encrypted with a public key can only

be decrypted with the corresponding private key. This technique simplifies the

problem of key distribution somewhat, since there is only one key to distribute

and it can be publicly published.

When Alice wants to send Bob a message she finds his public key, PBob, which is

publicly available. She uses the key to encrypt her message into c = E(PBob, m),

and sends c to Bob. When Bob receives the message he decrypts the message

using his private key into m = D(SBob, c).

Asymmetric cryptography algorithms are based on complicated mathematical

problems, this is what gives them the strength. However, it also makes them

computationally slow and memory consuming. Therefore for most applica-

tions it is inefficient to encrypt the whole message using asymmetric encryp-

tion. A common solution is to perform a symmetric encryption of the message,

m, with a random key, Ksym, into cm = Esym(Ksym, m). Then encrypt Ksym using

asymmetric encryption ckey = Easym(P, Ksym), giving the encrypted message

(cm‖ckey) to transmit. To decrypt this message the procedure is done in the

reversed order although the public key is replaced with the private key.

1The name Asymmetric cryptography is chosen in this report to minimize the confusion

with the actual public key.

18

3.1.5 Digital signatures

Digital signatures is the way to check data integrity with asymmetric cryptogra-

phy. It works in a similar way as message authentication codes, MAC. The signing

process uses a hash function producing a fixed sized hash-digest. The signing

function encrypts the hash-digest using the private key into a signature and the

signature can be verified by anyone with the senders public key.

When Alice signs a message for Bob, she uses an appropriate hash function to

generate the hash-digest, hd = HASH(m). She then signs hd using her private

key, SAlice, giving s = σ(SAlice, hd) and transmits the signature, s, together with

the message.

Bob can then verify the signature by computing his own hash-digest of the re-

ceived message, hd,comp = HASH(mrcv). The result should be the same as

returned from the signature verification algorithm, hd,rcv = v(PAlice, srcv). If

hd,comp equals hd,rcv the message integrity is verified, otherwise it has been tam-

pered with.

Since the message is signed with a private key and a message is encrypted with

a public key the same key-pair should never be used for both applications. Each

user has to have at least two separate key-pairs, one for encrypting messages

and one for signing them.

3.1.6 Public key infrastructure

The problem with asymmetric keys is authentication. How can Alice find Bob’s

public key when she wants to send him a message? Alice may never have met

Bob, but she wants to send him a secure message. How can she be sure that the

public key she finds really belongs to Bob and not Eve posing as Bob?

They have to rely on a trusted third party, which both trust, to supply them

with the correct keys. The trusted third party is called a certificate authority, CA,

and maintains a public key infrastructure, PKI. The CA collects user information

and the public key from a user it recognizes into a file which is signed by the

CA. This signed file is called a certificate.

Certificates state that the CA recognizes the user and links the user to the pub-

19

lic key presented in the certificate. Anyone who trusts the CA can verify the

signature on the certificate and use the public key to send a secure message to

the user specified.

Often there is a hierarchy with multiple levels of CA’s signing each others

certificates, thus delegating authority. The top CA publishes a root certificate

which contains the CA’s public key, and is signed by the CA’s private key.

Assuming both Alice and Bob have setup their keys with the CA. For Alice to

send Bob a message she can find Bob’s certificate in the PKI database. She can

verify the integrity and authenticity of his certificate, using the CA’s public key.

She encrypts her message with Bob’s public key, found in his certificate and

appends her signature to the data. When Bob receives the data he can decrypt

the message using his private key. He can verify Alice’s signature using Alice’s

certificate found in the PKI database.

The PKI solves the problem of key distribution since every user only has to

update a copy of the certificates of participating users and it seems like a perfect

solution.

However, there is the issue of what happens when a user’s, or worse the CA’s

private key is compromised. There are no obvious ways of revoking a certificate

after it has been issued. Some implementations use revocation lists, others use

short expiration times.

A second problem is finding a CA which is trusted by everyone. Within a com-

pany it might be a company server, in a bank the customers trusts the bank

server but there is no global authority everyone trusts.

3.1.7 Attacks

When designing a secure system there are several attacks to the cryptography

which have to be considered. Knowledge of the attacks enables the designer to

analyze the weaknesses of the different algorithms and choose the proper ones

to implement in the system. Also sometimes certain steps have to be taken

to ensure the proper implementation of algorithms as not to make the system

vulnerable to attack.

20

Here are some of the most common cryptanalysis attacks2 explained briefly:

Brute force The brute force attack is the simplest attack method possible, it

is an exhaustive search of all possible keys. The security level of a system can

be defined by how many calculation steps it would require to do a brute force

attack. To brute force attack a keysize of N bits would require 2N calculated

steps. The brute force method is the most fundamental form of attack and the

following three attacks are modifications of this attack depending on how much

information is given.

Ciphertext only This attack is the hardest attack to perform on an encryp-

tion, since the attacker has to guess the plaintext and the key, knowing only the

ciphertext. This is often done by combining a language directory and a brute-

force attack.

Known plaintext The attacker knows the ciphertext and the plaintext, from

this he/she tries to decipher the encryption key. This is a common attack since

messages often can be predictable and is done by brute force attack.

Chosen plaintext In this attack the attacker gets to choose the plaintext, and

given the ciphertext result, tries to decipher the key. This can be done offline

where the attacker chooses a list of messages to encrypt, or in the more effective

online attack, where the attacker can choose the next message depending on the

result of the previous message.

Collision The collision attack is based on the birthday paradox, which is that

in a room with at least 23 persons, there is more than 50% chance that two

persons have the same birthday. The result of this shows that in a system which

uses a random session key of N bits, an attacker could expect a key to be used

twice within 2N/2. This attack applies both to finding collisions in encryption

keys and hash-digests. This in practise limits the workload required to do a

2The attack concepts are the same as is used in the book Practical Cryptography by Bruce

Schneier and Niels Ferguson [4].

21

brute force attack on a system with a N bit key, from 2N calculations, to a much

smaller workload 2N/2 calculations.

Man in the middle In the man in the middle attack, Eve poses as the man

in the middle and impersonates the other party in the communication. This

attack is done by intervening, when Alice tries to set up a secure channel with

Bob. Instead the channel is established with Eve, who poses as Bob. At the same

time Eve sets up a secure channel with Bob where she poses as Alice. Eve can

now read and/or modifying all messages while she forwards them to Alice and

Bob.

3.1.8 Bits of security

To be able to compare the security level between different cryptography tech-

nologies, the concept of work factor is defined and is measured in bits of security.

It describes the amount of work the fastest currently available attack would re-

quire on the algorithm with the specific key. The fastest attack on an algorithm

with N bits of security would require 2N calculated steps.

3.2 Symmetric cryptography

Symmetric key encryption was briefly mentioned in the previous section 3.1.

This section describes the symmetric encryption, its algorithms and variations

in more detail. Furthermore, the ciphers and their modes will be presented and

data encryption standards will be described.

In symmetric key encryption the sender and the receiver use the same key, Kenc

(or rarely different keys, but related in an easily computable way). Other names

for symmetric key encryption are one-key, single-key and private-key encryp-

tion3.

The modern study of symmetric key encryption is mostly studies of the stream

cipher and the block cipher and their applications. A cipher (or cypher) is, as

3Use of the latter term can sometimes conflict with the actual private key in public-key cryp-

tography and is therefore not further used in this report.

22

mentioned, an algorithm for performing encryption and decryption, a series

of well defined steps taken to ensure that the ciphertext appears as random to

anyone eavesdropping.

3.2.1 Stream ciphers

Stream ciphers are used for encrypting a continuing stream of data for trans-

mission on a communication channel. In the stream cipher the bit stream of

the Plaintext is ciphered using a stream of key bits. The output of the cipher

depends on the internal state of the cipher algorithm. Therefore the same text

string will result in different Ciphertext every time it’s encrypted.

The advantages of this cipher are high speed and low hardware complexity.

However there are some security issues when implementing the ciphers.

Stream ciphers are designed to encrypt a continuous stream of data. However,

the task in the found concept solution, in this thesis, is to encrypt fixed sized

data blocks. Therefore stream ciphers will not be considered further.

3.2.2 One-time-pad ciphers

In general a symmetric key cipher is considered secure if the most effective

attack has approximately the same workload as a brute force attack. However,

they can be broken since the same key is used multiple times. The one-time-pad

ciphers solve this problem and give perfect secrecy to the messages sent. This

is done by always encrypting the message using a fresh new random key.

For example a four letter message, encrypted using a one-time pad, is impossi-

ble for the attacker to decrypt since every possible four letter Plaintext could be

the true message. The true message is just as likely to be “fast”, “kiss” or “stop”

from the attacker’s viewpoint4.

The keys that are used once can never be reused and have to be synchronized

before communication begins. A key of the same length as the message is re-

quired for each message, and special care has to be taken to archive truly ran-

dom data for the key values. If the key is not perfectly random the security is

4Further reading, The Codebreakers page 398-399 [5].

23

compromised.

In its basic form the ciphertext is produced by XOR-ing5 the message bitwise

with the key-data. In the resulting ciphertext the message would be completely

indistinguishable from all the possible false answers.

However, this type of cipher requires extensive distribution of keys and is quite

impractical in reality. Transferring user information and credentials of 1 KiB of

data to the receiver would require 1 KiB of non-reusable key-data. This would

require an enormous key distribution structure.

3.2.3 Block ciphers

Block ciphers encrypt the Plaintext by dividing the data into fixed sized blocks

and processing each block at a time. Each block is processed with a block cipher

encryption algorithm. The algorithm processes the fixed size Plaintext block of

length n, together with a fixed size key and sometimes along with an initial-

ization vector. The output is a fixed size Ciphertext block of the same length

n.

The substitution box, s-box, is commonly used in block ciphers and are there-

fore briefly described. S-boxes are tables which present the specific substitute

that is to be done to encrypt the input. A simple example is a 3× 2 S-box

table found in table 3.1. Given a 3 bit input, the 2 bit output is found by select-

ing the row using the outer bit, and the column by using the the inner 2 bits.

Assume the input is 101 which gives the outer bit 1 and the inner bits 01. The

output from the S-box will be 10. Note that this is a simple example, some block

ciphers are using several S-boxes within the algorithm to enhance the security.

Since encryption is done block by block, block ciphers are vulnerable to known-

plaintext attacks, which is as the name implies, an attacker trying to determine

the key by comparing the Ciphertext to the known Plaintext for a specified block.

This is countered by using block ciphers in modes, making each block’s Cipher-

text dependent on the previous block output data, Modes will be covered in the

following section.

5XOR, exclusive or, is a boolean operator which returns true only if exactly one of its operands

is true.

24

S-Box

Inner 2 bits

00 01 10 11

Outer bit
0 10 11 01 00

1 11 10 00 01

Table 3.1: The table shows a simple example of an S-box. It takes a 3 bit input and

substitute it to 2 bits which is the output.

In this section some block ciphers which are relevant to this thesis will be de-

scribed.

3.2.3.1 Data encryption standard

Data Encryption Standard, DES is a block cipher and was selected in United

states in November 1976 to be a Federal Information Processing Standard (FIPS).

DES uses a blocksize of 64 bits. These days DES is considered to be insecure for

many applications. A DES keysize of 56 bit have been broken in less than 24

hours6 and should therefore not be used for any new application.

One attempt to enhance the security, was to upgrade the algorithm to 3DES,

TDES or TDEA (Triple Data Encryption Algorithm). 3DES is basically three

subsequent rounds7 of DES, each with a new key. This approach may be slower

than other block ciphers but has the advantage of being backward compatible

with old DES hardware/software.

3.2.3.2 Advanced encryption standard

The Advanced Encryption Standard, AES, was the new standard replacing

DES. The AES was decided by a design-contest were several candidates where

contributed. The contest was held by The National Institute of Standards and

Technology, NIST, and resulted in the new AES standard on October 2, 20008.

6According to several websites, e.g. Keshava P. Subramanya at University of California,

Santa Barbara [6].
7A round consist of several repetitions of a weak block cipher and several of these rounds in

sequence can make the block cipher stronger.
8This is found by the Commerce Department’s publication of the AES winner [7].

