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A robustness evaluation of Bayesian tests for
longitudinal data

Lukas Arnroth and Rauf Ahmad

Department of Statistics, Uppsala University, Uppsala, Sweden

ABSTRACT
Linear mixed models are standard models to analyze repeated meas-
ures or longitudinal data under the assumption of normality for ran-
dom components in the model. Although the mixed models are often
used in both frequentist and Bayesian inference, their evaluation from
robustness perspective has not received as much attention in Bayesian
inference as in frequentist. The aim of this study is to evaluate Bayesian
tests in mixed models for their robustness to normality. We use a gen-
eral class of exponential power distributions, EPD, and particularly
focus on testing fixed effects in longitudinal models. The EPD class con-
tains both light and heavy tailed distributions, with normality as a spe-
cial case. Further, we consider a new paradigm of Bayesian testing
decision theory where the hypotheses are formulated as a mixture
model, with subsequent testing based on the posterior distribution of
the mixture weights. It is shown that the EPD class provides a flexible
alternative to normality assumption, particularly in the presence of out-
liers. Real data applications are also demonstrated.
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1. Introduction

Linear mixed models (LMM) provide standard tools to analyze longitudinal or repeated meas-
ures data in both Bayesian and frequentist inference. The LMMs offer much flexibility for mod-
eling a variety of covariance structures and can be used for both balanced and unbalanced data.
Furthermore, their implementation is facilitated through the availability of statistical software.
Most of the modeling of continuous data in real life problems through LMMs is essentially
based on normality assumption for the random components of the postulated model. When
the assumption is not tenable, the tests and confidence intervals are no longer valid.
In Bayesian theory of LMMs, the setting of priors may have much flexibility but nor-

mality assumption is the main source of likelihood in mixed models. This leads to ser-
ious consequences for posterior modeling if the likelihood part is misspecified. The
problem obviously exacerbates if the data additionally contain outliers. Such robustness
aspect in Bayesian context has not been considered as often as in frequentist case,
although there have been a few studies in this direction.
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For example, skewness in the random components of the LMM has been considered
by Arellano-Valle, Bolfarine, and Lachos (2005), Lin and Lee (2008), Zhang and
Davidian (2001). Of particular interest is the study of influence of outliers using multi-
variate t and Laplace distributions; see e.g., Lange, Little, and Taylor (1989), Pinheiro,
Liu, and Wu (2001), Rukhin and Possolo (2011), Yavuz and Arslan (2018). Another
approach focuses directly on the log-likelihood by replacing the quadratic term in the
normal distribution by a slower growing function (Huggins 1993).
The aforementioned references deal with a specific distribution as a replacement of

normality, hence lacking a broader perspective of evaluation. Our main objective in this
article is to evaluate the robustness aspect for Bayesian testing theory from the perspec-
tive of a general class of distributions, called exponential power distributions (EPD),
which includes uniform, Laplace and normal distributions. The univariate EPD class
was introduced by Box and Tiao (1962) for the purpose of studying robustness of
Bayesian t-test; see also Box and Tiao (1964). We use its multivariate extension in the
context of Bayesian testing of fixed effects in a mixed model set up for longitudinal
data. The EPD class makes a subclass of elliptically contoured distributions which is
widely used, particularly in frequentist inference for similar purposes.
Extension of the EPD class to the multivariate case was given in G�omez, Gomez-

Viilegas, and Mar�ın (1998). For its use as an alternative to normality in Bayesian infer-
ence, see e.g., Choy and Walker (2003), Haro-L�opez and Smith (1999), Lindsey (1999),
Walker and Gutierrex-Pena (1998). Like the normal distribution, the EPD is parame-
trized by location and variance parameters, but with an additional parameter which
determines the kurtosis and makes the EPD class particularly attractive to study robust-
ness. Setting this parameter to 1 reduces the EPD to normal. Otherwise, the distribution
has heavier or lighter tails than normal, depending on the values of the parameter. For
a special application of the EPD class in cross-over experiments, see Lindsey (1999).
The aforementioned aspect needs special emphasis in the context of Bayesian inference.

Generally, the setting of priors provides most flexibility in Bayesian inference, whereas the
likelihood comes from a relatively restricted assumption. If, however, the likelihood is mis-
specified, the resulting posterior distribution leads to seriously misleading predictive infer-
ence. Considered from this perspective, the EPD class provides alternative likelihood
sources for Bayesian testing theory when normality assumption is suspect, apart from
being an effective source of assessing robustness. A more technical discussion on the struc-
ture of the EPD, supplemented with graphs, is provided in Section 2.
After providing a brief orientation to the EPD class in Section 2, along with the form

of mixed models to be considered under the EPD, the Bayesian framework of the prob-
lem is given in Secction 3.1, with their corresponding Markov chain Monte Carlo
(MCMC) algorithms given in Section 3.2. A detailed simulation study focusing on the
use of EPD for robustness in the considered models is provided in Section 3.3, where
its application on real data is illustrated in Section 4.

2. Preliminaries

Consider the LMM

yi ¼ Xibþ Zibi þ ei, i ¼ 1, :::,m, (1)
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where yi 2 R
ni is the response vector on the ith individual, Xi 2 R

ni�p and Zi 2 R
ni�q

are the design matrices for the fixed and random effects respectively, with b 2 R
p and

bi 2 R
q the corresponding parameter vectors. We denote N ¼Pm

i¼1 ni as the total num-
ber of observations. For inferential purposes, it is commonly assumed that

bi � N qð0,WÞ, ei � N nið0, r2IniÞ, (2)

where W 2 R
q�q is a symmetric positive definite matrix and Ini is the ni � ni identity

matrix. W is assumed unknown and with no specific structure. It is further assumed
that bi and ei are independent.
Model (1) covers a wide variety of models as special cases. One of the simplest special

cases is the one-way repeated measures ANOVA model which we shall be particularly
dealing with. For this, Xi ¼ Zi ¼ 1ni where 1ni is a ni � 1 vector of ones. To avoid con-
fusion, the fixed and random effects under the ANOVA model shall be denoted by l
and ai respectively. Model (1) reduces then to its one-way repeated measures ANOVA
form as

yi ¼ l1ni þ ai1ni þ ei, i ¼ 1, :::,m: (3)

