
Formal model of IEC 61499 execution trace in
FBME IDE

Tatiana Liakh ∗, Radimir Sorokin †, Daniil Akifev †, Sandeep Patil∗, Valeriy Vyatkin∗ ‡
∗ Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

† Independent researcher
‡Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

Email: tatiana.liakh@ltu.se, rad.sorokin@gmail.com, akifev.ru@gmail.com, sandeep.patil@ltu.se, vyatkin@ieee.org

Abstract—With increase in use formal verification tools and
methods in distributed systems, it is becoming more challenging
to analyse the execution traces generated by formal verification
tools. This paper presents a method for unification of execution
traces of industrial automation systems, based on IEC 61499
standard. Execution trace of a system is a sequence of events,
where each event represents a change in the state of the system.
Execution traces allow developers to explore safely behavior of
control software. Execution traces can be obtained several ways,
including monitoring of a real system (or its simulator), or as a
counterexample build by model checker. In the paper we explore
unification of execution traces for debug task in FBME - modular
IDE for IEC 61499 applications. We present the formal model
of the execution trace representation and show the working on
a simple example.

Index Terms—industrial automation, IEC 61499, model check-
ing, testing, dynamic verification, IDE

I. INTRODUCTION

IEC 61499 is a programming paradigm [1] for development
of industrial control software. It is a standard that supports
event-driven execution model. This models makes it easier
to develop distributed control software, especially suited for
Industry 4.0 applications [2].

The widespread use of the IEC 61499 standard has led to the
need to create user-friendly and functional development tools,
such as FBME (Function Blocks Modelling Environment),
an integrated development environment (IDE) for IEC 61499
systems [3], [4]. FBME is based on IntelliJ and MPS plat-
forms [5] and is designed modular and cross-platform. FBME
modularity allows to integrate third-party tools and flexibly
expand functionality.

Control software interacts with the real environment. Er-
rors in such software can lead to hardware failures. This
makes the cost of errors in such programs extremely high.
Thus of particular interest are debugging and verification
tools for developing IEC 61499 control programs. However,
the specifics of industrial control software (interaction with
environment, event-driven execution) complicates the use of
traditional software quality control methods, such as testing,
debugging, formal verification etc.

In previous works, we developed adaptation of formal veri-
fication techniques, such as model checking [6], and integrated
them into FBME [7], [8]. Based on these studies, FBME

uses NuSMV verifier in model checking module [9]. This
module manages translation of IEC 61499 application into
NuSMV model [10], runs NuSMV verifier and shows results
of verification as counterexample. FBME also has debugger
module that runs the explored IEC 61499 application in 4diac
FORTE runtime and monitors the behaviour of the application,
stores an execution traces and visualises it on module GUI.

These modules have similar features: they show counterex-
amples or execution traces, which describes system evolution
over time. However, this approach to design industrial automa-
tion IDE design raises a number of problems:

• Execution trace from different tools may store differ-
ent types of information. For example, runtime doesn’t
provides any information which line of the algorithm is
executing right now;

• Execution traces are in not unified format, each tool stores
trace in its own format. These differences confuse users
when trying to analyse the behavior of the system;

• Textural representation of execution trace is not illustra-
tive. Some studies have shown that textural representation
obstructs adaptation of formal verification methods to the
software development cycle [12];

• Modules developers have to do routine operations to
display execution trace on GUI.

Thus, the task of developing a unified format of execution
traces for IEC 61499 applications is relevant.

In this paper, we present unified formal model of IEC 61499
model execution trace. We analysed the formal model of IEC
61499 function block and built on its basis formal model of
execution trace. Also we used this formal model of execution
trace for modification of FBME architecture. FBME modules
translates execution traces and counterexamples obtained from
different third-party tools unto unified format and displays
them on unified GUI. Finally we offer technical solutions for
IntelliJ MPS based IDEs.