25

The final five condidates were; Rijndael, Twofish, RC6, Serpent and MARS. The

final winner was the Rijndael cipher, invented by Joan Daemen and Vincent

Rijmen. Rijndael can be specified by a key and blocksize of any multiple of 32

bits from 128 bits to 256 bits. However, AES is specified only to operate on a

fixed blocksize of 128 bits using a keysize of 128, 192 or 256 bits9.

3.2.3.3 Twofish

Twofish, one of the five finalists in the AES-contest, is a block cipher with a

blocksize of 128 bits supporting keysizes up to 256 bits. It is related to the ear-

lier Blowfish10. Instead of using fixed tables as S-boxes, values are generated

dynamically using information from the key. One half of the key is used in en-

cryption and the other is used generating the S-boxes. It is slower than Rijndael

using a key of 128 bits, although faster when using a 256 bit key.

3.2.4 Modes of operation

Block ciphers operate on fixed sized blocks of Plaintext and generate Ciphertext

blocks of the same length. A block cipher mode is an algorithm of how to use

the cipher when encrypting more than one block, as explained in 3.2.4.1. Most

block cipher modes require the size of the Plaintext to be an exact multiple of

the blocksize, otherwise the Plaintext must be padded. There are many ways

of padding a message. A simple example, which is reversible, is to split the

message into blocks of the requested size. The last block is padded to reach the

specific size by an appended single byte with value 128, followed by as many

zero bytes as needed.

The mode appends an additional operation which operates on different data

according to the mode. The data often consist of the output, the Ciphertext, from

the previous block which can be combined with the Plaintext block in order to

be encrypted. This is done by CBC mode covered in section 3.2.4.2.

Using a block cipher mode ensures that if encrypting a number of identical

9Found in the publication of the AES standard FIPS-197 [8].
10Blowfish is a 16-rounds cipher designed in 1993 by Bruce Schneier. It has a blocksize of 64

bit and a keysize of anywhere from 32 bits to 448 bits.

26

Plaintext blocks chained together, the resulting Ciphertext could be perceived as

random. If the same Plaintext is encrypted using just a block cipher a Cipher-

text containing repeating blocks would be produced. There are many different

kinds of modes and some are presented below.

3.2.4.1 Electric codebook mode, ECB

ECB, Electronic codebook, is the simplest encryption mode which encrypts each

block of the message separately. This mode is not recommended for use in

any cryptography protocol at all11. The ECB mode is weak, because if two

Plaintext blocks are the same, the Ciphertext blocks will be the same. This will

leak information to the attacker depending on the structure of the message.

Block Cipher

Encryption

Plaintext

Ciphertext

Key
Block Cipher

Encryption
Key

Plaintext

Ciphertext

Block Cipher

Decryption

Plaintext

Ciphertext

Key
Block Cipher

Decryption
Key

Plaintext

Ciphertext

Encryption Decryption

Figure 3.2: The figure describes the encryption and decryption respectively, done by

the easiest cipher mode called electronic codebook mode, ECB. The two

ciphers to the left performs the encryption while the other two, the rightest

ones, performs the decryption.

3.2.4.2 Cipher block chaining mode, CBC

A common block cipher mode is CBC, Cipher Block Chaining. In contrast to ECB

this mode is XORing each Plaintext block with the previous Ciphertext block and

uses the result as input to the cipher. This avoids the problem with ECB and

gives different Ciphertext blocks from the same Plaintext block. In the first cipher

block there is no previous Ciphertext block, instead an initialization vector, IV, is

used.

11This is mentioned in Bruce Schneier’s and Neils Ferguson’s book Practical Cryptography

page 69 [4].

27

Block Cipher

Encryption

Plaintext

Ciphertext

Key

Initialization
 vector (IV)

Block Cipher

Encryption

Plaintext

CiphertextKey

Block Cipher

Decryption

Ciphertext

Plaintext

Key

Initialization
 vector (IV)

Block Cipher

Decryption

Ciphertext

Plaintext

Key

Encryption Decryption

Figure 3.3: This figure shows the encryption and decryption performed in cipher block

chaining mode, CBC. Each plaintext block are XORed with previously ci-

phertext block to enhance the security of the cipher. The inversed proce-

dure is done in decryption where each output block is XORed with previ-

ous ciphertext block to get the plaintext.

Initialization vector An initialization vector, IV, is a block of text used to

make the first input more randomized. This vector should not be fixed, because

that will give the same problem as in ECB in the first block. Two messages with

the same beginning will get the first Ciphertext block identical. Neither should

a counter be used to vary IV due to the same problem. The problem is solved

by using a Nonce12 generated IV.

The recipient must know the IV to be able to decrypt the message. There is no

requirement that the IV has to be kept secret so Alice can send the IV along with

the message to Bob. Both Alice and Bob have to ensure the IV has not been used

before, usually this is done by using the message number.

3.2.4.3 Counter mode, CTR

Counter mode turns the block cipher into a stream cipher. The CTR mode was

standardized in 200113 although it has been around since the DES came in 1980.

This stream cipher mode require some form of Nonce which is to be the input

to the cipher together with the key. The Nonce is only to be used once with the

same key and CTR often uses a counter to make sure the Nonce is only used

once. To generate the key stream CTR concatenates the Nonce with the counter

value, i, and encrypts it to form a single block, shown in equation 3.2.2. To

fit the usual blocksize the typical setup is: 48 bits message number, 16 bits of

12The term Nonce is a contraction of number used once. The property of a nonce is critical due

to the fact it must be unique.
13NIST standardization [9].

28

additional Nonce data and 64 bits of the counter

Ki := E(K, Nonce || i) f or i = 1, ..., k (3.2.1)

Ci := Pi ⊕ Ki (3.2.2)

As shown in figure 3.4, the the output from the cipher, Ki within the equation

3.2.2, is XOR’ed with the Plaintext and thereby the Plaintext is encrypted into

the Ciphertext.

Block Cipher

Encryption

Plaintext

Ciphertext

Key

Nonce Counter
c59bfc31... 00000000

Block Cipher

Encryption

Plaintext

Ciphertext

Key

Nonce Counter
c59bfc31... 00000001

Block Cipher

Encryption

Ciphertext

Plaintext

Nonce Counter
c59bfc31... 00000000

Block Cipher

Encryption

Ciphertext

Plaintext

Key

Nonce Counter
c59bfc31... 00000001

Key

Encryption Decryption

Figure 3.4: The figure describes encryption and decryption in counter mode, CTR.

Each cipher’s input block in both encryption and decryption is a nonce.

The plaintext in encryption is XORed with the output block to create the

ciphertext. To decrypt the ciphertext, same procedure is made though the

output block is XORed with the ciphertext to get the plaintext.

There are several modes not described here, e.g. the cipher feedback mode

(CFB) or the output feedback mode (OFB) etc. The modes described above are

the most common and therefore considered and described within this thesis.

3.3 Hash functions

A hash function is a reproducible method that takes a character string of arbi-

trary length as input and produces a fixed-size result. This result can be rela-

tively small and a typical use of a hash function is in digital signatures. These

functions are sometimes called message digest functions, the result digest or

fingerprint.

Hash functions are designed to be fast and to yield few hash collisions. This is

impossible because it is usually a requirement that the hash value is stored in

29

fewer bits than the data being hashed. A lager hash value decreases the chance

of a hash collision. A well designed hash function is a one-way operation.

A typical application is as follows; Alice sends a tough math problem to Bob

and claims to have solved it. Bob would like to solve it himself. To be sure

that Alice already solved it, she appends a random Nonce to the solution and

computes its hash value, which is sent to Bob. The Nonce is kept secret until Bob

has solved the math problem. He then appends the Nonce, given afterwards,

and computes its hash value, which is compared to the previous value sent by

Alice.

Other applications are the uses of hash values for message integrity, determin-

ing of whether or not any changes have been made to the message. The hash

value is to be known by the receiver, though it must be protected during the

communication.

3.3.1 Secure Hash Algorithm, SHA

The SHA functions are five hash-functions developed by the National Security

Agency, NSA14: SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512. The first

function mentioned, SHA-1, uses a blocksixe of 512 bits and it produces a hash-

digest of 160 bits from a message with maximum length of (264 − 1) bits.

The later SHA-224 and SHA-256 also works with a blocksize of 512 bits how-

ever they produce a hash-digest of 224 bits and 256 bits respectively. The maxi-

mum length of the message is still (264 − 1) bits.

The last functioned mentioned, SHA-384 and SHA-512, works with a block-

size of 1024 bits and the maximum message length is (2128 − 1) bits. The two

functions produce a hash-digest of 384 bits and 512 bits respectively.

3.4 Asymmetric cryptography

Asymmetric key encryption introduced in chapter Basic Cryptography, 3.1.4, will

be further described in this section. The most common algorithms are RSA and

14These five algorithms for computing cryptographic hash functions are specified in FIPS

180-2 [10]

30

ECC which are described described in detail below.

The two main branches of asymmetric cryptography are Public key encryption,

introduced in section 3.1.4, and Digital signatures, section 3.1.5. The asymmetric

algorithms are based on one-way functions, described in the article The Prin-

ciples of Science [11] by William S. Jevons back in 1874. The first publication

of asymmetric cryptography was in 1976 when W. Diffie 3.4.2.1 and Martin

E. Hellman published New Directions in Cryptography [12], which is a crypto-

graphic protocol of key exchange. However, the British signals intelligence

agency, GCHQ, made the first invention, in the early 1970, although they kept

it secret until 1997. NSA has also claimed to have invented the public-key cryp-

tography, in the 1960:s, however there is little public evidence supporting this

claim.

3.4.1 Mathematical description

There are several different asymmetric encryption schemes using different math-

ematical problems in order to make them irreversible. Algorithms described

hereafter were considered being used within the project. To be able to under-

stand the better part of the algorithms, most of the mathematics terms are being

described, though some are assumed to be well known.

There are mainly three families of asymmetric cryptography. The most widely

used are those based on the integer factorization, RSA in particular. The next

mathematical problem providing use within cryptography is the discrete loga-

rithm problem, DLP, used in digital signatures (DSA) and key agreement (Diffie-

Hellman). The last family is based on arithmetic using elliptic curves. This

problem is based on one-way function use of elliptic curves and is called the

elliptic curve discrete logarithm problem, ECDLP.

Integer factorization problem The problem is to factorize a large integer con-

stituting of two primes, e.g. finding a and b given 15. The solution could be 3

and 5. Every integer has a unique prime factorization. Although the multipli-

cation of two prime numbers is easy, the factorization is much more difficult,

even with currently availible algorithms15.

15This is described by for example the RSA laboratories [13].

31

The discrete logarithm problem, DLP This problem is to compute k out of e.g

3k ≡ 13 mod(17). In this example k = 4 thus 34 = 81. 81 divided by 17 gives

the remainder equal 13. There is no efficient algorithm for computing general

discrete logarithms known today.

The elliptic curve discrete logarithm problem, ECDLP The ECDLP is similar

to the one-way function on which DSA and Diffie-Hellman are based. The two

different groups, additive cyclic group and the multiplicative group, can be

considered similar and thereby the similar names on the problems. The ECDLP

is the problem of finding the scalar k which is the value the point G is multiplied

by into kG on an elliptic curve, given only the points G and kG.

3.4.2 Methods and algorithms

3.4.2.1 Diffie-Hellman

As previously mentioned the article New directions in cryptography[12] presents

a key agreement scheme, which is a scheme describing how to jointly estab-

lish a secret key over an insecure communication channel. Merkle’s work on

public key distribution was an influence to Diffie and Hellman. Hellman sug-

gested, in 2002, the algorithm to be called Diffie-Hellman-Merkle key exchange due

to Merkle’s contribution.

The key exchange procedure is as following

1. Alice and Bob agree to use a prime number, such as p = 23 and a base

g = 5.

2. Alice chooses a secret integer a = 6 and sends Bob (ga mod(p))

• 56 mod(23) = 8

3. Bob chooses a secret integer b = 15 and sends Alice (gb mod(p))

• 515 mod(23) = 19

4. Alice computes (gb mod(p))a mod(p)

• 196 mod(23) = 2

32

5. Bob computes (ga mod(p))b mod(p)

• 815 mod(23) = 2

The result, 2, in the last equation is the shared secret. The information Eve got

was the prime p = 23, the base g = 5 and she also knows 5a mod(23) = 8 and

5b mod(23) = 19. The last two equations give Eve no information due to the

discrete logarithm problem. The only thing to be kept secret are the two numbers

a = 6 and b = 15 also the shared secret gab = gba. Note that the numbers a and

b should be large primes in a real system. This key exchange and the use of the

discrete logarithm problem seems to be the take off for asymmetric cryptography.

