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A B S T R A C T   

A computational approach to judiciously predict high-entropy alloys (HEAs) as an efficient and sustainable 
material class for the electrochemical reduction of nitrogen is here presented. The approach employs density 
functional theory (DFT), adsorption energies of N atoms and N2 molecules as descriptors of the catalytic activity 
and deep neural networks. A probabilistic approach to quantifying the activity of HEA catalysts for nitrogen 
reduction reaction (NRR) is described, where catalyst elements and concentration are optimized to increase the 
probability of specific atomic arrangements on the surfaces. The approach provides key features for the effective 
filtering of HEA candidates without the need for time-consuming calculations. The relationships between activity 
and selectivity, which correlate with the averaged valence electron concentration and averaged electronegativity 
of the reference HEA catalyst, are analyzed in terms of sufficient interaction for sustained reactions and, at the 
same time, for the release of the active site. As a result, a complete list of 3000 HEAs consisting of quinary 
components of the elements Mo, Cr, Mn, Fe, Co, Ni, Cu, and Zn are reported together with their metrics to rank 
them from the most likely to the least likely active catalysts for NRR in gas diffusion electrodes, or for the case 
where non-aqueous electrolytes are utilized to suppress the competing hydrogen evolution reaction. Moreover, 
the energetic landscape of the electrochemical NRR transformations are computed and compared to the case of 
Fe. The study also analyses and discusses how the results would translate to liquid-solid reactions in aqueous 
electrochemical cells, further affected by changes in properties upon hydroxylation, oxygen, hydrogen, and water 
coverages.   

1. Introduction 

Supplying most of the energy consumed by our society from fossil 
fuels is at risk of critically affecting global warming due to net CO2 
emissions into the atmosphere [1]. An energy matrix transformation 
from the currently used net emission sources to CO2 neutrality is 
essential to achieve energy sustainability. An increased production of 
energy from renewable energy sources such as wind-, solar-, hydro-, or 
geopower would here be highly desired. However, several of these en
ergy resources are highly intermittent, geographically spread, or 
seasonally dependent. Achieving an efficient and large-scale compatible 
way of storing the produced energy would be highly beneficial. In this 
context, ammonia emerges as a promising candidate both as a fertilizing 
chemical and as a potential energy vector that benefits from its high 
hydrogen content and easy liquefaction. Currently, ammonia is 

industrially produced via the Haber-Bosch process, which demands a 
large amount of energy and releases CO2 into the atmosphere, thus 
aggravating the greenhouse effect. One strategy to circumvent this is to 
produce ammonia in an eco-friendly process, which could be an elec
trochemical synthesis of ammonia from nitrogen gas using sustainably 
produced electricity. A severe bottleneck of electrochemical ammonia 
synthesis, is the low ammonia production rates of about microgram per 
hour per square centimeter-level, often lower than 10% Faradaic effi
ciencies (FEs), and stability issues. Therefore, the development of suit
able materials plays an important role in mitigating such issues and 
achieving industrial application [2]. In this context, high-entropy alloys 
(HEAs) emerge as a new class of catalysts that provide unprecedented 
compositional diversity that hold the promise to tune reaction pathways 
and, thus, selectivity and rates, alongside entropic stabilization of the 
material. 
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The concept of multi-component alloys with entropy stabilization 
came out around 2004 when two independent research groups showed 
that multiple-element materials containing at least five different species 
could be formed into a homogeneous phase [3,4]. The thermodynami
cally and kinetically stabilized structures of HEAs provide high fracture 
resistance, ductility, and physicochemical stability, thus enabling 
employment in harsh environments [5–7]. Concerning their application 
in catalysis, these alloys form a promising new material class and is a 
rapidly growing research field [5,6]. As an advantage, the 
multi-component form of HEAs can provide several active sites on a 
catalytic surface and structural stability. The complexity of the catalytic 
surface enables the possibility of breaking the symmetry rules imposed 
by the scaling relationships [8], which in principle opens the possibility 
of finding highly active catalysts for different reactions. 

It is notoriously challenging to reduce nitrogen to form ammonia 
electrochemically due to the scaling relationships and simultaneous 
ability to reduce hydrogen in a protonic system, and thus a competition 
between the nitrogen reduction reaction (NRR) and the hydrogen evo
lution reaction (HER). Although N2 is the most abundant molecule in the 
atmosphere, its triple bond and the lack of dipole moments make it a 
highly inert specie and, hence, very hard to catalyze due to the lack of 
nitrogen fixation on catalytic surfaces [9]. Several strategies have been 
reported in the literature to enhance NRR, where they all more or less 
are related to nitrogen fixating surfaces with either proton deficiency or 
electron starving (and thus low rate) [9–14]. Especially interesting for 
this work are the results reported by D. Zhang et al. [15]. They were one 
of the first groups reporting that HEAs could be used to reduce nitrogen, 
where 38.5% FE was achieved using HEA RuFeCoNiCu nanoparticles 
with a small size of 16 nm and signifies the promises of the approach, 
although the remaining challenge is to perform the reaction with NRR 
selectivity versus HER also at high rates. 

The present work focuses on two important aspects of the application 
of HEAs to NRR: i) a rational strategy to screen over an ample search 
space of quinary HEAs formed with Mo-Cr-Mn-Fe-Co-Ni-Cu-Zn working 
as novel catalysts for NRR, without the inclusion of Ru or other plati
nium group metals (PGMs), and ii) identifying relationships between 
HEAs intrinsic properties and their catalytic activity. The search for 
alternative catalysts for NRR in the wide range of compositional space 
found in the quinary HEAs is performed by employing the framework of 
the density functional theory (DFT), machine learning techniques and a 
probabilistic approach developed by T. A. Batchelor et al. [16]. Similar 
strategies were also applied, successfully, by T. A. Batchelor et al. [16], 
J. K. Pedersen et al. [17] and W. A. Saidi et al. [18]. They used DFT to 
train machines over hundreds of adsorption energies on HEAs micro
states and, further, used these machines to screen for selective and active 
catalysts for oxygen, carbon dioxide, carbon monoxide reduction re
actions and also ammonia oxidation, respectively. The estimated cata
lytic activities are, further correlated with intrinsic properties of the 
HEAs, like the average valence electron concentration and their elec
tronegativity. This might help to understand the main properties that 
dictate the electrochemical transformations and it is also a simplified 
path to selecting promising catalysts. Finally, since a clear reaction 
pathway on the surface of a HEA is not possible due to their inherent 
randomness, a statistical analysis of the reaction pathway will be per
formed for the selected HEAs. 