The distributional assumptions correspondingly reduce to

ai � Nð0, sÞ, ei � N nið0, r2IniÞ, (4)

where ai and ei are assumed independent.
The previously outlined setting is often using in frequentist inference of Model (1)

and its special form. Our purpose is to assess the tests of the fixed effects components
of these models in a Bayesian context under the EPD class. The normality assumptions
stated above will therefore be replaced with their counterparts under the EPD setting.
For this, we provide a brief outline of the EPD class and mention some essential ingre-
dients that will be frequently referred to in the sequel.
For a random variable y, the pdf of the univariate EPD is defined as (Box and Tiao

1962)

f ðy; l, r, jÞ ¼ rCð1þ ð2jÞ�1Þ21þ 1
2j

� ��1

exp � 1
2
j y� l

r
j2j

� �
, l 2 R, r 2 R

þ, j 2 R
þ,

(5)

with mean and variance

EðyÞ ¼ l and VarðyÞ ¼ 2
1
jC 3

2j

� �
r2

C 1
2j

� � ,

where j is the kurtosis parameter, indicating the extent of non-normality. For j¼ 1, (5)
reduces to the normal distribution, where the distribution is leptokurtic for j < 1 and
platykurtic for j > 1:
The pdf of the multivariate extension of the EPD is given as (G�omez, Gomez-

Viilegas, and Mar�ın 1998)

f ðy; l,R, jÞ ¼
pC p

2

� �
p

p
2C 1þ p

2b

� �
21þ

p
2j

jRj�1
2 exp � 1

2
ððy � lÞTR�1ðy � lÞÞj

� �
, (6)
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with

EðyÞ ¼ l and VarðyÞ ¼
2
1
jC pþ2

2j

� �
pC p

2j

� � R,

where l 2 R
p is the mean vector, R 2 R

p�p is the covariance matrix and j 2 R
þ: We

denote y � EPpðl,R, jÞ: Like the univariate case, the most important parameter in the
multivariate EPD, particularly from the perspective of studying it as an extension to the
multivariate normal distribution, is j. Figure 1 depicts the pdf in (6) for j ¼ f0:5, 1, 5g:
For j 2 ð0, 1�, a convenient re-formulation of the multivariate EPD is in terms of

scale mixture of normals (G�omez, G�omez-Villegas, and Mar�ın 2008), as

f ðy; l,R, jÞ ¼
ð
R

þ
N pðy; l, v2RÞdHjðvÞ, (7)

where N pð�; l,RÞ denotes a p-variate normal distribution and Hj is a one-dimensional
distribution function with density function

hjðvÞ ¼
21þ

p
2ð1�1

jÞC 1þ p
2

� 	

C 1þ p
2j

� 	 vp�3Sðv�2; j, 1, cj, djÞ, v > 0,

cj ¼ 21�
1
j cos p

j
2

� 	
, dj ¼ cj tan

pj
2

� 	
,

(8)

where Sð�; j, 1, cj, djÞ in (8) is the density function of a stable distribution with charac-
teristic function (Nolan 1997)

uðtÞ ¼ exp �cjjjtjj 1� i tan
pj
2

� 	
signðtÞ


 �
þ idjt

� �
:

When j¼ 1, HjðvÞ in (7) is degenerate at 1.

Figure 1. The density function of EP2ðl,R, jÞ displayed for j ¼ ð0:5, 1, 5Þ: Special cases of multivari-
ate Laplace in (a) and multivariate normal in (b).
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3. Bayesian tests of fixed effects under the EPD

3.1. Model set up

We are interested in evaluating the Bayesian tests for any number of the fixed effects
parameters in Model (1), namely,

H0 : ðbc1 , :::, bckÞT ¼ 0 vs: H1 : ðbc1 , :::, bckÞT 6¼ 0, (9)

under the EPD class, where fcigki¼1 � f1, :::, pg: The same hypotheses for the special
case in (3) can be stated as

H0 : l ¼ 0 vs: H1 : l 6¼ 0: (10)

To carry out these tests in a Bayesian context, we need to deal with the joint and mar-
ginal distributions of the components involved. For this, recall that we can write the
distributional assumptions in (2) as

yi
bi


 �
� N niþq

Xib

0


 �
, ZiWZT

i þ r2Ini ZiW
WZT

i W


 �� 	
, i ¼ 1, :::,m: (11)

Motivated by the procedures for robust estimation using the t-distribution outlined in
Bai, Chen, and Yao (2016), Lange, Little, and Taylor (1989), Pinheiro, Liu, and Wu
(2001), we recast the joint distributional assumption for EPD as

yi
bi


 �
� EPniþq

Xib

0


 �
,

ZiWZT
i þ r2Ini ZiW
WZT

i W


 �
, j

� 	
, i ¼ 1, :::,m: (12)

We shall consider the reparametrizations W ¼ r2D, where D is unknown with no
assumed structure as this was assumed for W, and s ¼ r2d which will allow partial col-
lapsing of the random and fixed regression coefficients in the MCMC algorithms out-
lined in the next section (Park and Min 2016). Thus, with the scale mixture of normal
representation of the EPD, (12) can be expressed as

yi
bi


 �
jvi � N niþq

Xib

0


 �
, r2v2i

Ri ZiD
DZT

i D


 �� 	
, vi � hjðviÞ, (13)

where Ri ¼ ZiDZT
i þ Ini : As interest lies in inference of the fixed effect coefficients, the

marginal model of yi in (13) could be considered. This corresponds to integrating out
the random effects from the posterior distribution, meaning less parameters to sample
in a MCMC sampling scheme. However, this approach would lead to an unknown nor-
malizing constant of the conditional distribution of D due to the presence of the inverse
and determinant of Ri in the likelihood. Thus the joint approach is often preferred to a
marginal one.