3.4.2.2 Rivest, Shamir and Adleman, RSA

Diffie-Hellman’s work was followed by the asymmetric algorithm RSA which

is the first algorithm suitable for encryption as well as signing. It was invented

by Ronald Rivest, Adi Shamir and Leonard Adleman in 1977.16 The letters RSA

are the initials of their surnames. RSA was one of the first great advances in

asymmetric cryptography and the algorithm is based on the integer factoriza-

tion problem, see paragraph 3.4.1. This section describes how to generate a pair

of keys and use them in encryption and decryption respectively.

Generating the keys This task can be divided into five steps. The first step,

generate large prime numbers, requires a cryptographically secure random num-

ber generator. These prime numbers for RSA are in the order of thousands of

bits, the smallest recommended keysize by NIST is 1024 bits. A simple example

is given with small numbers to show the principle of the key generation.

1. Choose (generate) two17 different large prime numbers, p and q

p = 7

q = 19

16More history of the RSA algorithm is found at the RSA laboratories [14].
17in the RSA cryptography standard PKCS #1 v2.1 [15] a so-called multi-prime is mentioned

where it is possible to choose u distinct primes.

33

2. Let n, the modulus for both the public and the private key, be defined by:

n = p · q (3.4.1)

n = 7 · 19

= 133

3. Compute the totient18

Φ(n) = (p− 1)(q− 1) (3.4.2)

Φ(n) = (7− 1)(19− 1)

= 6 · 18

= 108

4. Choose a small integer e which is a coprime to Φ(n) such that 1 < e <

Φ(n)

e GCD(e, Φ(n)) Status

e = 2 GCD(2, 108) = 2 incorrect

e = 3 GCD(3, 108) = 3 incorrect

e = 4 GCD(4, 108) = 4 incorrect

e = 5 GCD(5, 108) = 1 correct

Table 3.2: The table shows the different attempts of finding e out of Φ(n). In

this example e = 5 is a small number and a coprime to Φ(n) and

thereby a solution.

5. Compute d to satisfy the equation

de ≡ 1 mod(Φ(n)) (3.4.3)

Equation 3.4.3 can be written as de = 1 + kΦ(n) or d = (1+kΦ(n))
e where k

is any integer. The last equation gives following table.

18The totient, Φ, of a positive integer, n, is defined to be the number of positive integers less

than or equal to n which are coprime numbers to n, e.g. Φ(9) = 6, since there are six numbers; 1,

2, 4, 5, 7 and 8 that are coprime numbers to 9.

34

k d = (1 + kΦ(n))/e Status

k = 0 d = (1/5) = 0.2 incorrect

k = 1 d = (109/5) = 21.8 incorrect

k = 2 d = (217/5) = 5.4 incorrect

k = 3 d = (325/5) = 65 correct

Table 3.3: The table describes the procedure of finding d by letting the integer k

increase from 0 until d becomes an integer. Note that this is a simple

example and to achieve a high security level the smallest d may not

be the optimal solution.

This was a basic example. The calculations are becoming more time consuming

as the integers are expanding. A more efficient way of finding d, is to use Eu-

clid’s algorithm19. However, these are the basics of key generation in RSA. The

integers e and d, chosen in step four respectively five, are the private and the

public key. It is possible to choose which integer is to be public respectively

private. The different sizes of e and d makes them suitable for different calcula-

tions. The integer e is smaller than d, and by choosing e as the private key, the

decryption process will be faster than the encryption process. When choosing e

to be the public key, the encryption will be faster than the decryption. However,

The integer d is hereafter described as the private key and e is the public key.

RSA encryption This computation requires the integers n and e and the spe-

cific Plaintext, m. The size of the message is limited by the size of n. This

means that in RSA encryption the message must be divided into, k, blocks

m = m0, m1...mk where each mi < n. In the example the message ‘6’ is used

which is less than n = 133. The encryption algorithm is done by:

c = me mod(n) (3.4.4)

19The Euclidean algorithm also known as Euclid’s algorithm, is an algorithm to determine

the greatest common divisor (GCD) of two elements. It is dated back to the ancient Greeks and is

one of the oldest known algorithm [16].

35

Encrypting the message ‘6’ using the public key e = 5 results in the Ciphertext:

c = 65 mod(133)

= 7776 mod(133)

= 62

Because of the expensive computations of RSA it is not recommended to split

the message into several blocks. The solution is to encrypt the message with

a symmetric encryption and then encrypt the secret key with asymmetric en-

cryption. The decryption in RSA is however not as easy as the RSA encryption.

RSA decryption The decryption is similar to the encryption but it involves a

larger exponent. The decryption requires the Ciphertext, c, the integer n and the

private integer d and is calculated by:

m = cd mod(n) (3.4.5)

Decrypting the Ciphertext ‘62’ using the private d = 65 will hopefully result in

message m = 6. The calculations are done by:

m = 6265 mod(133)

= 62 · 6264 mod(133)

= 62 · (622)32 mod(133)

= 62 · 384432 mod(133)

= 62 · (3844 mod(133))32 mod(133)

= 62 · 12032 mod(133)

The sequence of operations which reduced 6265 to 12032 is now repeated to

reduce the exponent to 1.

m = 62 · 3616 mod(133)

= 62 · 998 mod(133)

= 62 · 852 mod(133)

= 62 · 43 mod(133)

= 2666 mod(133)

= 6

36

As shown in decryption there are a great number of operations, however this

example is using small numbers. Another short example is p = 61 and q = 53.

These prime numbers give n = 3233 and the totient Φ(n) = 3120. Then chose

e = 17 and compute d = 2753. The use of the public and the private key will

be:

The public key is (n = 3120, e = 17)

c = me mod(n)

= m17 mod(3120)

The private key is (n = 3120, d = 2753)

m = cd mod(n)

= c2753 mod(3120)

3.4.2.3 Digital signature algorithm, DSA

This algorithm is within the Digital Signature Standard, DSS, issued by NIST20.

The algorithm is used to compute a digital signature of a message and provides

both signature generation and verification. The signature generation process,

uses the private key and the verification process uses the public key.

DSA parameters The parameters within DSA are similar to RSA’s parameters

and are declared as follows21:

1. p = a prime modulus, where 2L−1
< p < 2L for 512 ≤ L ≤ 1024 and L is

a multiple of 64

2. q = a prime divisor of p− 1, where 2159
< q < 2160

3. g = h(p−1)/q mod(p), where h is any integer where 1 < h < p− 1 such

that

h(p−1)/q mod(p) > 1 (g has order q mod(p))

20This Federal Information Processing Standard Publication (FIPS) prescribes three algo-

rithms suitable for digital signature generation and verification: Digital Siganture Algorithm

(DSA), RSA ds algorithm and Elliptic Curve Digital Signature Algorithm (ECDSA) [17].
21The example is found in the NIST - publication FIPS PUB 186-2 [17].

37

4. x = a randomly generated integer where 0 < x < q

5. y = gx mod(p)

6. k = a randomly generated integer where 0 < k < q

The integers p, q and g can be public as well as the public key y. However,

x is to be kept secret as it is the private key. The public and the private key

respectively are normally constant while the parameter k is generated for each

signature, and thereby to be kept secret.

DSA signature generation The signature generation, according to DSS22, makes

use of the hash function SHA-1. However, several different hash functions can

be used. The signature of message m is the two numbers r and s which are

computed according to the equations

r = (gk mod(p)) mod(q)

s = (k−1(SHA-1(m) + x r)) mod(q)

DSA signature verification Let m′, r′ and s′ correspond to m, r and s to rep-

resent the received parameters and y is the public key to the signature. There

are two conditions the verifier checks first, 0 < r′ < q then 0 < s′ < q. If the

received parameters do not fulfill the conditions the signature shall be rejected,

otherwise the following procedure is done:

w = (s′)−1 mod(q)

u1 = ((SHA− 1(m′))w) mod(q)

u2 = (r′w) mod(q)

v = (((g)u1(y)u2) mod(p)) mod(q)

If v = r′, the signature is verified and the receiver knows from whom it was

sent. Otherwise the message may have been changed, the generation of the

signature may have been incorrect or it may have been posted by somebody

else.

22The Digital Signature Standard are recommending SHA-1 in the FIPS 186-2 [17].

38

3.4.2.4 Elliptic curve cryptography, ECC

Elliptic curve cryptography was discovered by Victor Miller (IBM) and Neil

Koblitz (University of Washington) in 198523. ECC is, unlike RSA, based on

the (elliptic curve) discrete logarithm problem. Although the use of elliptic

curves within cryptography is relatively new, the mathematics of elliptic curves

is not. There are two types of elliptic curves. The elliptic curve can either be

odd characteristic, also called modulo p or prime characteristic, based on prime

numbers or even characteristic, also known as over finite field with 2m elements,

based on binary numbers. An implementation of ECC requires a specific curve

which is to be known by both Alice and Bob. The choice of the elliptic curve

parameters is important due to the security of the algorithm since it depends

on the curve. NIST presents a list of 15 standardized elliptic curves of different

groups and keysizes 24. The equation describing the elliptic curve is:

y2 = x3 + a x + b (3.4.6)

where x, y, a and b are real numbers and with the condition

4a3 + 27b2 6= 0 mod p (3.4.7)

All points, (x, y), satisfying the condition along with a finite point O and the ad-

dition operation, form a group. In order to present the group and the equations

done by the algorithm, the following simple example25 is used to show the pro-

cedure of generating an elliptic curve group, which is required to accomplish

the encryption and decryption respectively .

Example of group generation

First an elliptic group is defined which could be either of the two characteristic

groups, prime or binary numbers. The prime characteristic, Ep, is chosen within

this example. Let the prime number p = 23 and let the constants a = 1 and

b = 1. This makes the elliptic curve equation y2 = x3 + x + 1. The condition

gives 8 6= 0, which verifies the group. The following step is to determine the

quadratic residues Q23 which is done by calculating 12 mod 23, 22 mod 23, . . . ,

23According to Certicom [18].
24The standardized curves are found at NIST’s homepage [19].
25The example is described in more detailed by Jean-Yves Chouinard [20].

39

222 mod 23. All the answers will be Q23= {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. Now,

for 0 ≤ x < p, compute y2 = x3 + x + 1 mod 23 and determine if y2 is in the set

of quadratic residues Q23. This gives all the points, excluding the finite point

O, for the group Ep as:

E23 =

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)

(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7)

(9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16)

(17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

The point (4, 0) is added as the finite point O to make the group complete. To

continue the operations on the group, several parameters are to be defined. Let

P = (x1, y1) be a point on the curve and define −P = (x1,−y1). If Q = (x2, y2)

is defined as a similar point although P 6= −Q, then the addition, P(x1, y1) +

Q(x2, y2) = −R(x3,−y3), is defined by:

x3 = λ2 − x1 − x2 mod p (3.4.8)

−y3 = λ(x1 − x3)− y1 mod p (3.4.9)

where

λ =

y2−y1
x2−x1

if P 6= Q

3x1
2+a

2y1
if P = Q

In excess of addition, multiplication is used over an elliptic curve group Ep(a, b)

which is the equivalent operation as the modular exponentiation in RSA. Let

P = (3, 10) ∈ E23(1, 1). Then 2P = (x3, y3) is equal to: 2P = P + P =

(x1, y1) + (x1, y1).

Since P = P, the multiplication procedure is a special case of addition and the

values of λ, x3 and y3 are given by:

40

λ =
3x1

2 + a

2y1
mod(p) ⇒ 6 (3.4.10)

x3 = λ2 − x1 − x2 mod(p) ⇒ 7 (3.4.11)

y3 = λ(x1 − x3)− y1 mod(p) ⇒ 12 (3.4.12)

Equation 3.4.11 gives: x3 = 62 − 3− 3 mod(23) = 7 and equation 3.4.12

gives: y3 = 6 · (3− 7)− 10 mod(23) = 12. Therefore 2P = (x3, y3) = (7, 12).

The multiplication kP is obtained by repeating the elliptic curve addition k

times.