The associative pathways (distal/alternating and enzymatic) are the 
most favorable ones when electrochemical NRR is in focus [19]. This is 
due to the high activation barriers to dissociating N2* into 2 N*, that, for 
instance, is of the order of 1.77 eV for the case of Ru(0001) [20]. The 
other two likely options are the distal/alternating pathways and the 
enzymatic pathway [21]. Pedersen et al. [22] recently showed that 
species on threefold hollow sites of HEAs could partially circumvent 
scaling relations with the adsorption of species on top sites due to the 
different coordination of threefold sites compared to on top sites (also 
confirmed in this work). Moreover, Singh et al. [19] and Montoya et al. 
[23] showed that the two potential limiting steps of the NRR reaction on 

transition metal surfaces are the hydrogenation of N2* forming NNH* 
and the desorption of NH* forming NH2 * . In the distal pathway, the 
N2* adsorbs on the top position while the NH* adsorbs on the threefold 
hollow site. Hence, the scaling relationship between these two steps can 
be circumvented due to the randomness of the HEA surfaces. That allows 
us to seek highly active HEAs for NRR that deliver strong N2 * bond 
interaction in the distal position (adsorbing on the top site), but still with 
lower desorption of the NH* intermediate. Therefore, we will focus on 
identifying HEAs that optimize the catalytic activity and selectivity to
wards NRR following the distal/alternating pathway. Moreover, only for 
the selected catalysts, we explicitly compute, with the DFT framework, 
the potential limiting steps, N2(gas)+*→N2*, N2*+H++e-→NNH* and 
NH*+H++e-→NH2* for 100 microstates of the referent HEA and show 
how the reaction pathways can be depicted based on the statistical 
analysis. 

Tuning to the approach to characterize the reaction steps, Singh et al. 
[19] and Montoya et al. [23] have shown that the N* is a descriptor of 
the NRR catalytic activity on transitions metals where, for the case of 
close-packed structures, Fe is placed on the top of the volcano curve 
[19]. Therefore, we can employ this descriptor to optimize HEAs 
elemental concentrations that maximize the local sites with similar 
adsorption energies as in the case of Fe, for instance. That must lead to 
optimal cases with reasonable potential limiting steps – at least similar 
to the value displayed by Fe. Moreover, it allows us to build a much more 
efficient screening strategy since the number of parameters is reduced. 
That in itself should be enough to deliver promising HEA catalysts for 
NRR. However, due to the break of scaling relationships, the top of the 
volcano curve is not completely known and, hence, including the N2* 
also in the optimization process might lead to cases with even higher 
activity and that can also mitigate the N2 fixation issue. It is also 
important to highlight that the activations barrier of the NRR following 
the distal pathway tends to be very similar to the computed thermody
namical barriers. E. Tayyebi et al. [20] and A. B. Höskuldsson et al. [24] 
have shown that including activation barriers in the calculation of N2 
reduction pathways leads to the same electrochemical paths predicted 
with thermochemistry, for Ru(0001) and W(110). Moreover, the tran
sition states computed for small molecules like N2, are often resembling 
the final state of the reaction [25]. Therefore, confirming that thermo
dynamical steps, in this case, can be used as an effective parameter to 
estimate the rates of the reaction. 

2. Method 

The approach to model the reactions and to screen over the HEA’s 
elemental concentration pool is depicted in Fig. 1 and based on the 
following steps:  

1. Quinary HEAs formed with the elements Mo-Cr-Mn-Fe-Co-Ni-Cu-Zn 
are randomly created. DFT calculations are performed over 1200 
microstructures formed with the above-mentioned elements. For 
each microstructure, the adsorption energies of N2 * and N * (de
scriptors of the reaction) are computed and stored in a database (DFT 
details are in the section “DFT Calculations”).  

2. Representation models of the microstructures are created and used to 
build neural network models that are trained on the adsorption en
ergies from the DFT calculations. These models can compute 
adsorption energies almost instantaneously and, overcome the time- 
consuming task of performing thousands of adsorption energies with 
the DFT approach (details are in the section “Deep neural 
networks”).  

3. Using the deep neural network models, we calculate the adsorption 
energy of N * and N2 * (descriptors of the catalytic activity) on 2000 
microstates of each of the 3000 HEAs considered here (an impossible 
job if DFT would be directly employed). The constraint that species 
concentration must be lower than 50% is used. A higher concentra
tion of a specific species reduces the entropic effects that stabilize 
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these catalysts. Hence, increasing the probability of structural 
dissociation into multiple phases, for instance. The probabilistic 
approach is, hence, used together with the adsorption energies to 
estimate catalytic activities (as described in the section “Towards 
active HEAs for NRR”) and also selectivities (as described in the 
section “Towards Selectivity”).  

4. Inherent properties of the HEAs like the averaged valence electron 
concentration (VEC), averaged electronegativity (ELE) and averaged 
working function (WF) are correlated with the estimated activities to 
unravel the properties controlling the activity and selectivity.  

5. The thermodynamical barriers of the potential limiting steps are 
calculated for 100 microstructures of a selected HEA. These are 
shown in the form of box plots and compared with the case of Fe 
(111) (details are in the section “Potential limiting steps of the 
selected HEA”). 

DFT calculations: The projected augmented wave method was used 
to solve the Kohn-Sham equations implemented in the Vienna ab initio 
Simulation Package (VASP) [26,27]. The wave functions were expanded 
using plane waves with a cutoff energy of 400 eV while a (4×4×1) 
k-point mesh was used to sample over the Brillouin zone. Smearing of 
0.2 eV was employed to obtain partial occupations using the 
Methfessel-Paxton scheme of second order. Spin-polarized orbitals were 
used in the ferromagnetic (FM) state and the Bayesian error estimation 
functional with van der Waals correlation (BEEF-vdW) [28] was utilized 
to describe the Kohn-Sham Hamiltonian’s exchange and correlation 
term. The BEEF-vdW has been reported to be one of the most accurate 
functionals to describe adsorption energies on transition metal surfaces 
[29,30], and is the approach chosen for this study. The structural models 
were built into a 2×2×4 face-centered cubic (FCC) (111) slab with a 
vacuum of 20 Å to avoid interaction amongst periodic images, allowing 
the two topmost layers to geometrically relax. In contrast, the two 
bottom layers were fixed to the optimized bulk structure. Atoms posi
tions were optimized until a maximum force of 0.08 eV/Å was obtained. 