II. RELATED FACTS

A. IEC 61499 Standard

IEC 61499 program is a graphical network of function
blocks (FB). IEC 61499 is based on the object-oriented pro-
gramming paradigm. Each function block belongs to a certain



class. An example of an IEC 61499 application is in Fig. 1.
Each function block (1) has interface defined by FB type. FB
interface contains input event ports (3), output event ports (2),
input data ports (4), and output data ports (5).

Fig. 1. IEC 61499 example application.

Execution Control Chart (ECC) describes the internal oper-
ational logic of the function block (Fig. 2).

Fig. 2. IEC 61499 Execution Control Chart (ECC) diagram.

ECC is an executable event-driven state machine. ECC
transitions (1) are managed by input events and logical boolean
conditions. Each ECC state (2) has a unique identifier (3) and
any number of algorithms (4). Standard uses Structured text
(ST) language (from IEC 61131 standard) to express ECC
algorithms. Also, ECC states can emit output messages (5).
FBs are connected with event and data connections. Events
manage the execution of IEC 61499 software.

B. IntelliJ Meta Programming system (MPS)

FBME is based on the IntelliJ Meta Programming sys-
tem (MPS). MPS is a powerful workbench to design IDEs
for domain-specific languages (DSL). MPS provides tools
to express custom DSL grammar. Also, it provides tools to
create executable code generators. MPS is based on Intellij
IDEA IDE. This allows language developers to get all Intellij
IDEA features at once, including advanced language editor,
code completion, syntax highlighting, navigation, terminal,
integration with Git, etc.

C. IEC 61499 Execution Trace Provider

Due to the specifics of IEC 61499 applications, FBME uses
several types of IEC 61499 execution trace providers: model
checkers, IEC 61499 runtime, and virtual simulator of IEC
61466 runtime.

• Model checking [6]is a powerful formal verification ap-
proach used to evaluate software quality. Unlike testing,
formal verification proves whether the system meets a
given formal specification. Model checking explores a
finite-state model of a verified system. Specifications of
the system are expressed with temporal logic formulas
[11]. If the property is not satisfied, model checker
generates a counterexample. The counterexample is an
execution trace of the system formal model (sequence of
system states of the explored model) which leads to the
violation of the formal specification. FBME uses NuSMV
and SPIN [13] verifies.
At the same time, model checking cannot completely
replace system testing and debugging for several reasons.
First, model checkers use their own DSLs to describe the
verified model. Also, verifier checks not the final system,
but its formal model. Finally, a text representation of
counterexamples makes it difficult to analyse the reasons
for the specification violation.

• IEC 61499 runtimes. There are a lot of runtime environ-
ments for IEC 61499 compliant applications, such as NxT
Forte, EcoRT, 4diac FORTE, and FBRT. Some of them
provide real-time execution monitoring. Currently, FBME
uses open 4diac FORTE runtime. 4diac FORTE allows to
monitor the current state of the system, that is, the values
of the event counters, the values of the variables, and the
current state of ECC of the basic functional blocks at a
certain point in time.
At the same time, traditional testing and debugging
application approaches are not suitable for industrial
automation IDE, since it is impossible to ”pause” a cyber-
physical distributed system.

• IEC 61499 virtual simulator. 4diac FORTE runtime
allows monitoring system state updates at a specified
frequency. However, if there are multiple system state
changes between requests, the runtime does not allow to
restore the order in which these changes occurred. This
problem is especially relevant when restoring the order of
IEC 61499 events emission. To solve this, we developed
a runtime simulator in FBME. It allows users to analyse
the execution of applications without running them in the
runtime or on real devices by triggering events, setting
the values of variables in functional blocks, and watching
their reactions to changes. Simulation breeds a sequence
of emitting events and ECC transitions of the basic
functional blocks. The simulator collects this information
into an execution trace.

III. FORMAL MODEL OF IEC 61499 PROGRAM
EXECUTION TRACE

Formal model of execution trace is based on IEC 61499
function block formal model. Formal semantics of IEC 61499
function blocks is based on Abstract State Machines [15]

Execution trace ET of a IEC 61499 system is a tuple:

ET =< s1, s2, s3, ... > (1)



Each element si of the tuple ET (1) presents an update of the
whole IEC 61499 system state. si is a pair:

si = (TimeStampi, SystemStateUpdatei) (2)

Where:
SystemStateUpdatei (3) – tuple of events, shows state

change of the state of the whole system. It is not an event
in terms of IEC 61499.