Elliptic curve encryption and decryption For Alice to encrypt a message m,

the message must be encoded into a point, Pmessage, from the finite set of points

in the elliptic group Ep(a, b). This can be done in several ways, however it is

not included in this example. In order to encrypt, the next step after generating

the group, is to choose a generating point P ∈ Ep(a, b), such that the smallest

value of n for which nP = O is a large prime number. Both the group E and the

generating point P can be public.

An example of ECC encryption Consider the elliptic curve y2 = x3 − x +

188 mod 751, (a = −1, b = 188 and p = 751). The elliptic curve group is

E751(−1, 188). Let the generator point be G = (0, 376), then the multiples of kG

are within 1 ≤ k ≤ 751.

Alice’s message to Bob is encrypted with Bob’s public key. Suppose his randomly

chosen private key is nB = 85. Then the public key, PB is given by:

PB = nBG (3.4.13)

which is 85(0, 376) = (671, 558). Suppose the message is encoded to the point

Pmessage = (443, 253) ∈ E751(−1, 188). By using Bob’s public key, PB, and the

message point, Pmessage, together with a randomly chosen number k = 113,

Alice encrypts the message point into the ciphertext pair of points as following:

41

PC = [(kG), (Pmessage + kPB)]

= [(113 ∗ (0, 376)), ((443, 253) + 113 ∗ (671, 558))]

= [(34, 663), ((443, 253) + (47, 416))]

= [(34, 633), (217, 606)]

The resulting ciphertext, the pair of points, is PC = [(34, 633), (217, 606)]. Alice

simply moves the generation point and Bob’s public key point with a certain

number k, then adds the message point to the public point. The number k is not

to be known be anybody, not even Bob.

An example of ECC decryption Bob now have the pair of points:

PC = [(34, 633), (217, 606)]. In order to decrypt this ciphertext Bob first multi-

plies the first point in PC with his own private key, nB = 85. The resulting point

nB(kG) is than subtracted from the second point of PC, (Pmessage + kPB). The

last calculation gives the message point Pmessage. The same algorithm used to

encode the message into the message point is now used in reverse to get to the

message.

PC = [(kG), (Pmessage + kPB)]

Pmessage = (Pmessage + kPB)− nB(kG)

Pmessage = Pmessage + k · (PB − nBG)

Pmessage = Pmessage = (443, 253)

Since Bob’s public key PB is calculated by his private key nb multiplied by the

generation point G, PB = nBG, the message is found. Bob simply moves the

generation point, already moved k times by Alice. The resulting point is than

subtracted from his public point, also already moved by Alice, and thereby get-

ting the message point. In ECC the subtraction A− B, is done by changing sign

on yB from B = (xb, yB) to B = (xB,−yB) which is the definition of the

reflection point.

Elliptic curve digital signature, ECDSA This is another process of computing

a digital signature compared to DSA mentioned in section 3.4.2.3. ECDSA is a

variant of DSA although it is based on elliptic curves. The advantage of using

ECDSA is the same as the general with elliptic curve cryptography, the keysize.

42

A security level of 80 bits, meaning the attacker needs 280 signature generations

to find the key is equivalent with a DSA keysize of 1024, however the size of an

ECDSA key is only 160 bits long.

3.5 Pseudorandom number generators

Keys are generated from a source of random data. The keys are the most im-

portant part of the cryptography session. It is important that the keys are con-

structed from truly random and unpredictable data. In a computer system,

which is a logical machine which behaves in a predictable way, it can be hard to

find a good source of randomness. Randomness is measured in entropy, which

is a definition of how many bits of acquired random data are truly random.

Since real random data is hard to come by in a computer, a pseudorandom

number generator , PRNG, is used. The pseudorandom generator provides

random data calculated from an internal state and then updates the internal

state. The generator is seeded with the real random data periodically to make

it hard to determine the internal state.

The choice of a proper PRNG is an important design consideration, it is impor-

tant to find a cryptographically strong PRNG, with an uncorrelated and uni-

form spectrum. Equally important is finding a good system specific source of

entropy. However, this is a design consideration outside the scope of this thesis

work, where we simply aim to demonstrate the concept.

3.6 Summary

The choices of which algorithms and keysizes to be further tested and bench-

marked in this thesis, are made based on research in books and recommenda-

tions by standardization institutes. The decision is also influenced on which

algorithms are availible in the cryptographic libraries, these libraries will be

further explained in section 4.3.3.

Decisions regarding the symmetric ciphers are mainly based on the book Prac-

tical Cryptography by Bruce Schneier and Niels Ferguson. The ciphers which are

43

to be implemented and benchmarked are DES, AES and Twofish. The keysizes

to be tested are if possible in the range of 128-256 bits.

For the choices of asymmetric algorithms the recommendations were mostly

from NIST, which recommends both RSA- and ECC-technology. Recommended

keysizes of the asymmetric algorithms are ranging from 1024 bits to 4096 bits

for RSA and 160 bits to 521 bits for ECC.

44

CHAPTER 4

Technology considerations

The goal of the testplatform implementation is to study the requirements needed

by an embedded system when performing asymmetric cryptography opera-

tions. In the testplatform-implementation the focus will be on benchmarking

ECC and RSA operations in the embedded system. Moreover, a speed compar-

ison on different implementations of the symmetric algorithms will be done.

The testplatform will further be used to implement and test a concept of a com-

plete lockunit, however this is outside the scope of this report.

4.1 Approximating the requirements

The complications associated with this type of cryptography is that it relies on

computationally heavy math operations performed on large integers. Com-

putations on large integers require a large amount of memory and processor

instruction cycles.

4.1.1 Related work

A short websearch provided some reports of previous studies implementing

asymmetric cryptography on embedded platforms. A report 1 describing the

implemention of ECC and RSA on 8 bit platforms with keysizes of up to 1024

bits RSA and 160 bits ECC, showed that it is possible to implement RSA and

ECC with very small resources.

1Efficient Implementation of Public Key Cryptosystems on Mote Sensors (Short Paper).

45

Furthermore, another thesis report2 described implementing RSA algorithms

on an embedded platform gave some performance figures of RSA (up to 1024

bits) on an 32 bit ARM7 platform.

Studying both reports gave an estimate of what execution time to expect for the

asymmetric operations.

4.1.2 Code design approach

Doing a completely new design would require a considerable amount of time

and resources from the project. The result would be an efficient and fast im-

plementation allowing a small and power-efficient processor with limited re-

sources to be used. However, this would probably require more time than what

is available for this thesis work, and there is a great probability that the result-

ing application would have unexpected security flaws.

Instead the decision was to go with a free open-source library for the implemen-

tations of the cryptographic algorithms. This likely results in a slower imple-

mentation requiring more resources, but the advantage is that a public library is

reviewed by more people and therefore security flaws can be discovered faster.

The free public library is a platform independent and flexible way to go. It can

easily be tweaked to suit a new processor platform when a new product version

is required.

The primary memory requirement is that the processor has to be able to pro-

cess all the data and keys in RAM memory. The largest datablock considered

in this evaluation will be the RSA 4096 bit (512 Byte) key. Therefore the approx-

imated RAM memory requirement will be at least double the key-size, 1 KiB,

to perform the arithmetic calculations. Additionally another 2 KiB of RAM is

required, to store input and output variables without the need for slow write

operations to flash memory. Therefore the minimum RAM memory require-

ment is 3 KiB, although more would greatly simplify the development process.

There is a certain tradeoff between computation time and required memory

2A master’s thesis Implementing the Transport Layer security Protocol for embedded systems, by

Bengt Werstén [21] done at Linköping University.

46

resources. It is sometimes possible to speed up an algorithm considerably by

using pre-calculated lookup-tables of common calculations.

4.2 Choosing processors

The processor performance has on average been doubled every two years dur-

ing the last decades, according to Moore’s law [22]. This makes it feasible to use

more complex cryptography in smaller embedded systems than was possible

just a few years back.

Some processors have builtin modules to help perform the cryptographic rou-

tines, enabling much faster calculation times and freeing up processor time for

other tasks. The devices on the market today are mostly modules for AES- and

3DES-operations. Also several processors have builtin RSA accelerating mod-

ules enabling fast routines for performing operations on the smaller RSA keys

(< 1024 bits).

Using a public library instead of writing processor-specific cryptographic al-

gorithms is a less efficient way to go, therefore the processor has to be more

powerful. The consensus from the related work study was that at least a 16 bit

architecture has to be used. However, since the processor has to process large

datablocks and most 16 bit processors generally have limited amounts of RAM,

a 32 bit architecture seemed to be a more reasonable choice.

The considered processors were narrowed down to some candidates from the

largest manufacturers:

• MSP430-Series, Texas Instruments The MSP430-series is a low-power

processor family, with a 16 bit RISC core running at up to 16 MHz. The

onchip memory is up to 10 KiB RAM and up to 60 KiB Flash. The more ad-

vanced devices in the series features specific modules for hardware mul-

tiplication and automated data transfer, DMA. The MSP430-series is de-

signed for low power consumption, it averages at 330µA/MIPS and has

a power-down mode only requiring 0.2µA. This makes it extremely suit-

able for battery powered applications.

47

• AT91SAM7XC-Series, Atmel The AT91SAM7X-series processor family is

built on the 32 bit ARM7 RISC core which operates at 60 MIPS, with a

memory of up to 128 KiB RAM and 512 KiB Flash. The processor has

several on-chip peripheral modules to simplify communication interfaces,

such as USB, Ethernet, SPI and RS232. Furthermore, the processor has two

specialized cryptography modules supporting AES- and 3DES-operations.

• LPC2000-Series, NXP The LPC2000-Series is built on the ARM7 RISC

Core and is very similar to the Atmel processor series listed above. Ex-

cept that it has slightly less memory and does not contain the cryptogra-

phy modules.

In general, the processor choice for benchmarking the cryptographic algorithms

was to start with abundance of performance, rather than to start with the lim-

ited system the 16 bit MSP430 would provide. However, the MSP430 would be

a good platform for the final product due to the extremely low power-consumption.

The remaining two candidates were based on the ARM7 core, so while the final

choice was the AT91SAM7XC-series from Atmel, this was mostly due to the

symmetric cryptography module and the amount of available demo code.

4.3 Development tools

4.3.1 Evaluation board

The AT91SAM7X-EK evaluation board from Atmel provides a simple start with

the AT91SAM7XC256 processor. The board has several implemented interfaces

and is delivered with plenty of example code, enabling easy access to most of

the features. Further specifications and a complete block diagram can be found

in the AT91SAM7X-EX User Guide[23].

4.3.2 Compiler and code environment

Three major development tools were considered for the platform chosen. In the

end the decision was based on the purchase price of the tool.

48

Embedded workbench for ARM, IAR systems The Embedded Workbench

suite provides a collection of all development tools required for ARM7 devel-

opment, including compiler, debugger and libraries. The version considered

and tried in this project was the kickstart version limited to 32 KiB of program

code.

Embedded Workbench includes several great examples which makes it easy to

get started. However, the code size limitation made this tool unusable and there

was no budget for purchasing a compiler to the project.

Yagarto, open-source Yagarto3 is an open-source toolchain based on the GCC

ARM package. It is compiled for windows and contains a complete package of

compiler, assembler, linker and debugger for ARM7-core devices. The package

also includes the Eclipse Environment with the Zylin CDT, (C/C++)-plugin.

CrossWorks for ARM, Rowley associates The Crossworks development sys-

tem is a commercial integrated environment based on the GNU Compiler toolchain.

Since it is based on the GNU toolchain it was not considered as a real alternative

to Yagarto.

The IAR Embedded workbench was used when getting started with the eval-

uation board, since it was delivered with demonstration code for this environ-

ment. When the code size increased beyond the size limit of the kickstart ver-

sion the switch was made to the Yagarto toolchain since it was free. However,

it should be noted that the Yagarto toolchain requires quite a bit of time and

tweaking before it is properly configured and development begins.

4.3.3 Cryptography libraries

The first considered implementation was to program new routines for crypto-

graphic algorithms. However, after some research on the cryptographic rou-

tines to be tested, it was quickly realized that this would be an enormous task.

Taking up to much time from the project and thus limiting the number of algo-

rithms to be tested.

3Yet Another GNU ARM Toolchain.