It is common for calculation where single atoms are used forces 
convergence of the order of 0.03–0.01 eV/Å. However, the randomness 
of the HEAs adds complexity and lower convergence parameters need to 
be used. Other references have also employed this value [16,17]. 
Moreover, we tested for one case of N * with force convergence of 
0.03 eV/Å. We got a difference of 0.02 eV in the adsorption energy. 
Lattice parameters of the slabs were set on a weighted average basis and 
assuming species has FCC bulk structures, similar to the work of T. A. 
Batchelor et al. [16]. Moreover, Clausen et al. [31] showed that possible 
remaining strain effects on the adsorption energy of small molecules are 
alleviated by the inherent distortion of the lattice in HEAs. Bulk opti
mizations were performed with a k-point mesh of 15×15×15 in an FCC 
structure, and the obtained lattice parameters are summarized in 
Table S1. 

Deep neural network: Although the values of ALPHA could be esti
mated under any first-principle approach, the high amount of possible 
microstructures makes the calculation of the N and N2 adsorption en
ergies non-feasible from a computational time point of view. To 
circumvent this issue, a representation model of the microstructures that 
enables establishing a deep neural network (DNN) model permitting the 
computation of N and N2 adsorption energies almost instantaneously 
was built and used together with the DFT calculations. Though the DFT 
calculations were performed on 1200 microstructures, after data 
cleaning, the DNN was trained using 784 adsorption energies for N 
atoms sited on the hexagonal-close-packed sites. We have shown that N 
adsorbs strongly on this site (see Fig. S2), which also corroborates with 
the results of W. A. Saidi et al. [18]. For the case of N2, 784 adsorption 
energies of the N2 molecule on randomly created slabs were used to train 
the DNN model. The representation used to feed the DNN involves the 
specification of four regions of the HEAs microstructures and frequency 
counting of species on each specific region (Fig. 2). These regions are 
then concatenated into a vector defining a regression problem, ΔEN,N2 =
∑R

p
∑metals

k Cp,kNi
p,k, where Ni

p,k is the number of atoms of specie k in the 
region p and R is the total number of regions, solved with the DNN. Each 

Fig. 1. Schematic picture of the main steps employed here to select optimum catalysts for NRR.  
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built vector represents one microstructure of a HEA of a specific 
concentration. 

The DNNs were built using the Keras library [32]. The data was 
trained in several networks where the best models were composed of 
dense sequential layers. The input layers were set with two hundred 
neurons and a linear activation function for the N adsorption energy and 
one hundred neurons together with a linear activation function for the 
dinitrogen adsorption energy. Six hidden layers composed of two hun
dred neurons each and a “relu” activation function were employed for 
the N adsorption training, while for the N2 adsorption training, one layer 
with 50 neurons and a “relu” activation function (L2 regularization 
function were employed in both cases). The output layers were built 
with a linear function. Loss function (mean squared error, MSE) between 
predicted adsorption energies and DFT computed adsorption energies 
were minimized using an Adam optimizer with a learning rate of 0.014. 
Our dataset utilized to build the DNN was randomly divided into a 
training set (80%) and test set (20%) for both N and N2 adsorption en
ergies. The evolution of the loss function with the epoch number 
(training steps) is shown in Fig. S4 and confirms no overfitting 
phenomena. 

Towards active HEAs for NRR: A probabilistic approach based on 
the adsorption of N2 molecules and N atoms on the HEAs surface is 
employed to estimate the catalytic activity of HEAs. The basic principles 
of the approach were firstly proposed by T. A. Batchelor et al. [16] and 
are here further expounded on and extended to the use in NRR. The first 
assumption is that bonds formed between small molecules and catalytic 
surfaces have a local character, hence, are determined by the micro
structure of the local site. This means that the vast composition of the 

HEA can be approached as an average over microstructures of the HEA, 
where each microstructure will contribute to the activity in a specific 
way, depending on the adsorption energy of N in the respective site. This 
is an approximation that concurs with the experimental situation with a 
random mixing and atomic dispersion in a real HEA. Moreover, the N2 
fixation issue is accounted for by introducing the N2 adsorptions energy 
in the model. In a technical sense, to maximize the number of randomly 
created sites that deliver: i) Adsorption energies of N in between the 
obtained values for Fe and Ru. Ru has been proven to show activity 
towards NRR [33–35], while Fe is a known to be an efficient electro
catalyst for ammonia production [36,37] and appears at the top of the 
volcano plot – lower limit potential step [19]. Therefore, maximizing 
microstructures with similar N adsorption energy should ensure high 
catalytic activity for the specific HEA towards NRR. ii) To identify the 
number of sites that adsorbs N2 exothermically – better N2 fixation. 
These assumptions can be formulated into a probabilistic approach with: 

P(N2) =

∑
Microstructures with ΔEN2 < − 0.5eV
∑

All considered Microstructures
(1)  

P(N) =

∑
Microstructures withΔEN(Fe) < ΔEN < ΔEN(Ru)

∑
All considered Microstructures

(2)  

ALPHA = P(N2) × P(N) (3)  

where P(N2) is the probability of finding sites with exothermic adsorp
tion for N2, P(N) is the probability of finding microstructures with en
ergy between ΔEN(Fe) and ΔEN(Ru) ALPHA is the probability of the two 
events happening. A HEA with high ALPHA should thus deliver high 

Fig. 2. Comparison between the predicted adsorption energies with the DNN and the computed energies of (a) N and (b) N2 adsorptions. Blue is the data used in the 
test set, while black dots are the data of the train set. (c) schematic illustration of the representation used to convert an atomic structure into a numerical vector to 
feed the DNN and assess activities and selectivities. The structural representation lies in counting species frequencies in specified regions of the unit cell. 
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activity, while each microstructure is randomly created with the 
constraint that its species concentration reassembles a specific HEA 
concentration. 