TimeStampi – moment of time, when the state update
happened.

SystemStateUpdatei =< ei1, ei2, ..., eiN > (3)

eij (4) is a system state change (event) detected between
TimeStampi−1 and TimeStampi.

eij = (Fbd, SystemStateEventType,Data) (4)

Fbd – id of the function block;
Data – tuple of arguments of arbitrary length;
The following is the event format depending on the event

type. The semantics of the events arguments and their update
rules is also explained.

SystemStateEventType possible values:
• Q update – state Q of ECC of the specified FB was

changed.

eij = (Fbd,Q update,< Q fbd >) (5)

Q fbd is a variable representing the current ECC state of
function block Fbd.

• VV update – New value of internal function block (FB)
variable var from VV fbd, where VV fb - set of internal
FB variables

eij = (Fbd, V V update,< variable id, new value >)
(6)

• VI update – New value of an input function block (FB)
variable var from VI fbd, where VI fb - set of input FB
variables

eij = (Fbd, V I update,< variable id, new value >)
(7)

• VO update – New value of a output function block (FB)
variable var from VO fbd, where VO fbd - set of output
FB variables

eij = (Fbd, V O update,< variable id, new value >)
(8)

• Alpha update – alpha fbd flag shows that FB started its
turn

eij = (Fbd,Alpha update,< alpha fbd value >)
(9)

• Beta update – beta fbd flag shows that FB finished its
turn

eij = (Fbd,Beta update,< beta fbd value >) (10)

• Select transition event – New value of selectEik – this
function shows that input event Eik was chosen by a FB

from a buffer of input messages. The chosen event will be
further used to choose the next enabled ECC transition.

eij = (Fbd, Select transition event,< selectEik >)
(11)

• Emits event – FB have emitted output event event id

eij = (Fbd,Emmits event,< event id >) (12)

• Ecc transition enabled – transition trn id of ECC was
enabled

eij = (Fbd,Ecc transition ennabled,< trn id >)
(13)

• NA event – new value of NA pointer (counter) to the
current ECC action

eij = (Fbd,NA event,< NA >) (14)

• NI event – new value of NI pointer (counter) to the
current step of running algorithm

eij = (Fbd,NI event,< NI >) (15)

This formal model of the IEC 61499 system execution
trace was used in the modification of FBME architecture as
a basis for a unified execution trace format. Based on the
formal model of IEC 61499 function block, the formal model
of execution trace fully describes any possible trace of the
evolution of a system.

IV. MODIFICATION OF FBME ARCHITECTURE

In FBME we propose to use execution traces of an IEC
61499 application to prove the correctness of its code. Users
may run the saved execution trace step by step in both
directions and thus analyse the reasons for the application
behavior. Also, modular architecture of FBME allows the
integration of automatic trace analysis tools. For debugging
purposes, we use three types of sources to produce execution
traces: IEC 61499 compatible runtime, model checking tools,
and a step-by-step virtual simulator of IEC 61466 runtime.

In the simplified form, the old version of FBME architecture
is in Fig. 3.

Fig. 3. Current FBME architecture.

Due to the lack of common execution trace model, FBME
obtained three modules for analysing system execution of



different sources. Each of these modules have their own GUI
(3) and run asynchronously. Each module translates IEC 61499
application into a format compatible with the trace provider
tool and manages the execution of the trace provider with this
data. Trace provider creates execution trace (3). FBME module
parses the execution trace and displays it on the module’s GUI.

This architecture design gave rise to the problems mentioned
above: a large number of different track formats. Each module
had a separate GUI, which led to the need to duplicate code.
Differences in the description of execution traces confused
users. Also sometimes trace providers, e.g. model checkers,
use their internal identifiers to describe the model of IEC
61499 application. All of this led to additional efforts both
in the development of the FBME module and in the execution
of trace analysis by the user.