49

Instead it was decided not to reinvent the wheel and implement one of the nu-

merous public domain cryptographic libraries available. Some of the primary

ones considered were:

Crypto++ The Crypto++ library is a free4 C++ library which implements most

cryptographic routines. It contains support for both ECC and RSA with both

encryption and signatures. It contains projects and builds out of the box on

most compilers on both Windows and Linux. The documentation is in the form

of a class-reference indexed web page.

LibTomCrypt The LibTomCrypt, LTC, library is a public domain library with

extensive documentation. It supports several symmetric ciphers and hash func-

tions. There is support for the most common asymmetric algorithms, such as

RSA, DSA, ECC and Diffie-Hellman. LibTomCrypt is written completely in

standard C and features support for several platforms, including embedded

platforms.

Botan The Botan cryptographic library is written entirely in C++ and sup-

ports a wide variety of algorithms and standards. There is support for several

symmetric algorithms including the five AES-contest finalists. Botan also sup-

ports several of the asymmetric cryptographic algorithms and schemes. How-

ever, there is no support for ECC and is thereby no longer interesting for this

project.

The decision was to use the extensively documented LibTomCrypt library, mostly

because it was written entirely in portable C and contained support for all the

required cryptographic algorithms.

LibTomCrypt contains no built-in support for the large integer arithmetic needed

by the asymmetric cryptography. This is to make it portable and to allow the

developer to use the math-library of his/her preference. This requires a deci-

sion of which large integer library to use.

4Licence is public domain.

50

4.3.4 Large integer library

A large integer library is required since the processor only supports arithmetic

calculations of up to 32 bit integers. The large integer library enables the sup-

port of operations performed on the large integers required by the asymmetric

cryptography (≈ 4000 bits). As an example multiplying a key of size n, this

requires a 2n precision of the result. The largest RSA key considered in this

implementation is 4096 bits, requiring the software to handle 8192 bit integers.

The documentation of LibTomCrypt refers to two other math libraries, devel-

oped by the same author5, for use with LibTomCrypt. Both libraries listed be-

low will be implemented and compared on the test-platform.

LibTomMath LibTomMath, LTM, is an efficient and well documented code

library for manipulating large integers. It is written in C-language and is highly

platform independent. The code is well commented, and although there are

faster libraries available, LibTomMath is easy to configure and optimize.

LibTomMath is written as a multiple precision integer library, MPI, which sup-

ports manipulating integers of variable precision. This means, if the resulting

precision of an arithmetic operation is larger than the output variable’s current

precision, the output variable is expanded to fit the extra precision. However,

this type of big integer requires the most computational overhead of any style

of arithmetic6.

The library implements several specialized reduction functions such as Toom-

Cook, Karatsuba, Comba or baseline multiplication. LTM automatically de-

cides which reduction algorithm to use based on the magnitude of the inputs.

The library was written mostly for educational purposes, and features the ac-

companying textbook Implementing Multiple Precision Arithmetic[24] and also a

user guide written by the author of the project.

TomsFastMath TomsFastMath, TFM, is a fast and efficient large integer arith-

metic library. It is optimized for fast modular exponentiations which is used

in asymmetric cryptography implementations such as; RSA, ECC and DH. The

5Tom St Denis.
6This mentioned in the book BigNum Math By Tom St Denis [24].

51

code is written mostly in ISO C but also contains some inline-assembler oper-

ations to speed up processor specific operations. It is highly configurable with

predefined macros for ECC and also contains ports to several processors, in-

cluding the ARM7 processor core.

TomsFastMath is a fixed precision large integer arithmetic library, this means it

handles all integers with the maximum precision. If the result of an operation

requires more precision than the maximum, the extra precision is lost. The

maximum precision is defined at compile-time and cannot be changed.

4.4 Key device

A study of suitable devices which could replace the traditional key in an access

system was done. The purpose of this study was to determine which key device

would be suitable when designing a new access system.

For this specific system the iButton product series from Dallas Semiconductor

was chosen and implemented. The iButton device is a small robust container

which communicates by touching it to a reader. Communication is done via a

1-wire protocol where the device is powered from the same line it communi-

cates on, thus requiring only two electric connections.

Some of the built-in security functions in the iButton are; each device contains a

unique 64 bit on-chip laser written serial number, some models have a built-in

challenge response algorithm and several devices contain password protected

memory.

52

CHAPTER 5

Implementation

The implementation is meant as a study of whether it is possible to perform

asymmetric cryptography operations on an embedded platform or not, and to

which extent.

This chapter describes the implementation of the free open-source library LibTom-

Crypt on the development board AT91SAM7XC-EK. It also features a basic

overview of the hardware used and test benchmarking procedure. Some ad-

ditional design features are implemented on the board to enable a smooth tran-

sition to the implementation of the complete access system concept.

5.1 Hardware

The hardware of the platform uses the AT91SAM7XC-EK development board

as a base, which is described in section 4.3.1.

5.1.1 Processor

The development board features an AT91SAM7XC2561 processor which is based

on a 32 bit ARM7 RISC2 core. The AT91SAM7XC256 processor executes at 60

MIPS with 256 KiB FLASH- and 64 KiB RAM-memory. It features additional

cryptographic support modules, specialized for AES and 3DES cryptography.

1Further reading and specifications of the processor at ATMEL’s website [25].
2Further reading and specification of the core at the ARM’s website [26].

53

Also several communication modules such as USB, USART3 and Ethernet are

included on the board.

The programming of the processor is done using the JTAG-interface available

on the development board. Communication with the processor is mainly done

using the debug serial interface and portable memory mediums.

5.1.2 Implemented perhiperals

A number of interfaces were implemented on the development board in order

for the system to be able to communicate properly. Here is a quick summary of

the perhiperals implemented on the board:

Real time clock A RTC, was determined useful for a concept implementation

of the access system. It was implemented using the MT41T00 external clock

circuit, from STMicroelectronics, connected to a 32 kHz crystal oscillator. The

clock circuit connects to the TWI port on the processor and is interfaced using

a modified version of drivers provided by Atmel.

Secure digital flash card The SD-card provides an easy way of updating the

large amounts of data used in the system. It is mostly used to load key-, plaintext-

and ciphertext-data into the program. The results of the cryptographic oper-

ations and system logs can also be stored on the card. Since the SD-card is

portable the data can be imported and analyzed on a PC. The hardware im-

plementation is on a built in card-connector on the development board, the

connector interfaces to the SPI interface on the processor.

Dallas 1-wire Support for Dallas 1-wire devices was included since the con-

cept solution is based on the Dallas iButton device. The interface implementa-

tion was done by connecting the Dallas DS9097U serial 1-wire adapter to the

serial port mounted on the development board.

3Universal Asynchronous Receiver/Transmitter.

54

Door motor control A simple motor driver is implemented by I/O control,

which can be used to drive a standard electronic lock cylinder. This is useful

for demonstration purposes of the concept implementation.

5.2 Software

The code is written in standard C language and is compiled using the arm-

elf (GCC) toolchain, version 4.1.1. The program processes simple tasks and is

constructed using a simple round-robin scheduler which uses the interrupt on

the timer-module to generate a system clock tick variable, incrementing at 991

Hz.

5.2.1 Cryptographic algorithms

The LibTomCrypt library was used to implement support for the cryptographic

algorithms required. The library is highly portable, written completely in stan-

dard C.

The library is easy to understand and configure, it provides a simple configu-

ration header file where the programmer can enable/disable support for each

algorithm separately. Thus including only support for the specific desired algo-

rithms when compiling the code, reducing memory usage. This is useful when

benchmarking the algorithms, since there is limited memory available on the

processor.

The main difficulty with implementing the cryptographic routines was the lim-

itations in memory. LibTomCrypt requires about 75 KiB for ECC and 40 KiB for

RSA.

5.2.2 Large integer arithmetic

LibTomCrypt requires a large arithmetic library when performing asymmetric

cryptography. There are two libraries which are implemented to test the per-

formance differences in the large integer arithmetic. The two libraries, LibTom-

Math, LTM, and TomsFastMath, TFM, have different approaches of how to

55

implement the support for the large integers and performing the calculations.

Which is shown by analyzing the codesize of the libraries.

The codesize of the LTM library was fairly constant at about 57 KiB, input size

only limited by available RAM. The TFM library was harder to implement since

the codesize varies depending on the maximum size of the inputs, therefore the

library was only successfully implemented for ECC.

5.2.3 Filesystem library

The Embedded Filesystems Library, EFSL, which is an open-source library with

support for Microsoft filesystems is used, enabling easy support for reading

and writing to files on Secure Digital memory cards. Thus the data and keys to

be tested on the test-platform can be easily edited on a PC and then imported

into the embedded system. The library implementation requires about 1.5 KiB

RAM- and 35 KiB FLASH-memory.

5.2.4 Memory overview

The code implementation of the routines required on the testplatform, exclud-

ing the cryptography library is shown in table 5.1. It uses a total of 102 KiB

of flash memory. Subtracting this from the 256 KiB of available flash memory

leaves a maximum of 154 KiB code to be used when testing the cryptography-

and math-libraries.

5.3 Benchmarking goals

The goal of the test-platform is to provide benchmarked data on the various

cryptographic algorithms suitable for implementation in an access system. A

background of which algorithms were desired to implement is found in sec-

tion 3.6. Some of the desired algorithms had to be skipped since they are not

supported by LibTomCrypt.

56

Code sizes of different implementations

Task Code size

[B]

Basic Program 18952

Real Time Clock 8676

iButton 4056

SD-card 33524

Libc 31609

LibGCC 4928

Total 101745

Availible memory 256000

Free memory 154255

Table 5.1: The table shows the memory required by the different applications imple-

mented. These figures are exclusive the cryptographic library. The available

memory is 256 KiB and with the listed applications there are approximately

154 KiB remaining.

Symmetric algorithms The table 5.2 describes which symmetric algorithms

will be tested. The comparison is between LibTomCrypt and where applicable

the processor specific cryptographic hardware modules.

Testchart for symmetric cryptographic algorithms

Algorithm Block size Key size LibTomCrypt Hardware Module

[bits] [bits]

AES 128 128 x x

AES 128 256 x -

DES 64 56 x x

3DES 64 168 x x

Twofish 128 128 x -

Twofish 128 256 x -

Table 5.2: The table shows which symmetric algorithms are to be tested and if they are

going to be implemented in the hardware accelerator.

57

Asymmetric algorithms When comparing the asymmetric algorithms, the re-

sults are dependent on a wide variety of configuration parameters. There are

dozens of parameters to configure and to find the optimal configuration would

require a large amount of time and testing. However, the purpose of the test is

to compare how the two technologies ECC and RSA perform in relation to each

other. To do this accurately, the test of each technology will be performed using

both available large integer arithmetic libraries with as similar configuration as

possible. The tests to be performed are presented in table 5.3.

Testchart for asymmetric cryptographic algorithms

Algorithm Key size LibTomMath TomsFastMath

[bit]

ECC 112 - 521 x x

RSA 1024 - 4096 x x

Table 5.3: The table shows the symmetric algorithms and libraries that are going to be

implemented.

5.4 Measurements

Several measurements will be done when benchmarking the algorithms. The

implementations will be analyzed regarding two factors; execution time and

memory consumption.

Execution times The execution time will be measured in two different ways.

For the asymmetric cryptography the timing will be done using a count vari-

able, which is incremented by the 991 Hz clock timer interrupt. The result will

be obtained by reading and rescaling the value of the variable. Therefore the

accuracy of the result is tmeasured ± 1.01mS.

For the considerably faster symmetric cryptography operations, the start and

stop operations were indicated on an external I/O-pin, and measured using

an oscilloscope. The readout of the oscilloscope has a precision of three digits,

therefore the accuracy is tmeasured ± 0.05mS.

58

Memory analysis The memory consumption of the algorithms is analyzed

from the linker-file produced by the development environment. This linker-file

provides information of the required memory for each source file. This analysis

can be done rather accurately since LibTomCrypt has a separate source file for

each algorithm.

59

60

CHAPTER 6

Results

The results of benchmarking different algorithms on the test-platform, in both

symmetric and asymmetric cryptography, are presented in this chapter.