For the matrix form of (13), denote V ¼ diagðv1, :::, vmÞ, v ¼ ðv1, :::, vmÞT , the stacked

vectors y ¼ ðyT1 , :::, yTmÞT , b ¼ ðbT1 , :::, bTmÞT and the stacked matrices X ¼ ðXT
1 , :::,X

T
mÞT ,

Z ¼ diagðZ1, :::,ZmÞ and R ¼ diagðv1R1, :::, vmRmÞ: Then (13) can be expressed as

y
b


 �
jv � N Nþmq

Xb
0


 �
, r2

R ZðV �DÞ
ðV �DÞZT ðV �DÞ

 �� 	

: (14)

8758 L. ARNROTH AND R. AHMAD



Following the same strategy for the special case in (3, 13) can be expressed as

yi
ai


 �
vi � N niþ1

l1ni
0


 �
, r2v2i

~R d1ni
d1Tni d

" # !
, i ¼ 1, :::,m,

����� (15)

where Jni ¼ 1ni1
T
ni and

~Ri ¼ dJni þ Ini : Denote a ¼ ða1, :::, amÞT , and the block diagonal

matrices 1 ¼ diagð1n1 , :::, 1nmÞ and ~R ¼ diagðv1 ~R1, :::, vm ~RmÞ: The matrix form of (15) is
then

y
a


 �
v � N Nþm

l1N
0


 �
, r2

~R d1V
dV1T dV


 �� 	
:

���� (16)

Now, under this set up, Bayesian tests of the form (9) and (10) can be carried out for
which the models associated with H0 and H1 can be formulated as

M0 : y � f ðyjh0Þ, h0 2 H0 and M1 : y � f ðyjh1Þ, h1 2 H1, (17)

respectively, with corresponding prior distributions p0ðh0Þ and p1ðh1Þ: Further, for the
hypotheses tests (9) and (10) we have H0 	 H1: For example, the parameter spaces
stipulated by (10) with model (16) are

H0 ¼ ð0,1Þ2þm � ð0, 1Þ,H1 ¼ R�H0:

Standard procedure is then to compute the marginal likelihoods

m0 ¼
ð
H0

f0ðyjh0Þp0ðh0Þdh0 and m1 ¼
ð
H1

f1ðyjh1Þp1ðh1Þdh1,

with model choice subsequently carried out by the Bayes factor, defined as the quotient
of m0 and m1, or the posterior probability of any of the hypotheses (Kass and
Raftery 1995).
Recently, a new paradigm of Bayesian testing decision theory has been introduced.

For models M0 and M1 in (17), the problem is phrased as a two component mixture
(Kamary 2016)

Mx : y � xf0ðyjh0Þ þ ð1� xÞf1ðyjh1Þ,x 2 0, 1½ �, (18)

with p0ðh0Þ and p1ðh1Þ as the corresponding priors. In this paper we use (18), where
model choice is based on the posterior distribution of x rather than a discrete choice
determined by some threshold.
For hypotheses (9), the model under H0 is considered to be nested in that under H1,

thus parametrized by the same b: Let f0 be a p� 1 vector with zeros in the positions

fcgki¼1 and ones in the complement ðfcgki¼1Þc, where complementation is taken with
respect to f1, :::, pg: Denote the model matrix associated with the null hypothesis X0, i ¼
Xi diagðf0Þ and the stacked null matrix X0 ¼ ðXT

0, 1, :::,X
T
0,mÞT : The mixture model used

for testing parts of b is then

Mb
x : y � xN NðX0bþ Zb, r2 ~V Þ þ ð1� xÞN NðXbþ Zb, r2 ~V Þ, (19)

where ~V ¼ diagðv11Tn1 , :::, vm1TnmÞ: The corresponding structure for hypotheses (10) fol-
lows as

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 8759



Ml
x : y � xN Nð1a, r2 ~V Þ þ ð1� xÞN Nðl1N þ 1a, r2 ~V Þ, (20)

After settling with the likelihood formulation, we need the priors. We consider conju-
gate prior distributions, conditional on the scale mixture parameters, so that the priors
for the general model and its special case, (14) and (16), are, respectively,

ljr2 � Nðl0, r2r2lÞ, bjr2 � N pðlb, r2RbÞ, r2 � r0
v2�

, s � s0
v2g

,W � W�1ðn,W0Þ, (21)

where v2� denotes the v2 distribution with � degrees of freedom and W�1ðn,WÞ denotes
the inverse Wishart distribution with n degrees of freedom and scale matrix W:

Moreover, the prior distributions of the kurtosis and mixture parameters are

j � Uð0, 1Þ and x � Betaða1, a2Þ: (22)

To sample from the posterior of (19), latent indicators z1, :::, zm are utilized such that
zi 2 f0, 1g, with pðzi ¼ 0jy,X,Z, hb ziÞ ¼ x and pðzi ¼ 1jy,X,Z, hb ziÞ ¼ 1� x, where
hb ¼ fb, b,D, z,x, v, r2, jg and n is the set theoretic difference. The likelihood aug-
mented by the latent indicators is

pðy, zjX,Z, hb zÞ ¼Ym
i¼1

ðxN niðyi;X0, ibþ Zb, r2v2i IniÞÞzi0ðð1� xÞN niðyi;Xibþ Zb, r2v2i IniÞÞzi1 ,

where zi0 ¼ 10ðziÞ and zi1 ¼ 11ðziÞ, where 1 is the indicator function. Similarly, the
likelihood of (20) augmented by the latent component indicators is

pðy, zjX,Z, hlnzÞ ¼
Ym
i¼1

xN niðyi; 1a,r2v2i IniÞzi0ð1� xÞN niðyi; l1þ 1a, r2v2i IniÞzi1 ,

where hl ¼ fl, a, d, z,x, v, r2, jg: The posterior distributions of (19) and (20) are thus
given by

pðhbjy,X,ZÞ / pðy, zjX,Z, hbnzÞpðbjy,X,Z, hbnbÞ
Ym
i¼1

hjðviÞpðbjr2Þpðr2ÞpðDÞpðjÞpðxÞ,

(23)

pðhljyÞ / pðy, zjX,Z, hlnzÞpðajy,X,Z, hbÞ
Ym
i¼1

hjðviÞpðljr2Þpðr2ÞpðdÞpðjÞpðxÞ: (24)