The Gibbs free energy variation of the reaction N2 + * → N2 * can 
be calculated as ΔG = ΔE+ΔZPE+(ΔHvib +ΔHrot +ΔHtrans) − T(ΔSvib +

ΔSrot +ΔStrans) where ΔZPE is the variation on the zero-point energy, ΔH 
and ΔS are the variations of enthalpy and entropy, respectively, and ΔE 
is the electronic energy change. To further validate and assess the pa
rameters, we have suggested that a complete vibrational frequencies 
calculation is performed using DFT to assess the thermal effects. Per
forming this for conformations in the set, we find that 

ΔZPE +(ΔHvib +ΔHrot +ΔHtrans) − T(ΔSvib +ΔSrot +ΔStrans) ≈ 0.5 eV
(4) 

Therefore, we can estimate that ΔG will be exothermic only when ΔE 
is lower than − 0.5 eV, which is settled as a limit in Eq. 1. This condition 
for activity towards NRR is also found in the work of C. Ling et al. [38]. 
For other reactions, the analogous assessment of thermal effects is 
required with the corresponding change in Eq. 1. 

The adsorption energies of N atoms and N2 molecules on the HEAs 
microstructures were calculated as 

ΔE(N) = EN − E∗ −
Ngas− phase

2

2
and ΔE(N2) = EN2 − E∗ − Ngas− phase

2 (5) 

The calculation of the first constraint used for the N adsorption, 
ΔE(Fe), was performed considering 2×2x5 BCC slabs on the (110) and 
(100) directions where results were − 1.1 eV and − 0.88 eV, respec
tively. ΔE(Ru) was calculated using a HCP structure in the (001) di
rection resulting in adsorption of − 0.78 eV. The recent work by Megha 
Anand et al. [37] highlights that the best NRR catalyst Ru, is followed by 
Fe in terms of effectiveness in catalytic activity. Instead of using the 
exact values of Fe and Ru adsorption energies as the constraints in Eq. 2, 
we set those to be − 0.7 eV and − 0.9 eV, therefore slightly shifted to
wards the Ru instead of Fe. If other reactions are targeted, with key 
rate-limiting steps in the adsorption energies, adjustments of the tar
geted training parameters are required and can also be chosen from 
other rate-limiting parameters without loss of generality. 

Towards Selectivity: It is well known that most of the catalysts suffer 
from poor selectivity towards NRR due to the competing HER – protons 
being more likely to be activated and reduced on the catalytic surface 
than dinitrogen (N2). Selectivity can, hence, be ranked by analyzing the 
averaged value of ΔE(H) and ΔE(N2) over the microstructures of a HEA. 
In a first assessment, this allows the selection of the best catalysts as the 
ones with more positive values of ΔE(H) − ΔE(N2) [39]. We have 
tested, for 10 microstructures, if N2 would be adsorbed exothermically 
once H* atoms are on the catalytic surfaces (hydrogenated surface). 
Unfortunately, for all cases, N2 does not adsorb exothermically. There
fore, there is a competition between N2* adsorption and H* adsorption 
and, this is mitigated if the term ΔE(H) − ΔE(N2) gets more positive. 
Moreover, the energetics of both adsorbates, H and N atoms, scale lin
early (see Fig. S1 (error in the energy of hydrogen) for details, both 
adsorbs on a threefold site). While the relation ΔE(H) − ΔE(N2) might 
be of interest to assess absolute values of selectivity, the main concern is 
to rank the HEAs faithfully based on such parameters. To approach this, 
and, using the scaling relation between H and N adsorption, the ener
getics of the hydrogen adsorption, ΔE(H) can be exchanged by the en
ergetics of N atoms adsorption, ΔE(N), to predict selectivity and, leading 
to: selectivity = ΔE(N) − ΔE(N2). This parameter will now be named 
SELE. 

Potential limiting steps of the selected HEA: For the selected cata
lyst, a statistical approach is employed to estimate the thermodynamical 
barriers of the potential limiting steps.  

N2 + *→N2*                                                                                  (6)  

N2* + (H++e-) →NNH*                                                                  (7)  

NH* +(H++e-) →NHH*                                                                  (8) 

The computational hydrogen electrode approach, as proposed by 
Nørskov [40], was applied to model the electrochemical reactions. This 
approach assumes a coupled electron-proton transfer simplifying the 
demanding calculation of solvation energies of ionic species. The free 
energy variation of each electrochemical/chemical reaction was calcu
lated for 100 microstructures of the selected HEA using DFT as: 

Ead = E∗
adsorbate − E∗ −

∑

i
niμi (9)  

where E∗
adsorbate is the self-consistent-field (SCF) energy of the adsorbed 

intermediate corrected by the zero-point energy (ZPE) of the adsorbate, 
E∗ is the SCF energy of the pure slab and ni is the number of species i with 
chemical potential μi. Moreover, μH, μN are the chemical potentials of 
hydrogen and nitrogen, respectively, that are obtained as: 

μH =
1
2
EH2 (10)  

μN2
= EN2 (11)  

μN =
EN2

2
(12)  

EH2 ,N2 = Escf +ZPE+(Hvib +Htrans +Hrot) (13)  

− T(Svib + Strans +Srot)+ PV 

The usual approach to depict the energy landscape of reaction 
pathways on transition metal surfaces needs to be adapted to fulfill the 
restriction imposed by the randomness of the HEAs. Indeed, every 
microstate of the structure (that together resemble the HEA surface) 
delivers one different energetics for the concerning reaction step. 
Therefore, what we can get is a distribution of energies for each asso
ciated transformation. Box plots are a common tool to report the overall 
patterns of a group. This summarizes important information about the 
group as the minimum, the first quartile, the median, the third quartile 
and the maximum. Here, the computed thermodynamical barriers are 
shown as a box plot. 

3. Results 

In this section, the accuracy of the developed DNN is discussed and 
compared to preview data reported in the literature (See the deep neural 
network model section). We also performed a deeper analysis of the re
lations between ALPHA, SELE, and intrinsic HEAs properties, with the 
resulting HEA(s) activities given in the subsection Computed electro
catalytic activity (ALPHA). Finally, the most promising novel HEAs for 
NRR are pointed out in The selected HEAs section and its potentials 
limiting steps investigated. 