6.1 Symmetric algorithms

The symmetric algorithms tested on the test platform were AES, DES, 3DES

and Twofish. The measurements of the different algorithms done using 10 KiB

data and will be presented in the unit [ms/KiB].

6.1.1 Symmetric encryption and decryption

Both encryption and decryption routines were implemented on the board for

the measurements on the symmetric algorithms. The test was performed using

several keysizes for the algorithms, wherever this was possible. The software

algorithm test, was based on the cryptographic library LibTomCrypt and did

not require any mathematical library. The library is configured for size rather

than speed wherever possible.

For AES, DES and 3DES it was possible to use the hardware acceleration mod-

ules on the processor. This was also tested and the results are listed as a com-

parison in table 6.1.

Note that by using the hardware implementation in all three algorithms, there

was a large improvement in speed. The AES cipher was 16.1 times faster than

the software implementation, and 3DES was 42.7 times faster. The hardware

61

Symmetric encryption and decryption

LibTomCrypt Hardware module

Algorithm Block size Key size Encryption Decryption Encryption Decryption

[bits] [bits] [ms/KiB] [ms/KiB] [ms/KiB] [ms/KiB]

AES 128 128 9.2 9.2 0.57 0.57

AES 128 256 11.5 11.5

DES 64 56 15.0 15.0 0.55 0.55

3DES 64 168 37.6 37.6 0.88 0.88

Twofish 128 128 9.1 9.1

Twofish 128 256 9.1 9.1

Table 6.1: The table shows the encryption- and decryption time taken, for the listed

symmetric ciphers, to compute 1 KiB.

implementation improved the 3DES cipher significantly more. In the software

implementation, AES was 4.1 times faster than 3DES, this can be compared to

the hardware module, where AES only was 1.5 times faster.

Further results when comparing the symmetric ciphers, are the memory re-

quirements of the different algorithms. These results are presented in table 6.2.

It should be noted that to simplify portability within the library all ciphers re-

quires the same 3.3 KiB of RAM.

Symmetric algorithm’s different memory requirements

Symmetric Memory requirements Memory requirements Total FLASH

cipher of the algorithm’s code of the algorithm’s tables required

[Byte] [Byte] [Byte]

AES 7304 4436 11740

DES/3DES 6028 2588 8616

Twofish 9888 392 10280

Table 6.2: The table show symmetric algorithm’s different memory requirements.

The amount of memory each cipher requires is a measurement of the efficiency

of the implementation. The DES cipher require the same memory size as the

3DES which is expected since the 3DES algorithm consists of running the DES

62

cipher three times. The small amount of predefined tables of the Twofish cipher

compared to AES is because it uses an algorithm to compute the S-box values,

this is slower but reduces the memory required.

6.2 Asymmetric algorithms

In the test of the asymmetric algorithms, RSA was compared to ECC. Due to

the large amount of memory required by the asymmetric cryptography there

was insufficient memory left to implement a PRNG, which is required to per-

form encrypt- and signature-operations. Therefore the implemented operations

were limited to decryption and verification. The two different algorithms were

benchmarked with the previously determined key sizes. ECC was also imple-

mented with the two different mathematical libraries, LibTomMath and Toms-

FastMath. The TomsFastMath library could not be used in combination with

RSA due to lack of memory.

6.2.1 Memory requirements

The results of the memory requirements of the different configurations used for

the asymmetric cryptography tests, are shown in table 6.3. The LibTomCrypt

library requries about 73 KiB for ECC operations and about 39 KiB for RSA

operations, this includes support for a single symmetric algorithm (AES) and

a hash function (SHA-256) required by the library for asymmetric operations.

As mentioned previously, the large integer libraries also require a large amount

of memory. The LTM library require 56.2 KiB of memory and the TFM library

size depends on the maximum input size it is configured for. An input size

of 521 bits for ECC results in 57.5 KiB and increases to 162.5 KiB for 1024 bits

RSA. Since the remaining code memory on the processor is 154 KiB, the latter

implementation is infeasible.

6.2.2 Asymmetric decryption

The two following tables, 6.4 and 6.5, shows the different decryption times for

ECC and RSA respectively using their private keys. The data used in this test

63

Memory requirements

Configuration Library Flash memory

[Byte]

ECC + LTM LibTomCrypt 73140

LibTomMath 56148

Total 129288

ECC + TFM LibTomCrypt 70288

TomFastMath 57504

Total 127792

RSA + LTM LibTomCrypt 38460

LibTomMath 56148

Total 94608

RSA (max 1024) LibTomCrypt 38460

+ TFM TomFastMath 162492

Total 200952

Table 6.3: The table shows the amount of Flash memory required by the different con-

figurations used for the asymmetric cryptography. The amount of available

memory is approximately 154 KiB.

64

was a symmetric key of 128 bits, encrypted by the corresponding public key.

In the first table, describing ECC decryption, both LibTomMath and TomsFast-

Math libraries are used and compared to each other.

The improvement factor of implementing the TomsFastMath library is increas-

ing with the security level. The largest improvement is therefore with the 521

bit key, resulting in an improvement factor of nearly 4 times faster decryption.

Decryption in ECC

LibTomMath TomsFastMath

Key size Decryption time Decryption time Improved by factor

[bits] [Sec] [Sec]

ECC 112 0.808 0.765 1.06

ECC 128 0.980 0.834 1.18

ECC 160 1.233 0.938 1.31

ECC 192 1.570 1.064 1.48

ECC 224 1.972 1.187 1.66

ECC 256 2.829 1.375 2.06

ECC 384 6.329 2.277 2.78

ECC 521 12.940 3.248 3.98

Table 6.4: The table shows the decryption time taken for different keysizes in both

LibTomMath and TomsFastMath.

For the RSA decryption only keysizes of up to 3072 bits was possible, 4096 bit

key failed due to insufficient RAM. It was impossible to use TomsFastMath or

any other software acceleration for RSA decryption due to the limited Flash

memory.

6.2.3 Verification

The table 6.6, show the results of verification with ECDSA. In this test the

results are presented from testing the mathematical libraries TomsFastMath

and LibTomMath. Further it presents the improvements by adding Shamir’s

trick, which is described in the paragraph below. The implementation of both

Shamir’s trick and TomsFastMath was only possible up to the ECC keysize of

65

Decryption in RSA

Key size Decryption time

[bits] [Sec]

RSA 1024 2.694

RSA 2048 14.734

RSA 3072 44.274

Table 6.5: The table shows the decryption time in RSA. Only three different keysizes

were possible to implement.

128 bits, this is due to the fact that Shamir’s trick stores precomputed large in-

tegers, and in TFM all integers are represented with the same precision. Since

the LTM library only stores the required precision, the same number of integers

require less RAM memory.

Shamir’s trick Multiplication of points on the elliptic curve is done by addi-

tions and point doubling. Addition arithmetic is much more complex to per-

form than point doubling. Therefore, this trick is based on precomputing addi-

tion results, to be used when needed. Using this trick the performance can be

increased by using more memory. This only affects the verify operation since it

requires two multiplications.

With the limited amount of memory it was not possible to accelerate the RSA

verification with any configuration except the most basic. The results are shown

in table 6.7 and this shows that the verification is much faster than the corre-

sponding times for decryption with RSA.

66

Verification in ECC

Key size With LibTomMath With TomFastMath

Shamir’s Trick No Yes No Yes

[bits] [Sec] [Sec] [Sec] [Sec]

ECC 112 0.809 0.588 0.727 0.535

ECC 128 1.103 0.782 0.827 0.595

ECC 160 1.612 1.147 1.042 Failed

ECC 192 2.300 1.603 1.309 Failed

ECC 224 3.246 2.206 1.626 Failed

ECC 256 4.761 3.310 1.905 Failed

ECC 384 11.665 8.056 3.428 Failed

ECC 521 24.948 17.226 5.646 Failed

Table 6.6: The table shows the verification time taken for different keysizes in ECC in

both mathematical library together with Shamir’s trick wherever possible.

Verification in RSA

Key size Verification time

[bits] [Sec]

RSA 1024 0.191

RSA 2048 0.665

RSA 3042 1.378

Table 6.7: The table shows the verification time in RSA.

67

68

CHAPTER 7

Discussion

Within this section a discussion of the thesis project is presented. The decisions

and research will be analyzed, concluding with a discussion of the archived

results.

7.1 Access systems

In this thesis work a study of access systems was done. Existing systems were

analyzed to determine functionality, weaknesses and possible improvements.

From the results of this study a concept solution for a new access system was

designed. However, due to the pending patent application, the results regard-

ing the study of access systems will not be further discussed in this public re-

port.

7.2 Security

As mentioned in section 2.1.3, analyzing the security of an access system is a

very difficult task. There are a great number of factors affecting the security

of the whole system. This includes a large number of possible attack angles

such as; physical- , electrical- , hardware- and cryptography-security. This task

is even more complicated when considering the human factor, the actual users

and administrators of the system. Therefore, from the entire system point of

view, the choices of cryptographic algorithms and keysizes play a small role in

69

the security of the whole system.

However, in this thesis the focus is on the cryptography and how it can be im-

plemented to solve the problem of key distribution. Therefore, only the crypto-

graphic part of the access system will be considered in the scope of this report.

7.3 Cryptography choices

The choices of which algorithms to be implemented in this thesis work were

mostly based on recommendations from the National Institute of Standards

and Technologies, NIST. They publish US Federal Information Processing Stan-

dards, FIPS, containing recommendations of which cryptographic techniques

to use and how to implement them. The recommendations apply to encrypted

information within the US Government. When analyzing the security level

between different cryptography technologies, the comparison is based on the

work factor for the algorithm with the corresponding keysize. A comparison

table is found in table 7.1, and includes data from the NIST recommendation

documents.

Work factor for different technologies

Bits of Symmetric RSA ECC

security key size key size key size

[bits] [bits] [bits] [bits]

80 80 1024 160

112 112 2048 224

128 128 3072 256

192 192 7680 384

256 256 15360 512

Table 7.1: Work factor based (Security bits) comparison of keysizes with different

cryptographic technologies.

Recommended keysizes The lifespan of a cryptographic algorithm can be

related to its work factor, and is determined by making estimates of future

70

computational progress. The estimates are produced using methods such as

Moore’s law, and therefore they are vulnerable to unexpected large cryptanaly-

sis breakthroughs. It is therefore important to consider them only as estimates

and guidelines, which could turn out to be quite unreliable. The currently rec-

ommended keysizes as predicted by NIST are presented in table 7.2.

Expected Key Lifetime

Bits of Algorithm

security security lifetime RSA ECC

[bits] [bits] [bits]

min. 80 Trough 2010 1024 160

min. 122 Trough 2030 2048 224

min. 128 Beyond 2030 3072 256

Table 7.2: The table show the keysizes recommended by NIST.

7.3.1 Symmetric algorithms

The ciphers which were evaluated where chosen based on both recommenda-

tions from standardization institutes and from what was available in the library

used for the implementation. AES and 3DES are recommended by NIST for use

in new designs and was therefore chosen. Further, as a comparison, the Twofish

cipher was included.

For symmetric algorithms the work load mostly defined as the resources re-

quired to do a bruteforce-attack on the algorithm, with compensation for birth-

day attacks. This is valid for most the unbroken ciphers. Most standards recom-

mended a minimum keysize of 128 bits for all new implementations of sym-

metric ciphers. Although, it might seem unnecessary with 128 bits for most ap-

plications, it is reasoned that bits are cheap to implement in symmetric ciphers.

The Rijndael cipher was standardized into AES by winning the AES Standard-

ization competition. However, the main reason it won was that it requires few

resources and can be implemented on small platforms. The strongest attack on

AES, breaks an encrypted message, using 7 rounds of the specified 10 rounds

71

for the keysize of 128 bits. This is considered by some to be a rather small secu-

rity margin, regarding future cryptanalysis breakthroughs. There were several

other candidates which were considered to be more secure, by the AES jury,

such as Twofish 1. This is why Twofish was included in the benchmark.

The 3DES cipher was proposed as a solution after the previous DES cipher was

broken, and has been recommended since 1991. It comprises of 3 rounds of DES

and uses a 168 bit key. 3DES has become less common in new designs since the

AES cipher is considerably faster.