3.2. Sampling from the mixture of hypotheses

To sample from (23) we consider an extension of the partially collapsed Gibbs (PCG)
sampler outlined in Park and Min (2016), based on normality and no mixture level.
Outlined in Sampler 1, the MCMC sampler is designed to block ðr2, b, bÞ, resulting in
faster mixing.
Steps 1 to 3 are a generalization of a blocked sample from

pðr2, b, bjy,X,Z, hb fr2, b, bgÞ ¼
pðr2jy,X,Z, hb fr2, b, bgÞpðbjy,X,Z, hb fb, bgÞpðbjy,X,Z, hb bÞ
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by partial collapsing, given that the internal order of the steps are not changed. The
process of partial collapsing is achieved by marginalization, permutation and trimming

(van Dyk and Park 2008). Denote Xi;zi ¼ zi0X0, i þ zi1Xi and Xz ¼ ðXT
1;z1 , :::,X

T
m;zmÞT , the

conditional distributions of steps 1 to 3 are then given by

r2jy,X,Z, hbnfr2, b, bg � ð�r20 þ ðb̂ � lbÞTR�1
b ðb̂ � lbÞ þ trðD�1W0Þþ

ðy � Xzb̂ÞTR�1ðy � Xzb̂ÞÞ 1
v2�þNþqg

,
(25)

bjy,X,Z, hbnfb, bg � N p b̂, r2ðR�1
b þ XT

z RXzÞ�1
� �

, (26)

bjy,X,Y , hbnb � Nmqðb̂, r2ðD� ðV �DÞZTR�1ZðV � DÞÞÞ, (27)

where

b̂ ¼ ðR�1
b þ XT

z R
�1XzÞ�1ðR�1

b lb þ XT
z RyÞ, b̂ ¼ ðV � DÞZTR�1ðy � XzbÞ:

The conditional distribution of steps 4 to 6 are given by

Djy,X,Z, hbnD � W�1 gþm, r�2ðW0 þ bbTÞ
� �

(28)

zijX i, hbnzi � Ber
�
1þ xN niðyi;Xi, 0bþ Zibi ,r2v2i IniÞ

ð1� xÞN niðyi;Xbþ Zibi,r2v2i IniÞ
	�1

 !
, (29)

xjy, hbnx � Beta
�
a0 þ

Xm
i¼1

zi1, a1 þ
Xm
i¼1

zi0

	
, (30)

where BerðpÞ denotes the Bernoulli distribution with mean p. Note that the specification
of (19) means that values x closer to 1 implies that the H0 is more likely and vice versa,
as can be seen in (30).
The conditional distribution of vi is given by

pðvijyi,Xi,Zi, hbnviÞ / hjðviÞN niðyi;Xi;zibþ Zibi, v
2
i r

2IniÞ, (31)

which does not have a known normalizing constant, so it is sampled by MH. As in

(G�omez, G�omez-Villegas, and Mar�ın 2008), we utilize the transformation wi ¼ 2
1
j�1v�2

i

which has the conditional distribution

pðwijyi,Xi,Zi, hbnviÞ / w
�ni

2
i Sðwi; j, 1, c



j, 1, d



jÞN ni yi;Xi;zib, 2

1�1
jw�1

i Ri

� �
, (32)

where c
j ¼ cos pj
2

� �
and d
j ¼ c
j tan

pj
2

� �
: By generating proposals independently from

the previous state as w0 � Sðw; j, 1, c
j, 1, d
jÞ, the stable densities cancel out in the

Sampler 1: LMM.
Step 1: Sample r2 � pðr2jy,X,Z, hb fr2, b,bgÞ
Step 2: Sample b � pðbjy,X,Z, hb fb,bgÞ
Step 3: Sample b � pðbjy,X,Z, hb bÞ
Step 4: Sample D � pðDjy,X,Z, hb DÞ
Step 5: Sample zi � pðzijyi ,Xi ,Zi , hb ziÞ, i ¼ 1, :::,m
Step 6: Sample x � pðxjy,X,Z, hb xÞ
Step 7: Sample vi � pðvijyi ,Xi ,Zi , hb viÞ, i ¼ 1, :::,m
Step 8: Sample j � pðjjy,X,Z, hb jÞ
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acceptance probability, given by

wðwi,w
0Þ ¼ min

�
1, exp

�
wi � w0

i

2r2
ððyi � Xi;zib� ZibiÞTðyi � Xi;zib� ZibiÞÞ

�	
: (33)

The conditional density of the kurtosis parameter is given by

pðjjhbÞ /
Ym
i¼1

21þ
ni
2 ð1�1

jÞC 1þ ni
2

� �
C 1þ ni

2j

� � vni�3
i Sðv�2

i ;j, 1, cj, djÞ, (34)

where cj and dj are defined as in (8). The normalizing constant of (34) is not known
and j is thus sampled by an MH-step with proposals generated by a normal random
walk truncated to ½0, 1� with standard error �. The acceptance probability of proposed j0

is given by

wðj, j0Þ ¼ pðj0jhl jÞðU 1�j
�

� �� U �j
�

� �Þ
pðjjhl jÞðU 1�j0

�

� �
� U �j0

�

� �
Þ
, (35)

where U denotes the standard normal cumulative distribution function. The conditional
distribution (34) is uni-modal and very peaked around its mode. A slice sampler is
more suitable but leads to extreme time consumption due to repeated evaluations of the
stable density function. A MH step has proved sufficient in our applications and has
been compared with a slice sampler. The peakedness of (34) leads to posterior samples
of j being largely determined by the likelihood rather than the prior distribution.
Replacing the uniform prior by a more informative one has little impact on the poster-
ior distribution. Mitigating this by a truncated prior generally leads to a situation simi-
lar to fixing the kurtosis parameter at either the upper or lower bound of the
truncation set.
A similar MCMC algorithm for the posterior distribution of the one-way ANOVA in

(24) is outlined in Sampler 2.