The deep neural network model: The DNN employed here to es
timate adsorption energies of N2 molecules and N atoms on the surface 
of HEAs displayed reasonable accuracy with mean absolute errors 
(MAEs) of 0.09 eV and 0.20 eV, respectively (Figs. 2a and 2b). One can 
note that the mean absolute error of N2 adsorption is below the typical 
resolution of DFT while the N adsorption shows a slightly higher error. 
In context to this, we would like to remind the reader that we have used 
the hypothesis that bond formation is a local process, and hence that the 
adsorption energies can be obtained by specifying elements close to 
adsorbates and their location. However, the model assumes symmetric 
adsorption sites as input parameters. This might be one of the causes of 
the better accuracy of the model found for N2 adsorption than the model 
found for N adsorption since N2 sits on the top site in a very symmetric 
environment (only one species is accounted for in region one, Fig. 2). On 
the other hand, N atoms sit on threefold HPC sites. Therefore, symmetry 
breaking would be observed depending on the coordinating species, 
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leading to higher errors in the built model (three species are considered 
in region one for this case). Still, others have reported ML predicted 
MAEs of about 0.2 eV regarding the DFT adsorptions energies [41], 
which inherently also has an error of about 0.2 eV within Beef-vdW 
functional [28,29]. Therefore, it pays off the employment of these 
models in pro of a considerable gain in computational time, allowing the 
removal of unpromising catalysts to be experimentally processed or by 
DFT calculations. 

Computed electrocatalytic activity (ALPHA): ALPHA and SELE 
were calculated for three thousand randomly created quinary HEAs of 
the elements Mo, Cr, Mn, Fe, Co, Ni, Cu, and Zn. The relationship be
tween ALPHA and SELE is displayed in Fig. 3(a) and (b). For this task, 
two thousand microstates of each created HEA were considered to assess 
the averaged quantities for SELE and the probabilities associated with 
ALPHA. Higher and lower values of SELE lead to lower values of ALPHA. 
An optimal value is obtained when SELE is between − 0.25 and 0.0, 
building a volcano-shaped relationship. Interestingly, the shape ob
tained for this relationship is also reproduced for ALPHA vs. averaged N 
adsorption energies. Hence, the averaged N adsorption energies emerge 
as the main influencing factor for SELE. The averaged N2 adsorption 
appears as an almost fixed shift in SELE since they are computed as the 
average of cases with adsorptions higher than 0.5 eV. Hence, minimal 
variance is revealed when comparing distinct HEAs. As expected, the 
cases with higher ALPHA have averaged N adsorption energy around 
− 0.75 eV – the ΔEN(Ru) = − 0.78 eV since ALPHA is set to maxi
mize the probability of sites with adsorption similar to Ru. 

Something interesting differentiates the case studied here from the 
volcano-shapes reported for NRR in the literature [23,36]. HEAs with 
the same averaged N adsorption (SELE) can display different activities 
(Fig. 2a), producing a volcano relation where data is spread inside the 
volcano shape. Two characterizing cases were selected for further 
analysis to gain insights into the obtained relationship. The first case, 
Mo0.38Fe0.31Co0.19Ni0.06Cu0.06, has high ALPHA of 0.14 with a SELE 
value of − 0.15, while the second case, Mo0.25Cr0.06Mn0.31Cu0.06Zn0.31, 
has ALPHA 0.00 and SELE − 0.15 eV. Though both have similar 

averaged N adsorption energies of − 0.75 eV and − 0.68 eV (hence, 
similar SELE), their distributions are completely different (Fig. 3d). Most 
cases end up in the required P(N) region for Mo0.38Fe0.31Co0.19

Ni0.06Cu0.06. For Mo0.25Cr0.06Mn0.31Cu0.06Zn0.31, the cases are distrib
uted on high energy and low energy values, leading to low ALPHA, yet 
similar SELE. The problem faced here has a multi-dimensional character, 
and due to the need to get averaged quantities, information is lost, thus, 
explaining the filled volcano-shaped relation between ALPHA vs. SELE. 

Adsorption energies are widely employed to characterize activities in 
distinct fields of electrocatalysis [23,36,37]. Here, the direct application 
of the similar quantity, averaged N adsorption as the descriptor of cat
alytic activity of HEAs towards NRR, is shown to be insufficient to 
uniquely characterize each HEA, as discussed above. The plot of the 
averaged valence electrons in the occupied d orbitals (γ) vs. the averaged 
adsorption energies of N and N2 brings insights into how to properly 
explore and develop a unique descriptor for the activity of HEAs (Fig. 4). 
N and N2 adsorption strength correlate with the conventional approach 
to analysing the d-band center of transition metals [42]. This is in our 
view closely associated with the number of valence d electrons in the 
system and, of course, the energetic position of the states. The results 
displayed a close linear relation for the case of averaged N adsorption 
energies with R2 of 0.76 (R2 = goodness of the linear relation), but a 
widespread data point for the case of N2 averaged adsorption energies, 
R2 of 0.45. Here, calculations of N2 adsorption on the microstructures 
are performed on the top site. So, the value of valence electrons in the 
occupied d orbital of the species where N2 is adsorbed must have a much 
stronger influence than the averaged relation inherent in γ. Hence, γ 
alone cannot fully describe the averaged N2 adsorptions. On the other 
hand, this issue is mitigated in the description of averaged N adsorption 
by the stronger influence of the three atoms coordinating the adsorbate, 
threefold HCP. Hence, γ results in a better descriptor for the averaged N 
adsorption energy. Again, information is lost when performing the av
erages and there exists a need to introduce a second property to better 
correlate the averaged adsorption and γ. 

Electronegativity measures the electron affinity of certain elements 

Fig. 3. Relationships between ALPHA and SELE where the color map displays the relationship between electronegativities in the (a) Pauling and (b) Mülliken 
scalings. (c) Histogram of N2 adsorptions of Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 (blue) and Mo0.25Cr0.06Mn0.31Cu0.06Zn0.31 (red). Blue and red dashed lines represent the 
averaged adsorption of N2 molecules with energies higher than 0.5 eV. (d) Histogram of N adsorption of Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 (blue) and 
Mo0.25Cr0.06Mn0.31Cu0.06Zn0.31 (red). Blue and red dashed lines represent the averaged adsorption of N molecules. 
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when a covalent bond is formed. Under the assumption that electro
negativity would influence the redistribution of d electrons during the 
bond formation between adsorbate and catalytic surface, H. Xu et al. 
[43] showed that electronegativity could be employed together with the 
number of d electrons of a species as a descriptor of the O and OH 
adsorption energies on single metal catalysts. Using the HEA’s averaged 
electronegativity in the plot of N2 vs. γ as a color map, one sees that 
thought at same γ, and different averaged N2 values are observed. 
Moreover, these values mainly vary with the weighted-averaged elec
tronegativity of the HEAs (we will name the weighted averaged elec
tronegative ELE from now on). Generally, higher ELE leads to more 
negative values of averaged N2 adsorption, and inspecting the rela
tionship between the averaged N2 adsorption energy vs. γ/ELE (Fig. S5) 
a better R2 of 0.58 is obtained in comparison to the previews value of R2 

0.45 for averaged N2 adsorption energy vs. γ. This reflects in the volcano 
plot (Fig. 3a), where higher activities are found for the cases with higher 
ELE once the probability of finding N2 adsorption exothermically in
creases under these circumstances. 