Modes of operation NIST recommends several different modes of operation

for block ciphers. Moreover, Bruce Schneier and Niels Ferguson provides a

great summary of the modes in their book Practical Cryptography on page 77

[4]. The two finalists in their comparison was CBC- and CTR-mode, the main

difference between them is how much information of the plaintext is leaked if

the Nonce is used twice. Finally, they recommend CTR-mode as it is simpler to

implement and does not require padding.

7.3.2 Asymmetric algorithms

In asymmetric cryptography there are two major different types of algorithms,

RSA or ECC. They are quite different regarding the mathematics behind them,

although the applications are the same. The main difference is the keysize. In

table 7.3 showing the different recommendations based on security level, shows

that the ECC keysizes are comparably much smaller.

RSA The RSA algorithm is still recommended by NIST although the large

keysize makes the use of the algorithm computationally slow and memory con-

suming. It should be noted that RSA has been used for a longer time within

asymmetric cryptography, and therefore more cryptanalysis research had been

done on the algorithms and math. Therefore, RSA is considered the safe con-

servative choice compared to the newer ECC algorithms.

1Mentioned in Bruce Schneier’s book Practical Cryptography page 65 [4].

72

Elliptic curve cryptography Certicom is one of the major advocators of the

elliptic curve cryptography. They claim that, although the use of ECC is rather

new, the mathematical research behind it, is 150 years old. However, accord-

ing to Bruce Schneier, this is a modified truth because the research behind the

mathematics are not from a cryptanalysis- but mathematical- viewpoint2.

The use of ECC has increased over the last few years and is still advancing.

There is an increasing amount of documentation available on the subject and

there are several organizations publishing standards of ECC parameters, such

as; National Institute of Standards and Technology (NIST), The American Stan-

dard Institute (ANSI), and The Institute of Electrical and Electronics Engineers

(IEEE).

To achieve the desired security level, when implementing ECC, it is impor-

tant to use approved elliptic curve parameters. NIST are recommending curves

based on the two different groups, prime and binary groups. LibTomCrypt

only supports curves defined in the NIST prime-group.

Security level

Bits of RSA ECC

security key size key size

[bits] [bits] [bits]

80 1024 160-223

112 2048 224-255

128 3072 256-383

192 7680 384-511

256 15360 512+

Table 7.3: The table describes the variety of keysizes in ECC for each level of security.

Most asymmetric systems in use today, uses 1024 bit parameters for Diffie-

Hellman and RSA which is the NIST recommendation until 20103. The cor-

responding ECC key size, with equivalent security, is 163 bit, according to Cer-

ticom4.

2This is discussed at Bruce Schneier’s website [27].
3This is described in NIST’s special publication 800-57 [28].
4The keysize recommended by NIST and Certicom [29] differs 3 bit.

73

A competition5 in cryptanalysis of ECC was introduced in November 1997 by

Certicom to stimulate further analysis on the security of elliptic curve cryptog-

raphy. It was also developed to increase the understanding of the difficulty of

the elliptic curve discrete logarithm problem.

One of the challenges, comprising 109 bit key, was solved on November 6th

in 2002 utilizing the power of 10.000 computers running 24 hours a day for

549 days. This was done by Chris Monico and his team of mathematicians at

Notre Dame. It is approximately a hundred million times harder to break the

next challenge, of the 163 bit key size which is the recommended keysize from

Certicom.

7.4 Hardware performance

The hardware used in this evaluation was chosen with little prior knowledge

of the requirements associated with cryptographic algorithms or computations

on large integers. Therefore the choice of hardware was not optimal, the main

limitation was the memory. However, the goal of this test implementation was

to study the feasibility, not to construct an optimal implementation.

7.4.1 Processor architecture

The ARM7 core of the AT91SAM7XC256 processor is a commonly used and

widely available architecture for embedded systems, which made it suitable

for this test.

Processor clock The processor speed is the most obvious parameter when

choosing processor, it is measured in million instructions per second, MIPS. In-

creasing the speed of the processor is usually associated with increasing power

consumption, therefore the manufacturers implement additional functionality

to the processor to speed up the system without increasing the clock frequency.

So for the performance of the embedded processor there are several other pa-

rameters to consider which have more impact on the performance than the pro-

5The competition announced by Certicom is further described at their website [30].

74

cessor clock frequency.

Architecture The choice of which internal bus-size to use for the implementa-

tion has a large impact on the performance. The internal bus-size on the chosen

architecture is an important factor, since performing some of the arithmetic op-

erations can be performed more than four times faster on an 32 bit architecture,

than on a corresponding 8 bit architecture.

Built-in modules Some processors have additional modules included inside

the processor to simplify common tasks, for example a hardware multiplier

module can significantly improve processor speed, since an integer multiplica-

tion can be done in one processor cycle.

Several manufacturers provide processors with application specific modules,

such as symmetric en-/decrypt modules and coprocessors for asymmetric cryp-

tography.

Furthermore, some processor architectures, mostly Digital Signal Processors,

DSP, have hardware support for performing fixed point arithmetic. This would

speed up calculations considerably, since TFM operates using fixed point calcu-

lations. An article, by Fujitsu Laboratories [31], describes implementing various

asymmetric algorithms on a Texas Instruments DSP provided results of 3.97 ms

for a 160 bit ECDSA verification. Compared to the fastest results achieved in

this thesis, it is faster by a factor of 261 times, or 39 times accounting for differ-

ences in processor clock speed.

Generally it can be reasoned that the optimal processor architecture for use with

asymmetric cryptography is an architecture with support for fixed point oper-

ations, alternatively an architecture with a coprocessor for cryptography oper-

ations. However, there is always a compromise of cost versus performance, a

faster and/or more complex platform is usually more expensive.

7.4.2 Memory

One of the toughest constraints with the implementation on the test platform

was the limited memory available. More memory would most likely result in a

75

much faster implementation and enable larger keysizes to be used.

There are large performance gains to be had by increasing the amount of mem-

ory, mostly because the program can reuse previously calculated results by stor-

ing them in tables. This also allows for faster and more efficient large integer

arithmetic libraries to be used.

Therefore, for a complete evaluation of the LibTomCrypt library on this em-

bedded platform the code should be tested on the AT91SAM7XC512, which

has double the RAM- and Flash-memory.

7.4.3 Extension modules

Another approach would be to design an external FPGA with customized VHDL

code for accelerating the large integer arithmetic, this is a similar approach to

choosing a processor with an embedded coprocessor. Furthermore, some man-

ufacturers provide processors with a builtin programmable FPGA-module for

this purpose.

7.4.4 Power consumption

The focus of this testplatform has been on feasibility, not implementing ef-

ficiently. However, since a lockunit most likely would be battery-powered,

power consumption is a relevant subject. In general, the more performance

the processor has, the more power it requires and therefore there is a negative

relationship between the performance and battery time.

Most processor manufacturers have enabled certain features to solve this prob-

lem, these are mostly; low-power sleep modes, ability to lower clock frequency

and disabling unused function modules in the processor. These features should

be carefully considered by the designer when choosing which processor plat-

form to use in a commercial product.

76

7.5 Software performance

The performance of the software is hard to measure, since it has to be properly

defined what a feasible implementation is. The goal of this implementation

was to achieve as high speed of the algorithms as possible, with the limited

resources of the embedded platform. The focus on algorithm speed has resulted

in a code size requiring 90% of the total memory, this is probably insufficient for

most applications. However, in this implementation this means the algorithm

speed results are close to the limit for what is feasible on this platform.

7.5.1 Language and compiler

The program is written mostly in C, only the TFM library uses assembler macros

to speed up certain operations. There could probably be a performance gain by

further optimizing some of the algorithm code by using assembler. Although,

this would require a lot of time and limit the objectivity of the code.

The code was compiled using the arm-elf-gcc compiler. To enable debugging

support of the code the optimization was turned off. Therefore, there are still

performance which could be gained by tuning this parameter. Moreover, an-

other compiler such as the commercial IAR Workbench Compiler, could prob-

ably produce more optimized code for the ARM7 core which would give a

smaller and more efficient application.

7.5.2 Cryptographic library

The performance impact of the choice of a cryptographic library is hard to mea-

sure, another library might have implemented some algorithms differently. The

LibTomCrypt library was easy to get started with since it is extensively docu-

mented and commented, especially compared to its main contender Crypto++,

where only the programmers reference API is provided.

LibTomCrypt uses a simple API with a highly modularized structure, this means

that for example the CBC-mode encryption function is independent of which

block cipher it is to use. This gives a highly portable code where the crypto-

graphic algorithms can be replaced easily, and support for a variety of algo-

77

rithms can easily be implemented. The downside is that it requires more over-

head resources to support every possible algorithm and therefore gives a larger

code size.

There are many tuning parameters for the library, mostly allowing the program-

mer to decide whether to optimize the algorithms for speed or for size. Also,

there are parameters controlling whether the asymmetric cryptography should

use faster methods, requiring more memory, such as fixed precision arithmetic

or Shamir’s trick.

7.5.3 Large integer libraries

There are two large integer libraries evaluated in this project. Both are exten-

sively documented and several macros are enabled providing an easy interface

to the LibTomCrypt library.

LibTomMath The LibTomMath library is a MPI library implemented for edu-

cational purposes. Therefore it might not provide the fastest routines. However,

in this implementation only this library was able to perform the RSA operations

with the limited RAM available.

The code-size of the library is the same for all sizes of the integer it performs

calculations on. This means the library has the same code size for both ECC

and RSA implementations. However, the required RAM memory depends on

the size of the input variables, therefore LTM fails to perform calculations on

4096 bit RSA keys due to insufficient amount of RAM memory.

TomsFastMath The TomsFastMath library is a fixed precision integer library

including assembler support for processor-platform specific optimizations. Us-

ing fixed precision operations with assembler routines results in much faster

calculations than LTM.

However, the fixed precision operations require a larger code size than the MPI

operations. The required memory is heavily dependent on the maximum pre-

cision which the library has to support, since every calculation is done with

integers of the maximum precision.

78

When compiling TFM with ECC support (max 521 bit input integers), the result-

ing library is smaller and much faster than LTM. The result of enabling support

for the 1024 bit input integers required for the smallest RSA key, compiles into a

three times larger (163 KiB) codesize than LTM. The RSA configuration also re-

quires more RAM due to the larger integers. The ARM7 processor only has 154

KiB of code memory remaining therefore using TFM with RSA was not tested.

This library would probably speed up RSA operation as much or even more

than ECC if there were more memory available on the processor.

7.6 Implementation performance

7.6.1 Symmmetric performance

The results of the execution times of the symmetric algorithms implemented on

the testplatform are presented in table 6.1 on page 62.

There is no difference between encryption and decryption done by the same

algorithm. This is due to symmetry in the structure of the encryption and de-

cryption algorithms.

Both AES and Twofish had very similar performance and codesizes in this im-

plementation. From a cryptanalysis viewpoint could be argued that the Twofish

cipher is more secure, this was mentioned in section 7.3.1. However, the AES ci-

pher is the recommended standard cipher and will therefore receive more pub-

lic cryptanalysis attention, resulting in public exposure if its security is compro-

mised. Therefore the AES cipher is the better choice.

There were large performance gains by using the hardware acceleration mod-

ules compared to the software implementation. The 3DES algorithm was im-

proved by a factor of 42 and AES improved by a factor of 16. Using the hard-

ware acceleration module the AES cipher was by far the fastest cipher in the

implementation.

79

7.6.2 Asymmetric performance

The choice to only implement asymmetric decryption and verification was made

since they do not require a random number generator to be implemented on the

platform, thus some memory could be saved.

A summary of the test results from the fastest implementation of the respective

algorithm is shown in table 7.4

Time comparison of RSA vs ECC

Bits of RSA ECC Best RSA Best ECC Best RSA Best ECC

security key size key size dec. time dec. time ver. time ver. time

[bits] [bits] [bits] [Sec] [Sec] [Sec] [Sec]

80 1024 160 2.694 0.765 0.191 1.042

112 2048 224 14.734 1.187 0.665 1.626

128 3072 256 44.274 1.375 1.378 1.905

192 7680 384 - 2.277 - 3.428

256 15360 521 - 3.248 - 5.646

Table 7.4: The table shows the differences in decryption- and verification time between

the two algorithms within the same bits of security. Note the large amount

of time the RSA algorithm requires when the security is 128 bits.