As for Sampler 1, steps 1, 2 and 3 form a blocked sample from ðl, a, r2Þ through par-
tial collapsing, given that their internal order is unchanged. Their conditional distribu-
tions are

r2jy, hl fl, ag �
1

v2Nþgþ�

�
d�1gs0 þ �r0 þ ðl0 � ~lÞ2

r2l
þ
Xm
i¼1

ðyi � ~lzi11niÞTðv2i ~RiÞ�1ðyi � ~lzi11niÞ
	
,

(36)

Sampler 2: one-way-ANOVA.
Step 1: Sample r2 � pðr2jy, hl fr2, a, lgÞ
Step 2: Sample l � pðljy, hl fa,lgÞ
Step 3: Sample a � pðajy, hl aÞ
Step 4: Sample d � pðdjy, hl dÞ
Step 5: Sample zi � pðzijyi , hl ziÞ, i ¼ 1, :::,m
Step 6: Sample x � pðxjy, hl xÞ
Step 7: Sample vi � pðvijyi , hl viÞ, i ¼ 1, :::,m
Step 8: Sample j � pðjjy, hl jÞ
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ljy, hlnfl, ag � N
�
~l, r2

�Xm
i¼1

zi11
T
niðv2i ~RiÞ�11ni þ r�2

l

	�1	
, (37)

ajy, hlna � N qðdV1T ~R
�1ðy � 1lÞ, dV � d2V1T ~R

�1
1VÞ (38)

where

~l ¼
�Xm

i¼1

zi11
T
niðv2i ~RiÞ�11ni þ r�2

l

	�1�Xm
i¼1

zi11
T
niðv2i ~RiÞ�1yi þ r�2

l l0

	
:

Furthermore, ~R
�1
i ¼ Ini � 1ni1

T
ni

d
1þnid

as ~Ri is compound symmetric. The derivation of

(36, 37) and (38) are outlined in the Appendix.
The conditional distributions of d, zi and x are given by

djy, hlnd � r�2ðs0 þ aTaÞ 1
v2gþm

, (39)

zijy, hlnzi � Ber
�
1þ xN niðyi; ai1ni , r2v2i IniÞ

ð1� xÞN niðyi; ðlþ aiÞ1ni , r2v2i IniÞ
	�1

 !
, (40)

xjy, hlnx � Beta
�
a0 þ

Xm
i¼1

zi1, a1 þ
Xm
i¼1

zi0

	
: (41)

The scale mixture weight is sampled by the same procedure as in Sampler 1, with
acceptance probability

wðwi,w
0
iÞ ¼ min

�
1, exp

�
wi � w0

i

2r2
ðyi � 1niðai þ zi1lÞÞTðyi � 1niðai þ zi1lÞÞ

�	
: (42)

The kurtosis parameter is sampled as in Sampler 1, with acceptance probability (35).

3.3. Simulation study

To compare performance of the mixture test for varying values of the kurtosis param-
eter, we consider settings similar to Pinheiro, Liu, and Wu (2001); Yavuz and Arslan
(2018) with focus on the LMM and its mixture representation in (19). The kurtosis par-
ameter is treated as a hyper-parameter by considering one-point distributions as prior
distributions. Data is simulated as

yi ¼ Xibþ 14bi þ ei, i ¼ 1, :::, 20: (43)

where Xi and b are defined as

Xi ¼ 1 1 1 1
8 10 12 14


 �T
and b ¼ 20

0:5


 �
,

where the null hypothesis is for the second element of b being 0. The random effects
and error in (43) are distributed as

bi �iidNð0, r2dÞ, ei �iidN 4ð0, r2I4Þ:
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To contaminate the data with outliers, bi and ei are expressed as mixtures

bi � ð1� pbÞN ð0, r2dÞ þ pbfNð0, r2dÞ, ei � ð1� peÞN 4ð0, r2I4Þ þ pefN 4ð0, r2I4Þ,
where f is a constant used to adjust the variance of one of the components. The result-
ing covariance of yi is

VarðyiÞ ¼ r2ðð1þ ðf 2 � 1ÞpbÞJ4 þ ð1þ ðf 2 � 1ÞpeÞI4Þ:
Results are based on 500 Monte Carlo simulations for all combinations of f ¼

ð2, 4, 6Þ, j ¼ ð0:6, 0:7, 0:8, 0:9, 1Þ, and pe ¼ ð0, 0:1, 0:2Þ with pb ¼ 0, as well as a worst
case scenario with pb ¼ 0:2, f¼ 6 and pe ¼ 0:2 for all j. We estimate the mixture
weight by the posterior median based on 104 samples from Sampler 1, with a transient
phase of 103 iterations. The median is considered rather than the mean as x generally
concentrates on its boundaries (Kamary 2016). The hyper-parameters are set as

bjr2 � N 2ð0,Nr2ðXTXÞ�1Þ, d � 1
v21

, r � 1
v21

and x � Betað0:5, 0:5Þ:

The results with no outliers in the random effects are shown in Figure 3. The effect
of the kurtosis on the posterior median of the mixture weight is negligible for scaling
factor f¼ 2. For scaling factors 4 and 6, the effect over increasing percentage of outliers
is more clear. With a higher kurtosis, i.e., closer to the normal distribution, choosing
the correct model gets less probable as pe increases. The difference is most clear with
scaling factor 6, where the effect of increasing pe is quite small for j ¼ 0:6, but drastic
for j¼ 1. The results with pb ¼ pe ¼ 0:2 and f¼ 6 are displayed in Figure 2, which are
nearly identical to the setting pb ¼ 0 and f¼ 6. Overall, from Figures 2 and 3, we see
that inference based on lower kurtosis is less affected by increased impairment from
outliers. Further, with no or low contamination by outliers, there is little difference in
model choice for the different values of kurtosis.