The modular nature of FBME architecture allows to change
shapes of its modules and their interactions with a comfort
effort. We used the unified execution trace format to modify
the FBME architecture (Fig. 4). Some amount of third-party
trace provides, including model checkers, IEC 61499 runtimes,
and simulators (1), produced execution traces in their specific,
non-unified formats (2). Then FBME translates these execution
traces into inner unified execution trace format (3) and presents
them on unified GUI (4).

Fig. 4. The modified FBME architecture.

The modified architecture is presented in Fig. 5 on the exam-
ple of the NuSMV integration plugin. TraceVisualizerPlugin is
a MPS plugin responsible for the unified GUI representation
of execution traces. This plugin contains a tool window that
displays the list of available trace sources - model checkers,
simulators, and IEC 61499 runtimes. Users choose which tool
they are going to use to get the execution trace of a system.
Also in this tool window, a user may set some input parameters
for the chosen trace source tool, if it is needed. For example,
for model checkers a user specifies the requirement to be
checked. TraceVisualizerPlugin obtains the list of all integrated
into FBME tools from TraceFactory (2) execution point inter-
face, declared in TraceVisualizerPlugin. Execution point is a
powerful MPS mechanism to exchange data between plugins.
Other plugins providing system execution traces implement the
TraceFactory interface, and TraceVisualizerPlugin may obtain

the list of all implementations and display them on GUI. Also,
users may choose to load an existing trace.

As soon as a user specifies the execution trace source,
TraceVisualizerPlugin gets the corresponding implementation
of the TraceFactory execution point. It asynchronously in-
vokes generateTrace method from TraceFactory and receives
java.util.concurrent.Future object. We use Future object be-
cause constructing an execution trace may take some time.
The operation of industrial control systems is often associated
with physical delays in a plant, and model checkers may
also spend considerable time investigating a system model.
The generateTrace method receives tuning parameters as input
arguments for the specified tool. For NuSMV GenerateTrace
receives a requirement to be checked by the verifier.

SMVPlugin manages the interaction with third-party tools
via IntegrationService objects. IntegrationService objects man-
age calls of the Fb2SMV tool and NuSMV verifier. Execution
trace, obtained from the verifier, has to be converted to a uni-
fied format. We have developed a TraceProviderToolkit library
(4) for this purpose. It contains the necessary classes to build
a unified execution trace of a system. Each plugin implements
its successor of the CountereExampleParser abstract class –
a translator from the specific format into the counterexample
format by the unified formal model of the execution trace.

Execution trace is stored into a dynamic array of Sys-
temStateUpdate objects, which describes state change of the
state of the whole system, that has been detected in the
timeStamp moment. Each SystemStateUpdate object contains
a time stamp and array of SystemStateEvent objects. System-
StateEvent objects describe system events.

All possible SystemStateEvent types are stored in System-
StateEventType enumeration. Note that data in the execution
trace may not include all types of SystemStateEventType - it
may be related to the restrictions of concrete trace provider
tool or restrictions of a system formal model. For example,
Fb2SMV builds a formal NuSMV model which does not sim-
ulate system time. Or 4diac FORTE Runtime cannot provide
ECC transitions inner data. Also, CountereExempleParser may
use some additional data obtained during translation from IEC
61499 AST into a formal model - it may be file mapping
identifiers from the formal model into identifiers from the IEC
61499 application. Additionally, CountereExempleParser may
store the trace in a file.

When the execution trace is ready, CountereExempleParser
publishes it into the Future object for TraceVisualizerPlugin.
TraceVisualizerPlugin visualizes the obtained trace on the
unified GUI.

With this approach, FBME remains modular and open to
the integration of other third-party tools.