As the conventional (Pauling) electronegativity scale is defined from 
covalent bonding, it causes concerns in metallic alloys with domination 
of metallic bonding. Therefore, we have also assessed how the obtained 
relations behave when changing the electronegativity scale (Fig. 3a-b 
and S6). Clearly, no change is observed when varying from the Pauling 
scale to the Mülliken scale defined from the arithmetic mean of the 
ionization energy and the electron affinity (these electronegativity 
measures scale linearly for the species investigated here, Fig. S7). On the 
other hand, no correlation between ALPHA and the electronegativity 
employing the Allen scale (The Allen scale is the average one-electron 
energy of the perceived valence shell electrons in the ground state in 
the free atom) is observed (Fig. S6d). Moreover, as the electronegativity 
could be considered a non-ideal descriptor in a metallic alloy, we 

explored the possibility of using the averaged work functions of the HEA 
as a further modification of γ as a descriptor of ALPHA where the work 
functions are computed for the pure bulk phases and, further, weight- 
averaged for the HEAs. This approach displayed no correlation with 
ALPHA (Fig. S6c), and together with the lack of correlation with the 
average one-electron energy in the Allen electronegativity, one can 
summarize that the local environment and effects beyond single atom 
properties are vital in constructing a descriptor for charge transfer in- 
between elements and catalytic activity of the HEAs. 

The obtained relations indicate that ALPHAs of HEAs can be 
conveniently described by ELE and γ, properties easily assessed by 
knowing the HEAs composition and concentrations. The relation be
tween activity (ALPHA) as a function of γ and ELE shows that higher 
activities are more likely to be obtained when γ is between 6 and 6.5 and 
ELE is higher than 1.9 (Fig. S8). It is also important to emphasize that 
calculations were performed here in an FCC (111) surface, and, exper
imentally, the HEAs phases can vary. To, somehow, capture this infor
mation, another construction for the description of the catalytic activity 
is constructed on the VEC of HEAs (VEC and γ scales linearly, hence, 
similar relation with ALPHA). Sheng Guo et al. [44] showed that HEAs 
with VEC higher than eight must likely form FCC structures. This simi
larity allows the removal of cases where the HEAs come with VEC 
smaller than 8, increasing the probability of getting an FCC phase upon 
synthesis procedure (emphasis here is given to an FCC lattice just 
because calculations were performed with this structure). Fig. 5 
graphically shows this analysis by plotting the values of ELE vs. VEC of 
each HEA together with their APLHA as the color map. Higher ALPHA 
values are more likely to be obtained when ELE is higher than 1.9 and 
VEC is between 7.5 and 8.5. Hence, a map towards higher ALPHA(S) is 
found only using intrinsic properties of the HEAs like VEC and ELE. 

4. The selected HEAs 

The selected catalysts’ cases presenting ALPHA higher than 0.1 are 
summarized in Table 1. We have grouped HEAs in two sets: i) the three 
cases with the highest ALPHA and ii) the cases with ALPHA higher than 
0.1 and, hence, ranked based on SELE. The highest ALPHA is obtained 
for Mo0.38Fe0.31Co0.19Ni0.06Cu0.06. On the other hand, C. J. H. Jacobsen 
et al. [45] have shown that MoCo is a promising catalyst for electro
catalytic ammonia production. Therefore, it is not surprising that 
Mo0.38Mn0.06Fe0.13Co0.38Ni0.06 and Mo0.31Mn0.06Fe0.13Co0.44Cu0.06, 
having balanced values between Mo and Co and minor concentrations of 
other species, display high activity. This also confirms the robustness of 
the screening strategy employed in this work. 

The second set of compounds ranked based on selectivity displayed 
Mo0.44Co0.38Ni0.06Cu0.06Zn0.06 as the best option. Again, the balanced 

Fig. 4. : Relationships between averaged N adsorption vs. averaged valence 
electrons in the occupied d orbitals (γ) (a) and averaged N2 adsorption vs. γ (b). 
The color map is added as the weighted-averaged electronegativity of the HEAs 
(ELE) in the Pauling scaling. 

Fig. 5. Relationship between ELE vs. VEC and ALPHA as the color map. This 
graphic emphasizes the possibility of selecting active HEAs for ammonia pro
duction using directly assessable properties of the HEAs. 
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Mo-Co ratio leads to high activity while introducing Zn, Cu, and Ni in 
small quantities, leads to an increased value of SELE. Furthermore, 
species with higher VEC (VEC ∝ γ) present lower bond strength between 
N atoms and the catalytic surfaces, pushing the SELE to more positive 
values. Interestingly, all selected cases presented ELE close to 2 since, 
generally, this pushes the N2 adsorption towards more negative values, 
thus, resulting in higher ALPHA. 