3.4. Applications

3.4.1. Example I
The dataset found in (Mid-Michigan Medical Center 1999) consists of repeated meas-
urements of oral condition for 23 cancer patients. Each patient is randomly assigned to
a treatment and placebo group, where the treated received aloe juice treatment. For
each individual, an initial measure is taken with repeated measurements at weeks 2, 4

Figure 2. Posterior median of the mixture weight for each j with pe ¼ 0:2, pb ¼ 0:2 and f¼ 6.
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and 6. Other variables are initial age, weight and cancer stage of the patients. The data
is displayed in Figure 4.
The model of interest is defined as

yij ¼ b0 þ b1, i þ ðb1 þ b2, iÞweekij þ b2treatmenti þ b3agei þ b4weighti þ eij,
i ¼ 1, :::, 23j ¼ 1, :::, 4,

(44)

where cancer stage has been omitted as its inclusion led to issues in frequentist estima-
tion of the random effects covariance matrix, this did not impact the results in terms of

model choice. For testing parts of (44), we consider the null H0: ðb1, b2Þ0 ¼ 0 against

H1: ðb1, b2Þ0 6¼ 0: The hyper-parameters are set as

bjr2 � N 5ð0, r2bI5Þ,D � W�1ð2, I2Þ, r2 � 1
v21

,x � Beta 1
2
,
1
2

� 	
and j � Uð0, 1Þ,

where results shall be compared for r2b ¼ 100 and 10. All results are based on 104 itera-

tions of Sampler 1, with a burn-in phase of 5� 103 iterations. The trace and posterior
densities of the mixture weight are displayed in Figure 5, where the posterior median is

estimated as 0.986 for r2b ¼ 100 and 0.934 for rb2 ¼ 10: The null is therefore favored

with both settings of r2b, but the difference is quite large based on Figure 5 with much

fewer jumps between models for r2b ¼ 100: Posterior samples of the kurtosis, treatment

and week fixed effect coefficients and between subject variance are displayed in Figure 6.
The posterior mean of the kurtosis parameter is estimated as 0.91 for both values of r2b,

and this result is not sensitive to changes in the hyper-parameters of the prior on j. Both
the treatment and week coefficients are generally sampled by the prior with r2b ¼ 100:

For r2b ¼ 10, the posterior mean of the treatment and week coefficient, based on the

Figure 3. Posterior median of the mixture weight for each combination of j, pe and f with pb ¼ 0.
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Figure 4. Cancer data.

Figure 5. Posterior sample of the mixture weight for the hypotheses of no treatment effect.
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iterations where one or more observations are assigned to the mixture component corre-
sponding to the alternative hypothesis, are estimated as �0.406 and 0.61 respectively. For
the between subjects variance, r2, the posterior mean with r2b ¼ 100 and r2b ¼ 10 are

estimated as 8.72 and 8.02 respectively. The increased oscillation of the mixture weights
with r2b ¼ 10 can also be seen in the trace plots of the variance term in Figure 6, when

comparing with the higher value of r2b: The posterior mean of the elements of D for

r2b ¼ 10 and r2b ¼ 100 are estimated as

D̂r2b¼100 ¼ 0:112 �0:016
�0:016 0:053


 �
, D̂r2b¼10 ¼ 0:118 �0:014

�0:014 0:052


 �
,

and are thus unaffected by the increased assignment of observations to the alternative
hypothesis component with r2b ¼ 10: In Figure 7, the random effects, e.g., b1, i and b2, i
in (44), are compared for patients with Id’s 6 and 14, which are marked as gray lines in
Figure 4. Patient 6 did receive treatment and thus corresponds to the dashed gray line,
whilst patient 14 did not and thus correspond to the solid gray line. There is not much
difference between the posterior samples for different r2b of the random effects.

In Figure 8, the posterior density of the mixture weights are compared when fixing
the kurtosis parameter to 0.6 and 1. In all settings, the null is favored. The evidence for
the null is slightly weaker with a lower kurtosis for both r2b ¼ 10 and 100.

To compare the models in a frequentist setting based on the normal likelihood, the
models stipulated by the null and alternative hypotheses are estimated using the lme4
(Bates et al. 2015) package in R (R Core Team 2020) and compared using the Akaike
information criterion (AIC). The AIC is 436.15 for the unrestricted model (44), where
the treatment and week fixed effects are estimated as �0.622 and 0.535 respectively.
The AIC for the restricted model is 444.69. Thus, the model under the alternative
hypothesis is favored in a standard frequentist setting.

Figure 6. Trace plots of the kurtosis parameter, treatment and week fixed effect coefficients, error
variance and elements of the random effects covariance based on Sampler 1.
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3.4.2. Example II
The dataset considered in Example 3.3 in Crowder and Hand (1990) consists of meas-
urements of plasma ascorbic acid (PAA) for twelve patients that underwent dietary
regime treatment with measurements taken at weeks 1, 2, 6, 10, 14, 15 and 16. First
2weeks consist of pretreatment measurements, last 2 consists of post-treatment meas-
urements and the measurements in the remaining weeks were taken during treatment.
The data are displayed in Figure 9.
To test whether the mean for pretreatment, treatment and post-treatment are equal,

the data is transformed by taking the mean within the treatment periods. Letting ~y i be
the vector of 7 measurements for patient i, the data is transformed as

yi ¼

1
2

1
2

0 0 0 0 0

0 0
1
3

1
3

1
3

0 0

0 0 0 0 0
1
2

1
2

0
BBBBB@

1
CCCCCA~y i, i ¼ 1, :::, 12,

Figure 7. Posterior samples of the random effects of individuals with id 6 and 14.