RSA requires the longest computational time for decryption while it is rather

efficient on verification. This difference is dependent on which of the keys are

public respectively private, by switching the keys, the decryption would be

faster while verification would be slower.

For ECC verification requires more time than decryption, this is due to the fact

that verifications requires two point multiplications while decryption only re-

quires one. The speed of verification can be increased by using Shamir’s Trick.

Due to the limitations in memory on the embedded system, there were fewer

available improvements for RSA than for ECC, therefore the comparison could

not be completely fair.

To be able to benchmark the algorithms against each other they were compared

by the sum of decryption time and verification time. A comparison of the cal-

culated sums for each algorithm at each security level is shown in table 7.5.

80

This table clearly shows that ECC gives much faster performance and delivers

higher security bits.

Decryption- and verification time

Work Factor RSA ECC

[bits] [Sec] [Sec]

80 2.89 1.81

112 15.4 2.81

128 45.7 3.28

192 - 5.71

256 - 8.89

Table 7.5: The table present the summation of both decryption- and verification times

for ECC and RSA.

81

82

CHAPTER 8

Conclusions

This chapter presents the final conclusions of the thesis work, which consisted

of implementing cryptographic algorithms on a ARM7 based test platform.

Here the conclusions from the benchmarks of the cryptographic algorithms will

be presented, including a summary of the constraints related to the limited per-

formance of the embedded system. Furthermore, some suggestions for future

hardware and software improvements will be discussed.

8.1 Implementation feasibility

The aim of this thesis was to answer the question of weather it is feasible to

implement advanced cryptography on an embedded platform to be used in an

access system, and if the resulting performance would be usable.

The comparison of ECC and RSA in this implementation showed that it is feasi-

ble to implement asymmetric cryptography algorithms with very high security,

RSA keysizes up to 3076 bits and ECC keysizes up to 521 bits, on an embed-

ded platform. The ECC algorithm outperformed the RSA implementation with

a large margin. ECC with a 521 bit key was able to do both decryption and

verification in a very reasonable time of 10 seconds.

The same operations on RSA with a 3076 bit key required 45.7 seconds, this

compares in security to a 256 bit ECC key which only required 3.3 seconds.

The recommendation for a future product where asymmetric cryptography is

required and the implementation is software based is to use an ECC imple-

83

mentation rather than RSA. This is since the algorithm is clearly faster and re-

quires less memory to implement on embedded platforms, also enabling use

of a higher security level than is possible with RSA. The smaller keysizes also

reduce the size of the data to be transfered in the system resulting in smaller

blocks of encrypted data and signatures.

There are several devices customized with RSA coprocessors on the market

which probably could be used to accelerate the RSA calculations and thereby

gain an advantage over the software ECC implementation.

From this study it is clear that the symmetric ciphers play a smaller role of the

overall performance of the system than the asymmetric algorithms. However,

it is clear that processor accelerators for symmetric ciphers offer a performance

gain in the magnitude of 10-20 times faster symmetric encryption/decryption

and reduces the codesize considerably.

8.2 Further studies

There are several improvements that could be made in a future implementa-

tion such as; further optimizing the configurations of the cryptographic and

mathematical libraries, also configuring and/or purchasing a better compiler.

Choosing a different embedded platform would have a large impact on perfor-

mance where there are several items which should be considered as a future

improvement:

• Memory Increasing the available memory, both RAM and Flash, would

increase the performance of the large integer arithmetic libraries.

• Hardware module Using a processor with an accelerator for large integer

arithmetic would probably significantly increase the performance of both

ECC and RSA.

• Processor architecture Switching to a fixed point processor architecture

such as a DSP which has support for hardware multiplications would

probably provide the ideal platform for the ECC cryptographic algorithms.

84

List of Figures

2.1 Figure of identity methods . 8

3.1 Figure of Alice, Bob and Eve . 16

3.2 Figure of the ECB mode . 27

3.3 Figure of CBC mode . 28

3.4 Figure of the CTR mode . 29

85

86

List of Tables

3.1 Table of an S-box . 25

3.2 Table of ECC key generation . 34

3.3 Table of RSA key generation . 35

5.1 Table of code sizes . 57

5.2 Table of symmetric testchart . 57

5.3 Table of asymetric testchart . 58

6.1 Table of symmetric encryption time 62

6.2 Table of memory requirements by the code 62

6.3 Table of library implementation . 64

6.4 Table of ECC decryption . 65

6.5 Table of RSA decryption . 66

6.6 Table of ECC verification . 67

6.7 Table of RSA verification . 67

7.1 Table of work factor . 70

7.2 Table of recommended keysizes . 71

7.3 Table of security level . 73

7.4 Table of time comparison . 80

7.5 Table of dec. and ver. time . 81

87

88

References

[1] Linus Fredriksson and Martin Gyllensten. Modellering av

 delvis kända bilder med hjälp av bilder. URL: http://www.divaportal

 org/diva/getDocument?urn_nbn_se_liu_diva-6724-1__fulltext.pdf,

 2007.

[2] Securitas AB. Passersystem - generellt om passersystem.

 URL: http://www.securitassystems.se/97888027-1404-4b55-b007-5c51bb545b26.fodoc,

 2007.

[3] Bruce Schneier. Attack trees - modeling security threats.

 URL: http://www.schneier.com/paper-attacktrees-ddj-ft.html, 1999.

[4] Bruce Schneier Niels Ferguson. Practical Cryptography. Number ISBN 0-

 471-22357-3.

[5] David Kahn. The Code-Breakers. Number ISBN 0-684-83130-9.

[6] Keshava P. Subramanya. Brute force searches in cryptography.

 URL: http://www.cs.ucsb.edu/∼keshava/bruteforce/bruteforce.html, 2007.

[7] National Institute of Standards, Technology, and the agency of Commerce

 Department´s Technology Administration. Commerce department

 announces winner of global information security competition.

 URL: http://www.nist.gov/public_affairs/releases/g00-176.htm, 2007.

[8] Federal Information Processing Standards Publications. Announcing

 the advanced encryption standard (aes), fips 197.

 URL: http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

[9] National Institute of Standards and Morris Dworkin Technology.

 Recommendation for block cipher modes of operation

 methods and techniques, nist special publication 800-38a.

 URL: http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf, 2007.

[10] NSA National Security Agency. Announcing the secure hash standard.

 URL: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf,

 2002.

[11] William Stanley Jevons. The Principles of Science: A Treatise on Logic and

 Scientific Method. 1874, 2nd ed. 1877, 3rd ed. 1879.

[12] Martin E. Hellman Bailey W. Diffie. New directions in cryptography.

 URL: http://www.cs.rutgers.edu/∼tdnguyen/classes/cs671/presentations/Arvind-

 NEWDIRS.pdf, 1976.

[13] RSA Laboratories. What is the factoring problem?

 URL: http://www.rsa.com/rsalabs/node.asp?id=2189, 2007.

[14] RSALaboratories. Rsa algorithm.

 URL: http://www.rsa.com/rsalabs/node.asp?id=2146, 1977.

[15] RSA Laboratories. Pkcs #1 v2.1: Rsa cryptography standard.

 URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf, June 14, 2002.

89

[16] Alexander Bogomolny. Euclid’s algorithm from interactive mathematics

 miscellany and puzzles.

 URL: http://www.cut-the-knot.org/blue/Euclid.shtml, 2007.

[17] Federal Information Processing Standards Publications. Announcing

 the digital signature standard (dsa), fips 186-2.

 URL: http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf, 2000.

[18] Certicom. Ashort history of ecc.

 URL: http://www.certicom.com/index.php?action=ecc,about_ecc,

 2007.

[19] National Institute of Standards and Technology. Recommended

 elliptic curves for federal government use.

 URL: http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.doc, 1999.

[20] Dr Jean-Yves Chouinard. Design of secure computer systemscsi4138/

 ceg4394 - notes on elliptic curve cryptography.

 URL: http://www.site.uottawa.ca/∼chouinar/Handout_CSI4138_ECC_2002.pdf,

 2007.

[21] Bengt Werstén. Implementing the transport layer security

 protocol for embedded systems. URL: http://www.divaportal.org/

 diva/getDocument?urn_nbn_se_liu_diva-8767-1__fulltext.pdf,

 2007.

[22] Gordon E. Moore. Cramming more components into integrated circuits.

 Electronics Magazine: Volume 38, Number 8, April 19, 1965, 2007.

[23] Atmel. At91sam7xek user guide.

 URL: http://www.atmel.com/dyn/resources/prod_documents/doc6195, 1973.

[24] Tom St Denis. BigNum Math. Number ISBN 1-597-49112-8.

[25] ATMEL. At91sam7xc256, - description and datasheets.

 URL: http://www.atmel.com/dyn/products/product_card.asp?part_id=3798, 2007.

[26] ARM The Architecture for the digital world.

 Arm7tdmi, arm 32-bit risc core at 16-bit system cost.

 URL: http://www.arm.com/products/CPUs/ARM7TDMI.html, 2007.

[27] Bruce Schneier. Elliptic curve public-key cryptography.

 URL: http://www.schneier.com/crypto-gram-9911.html, 1999.

[28] National Institute of Standards and Technology. Recommendation of key

 management - part1: General (revised), nist special publication 800-57.

 URL: http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf, 2000.

[29] Certicom. The basics of ecc.

 URL: http://www.certicom.com/index.php?action=ecc,ecc_faq,

 2007.

[30] Certicom. Certicom announces elliptic curve cryptography challenge winner.

 URL: http://www.certicom.com/index.php?action=company,press_archive&view=307,

 2007.

[31] Naoya Torii Syouji Temma Yasushi Kurihara Kouichi Itoh,Masahiko Takenaka.

 Cryptographic hardware and embedded systems: First international

 workshop, ches’99, worcester, ma, usa, august 1999.

90

[32] TomDenis. Libtomcrypt project.

 URL: http://libtom.org/?page=features&newsitems=5&whatfile=crypt

[33] Ross Anderson.

 Serpent - A Candidate Block Cipher For Advanced Encryption Standard.

 URL: http://www.cl.cam.ac.uk/∼rja14/serpent.html,

[34] Eli Biham Ross Anderson and Lars Knudsen. Serpent:

 A Proposal for the Advanced Encryption Standard.

 URL: http://www.cl.cam.ac.uk/∼rja14/Papers/serpent.pdf, 1998.

[35] RSA Laboratories. Pkcs #1 v2.0: Rsa cryptography standard.

 URL: ftp://ftp.rsasecurity.com/pub/pkcs/doc/pkcs-1v2.doc, October 1, 1998.

[36] Certicom. Certicom announces elliptic

 curve cryptosystem (ecc) challenge winner.

 URL: http://www.certicom.com/

 index.php?action=company,press_archive&view=121,

 2007.

[37] NSA Natioanl Security Agency. The case for elliptic.

 URL: http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm, 2007.

[38] Certicom. Online elliptic curve cryptography tutorial (introduction).

 URL: http://www.certicom.com/index.php?action=ecc_tutorial,ecc_tut_1_0,

 2007.

[39] Communications Security Establishment. Cryptographic algorithms.

 URL: http://www.cse-cst.gc.ca/services/crypto-services/

 crypto-algorithms-e.html,

 2007.

[40] the security division of EMC RSA Laboratories. What are rc5 and rc6?

 URL: http://www.rsa.com/rsalabs/node.asp?id=2251, 2007.

[41] Horst Feistel. Cryptography and computer privacy.

 URL: http://www.apprendreenligne.

 et/crypto/bibliotheque/feistel/index.html, 1973.

91

Upphovsrätt
Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell
forskning och för undervisning. Överföring av upphovsrätten vid en
senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet
kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten
och tillgängligheten finns det lösningar av teknisk och administrativ art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna
sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form
eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller
konstnärliga anseende eller egenart.
För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/

Copyright
The publishers will keep this document online on the Internet — or its possible
replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.
The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses of
the document are conditional on the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security
and accessibility.
According to intellectual property law the author has the right to be mentioned
when his/her work is accessed as described above and to be protected against
infringement.
For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

2007 © Henrik Ahlström och Karl-Johan Skoglund

	framsida.pdf
	blank_page.pdf
	bbladmallisy_ifylld.pdf
	blank_page.pdf
	final_content.pdf
	Report_output.pdf
	References.pdf
	Upphovsrätt.pdf