Though HEAs formed from quinary components of the elements Mo, 
Cr, Mn, Fe, Co, Ni, Cu, and Zn were randomly created in this work, the 
best HEAs serving as novel catalysts for NRR are mainly formed of Mo- 
Fe-Co and with minor or non-quantities of other species. Moreover, at 
least 30% of the HEAs are made of Mo for all cases. N2 molecules on 
transition metal surfaces correlate with the d band center position with 
respect to the Fermi level of the transition metal due to the “push-pull” 
mechanism with σ-donation and π * -back donation [42]. Amongst the 

investigated species, Mo is the one with d band center closer to the Fermi 
level [46], thus, resulting in a higher probability of delivering strong N2 
adsorption. This in turn increases the value of ALPHA. Aiming to 
confirm this hypothesis, the adsorption energy of N2 is calculated (see 
Fig. S3 for details) and displays the stronger adsorption on Mo as 
compared to other species. Therefore, Mo can be considered as the main 
N2 molecules fixating center on the catalytic surface of the HEA during 
the NRR cycling. While higher amounts of Mo (yet still inside the high 
entropy alloy stability zone) would probably assist in the activation of 
N2 molecules, but would also result in higher adsorption energies for the 
N atoms, scaling with the H adsorption and thus increased HER. This 
implies that a too strong N adsorption leads to: i) very slow rates of NRR 
reaction, ii) catalytic surface poisoning. To retain selectivity and not to 
have predominant HER reactions, the concentration of Mo has to be 
balanced by introducing Co and Fe species. Considerable concentrations 

Table 1 
ALPHA, SELE, VEC, ELE, δ(%), and Ω for selected HEAs. The table section with “Activity” stands for the best HEAs ranked based on ALPHA. The table section with 
“Selectivity” ” stands for the best HEAs ranked on, ALPHA > 0.1 and the highest selectivity.  

Activity 

HEA ALPHA SELE VEC ELE δ (%) Ω 

Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 0.14 - 0.15 7.75 1.97 5.8  57.9 
Mo0.38Mn0.06Fe0.13Co0.38Ni0.06 0.12 - 0.23 7.69 1.96 5.9  5.0 
Mo0.31Mn0.06Fe0.13Co0.44Cu0.06 0.12 - 0.21 7.69 1.96 5.4  5.2  

Selectivity 

HEA ALPHA SELE VEC ELE δ(%) Ω 

Mo0.44Co0.38Ni0.06Cu0.06Zn0.06 0.10 0.01 8.06 1.99 5.7  2.1 
Mo0.31Fe0.31Co0.25Ni0.06Cu0.06 0.12 -0.12 7.94 1.96 5.3  44.8 
Mo0.31Fe0.38Co0.19Ni0.06Cu0.06 0.12 -0.13 7.88 1.95 5.3  120.9  

Fig. 6. Histogram of the N2 adsorption for (a) Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 and (b) Mo0.44Co0.38Ni0.06Cu0.06Zn0.06. Histogram of the N adsorption for (c) 
Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 and (d) Mo0.44Co0.38Ni0.06Cu0.06Zn0.06. 
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of Cr and Mn in the HEA also deliver strong adsorption of N as compared 
to other species. Hence, these are not optimal options to make this 
balance. On the other hand, Ni, Cu, and Zn can contribute to weaker 
adsorption energy values. 

The histograms of the HEAs Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 and 
Mo0.44Co0.38Ni0.06Cu0.06Zn0.06, cases selected as the best alternatives on 
the two sets presented in Table 1, are displayed in Fig. 6. The relation 
between the probability of N2 adsorption is directly proportional to the 
concentration of Mo species on the HEA, as discussed above. Here, 
Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 presents 42% of its active sites presenting 
N2 adsorption in the exothermic region while Mo0.44Co0.38Ni0.06

Cu0.06Zn0.06 has 50% of the cases into the exothermic region (Fig. 6). 
The increment in the probability of finding exothermicity in the N2 
adsorption is, here, due to the increment in Mo concentration. On the 
other hand, the chance of finding sites with N adsorption energy close to 
the obtained for Ru is smaller for the case Mo0.44Co0.38Ni0.06

Cu0.06Zn0.06, 20% of the sites, in comparison to Mo0.38Fe0.31Co0.19

Ni0.06Cu0.06 presenting 32% of the sites in the optimal region. 
Mo0.44Co0.38Ni0.06Cu0.06Zn0.06 exhibits sites with N adsorption energy as 
positive as 1 eV, and this is due to the higher concentration of species 
with higher VEC like Ni, Cu, and especially Zn. While this is positive to 
the selectivity of the HEA pushing the average N adsorption to − 0.57 eV 
as compared to − 0.76 eV in Mo0.38Fe0.31Co0.19Ni0.06Cu0.06, this comes 
at the price of lower activity. 

The tendency of a HEA to form a solid solution instead of dissociating 
into multiple phases can be determined via either combination of 
(Caloric and electrochemical) experimental measurements or theoreti
cally via quantum mechanical calculations of alloy bonding, effects of 
lattice entropy from mixing, and temperature effects. X. Yang et al. [47] 
have demonstrated that estimations can be obtained via empirical data 
that estimates atomic sizes, formation enthalpy and configurational 

entropy. When the terms δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1Ci
(
1 − ri

rave

)2
√

≤ 6.6% and Ω =
TmΔSmix
|ΔHmix |

≥ 1.1 the HEA might form a solid solution. Here, δ is a parameter 
gauging the atomic size difference that depends on, Ci, the atomic per
centage of ith component, ri atomic radius of ith component and rave the 
averaged atomic radius. Ω parameter depends on the concentration 
weighted averaged melting temperature, Tm, the configurational en
tropy ΔSmix = − R

∑N
i=1CilnCi and mixing enthalpy ΔHmix =

∑N
i,jCiCj4Hi,j 

where Hi,j is the mixing enthalpy of binary alloys computed based on 
Miedema macroscopic model and obtained in the work of A. Takeuchi 
et al. [48]. 

Apart from predicted activity, the individual concentrations of the 
elements and their respective atomic radius need to be taken into ac
count also for the predicted HEAs. As such, it is a compromise to retain 
an entropically stabilized structure and, at the same time, change the 
composition to strive for higher activity without sacrificing too much of 
the entropic stabilization and thus increasing the risk of precipitation 
and phase separation for some of the elements. For all pointed HEAs the 
values of δ are smaller than 6.6%, and values of Ω are higher than 1.1 
(Table 1). Hence, these HEAs would likely form a solid solution as 
previously described in the introduction. 

We selected the best case in Table 1, Mo0.38Fe0.31Co0.19Ni0.06Cu0.06, 
to perform a comparative analysis of the thermodynamical barriers of 
the potential limiting steps with the case of Fe(111). The energetics of 
the reactions for Eqs.(6–8) are displayed in box plot format for the HEA 
and as red lies for the case of Fe(111) (Fig. 7). 