Figure 8. Posterior density of the mixture weights with the kurtosis parameter treated as a
hyper-parameter.
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with the model specified as

yij ¼ lj þ ai þ eij, i ¼ 1, :::, 12, j ¼ 1, 2, 3, (45)

where lj represents the average within the jth period. We shall first consider testing
H0: l1 ¼ l2 ¼ l3 vs. H1: not H0, and subsequently H0: l1 ¼ l3 vs. H1: l1 6¼ l3: To test
equality over the periods, (45) is expressed as

yij ¼ b1 þ b1, i þ b2Treatmentij þ b3Post� treatmentij þ eij, i ¼ 1, :::, 12, j ¼ 1, 2, 3,

(46)

with corresponding null hypothesis ðb2, b3Þ0 ¼ 0 and where Treatmentij is 1 if j¼ 2 and
0 otherwise and similarly Post� treatmentij is 1 if j¼ 3 and 0 otherwise. The hyper-
parameters are set as

bjr2 � N 3ð0, 10r2I3Þ, d � 1
v21

, r2 � 1
v21

,x � Beta 1
2
,
1
2

� 	
and j � Uð0, 1Þ:

Results are based on 104 with a burn-in phase of 5 � 103 iterations using Sampler 1,
where some steps for observations sampled under the null model being identical to
Sampler 2. The trace and posterior density of the mixture weight are displayed in
Figure 10, with the posterior median estimated as 0.078, strongly favoring the alterna-
tive hypothesis. Posterior samples of the kurtosis, fixed effects, between subjects variance
and random effects variance are displayed in Figure 11. The posterior mean of the kur-
tosis parameter is estimated as 0.84, and the estimate is not sensitive to changes in the

Figure 9. PAA data.

Figure 10. Posterior sample of the mixture weight for the hypotheses of the fixed effect equal to 0.5.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 8769



hyper-parameters for the prior on j. The estimated posterior means of the intercept,
treatment and post-treatment coefficients, based on iterations where one or more obser-
vations are assigned to the mixture component corresponding to the alternative hypoth-
esis, are 0.546, 0.606 and 0.158 respectively. For the variance components, the posterior
mean of the between subjects variance is estimated as 0.117 and for the random effects
variance, d, the posterior mean is estimated as 0.921. In Figure 12, the random inter-
cepts b1, i are displayed for individuals 2 and 10 which are identified by dashed lines in
Figure 9, where patient 10 corresponds to the dashed line with an initial measurement
near 1.5. The posterior mean of the random effects for patients 2 and 10 are given by
�0.112 and 0.296 respectively.
In Figure 13, the posterior density of the mixture weights are compared when fixing

the kurtosis parameter to 0.6 and 1. The posterior median is estimated as 0.046 for the
normal case, and 0.102 for j ¼ 0:6: The alternative hypothesis is thus strongly favored
for both cases.
We now consider testing whether the pretreatment levels of PAA are equal to the

post-treatment levels, i.e., H0 : l1 ¼ l3 vs. H1 : l1 6¼ l3 in (45). The test is carried out
based on model (46) with null hypothesis b3 ¼ 0: We only consider the comparison for
j ¼ 0:6 against j¼ 1 for this case, with the comparison of the posterior densities of the
mixture weights shown in Figure 14. The difference between the posterior densities is
larger in comparison to Figure 13, with the posterior median for the normal case esti-
mated as 0.90 and 0.772 for the kurtosis parameter set to 0.6. The difference in terms
of posterior medians is thus large, although both cases tend to favor the null.
For the frequentist model comparison, we consider tests based on Hotelling’s T2 as in

Example 4.2 in Crowder and Hand (1990). To test l1 ¼ l2 ¼ l3, the general null
hypothesis Hl ¼ 0 is considered, where l ¼ ðl1, l2, l3Þ0 and

H ¼ 1 �1 0
1 0 �1

� 	
:

When testing equality of pretreatment and post-treatment, H is set to the row vector
H ¼ ð10� 1Þ: For both cases, the test statistic is defined as

T2 ¼ m�yTHTðHSHTÞ�1H�y, (47)

where �y is the sample mean vector with elements �yj ¼ n�1Pm
i¼1 yij and S is the sample

covariance matrix with elements Sjk ¼ ðn� 1ÞPm
i¼1ðyij � �yjÞðyik � �ykÞ: With the

Figure 11. Trace plots of the kurtosis parameter, treatment coefficient and error and random effects
variance based on Sampler 2.
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Figure 12. Posterior samples of random coefficients for individuals with id 1 and 20.

Figure 13. Posterior density of the mixture weights with the kurtosis parameter treated as a
hyper-parameter.
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standard assumption of normality, T2 � Fq, n�q under the null, where q is the number
of rows of H and Fq, n�q is the F distribution with q and n–q degrees of freedom. For

the test of equality over all periods, T2 ¼ 69:75 which is F2, 10 distributed under the null
with p-value virtually 0. For testing equality between pretreatment and post-treatment,
T2 ¼ 2:06 which is F1, 11 distributed under the null with p-value 0.18. Thus, model
choice based on Hotelling’s T2 agrees with our results.