V. USE CASE EXAMPLE: A BLINKY APP

Let’s demonstrate the results of the work on a Blinky test
system. The debugging process of this example in FBME is
shown in Fig. 6. It is a simple IEC 61499 application, which
switches between 0 and 1 every 1 second. The block diagram
of the application is shown on panel 1. E CYCLE block



Fig. 5. The modified FBME architecture.

activates the application every 1 second. E SWITCH function
block switches between output events E0 and E1 depending on
the value of an input variable G. E SR is a Set/Reset function
block that produces output boolean value Q.

In Fig. 6 execution trace is obtained from the 4diac FORTE
runtime. Panel 2 shows execution trace steps. Panel 3 shows
the current state of the system.

The previous FBME version didn’t support such functional-
ity. Different plugins for integration execution trace providers
had separate non-unified GUIs and the user had to switch
between them and repeat routine operations.

VI. CONCLUSION

In the paper, we introduce the formal model of execution
traces based on the formal model of the IEC 61499 function
blocks. We present the design approach of MPS-based IDE for
IEC 61499 applications. The use of the unified execution trace
format allows for standardization of the integration of various
execution trace providers in IDEs for industrial automation.
We don’t have to deal with the textual representation of
execution traces which makes it difficult to integrate formal
methods into the development cycle. Integration of different
trace providers, such as verification and debugging tools into
FBME allows us to enhance the safety and reliability of

developed IEC 61499 control applications. Also, the modified
FBME architecture may be used as a pattern for MPS-based
IDEs for industrial automation purposes.

ACKNOWLEDGMENT

This work was sponsored, in part, by the H2020 project
1-SWARM co-funded by the European Commission (grant
agreement: 871743).

REFERENCES

[1] ”Programmable Logic Controllers — Part 3: Programming Languages,
IEC Standard 61131-3”, Third ed, 2013.

[2] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent Au-
tomation: State-of-the-Art Review,” in IEEE Transactions on Industrial
Informatics, vol. 7, 2011, pp. 768-781.

[3] Jet Brains, Jetbrains/fbme, 2020, [online] Available:
https://github.com/JetBrains/fbme.

[4] R. Sorokin, S. Patil and V. Vyatkin, ”Novel development tool for IEC
61499 based on domain-specific languages”,in IFAC-PapersOnLine, vol.
55, no. 7, pp. 439-444, 2022.

[5] Jet Brains, Meta Programming System, 2020, [online] Available:
https://www.jetbrains.com/mps/.

[6] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled and H. Veith, Model
checking, MIT press, 2018.

[7] V. Shatrov and V. Vyatkin, ”Promela Formal Modelling and Verifi-
cation of IEC 61499 Systems with comparison to SMV”, in IFAC-
PapersOnLine, 2021, pp. 1-6.



Fig. 6. Debugging of blinky test example in FBME.

[8] M. Xavier, S. Patil and V. Vyatkin, ”Cyber-physical automation systems
modelling with IEC 61499 for their formal verification,” 2021 IEEE 19th
International Conference on Industrial Informatics (INDIN), 2021, pp.
1-6.

[9] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, ”Nusmv: a new
symbolic model checker”, International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410-425, 2000.

[10] FB2SMV: IEC 61499 function blocks xml code to smv converter, 2021,
[online] Available: https://github.com/dmitrydrozdov/fb2smv.

[11] R. Gotzhein, ”Temporal logic and applications—a tutorial”, Computer
Networks and ISDN Systems, vol. 24, no. 3, pp. 203-218, 1992.

[12] B. Johnson, Y. Song, E. Murphy-Hill and R. Bowdidge, ”Why don’t
software developers use static analysis tools to find bugs?,” 2013 35th
International Conference on Software Engineering (ICSE), pp. 672-681,
2013.

[13] G. J. Holzmann, ”The model checker SPIN,” in IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279-295, May 1997.

[14] 4diac FORTE – IEC 61499 Runtime Environment, 2022, [online]
Available: https://www.eclipse.org/4diac/en rte.php

[15] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen and X. Guan, ”Discrete-
Event-Based Deterministic Execution Semantics With Timestamps for
Industrial Cyber-Physical Systems,” in IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 50, no. 3, pp. 851-862, 2020.