The first step, the N2* adsorption, is endothermic on the Fe(111) 
surface, while for at least 25% of the 100 microstates of the HEA, this 
reaction becomes exothermic. Since, N2 capturing is one of the main 
issues in NRR, the existence of local sites on the HEA surface with strong 
N2 bonds is considered a plus for the electrochemical NRR. The activa
tion of the N2 * is the second investigated reaction transformation. 
There, in the case of Fe, the thermodynamical barriers is 1.1 eV. This 
means, based on the computational hydrogen electrode approach, that 

at leads a potential of 1.1 V vs. RHE is needed to activate N2* and form 
NNH* on iron. This picture changes for the case of the HEA. There, the 
lowest observed case displays a thermodynamical barrier of about 
0.74 eV, while at least 25% of the 100 tested microstates of the HEA 
display barriers lower than 1 eV. Finally, for the desorption of the 
NH* and forming NH2 * , thermodynamical barriers go from 0 eV up to 
0.6 eV for the HEA vs. 0.4 eV for the case of Fe. Certainly, considering 
the distal pathway, the first activation of the N2* molecule is the PLS. As 
demonstrated here, the randomness of the HEA surface opens up the 
possibility of lower PLSs as compared with the case of Fe(111) and still 
keeping the desorption of the NH* in a reasonable energetic value. 

All the above results are expected to be directly applicable for NRR in 
gas-phase or in H2O/N2 vapor conditions as in a gas diffusion cell, while 
several additional considerations have to be taken into account in a 
practical application in a solid-liquid reaction cell. First, one needs to 
consider the low N2 solubility in water (1.3 ×10− 3 mol/L) [13] together 
with the high adsorption energies of H2O* , OH* and H* on the catalytic 
surface that might create a water coverage, hydroxylation or hydrogen 
coverage in aqueous electrochemical cells depending on the conditions 
regarding electrolyte pH and the employed electrochemical potential. 
These points can limit the N2 coverages on the catalytic surface, hence, 
deteriorating the delivered FE and activity (besides the dominant ki
netics of HER over NRR [49]). In this context, even with an optimized 
catalyst, values of activity and FE could be way off from the expected 
due to the lack of available catalytic sites for the NRR reaction to pro
ceed. One way to mitigate such issues is to work with a gas-diffusion 
electrode (GDE) that increases the N2 coverage by adjusting the back 
N2 pressure. In conjunction with an optimized catalyst, this strategy can 
facilitate the activity towards NRR due to the increased N2 coverage and 
the suppressed H2O presence that inhibit HER and surface coverages 
with water or hydroxyl groups, hence, increasing FE towards NH3. 
Another option is the application of an aprotic electrolyte with increased 
N2 solubility [50,51]. This would also promote the N2 coverage and 
mitigate HER. Though HEAs concentration and compositions were 
optimized to deliver higher catalytic activity and selectivity towards 
NRR, most of the discussions presented here need to be carefully eval
uated when an aqueous electrochemical cell is considered. As long as the 
underlying electronic properties of the HEA surface is consistently 
scaled to lower N2 and N adsorption energies upon hydroxylation of the 
surface, the results can be directly transferrable. However, also potential 
decrease of the frequency of competing N2 fixation and effects from 
differently induced kinks and terraces in-between different composi
tions would be required to behave in a scalable way compared to the flat 
surfaces screened here. For differences in any of these scalings, a 

Fig. 7. Free energy diagram of the PLS of the distal NRR on the selected HEA 
for key intermediates along the partial reaction coordinate, and FCC Fe(111) at 
0 V vs. RHE. In the inset part, one can see the box plot of the PLS for the 
HEA case. 
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case-to-case investigation has to be performed for the HEAs and their 
corresponding hydroxylated surfaces and surface Pourbaix diagrams, to 
evaluate and rank the most interesting HERs. 

Another point that has to be carefully evaluated is the selection of 
parameters used in this work to define what is an efficient HEA for NRR. 
Within the probabilistic approach, we selected HEAs compositions that 
maximize the number of sites endothermically adsorbing N2 and also 
adsorbing N atoms (descriptor of catalytic activity) with adsorption 
energy close to Ru, as explained in the methods section. Even though this 
approach leads to the identification of active HEAs towards NRR, it also 
selects compositions with considerably high H* . This means that the 
selectivity can be deteriorated and also the activity due to the low 
coverage of N2. Kani et al. [13] hypothesized that the most efficient 
catalyst for NRR, instead, would be the one with lower hydrogen 
adsorption H* providing lower H coverage and also lower HER activity – 
higher activation barrier. This option would allow the application of 
lower cathodic potentials without fully covering the catalytic surface 
with H atoms. Moreover, hydroxylation of the catalytic surface would be 
partially suppressed due to the destabilization of the OH groups 
adsorption, hence, facilitating the existence of active sites for the N2 
adsorption and lower potentials would likely lead to higher current 
densities. In our opinion, however, this would lead to intrinsically low 
NRR rates due to the increment of the thermodynamical limiting step of 
the NRR path. Therefore, the definition of what is a highly efficient 
catalyst for NRR is a gray zone that depends, amongst other things, on 
the experimental conditions in place and which rate one wishes to 
achieve. The approach presented in this work is flexible, however, and 
can easily be modified toward desired selectivities and rates to fit 
experimental conditions beyond the ones proposed in this work. 

5. Concluding remarks 

By employing DFT together with Machine Learning and deep neural 
network techniques, a screening protocol enabling a rational selection of 
novel catalysts for NRR was developed to search over a large composi
tional space of HEAs. Activities and selectivities were computed by a 
probabilistic approach that incorporates the adsorption of N, H, and 
adsorption of N2 atoms. The computed HAE(s) activities reveal a 
volcano-shaped relationship with Mo0.38Fe0.31Co0.19Ni0.06Cu0.06 located 
on the top of the volcano. Moreover, a rank based on selectivity and 
activity pointed to Mo0.44Co0.38Ni0.06Cu0.06Zn0.06 as an alternative op
tion that balances activity and selectivity. We also include a critical 
analysis of different aspects of electronegativity in connection to the 
work function of the elements showing that the local composition and 
charge transfer are necessary to formulate key descriptors of catalytic 
activity. Instead, valence electron concentration of HEAs with either 
different energy d-states or electronegativity, forms descriptors of the 
catalytic activity. The approach shows a promising pathway to conve
niently screen candidates for catalytic activity and selectivity for a given 
catalytic reaction, here exemplified by the NRR reaction. The screening 
disclosed and quantified existing relationships between HEAs composi
tion and catalytic activities towards NRR that bears the promise of 
accelerating the search for complex NRR catalysts. 
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