4. Conclusions

In this paper, the EPD class has been considered, in place of the standard normal
assumption, in the context of Bayesian hypothesis testing of the fixed effects in LMMs
for repeated measures. Tests have been carried out using a mixture representation
rather than the traditional Bayes factor or posterior probability of a given hypothesis. In
a simulation study, the kurtosis parameter is treated as a hyper-parameter to study its
effect on model choice under increasing contamination by outliers. Main focus is on
outliers in the error term, but outliers in the random effects are also considered. With
no outliers in the random effects, results from the simulation study show that the EPD
with a lower kurtosis than that of the normal distribution performs better in terms of
consistently choosing the true model. A kurtosis of 0.6 is much less affected by increas-
ing percentage of outliers and scaling factor, in comparison with the normal case. With
increasing kurtosis, the sensitivity to outliers also increases. One notable result is that
the difference between 0.6 and 0.7 is smaller than the difference between 0.9 and 1,
both in terms of spread and average of the posterior median over the Monte Carlo rep-
lications. Increasing the outliers of the random effects had no effect on the result with
the settings used in our simulation design.
When treating the kurtosis as a hyper-parameter in the applications to real data, we

find in Example I that the normal case and j ¼ 0:6 generally agree, albeit with the mix-
ture parameter concentrating more around 1, i.e., favoring the null, for j¼ 1. This was
the case for both hyper-parameters considered for the variance of the fixed effects.
Similarly, for Example II, we find that the results generally agree when treating the kur-
tosis parameter as a hyper-parameter for the test of all periods. When testing only pre-
treatment and post-treatment however, the difference was larger for the different values

Figure 14. Posterior density of the mixture weights with the kurtosis parameter treated as a
hyper-parameter.
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of the kurtosis parameter. One notable difference between Examples I and II is that the
kurtosis parameter was sampled much closer to 1, i.e., normal, in Example I. When
comparing the results in Example I to model choice in a frequentist setting with the
usual normal assumption, we found that the full model under the alternative was
favored. For Example II, we found that the model choice based on Hotelling’s T2 agreed
with our results.
The results from the applications and simulations indicate that using the general EPD

class instead of a specific distribution as replacement, when the normality assumption is
suspected, provides a flexible solution. For future research, the random effects could be
included in the set of hypotheses in conjunction with extending to multiple hypotheses.
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Appendix: Gibbs sampler for repeated measures one-way-ANOVA

The posterior (24) is

pðhljyÞ / ðr2Þ�N
2 exp � 1

2r2
Xm
i¼1

v�2
i ðyi � zi1l1ni � ai1niÞTðyi � zi1l1ni � ai1niÞ

( )

� x
Pn

i¼1
zi0þa2ð1� xÞ

Pn

i¼1
zi1
Ym
i¼1

ðv2i Þ�
ni
2 hjðviÞ

 !
ðr2Þ�m

2 exp � 1
2r2d

aTV�1a

� �

� ðr2Þ�1
2 exp �ðl0 � lÞ2

2r2r2l

( )
ðr2Þ�1��

2 exp � �r0
r2

� �
d�1�g

2ðr2Þ�g
2 exp � gs0

r2d

� �
1 0, 1½ �ðjÞ:

r2, l and a are sampled jointly from
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ðr2, l, aÞ � pðr2jy, hlnfl, agÞpðljy, hlnaÞpðajy, hlÞ:
To derive the conditionals of r and l with a marginalized out, the likelihood is based on the
marginal distribution of yi in (15) rather than the conditional. For r2,

pðr2, ljy, hlnfr2, agÞ /
ð
a

pðhljyÞda /

ðr2Þ�N
2 exp � 1

2r2
Xm
i¼1

ðyi � zi1l1niÞTðv2i ~RiÞ�1ðyi � zi1l1niÞ
( )

� ðr2Þ�1��
2 exp � �r0

r2

� �
ðr2Þ�g

2 exp � gs0
r2d

� �
ðr2Þ�1

2 exp �ðl0 � lÞ2
2r2r2l

( )
:

Next, l is integrated out

pðr2jy, hlnfr2, l, agÞ / ðr2Þ�ð1þ1
2ðNþ�þgÞÞ exp � 1

2r2
ðd�1gs0 þ �r0Þ

� �
ð
l
ðr2Þ�1

2 exp � 1
2r2

�Xm
i¼1

ðyi � zi1l1niÞTðv2i ~RiÞ�1ðyi � zi1l1niÞ þ
ðl� l0Þ2

r20

	( )
dl

/ ðr2Þ�ð1þ1
2ðNþ�þgÞÞ exp � 1

2r2
ðd�1gs0 þ �r0Þ

� �
exp

�
� 1
2r2


Xm
i¼1

ðyTi ðv2i ~RiÞ�1yiÞþ

l20
r2l

� ~l

�Xn
i¼1

zi11
T
niðv2i ~RiÞ�1yi þ r�2

l l0Þ
	��

¼ ðr2Þ�ð1þ1
2ðNþ�þgÞÞ exp

�
� 1
2r2




ðd�1gs0 þ �r0Þ þ
Xm
i¼1

ðyi � ~lzi11niÞTðv2iRiÞ�1ðyi � ~lzi11niÞ þ
ðl0 � ~lÞ2

r2l

��
,

where

~l ¼
�Xm

i¼1

zi11
T
niðv2iRiÞ�11ni þ R�1

l

	�1�Xm
i¼1

zi11
T
niðv2iRiÞ�1yi þ R�1

l l0

	
:

The conditional distribution of r2 is then

r2jy, hl fl, ag � 1
v2Nþgþ�

�
d�1gs0 þ �r0 þ ðl0 � ~lÞ2

r2l
þ
Xm
i¼1

ðyi � ~lzi11niÞTðv2iRiÞ�1ðyi � ~lzi11niÞ
	
:

The conditional distribution of l with a marginalized is

pðljy, hl fl, agÞ / exp

�
� 1
2r2

�Xm
i¼1

ðyi � zi1l1niÞTðv2i ~RiÞ�1ðyi � zi1l1niÞ þ
ðl� l0Þ2

r2l

	�
,

thus

ljy, hlnfl, ag � N
�
~l, r2

�Xm
i¼1

zi11
T
niðv2i ~RiÞ�11ni þ r�2

l

	�1	
:
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